An Empirical Comparison of Dynamic Impact Analysis Algorithms

Alessandro Orso,* Taweesup Apiwattanapong,* James Law,
Gregg Rothermel,” and Mary Jean Harrold,*

tCollege of Computing
Georgia Institute of Technology
Atlanta, Georgia
{orso, term, harrold} @cc.gatech.edu

Abstract

Impact analysis — determining the potential effects of
changes on a software system — plays an important role
in software engineering tasks such as maintenance, regres-
sion testing, and debugging. In previous work, two new dy-
namic impact analysis techniques, CoverageImpact and
PathImpact, were presented. These techniques perform
impact analysis based on data gathered about program be-
havior relative to specific inputs, such as inputs gathered
from field data, operational profile data, or test-suite execu-
tions. Due to various characteristics of the algorithms they
employ, CoverageImpact and PathImpact are expected
to differ in terms of cost and precision, however, there have
been no studies to date examining the extent to which such
differences may emerge in practice. Since cost-precision
tradeoffs may play an important role in technique selection
and further research, we wished to examine these tradeoffs.
We therefore designed and performed an empirical study,
comparing the execution and space costs of the techniques,
as well as the precisions of the impact analysis results that
they report. This paper presents the results of this study.

1 Introduction

As software systems evolve, changes made to those sys-
tems can have unintended or even disastrous effects [7].
Software change impact analysis is a technique for predict-
ing the potential effects of changes before they are made,
or measuring the potential effects of changes after they are
made. Applied before modifications, impact analysis can
help maintainers estimate the costs of proposed changes,
and select among alternatives. Applied after modifications,
impact analysis can alert engineers to potentially affected
program components requiring retesting, thus reducing the
risks associated with releasing changed software.

Many impact-analysis techniques have been presented in
the literature. In this paper, we focus on dependency-based

TComputer Science Department
Oregon State University
Corvallis, Oregon

{law, grother} @cs.orst.edu

impact analysis techniques [2]. Dependency-based impact-
analysis techniques proposed to date (e.g., [1, 2, 8, 12, 14,
16]) rely on static analysis based on forward slicing or tran-
sitive closure on call graphs to identify the syntactic depen-
dencies that may signal the presence of important semantic
dependencies [13].

Recently, two new dependency-based impact analysis al-
gorithms, CoverageImpact [10] and PathImpact [5, 6],
have been proposed. These algorithms differ from previ-
ous impact analysis algorithms in their reliance on dynamic
information about program behavior. This information is
computed in the form of execution data for a specific set
of program executions, such as executions in the field, ex-
ecutions based on an operational profile, or executions of
test suites. Naturally, the impact estimates computed in this
manner reflect only observed program behavior; however,
these estimates may be particularly useful in cases where
safety is not required because they provide more precise in-
formation about impact — relative to a specific program be-
havior — than static analyses [5, 6, 10].

Although CoverageImpact and PathImpact are sim-
ilar in overall approach, an analysis of the techniques
suggests that they may behave quite differently in prac-
tice. PathImpact is expected to be more precise than
CoveragelImpact, but also more expensive in terms of
space and time usage. Analytical comparisons, however, do
not reveal the extent to which relative costs and benefits of
heuristics emerge in practice, when they are applied to real
programs, real changes, and real input data. Practitioners
wishing to adopt dynamic impact analysis techniques, and
researchers seeking to improve them, need to understand
the cost-benefits tradeoffs that hold for those techniques in
practice.

We have therefore designed and performed an
experiment comparing the cost and precision of
CoveragelImpact and PathImpact applied to a set
of non-trivial Java programs. We considered several

versions of each program. For each version we performed
impact analysis using both techniques and compared (1) the
precision of the results, (2) the cost of the analyses in terms
of space, and (3) the cost of the analyses in terms of time.
The results of the study support the analytical claim that
tradeoffs exist between the two techniques, and provide
data on the extent to which these tradeoffs actually surface
in practice. The results also show that the techniques have
complementary strengths.

In the next section of this paper, we summarize the
CoveragelImpact and PathImpact techniques and pro-
vide a model for use in assessing their costs and benefits.
Section 3 presents our experiment design, results, and anal-
ysis. Section 4 discusses the implications of our results, and
Section 5 presents conclusions.

2 Dynamic Impact Analysis

Let P be a program on which we are performing impact
analysis and let C be a set of methods {m} in P in which
changes have been or may be made. The impact analysis
techniques we consider compute an impact set — a set of
methods potentially impacted by changes in C.

To illustrate the techniques we use a simple example.
Figure 1 provides the example in terms of a call graph for a
program P. The edge connecting nodes D and C is a back-
edge in the call graph and, thus, indicates recursion.

N
Ny
NG

Figure 1. Call graph for program P.

1@\\

/

= O

Because the techniques we consider perform dynamic
impact analysis, we provide, as part of our example (Fig-
ure 2) dynamic execution data corresponding to possible ex-
ecutions of program P. Each line in this figure corresponds
to a a trace of an execution of P, and consists of an identifier
for the execution followed by a list of methods called and re-
turn statements encountered during that execution. Each r
represents the return from the most recently called method,
and x represents the exit from the program. For example,
the trace for Exec2 corresponds to an execution in which M
is called, M calls B, B calls C, C returns to B, B calls G, G
returns to B, B returns to M, and M exits.

