
POLITECNICO DI MILANO

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA E AUTOMATICA

Integration Testing of
Object-Oriented Software

Ph.D. Thesis of:
Alessandro Orso

Advisor:
Prof. Mauro Pezzè

Tutor:
Prof. Carlo Ghezzi

Supervisor of the Ph.D. Program:
Prof. Carlo Ghezzi

XI ciclo





To my family





Acknowledgments

Finding the right words and the right way for expressing acknowledgments is a diffi-
cult task. I hope the following will not sound as a set of ritual formulas, since I mean
every single word.

First of all I wish to thank professor Mauro Pezzè , for his guidance, his support,
and his patience during my work. I know that “taking care” of me has been a hard
work, but he only has himself to blame for my starting a Ph.D. program.

A very special thank to Professor Carlo Ghezzi for his teachings, for his willingness
to help me, and for allowing me to restlessly “steal” books and journals from his office.
Now, I can bring them back (at least the one I remember...)

Then, I wish to thank my family. I owe them a lot (and even if I don’t show this
very often; I know this very well). All my love goes to them.

Special thanks are due to all my long time and not-so-long time friends. They
are (stricty in alphabetical order): Alessandro “Pari” Parimbelli, Ambrogio “Bobo”
Usuelli, Andrea “Maken” Machini, Antonio “the Awesome” Carzaniga, Dario
“Pitone” Galbiati, Federico “Fede” Clonfero, Flavio “Spadone” Spada, Gianpaolo “the
Red One” Cugola, Giovanni “Negroni” Denaro, Giovanni “Muscle Man” Vigna,
Lorenzo “the Diver” Riva, Matteo “Prada” Pradella, Mattia “il Monga” Monga, Niels
“l’é semper chi” Kierkegaard, Pierluigi “San Peter” Sanpietro, Sergio “Que viva Mex-
ico” Silva.

Finally, I thank my office mates (present and past, close and far) for being so pa-
tient with my bad temper; Alberto “The Bass” Coen Porisini, Angelo “Go Navy”
Gargantini, Cristiana “Chris” Bolchini, Elisabetta “Liz” di Nitto, Fabiano “the Wiz-
ard” Cattaneo, Fabrizio “il Castellano” Ferrandi, Luciano “Luce” Baresi, Luigi “Gigi”
Lavazza, Matteo “Amebone” Valsasna, Pierluca “Black *R*ipple“ Lanzi.

I would also like to thank the many others who have come and gone.





Contents

1 Introduction 1

1.1 Focus and Contribution . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Object Oriented Systems 7

2.1 The Object-oriented Paradigm . . . . . . . . . . . . . . . . . . . . 7

2.2 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Client-Supplier Relationship . . . . . . . . . . . . . . . . 14

2.6.2 Hierarchical Relationships . . . . . . . . . . . . . . . . . . 15

2.6.3 Abstract Methods and Abstract Classes . . . . . . . . . . 17

2.7 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.1 Ad Hoc Polymorphism . . . . . . . . . . . . . . . . . . . 19

2.7.2 Universal Polymorphism . . . . . . . . . . . . . . . . . . 20

2.8 Object-oriented Language . . . . . . . . . . . . . . . . . . . . . . 21

3 Testing 23

3.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Specification Based Testing . . . . . . . . . . . . . . . . . 27

3.3.2 Program Based Testing . . . . . . . . . . . . . . . . . . . . 29

i



ii CONTENTS

3.3.3 Fault Based Testing . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Testing Object Oriented Software 33

4.1 Information Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Shadow Invocations . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Polymorphism and Dynamic Binding . . . . . . . . . . . . . . . 36

4.4 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Genericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Integration Testing of Object Oriented Software 45

5.1 Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Integration Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Top-down and Bottom-up Strategies . . . . . . . . . . . . 47

5.2.2 Big-bang Strategies . . . . . . . . . . . . . . . . . . . . . . 48

5.2.3 Threads Integration . . . . . . . . . . . . . . . . . . . . . 48

5.3 Critical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 The Proposed Strategy . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.1 Class Relation Graph . . . . . . . . . . . . . . . . . . . . . 50

5.4.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Integration Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Polymorphism and Testing 59

6.1 Polymorphism and Testing . . . . . . . . . . . . . . . . . . . . . 60

6.2 A Data-Flow Technique for Testing Polymorphism . . . . . . . . 61

6.2.1 ICCFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.2 Polymorphic Definitions and Uses . . . . . . . . . . . . . 67

6.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Path Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 The Feasibility Problem . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 A Prototype Environment 85

7.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS iii

7.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.1 AIS Subsystem . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.2 TEES Subsystem . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Conclusion 93

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2 Open Issues and Future Work . . . . . . . . . . . . . . . . . . . . 94

A Code of the Example 95



iv CONTENTS



List of Figures

2.1 An example of class . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Pre and post-conditions . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 An example of reference attributes . . . . . . . . . . . . . . . . . 13

2.4 An example of class with class attributes . . . . . . . . . . . . . . 14

2.5 An example of class hierarchy in Java . . . . . . . . . . . . . . . 18

2.6 A type hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Taxonomy of polymorphism . . . . . . . . . . . . . . . . . . . . . 20

4.1 An example of information hiding . . . . . . . . . . . . . . . . . 35

4.2 An example of shadow invocations . . . . . . . . . . . . . . . . . 36

4.3 A simple example of polymorphism . . . . . . . . . . . . . . . . 37

4.4 An example of polymorphic invocation . . . . . . . . . . . . . . 38

4.5 A risky conversion that can lead to a failure . . . . . . . . . . . . 40

4.6 An example of inheritance in C++ . . . . . . . . . . . . . . . . . 41

4.7 An example of genericity in C++ . . . . . . . . . . . . . . . . . . 43

5.1 A set of classes to be integrated . . . . . . . . . . . . . . . . . . . 51

6.1 Faulty polymorphic invocations in Java . . . . . . . . . . . . . . 61

6.2 Unfolding of polymorphic invocations . . . . . . . . . . . . . . . 63

6.3 A fragment of Java code . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 The ICCFG for the program of Figure 6.3 