Execl: MBGr Gr rACETrrrxzx

Exec2: MBCr Grr x

Exec3: MACErDrrrx

Exec4: MBCErFrDrr ...CErFrDrrrx

Figure 2. Traces for P. The dots in the last
trace indicate that the sequence CErFrDrr is
repeated several times.

2.1 Coverage-Based Dynamic Impact Analysis

The CoverageImpact technique relies on lightweight
instrumentation to collect dynamic information from a run-
ning software system. As the instrumented program exe-
cutes, it records coverage information in the form of bit
vectors, and uses these bit vectors to compute the impact
set. The bit vectors contain one bit per method. A value
of 1 in the bit for method m in the vector for execution e
indicates that m was covered in e, and a value of 0 indicates
that m was not covered in e. For example, for the execu-
tions shown in Figure 2, the coverage information consists
of the set of bit vectors shown in Table 1.

|ExecD [M[A[B|[C|D[EJ[F]|G
Execl [1T [1[1T[1[0[1]0]1
Exec2 r{oj1,1}70j0|0]1
Exec3 | 1 | 1[0 1[1][1]0]0
Exec4 | 1 [0 |1 [1 |1 [1]1]O0

Table 1. Coverage bit vectors for the execu-
tion traces in Figure 2.

Given a set of changed methods C, CoverageImpact
uses the bit vectors collected during execution to determine
an impact set. We provide an overview of this analysis; the
complete algorithm is presented in Reference [10]. To iden-
tify the impact set, CoverageImpact computes, for each
method m in C, a dynamic forward slice based on the cov-
erage data for executions that traverse m. The impact set is
the union of the slices thus computed.

CoverageImpact computes each dynamic slice in three
steps. First, using the coverage information, it identifies
the executions that traverse m and adds the methods cov-
ered by such executions to a set of covered methods. Sec-
ond, it computes a static forward slice from m and adds the
methods included in the slice to a set of slice methods. (To
compute such a slice, we start slicing from all variable def-
initions in method m.) Third, it takes the intersection of
covered methods and slice methods. The result of the inter-
section is the impact set.

To illustrate, consider the impact set computed by
CoveragelImpact for the program and executions in our
example (Figures 1 and 2, Table 1) for change C = {A}
(i.e., only method A is modified). The executions that tra-

[‘T—>21367x2Cr3869r831414rx

-

/ ’\‘!,,O\ N

Figure 3. Whole-path DAG for the execution traces in Figure 2.

verse A are Execl and Exec3, and the covered methods in-
clude M, A, B, C, D, E, and G. Assume that the slice meth-
ods for method A consists of methods M, A, C, D, E, and
F. The resulting impact set computed by CoverageImpact,
which is the intersection of covered methods and slice meth-
ods, is then { M, A, C, D, E }.

2.2 Path-Based Dynamic Impact Analysis

The PathImpact [5] technique also relies on instru-
mentation to collect dynamic information from a running
software system. As the instrumented program executes,
it records multiple execution traces, of the form shown in
Figure 2. PathImpact first processes these traces sequen-
tially using the SEQUITUR compression algorithm [9] to
obtain a compact representation called a whole-path DAG
[4] (directed acyclic graph). The execution traces can be
processed as they are generated and need not be stored, and
the whole-path DAG is used instead of the traces to calcu-
late the change impact set. Given the execution traces in
Figure 2, and assuming that the sequence CErFrDrr is re-
peated two times in Exec4, the resulting DAG is shown in
Figure 3. The compression algorithm creates rules, shown
as numbered interior nodes in the DAG, to remove repeti-
tion within and across traces.

PathImpact walks the DAG to determine an impact set
given a set of changes. The complete algorithm for perform-
ing this DAG walk is presented in Reference [6]. Intuitively,
one way to visualize its operation is to consider beginning
at a changed method’s node in the DAG, walking through
the DAG by performing recursive forward and backward in-
order traversals at each node, and stopping when any trace
termination symbol, x, is found. By traversing forward in
the DAG, the algorithm finds all methods that execute after
the change and therefore could be affected by the change.
By traversing backward in the DAG, the algorithm deter-
mines all methods into which execution can return.

To illustrate, consider the impact set computed by
CoveragelImpact for the program and the executions in
our example (Figures 1 and 2, Table 1) for change C' = {A}
(i.e., only method A is modified). (This same example is
used to illustrate CoverageImpact.) PathImpact starts
at leaf node A, and walks through the DAG, as described
above. The resulting impact set computed by PathImpact
is {M, A,C,D, E}.

2.3 Cost-Benefits Tradeoffs

CoverageImpact and PathImpact are both safe with
respect to the dynamic information used for impact anal-
ysis: that is, neither technique excludes from its identi-
fied impact set any method that may be affected relative to
the available dynamic information. CoverageImpact and
PathImpact can differ, however, in terms of precision and
cost.

Where precision is concerned, PathImpact is expected
to be more precise than CoverageImpact. Consider, for
example, the computation of the impact set for the exam-
ple in Figure 1, when method D is changed. Assume, for
this example, that execution Exec3 (Figure 2) is the only
dynamic information available. In this case, PathImpact
builds a DAG for Exec3 only and then, based on that DAG,
computes impact set {M, A, C, D}. In contrast, in this same
case, CoverageImpact computes the impact set {M, A, C,
D, E}. CoverageImpact includes E in this set because (1)
E is in the static forward slice computed from the point of
the change, D, (2) E is covered by execution Exec3, and (3)
using coverage, rather than trace, information, it is impossi-
ble to identify whether a method is executed before or after
another method. This imprecision may occur, for instance,
in the presence of recursion or calls within loops. Note
that there could also be cases in which CoverageImpact
is more precise than PathImpact. For example, if method
M contains a call to D followed by a call to C, and D has no

data dependences that involve C, the slice computed from
D would not include D. In such a case, D would not be in
the impact set for CoverageImpact, whereas it would be
in the impact set for PathImpact (as discussed above).

Where cost is concerned, PathImpact is analytically
more expensive than CoverageImpact in terms of both
space and time. Consider, for example, the computation
of the impact set for our example for any given change, us-
ing execution Exec4 as dynamic information. To compute
the impact set, CoverageImpact stores the coverage in-
formation as a bit vector of fixed size (8 bits in this case)
and performs the analysis using only this bit vector. In con-
trast, PathImpact must process the entire trace to generate
a DAG (4 4 8 x n elements, where n is the number of times
the sequence CErFrDrr is repeated) and then must walk the
DAG to compute the impact set.

We next describe these tradeoffs in greater detail.

2.3.1 Relative Precision

Consider two impact sets, 1.5 4 and 1.5, computed by safe
impact analysis techniques A and B for the same program,
change, and dynamic information. The number of methods
in 154 and not in I.Sp can be used to measure the relative
imprecision of A with respect to B, and vice versa. Any
elements that are in the set identified by A and not in the set
identified by B represent imprecision: cases in which the
method identified as impacted is not in fact impacted by the
modification (relative to the given set of executions). Such
imprecision forces engineers to spend unneeded time inves-
tigating potential impacts. To measure the relative precision
of CoverageImpact with respect to PathImpact, we thus
measure the differences in the sizes of their impact sets.

2.3.2 Relative Cost in Space and Time

To compare the costs of CoverageImpact and
PathImpact we define a model of a general process
for impact analysis (Figure 4). CoveragelImpact and
PathImpact are two instances of this process, distin-
guished by the type and amount of information they collect
and the actors that play different roles in the processes.

Initially, a program is instrumented to collect dynamic
information while it executes. The types of instrumentation
and information produced depend on the impact analysis
performed. CoverageImpact requires the addition of a
probe at the entry of each method, whereas PathImpact
requires two or more probes per method, one at the entry
and one at each exit.

The instrumented program is executed to collect the dy-
namic information produced by the probes in the code. For
CoveragelImpact, the dynamic information consists of a
token per executed method, whereas for PathImpact, the
dynamic information consists of two tokens per method,
one produced at the entry and one at the exit.

The dynamic information is processed, while being pro-
duced, to create the execution data needed by the impact
analysis techniques, which is then stored on disk. For
Coveragelmpact, the processor sets, for each token, the
bit for the corresponding method in the bit vector that con-
tains coverage information. For PathImpact, the proces-
sor builds the DAG based on the sequence of tokens read
from the trace, as described in Section 2.2.

Impact analysis is performed using the stored execution
data and information on the changes in the program. Ta-
ble 2 summarizes the characteristics of CoverageImpact
and PathImpact relative to this model.

Based on this model, we identify the following costs, in
space and time, for dynamic impact analysis techniques.

Space cost is the space required to store the execution
data on disk. For CoverageImpact, space cost consists
of the size of the bit vectors that contain method-coverage
information, one per execution. For PathImpact, space
cost is the size of the DAGs. Depending on the context,
there could be one DAG per execution (e.g., if executions
are performed at different user sites), or one DAG for the
whole set of executions. In our study, we measure space
cost in both cases.

Time overhead is the additional time required for the ex-
ecution of the program due to instrumentation and process-
ing of dynamic information. For CoverageImpact, time
overhead is caused by the execution of one probe for each
method invocation and by the updating of the coverage bit
vector. For PathImpact, time overhead is caused by the
execution of two probes for each method invocation and by
the time required to process the traces and build the DAG.

We do not consider the cost of the last step of the pro-
cess modeled in Figure 4, the generation of the impact sets,
for three reasons. First, this step can be performed off-line
with respect to the execution of the program. Second, in
our preliminary work, we have observed it to be relatively
low cost for both techniques considered. Third, maintain-
ers are typically willing to wait reasonable times for impact
analysis results [2]. In contrast, overhead involved in pro-
gram execution is an important cost, especially when exe-
cution data are collected from deployed programs running
on users’ platforms.

3 Empirical Study

The foregoing analyses of precision and cost sug-
gest potential differences between CoverageImpact and
PathImpact; however, such analyses cannot predict the
extent to which these differences will surface when applied
to actual software systems, versions, and execution data.
Our goal, then, is to empirically investigate the relative costs
and benefits of the techniques in practice. Toward this end,
we designed and performed a controlled experiment. The

Instrumenter Processor

Code Dynamic

Information

Instrumented

Execution

Data

Change

Execution Information

Data

Impact o
Program Program Analysis Affected Impact Set
Algorithm Methods
Figure 4. Model of the dynamic impact analysis process.
| CoverageImpact | PathImpact
Instrumenter Inserts probes at method entries Inserts probes at method entries and exits
Dynamic Information One token per method call (method id) Two tokens per method call (method id, return)
Processor Bit vectors builder DAG builder
Execution Data Bit vectors DAGs
Impact Analysis Algorithm | Coverage based Path based

Table 2. Characteristics of coverageImpact and pathImpact With respect to the model of Figure 4.

following subsections present our variables and measures,
experiment setup and design, threats to validity, and data
and analysis. Further discussion of the results and their im-
plications follows in Section 4.

3.1 Variables and Measures

3.1.1 Independent Variables

Our experiment manipulated one independent variable: im-
pact analysis technique, the two categorical factors being
CoverageImpact and PathImpact.

3.1.2 Dependent Variables and Measures

To investigate our research questions we use three depen-
dent variables — precision, space cost, and time overhead
— derived from the discussion and cost model presented in
Section 2.3.

To evaluate the precisions of CoverageImpact and
PathImpact, we measure the relative sizes of the im-
pact sets computed by the techniques on a given program,
change set, and set of program executions. We report and
compare such sizes in relative terms, as a percentage over
the total number of methods in the sets.

As discussed in Section 2.3, the primary factor in deter-
mining space cost for CoverageImpact is the size of the
bit vectors representing test coverage of methods. The pri-
mary factor in determining space cost for PathImpact is
the size of the DAGs constructed by the algorithm following
its processing of a set of traces. Thus, to evaluate the rel-
ative space usage of CoverageImpact and PathImpact,
we measure and compare these sizes, in terms of disk space
required to store the corresponding information.

To evaluate relative execution costs for
CoverageImpact and PathImpact, we measured
the time required to execute an instrumented program on a
set of test cases, gathered the execution data (bit vectors or

DAGs) needed for subsequent impact analysis, and output
that information to disk. We compare the execution costs
for the two techniques to each other, and to the cost of
executing a non-instrumented program on the same set of
test cases.

3.2 Experiment Setup
3.2.1 Object of Analysis

As objects of analysis we used several releases of three pro-
grams: NANOXML, SIENA, and JABA (see Table 3).

Program Versions | Classes | Methods | LOC | Test Cases
NanoXML 6 19 251 3279 216
Siena 8 24 219 3674 564
Jaba 11 355 2695 33183 125

Table 3. Objects of analysis

NANOXML, an XML parser written in Java [15], is a
component library that has been used with various appli-
cation programs. SIENA (Scalable Internet Event Notifi-
cation Architecture) [3] is an Internet-scale event notifica-
tion middleware for distributed event-based applications de-
ployed over wide-area networks. JABA (Java Architecture
for Bytecode Analysis)! is a framework for analyzing Java
programs. For this study, we used several consecutive ver-
sions of each of these systems, as indicated in Table 3.

To provide input sets for use in determining dynamic be-
havior, for NanoXML and Siena, we used test suites cre-
ated for earlier experiments [11]. These test suites consist
of specification-based test cases created using the user doc-
umentation and interface descriptions for the programs. For
JABA, we used its existing regression test suite.

lhttp: //www.cc.gatech.edu/aristotle/Tools/jaba.html

3.3 Experiment Design and Analysis Strategy

As a representation of CoverageImpact, we used an
implementation created at Georgia Tech for use in ear-
lier studies [10]. In this implementation, we approximated
static forward slicing by computing simple reachability on
the interprocedural control-flow graph. As a representation
of PathImpact, we used an implementation created at Ore-
gon State University for use in earlier studies [5, 6].

As change sets for use in assessing impacts, we used the
actual sets of changes from each version of our subject pro-
grams to each subsequent version.

Given this infrastructure, to conduct the experiment, we
first ran the instrumented programs on all workloads and
gathered bit vectors and DAGs using the two implementa-
tions; for each version of the program being considered, we
did this both for the entire test suites and for each individ-
ual test case. To gather time-overhead data, we measured,
for each test execution, the time required to run the program
and build and store the bit vector or the DAG; to measure
such time, we used differences in system times, obtained
through calls to the standard library, at the beginning and at
the end of the execution. We then collected size measures
on the bit vectors and DAGs. Finally, we applied each im-
pact analysis technique to each set of bit vectors or DAGs,
for each change set considered, and collected information
about the size of the generated impact sets. We collected all
data on four dedicated 2.80 GHz Pentium4 PCs, with 1 GB
of memory, running GNU/Linux 2.4.21.

Because we collected time, space, and precision data for
both the entire test suites and each individual test case, for
each of the cost factors we report two different sets of re-
sults: individual test execution results and test-suite execu-
tion results. Individual test execution results are the results
that we computed by considering each test case in a test
suite independently and then averaging the results across
all test executions. Test suite execution results are the re-
sults that we computed considering the entire test suite at
once. Considering both sets of results let us perform a more
thorough comparison of the two techniques.

3.4 Threats to Validity

Like any empirical study, this study has limitations
that must be considered when interpreting its results. We
have considered the application of the impact-analysis tech-
niques studied to only three programs, using one set of test
data per program, and cannot claim that these results gener-
alize to other scenarios. However, the system and versions
used are real, non-trivial software systems, the change sets
used are actual change sets, and the test suites used repre-
sent suites that are or could be realistically used in practice.
Nevertheless, further studies with other subjects are needed
to address questions of external validity.

Threats to construct validity concern the appropriateness
of our measures for capturing our dependent variables. Our
measures of time and space capture some aspects of these
variables, but other factors (e.g., the amount of memory
rather than disk consumed) may be important in particu-
lar situations. Other components of effectiveness, such as
the relative usefulness of the generated impact sets, could
also be considered. Finally, different approaches to imple-
menting the impact-analysis techniques could alter the rel-
ative importance of specific cost factors, and require dif-
ferent measures. For example, given a version of either
impact-analysis tool in which the processor operates asyn-
chronously as a second process, overall execution and space
costs would vary depending on (1) the relative speeds of the
executing instrumented program and the processor, and (2)
the kind of buffering used between the processes.

Threats to internal validity concern our ability to draw
conclusions about the connections between our independent
and dependent variables. In this experiment, our primary
concern involves instrumentation effects, such as errors in
our algorithm implementations or measurement tools, that
could affect outcomes. To control for these threats, we val-
idated the implementations and tools on known examples.

A second threat to internal validity involves drawing con-
clusions based on specific algorithm implementations. Our
implementations are research prototypes and were not con-
structed with efficiency in mind, nor was their construction
controlled for differences that could impact relative effi-
ciency. Furthermore, we have approximated static slicing
with reachability, which, in some cases, may result in less
precise results for CoverageImpact. Note that these limi-
tations do not apply to our space cost results, for which we
are able to obtain accurate measures using our prototypes.

3.5 Results and Analysis

In the following sections we present and analyze the data
obtained for each of our three dependent variables, in turn,
using descriptive and inferential statistics. Section 4 pro-
vides additional discussion.

3.5.1 Precision

Figure 5 summarizes the precision results observed in our
studies with two graphs; the graph on the left represents
individual test execution results, and the one on the right
represents test-suite execution results. In both graphs, each
version of each program occupies a position along the
horizontal axis, and the relative impact set size for that
program and version are represented by a vertical bar —
grey for the CoverageImpact technique and black for the
PathImpact technique. The height of the bars represents
the impact set size relative to the number of methods in the
program, expressed as a percent, for each program and ver-
sion. By normalizing the impact set size in this way we can

90

Individual test execution results

O Coveragelmpact

80 —

W Pathimpact

70

60

50

30 1

20 -

NanoXml

90

80

70 1

60 1

50 1

40 1

Test suite execution results

O Coveragelmpact
W Pathimpact

NanoXml

Figure 5. Precision results, expressed as percentage of methods in the impact sets.

Program v0 vl v2 v3 v4 v5 v6 | V7 v8 v9
NanoXml | 0.9512 | 0.9933 | 0.9930 | 1.0000 | 0.0997 - - - - -
Siena 0 0 0.1332 0 0 0.6778 | 0 - - -
Jaba 0.0653 N/A 0.9328 | 0.9331 0 0 0 1 | 0.8667 | 0.7377

Table 4. p-values from t-tests on individual test execution precision results, per program and version.

make comparisons across programs and versions that have
different numbers of methods.

The graphs show that, in many cases, PathImpact is
more precise than CoverageImpact. The difference in
relative precision between the two techniques varies across
programs and versions: it ranges from 0 to 9.7, with an aver-
age of 2.7, for the individual test execution results, and from
0 to 13.4, with an average of 3.8, for the test suite results.

We formally investigated the differences between the
precision of the two techniques using paired t-tests across
individual test execution results within each program ver-
sion. The null hypothesis was that the mean of the impact
set sizes for the two techniques was equal. T-tests for which
the p-value is less than or equal to a level of significance «
of 0.05 are statistically significant. Table 4 summarizes the
results of this analysis, per program and version, listing the
p-values that result from each t-test. Entries in which re-
sults are statistically significant (p-value < 0.05) are shown
in bold. (Blank entries occur due to the different numbers of
versions available per program. The p-value for version v1
of JABA cannot be computed because the changes for this
version were not traversed by any test case and, thus, the
size of the impact sets is zero for both techniques.)

The p-values in the table indicate that there are statis-
tically significant differences in the impact sets computed

by CoverageImpact and PathImpact on eight out of 21
cases (38%) — for five versions of Siena and three versions
of JABA. For the other 13 cases (62%), the results are not
statistically significantly different for an « of 0.05.

3.5.2 Space Cost

Figure 6 summarizes the test-suite execution results for
space costs that we observed in our studies. For
each program and version, the graph in the figure rep-
resents space cost data with a vertical bar — grey
for the CoverageImpact technique and black for the
PathImpact technique. The height of the bars depicts the
absolute size of the impact analysis data stored by the tech-
nique, expressed in KB.

The graph shows that, for all programs and versions,
CoveragelImpact requires from seven to 30 times less
space than PathImpact to store execution data. However,
the size required by PathImpact is never larger than 1.1
MB per suite, which makes the technique practical in cases
in which space cost is not severely constrained (for exam-
ple, when collecting execution data in house rather than
from deployed software [10]).

For space cost, we do not show a graph for individual
test execution results because, for those results, the differ-

1,200

O Covimpact
| |mPathimpact

NanoXml

Figure 6. Space cost results, in KB.

ences are even more extreme. This is because PathImpact
can generate a more compressed DAG when processing
traces for a whole test-suite than when processing traces
for executions of single test cases individually; conversely,
CoveragelImpact always computes a bit vector of fixed
size, per execution. Therefore, only when gathering bit vec-
tors for a whole test suite does their cumulative size become
comparable to the size of a DAG for the same suite.

3.5.3 Time Overhead

Table 5 summarizes the time cost results observed in our
studies. For each program and version, the table reports
the time required to execute the uninstrumented program
(Uninst), the time required to execute an instrumented pro-
gram and gather and store the bit vectors (Cov), and the time
required to execute an instrumented program and gather and
store the DAGs (Path).

Like Figure 5, Table 5 reports both individual test results,
in which we gather the execution times for each test case
independently and then average them across all test cases,
and test-suite results, in which we gather the execution time
required to execute the whole test suite at once.

As the table shows, the execution times for PathImpact
are consistently higher than those for CoverageImpact As
with the space results, the difference in time overhead be-
tween the two techniques varies considerably in the table:
it ranges from 174 ms (SIENA v0) to 69,252 ms (JABA v1),
for the individual test execution results, and from 842,205
ms (NANOXML v1) to 59,958,506 ms (about 16 hours, on
JABA v3), for the test-suite results. The table also shows
the degree to which both CovImpact and PathImpact im-
pose overhead on the execution time for the uninstrumented
programs, and the extent to which that overhead differs be-
tween the two techniques.

Individual test execution Test suite execution
Program Uninst | Cov Path Uninst Cov Path
NanoXml-v0 21 86 506 4,536 18,379 2,354,081
NanoXml-v1 29 94 435 6,261 20,189 862,384
NanoXml-v2 33 99 474 7,123 21,235 1,199,627
NanoXml-v3 38 103 548 8,287 22,198 1,226,769
NanoXml-v4 39 103 538 8,348 22,259 1,372,292
Siena-v0 658 694 868 370,999 | 391,575 1,807,538
Siena-v1 658 693 868 370,904 | 391,115 1,807,192
Siena-v2 658 694 889 371,130 | 391,231 1,786,140
Siena-v3 658 694 889 371,163 | 391,386 1,944,428
Siena-v4 658 694 890 371,211 391,270 1,944,974
Siena-v5 658 696 908 371,205 | 392,606 1,754,441
Siena-v6 658 695 908 371,249 | 293,093 1,754,009
Jaba-v0 413 427 | 58,959 51,586 53,344 | 57,749,814
Jaba-vl 408 425 | 69,677 51,044 43,097 | 54,127,217
Jaba-v2 410 427 | 53,461 51,229 53,393 | 56,437,190
Jaba-v3 412 430 | 53,089 51,605 53,710 | 60,012,216
Jaba-v4 414 433 | 56,316 51,769 54,099 | 54,899,038
Jaba-v5 417 434 | 56,327 52,226 54,270 | 57,053,813
Jaba-v6 412 433 | 56,835 51,611 54,085 | 54,544,107
Jaba-v7 414 484 | 56,171 51,856 60,459 | 57,015,465
Jaba-v8 462 476 | 56,877 57,709 59,495 | 54,411,568
Jaba-v9 466 479 | 57,110 58,246 59,824 | 54,823,308

Table 5. Time cost results, in ms.

We used paired t-tests to investigate the differences be-
tween time overhead of the two techniques, across individ-
ual test execution results, by program and version. We also
employed paired t-tests to compare the costs of each tech-
nique to the cost of executing the non-instrumented pro-
gram. The null hypotheses for these three t-tests are that
(1) the time costs of the two impact analysis techniques are
equal, (2) the time cost of CoverageImpact is negligible
with respect to the time cost of running the uninstrumented
program, and (3) the time cost of PathImpact is negligible
with respect to the time cost of running the uninstrumented
program. Table 6 summarizes the results of these analy-
ses, per program and version, listing the p-values that result
from each t-test, with bold indicating significance.

The p-values in the first part of the table show that
the differences in time costs of CoverageImpact and
PathImpact are statistically significant in 20 out of 22
cases (in all cases except for SIENA versions v0 and v1).
The p-values in the second part of the table show that
there is no significant difference in the time cost of running
CoveragelImpact and the time cost of running the unin-
strumented program for SIENA and JABA, whereas the dif-
ference is significant for NANOXML. Finally, the p-values
in the third part of the table show that there is a significant
difference in the time cost of running PathImpact and the
time cost of running the uninstrumented program for all pro-
grams and versions.

4 Discussion

The goal of our study was to explore and under-
stand the practical tradeoffs for CoverageImpact and
PathImpact. Overall, the results of the study show clearly
that such tradeoffs do exist in practice and that there can
be significant differences between the two techniques. In

Progam [vO [vlI [v2 [v3 [v& [v5 [w6 [vI [w8 [9
Coveragelmpact vs PathImpact

NanoXml 0 0 0 0 0 - - - - -

Siena 0.0557 | 0.0547 | 0.0308 | 0.0311 | 0.0303 | 0.0191 | 0.0185 - - -

Jaba 0 0 0 0 0 0 0 0 0 0

Coveragelmpact vs Uninstrumented

Program v0 vl v2 v3 v4 v5 v6 v7 v8 v9

NanoXml 0 0 0 0 0 - - - - -

Siena 0.6991 | 0.7042 | 0.7057 | 0.7040 | 0.7062 | 0.6876 | 0.6954 - - -

Jaba 0.3906 | 0.3094 | 0.2899 | 0.3056 | 0.2574 | 0.3298 | 0.2268 | 0.2139 | 0.3554 | 0.4211
PathImpact vs Uninstrumented

Program v0 vl v2 v3 v4 v5 v6 v7 v8 v9

NanoXml 0 0 0 0 0 - - - - -

Siena 0.0235 | 0.0235 | 0.0125 | 0.0126 | 0.0124 | 0.0069 | 0.0069 - - -

Jaba 0 0 0 0 0 0 0 0 0 0

Table 6. p-values from t-tests on individual test execution time cost results, per program and version,

for three dimensions of comparisons.

particular, CoverageImpact was considerably less expen-
sive than PathImpact in terms of space cost and time
overhead, whereas PathImpact was more precise than
CoveragelImpact in the impact sets computed.

A closer look at the data shows that, for the cases consid-
ered, the relative precision of the techniques did not appear
to be related to the size of the programs. NANOXML and
SIENA are of comparable size, but the relative precision of
the techniques varied considerably for these two programs.
Moreover, the relative precision varied across different ver-
sions of the same program. From these observations, we
conjecture that, in addition to depending on the program
and on the set of dynamic data considered, relative preci-
sion is also affected by the location of changes. To illustrate,
consider again the example provided in Section 2.3, where
we show a case in which PathImpact is more precise than
CoveragelImpact. For the same example, we would see
no difference in precision were we to consider changes in
methods other than D, such as changes involving method
E or method A.

To further investigate this conjecture, we computed the
impact sets for one version of JABA, the largest of our
subject programs, for 2,695 changes, each consisting of a
change in a single method. We then compared the im-
pact sets calculated by each technique on each of these
changes. The results confirmed our intuition: the relative
difference in precision between the two techniques varied
widely across changes, from 0 to 42.79. Being able to rec-
ognize the types of changes for which differences in preci-
sion are particularly high would aid further investigation of
the reasons for such differences.

The results of our study also show that the size of the
program, and especially the size of the execution traces,’

2Due to space limitations, we do not report data about the size of exe-
cution traces in this paper. However, the reader can use execution times as
an indicator of such size: in general, the longer a program runs, the larger

affected to a large extent the differences with respect to
cost in space and time for the two techniques. Because
CoveragelImpact requires almost no processing of the dy-
namic information, its time overhead tended to be negligi-
ble. (The reason why the relative overhead was not negligi-
ble for program NANOXML is because its execution times
are so short — less than 50 milliseconds — that even the
small overhead due to the storing of the bit vectors to disk
becomes relevant.) Moreover, CoverageImpact requires
no path information, and its space cost is always one bit
per method in the program. The situation is different for
PathImpact, for which the cost in both time and space
tends to grow with the size of the traces. The test-suite exe-
cution times for JABA provide an example of this behavior,
with times for PathImpact on the order of 15 hours.

To further study this observation, we performed impact
analysis using the two techniques on a handful of executions
that generated traces from one to two orders of magnitude
larger than those considered for the experiments in this pa-
per. Although the number of data points collected is too
small to be statistically significant, these additional obser-
vations confirmed the trend observed in the presented data
— that the cost in both time and space for PathImpact
grows with the size of the traces.

5 Conclusion

In this paper, we have presented an empirical com-
parison of two dynamic impact analysis techniques,
CoveragelImpact and PathImpact, that perform impact
analysis based on execution data gathered from the field,
from operational profile data, or from test-suite executions.
In the study, we compared the two techniques based on (1)
the precision of the impact sets they compute, (2) their cost
in terms of space, and (3) their cost in terms of time. The

is the trace it produces.

results of the study show that tradeoffs do exist for the two
techniques, and that the techniques have complementary
strengths and weaknesses.

Given these findings, we can draw several conclusions
and outline several future research directions.

First, it seems that PathImpact, at least as currently de-
fined, may not be practical for use with programs that gen-
erate large execution traces, due to its large time overhead.
Part of the overhead observed in these studies is due to the
use of an implementation that is not optimized for speed
and, in theory, the technique may be made linear in the size
of the traces [4]. Nevertheless, trace sizes can be in the or-
der of several GB, and the (almost) constant cost required
to process each element in the trace is not negligible.

Second, CoverageImpact appears to be practical for
the programs that we considered in our experiment. How-
ever, for some programs and changes, the technique can be
significantly less precise than PathImpact, which may re-
sult in wasted resources (e.g., in all cases in which main-
tainers need to consider the methods in the change sets for
other tasks). Additional studies will be needed to assess the
extent to which these findings generalize to larger programs.

Third, dynamic impact analysis techniques focus on
behavior relative to specific program inputs, in con-
trast to static techniques that consider all possible be-
haviors. Empirical comparisons of PathImpact and
CoveragelImpact to an implementation of static slicing
[6, 11] have shown that the latter can identify much larger
impact sets than the former, and thus, in cases in which con-
servative estimates are not required, can lead to unnecessary
expense. Similar comparisons involving other static slicing
techniques will be needed to provide a complete picture of
the tradeoffs.

Fourth, because PathImpact and Coveragelmpact
have such complementary cost benefits, an interesting area
for future work is to investigate ways to combine them,
to define a hybrid approach that is not as expensive as
PathImpact, yet is more precise than CoverageImpact.
For example, static analysis could be used to identify groups
of methods that may cause imprecision and collect only par-
tial traces for those methods.

Finally, our study has examined constructs directly mea-
suring the time, space, and precision costs associated with
dynamic impact analysis techniques themselves. Ulti-
mately, however, the practical potential of these techniques
must be assessed in terms of the engineering approaches
they are intended to assist, approaches such as predictive
risk assessment and regression testing guidance.

Acknowledgements

This work was supported in part by National Science
Foundation awards CCR-0306372, CCR-0205422, CCR-
9988294, CCR-0209322, and SBE-0123532 to Georgia

Tech, and by the NSF Information Technology Research
program under Award CCR-0080900 to Oregon State Uni-
versity.

References

[1] R. S. Arnold and S. A. Bohner. Impact analysis - towards
a framework for comparison. In Proceedings of the Inter-
national Conference on Software Maintenance, pages 292—

301, Sept. 1993.
[2] S.Bohner and R. Arnold. Software Change Impact Analysis.

IEEE Press, Los Alamitos, CA, USA, 1996.

[3] A.Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computing Systems, 19(3):332-383, Au-
gust 2001.

[4] J.Larus. Whole Program Paths. In Proceedings of SIGPLAN

PLDI 99, pages 1-11, Atlanta, GA, May 1999. ACM.

[5] J.Law and G. Rothermel. Incremental dynamic impact anal-
ysis for evolving software systems. In Proceedings of the In-
ternational Symposium on Software Reliability Engineering,
Nov. 2003.

[6] J. Law and G. Rothermel. Whole program path-based dy-
namic impact analysis. In Proceedings of the International
Conference on Software Engineering, pages 308-318, May
2003.

[7] J. L. Lions. ARIANE 5, Flight 501 Failure, Report by the
Inquiry Board. European Space Agency, July 1996.

[8] J. P. Loyall, S. A. Mathisen, and C. P. Satterthwaite. Im-
pact analysis and change management for avionics software.
In Proceedings of the IEEE National Aeronautics and Elec-
tronics Conference, Part 2, pages 740-747, July 1997.

[9] C. Nevill-Manning and I. Witten. Linear-time, incremental
hierarchy inference for compression. In Proceedings of the

IEEE Data Compression Conference, pages 3—11, 1997.

[10] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging
field data for impact analysis and regression testing. In Pro-
ceedings of the ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 128-137, Sept. 2003.

[11] A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel, M. L.
Soffa, and H. Do. Using component metadata to support
the regression testing of component-based software. In Pro-
ceedings of the International Conference on Software Main-
tenance, pages 716-725, November 2001.

[12] S. L. Pfleeger. Software Engineering: Theory and Practice.
Prentice Hall, Englewood Cliffs, NJ, 1998.

[13] A. Podgurski and L. Clarke. A formal model of program
dependences and its implications for software testing, de-
bugging, and maintenance. /[EEE Transactions on Software
Engineering, 16(9):965-79, Sept. 1990.

[14] B. G. Ryder and F. Tip. Change impact analysis for object-
oriented programs. In Proceedings of the ACM Worshop
on Program Analysis for Software Tools and Engineering,

pages 46-53, Oct. 2001.
[15] M. D. Scheemaecker. NanoXML: A small XML parser for

Java. http://nanoxml.n3.net, 2002.
[16] R.J. Turver and M. Munro. Early impact analysis technique

for software maintenance. Journal of Software Maintenance,
6(1):35-52, Jan. 1994.

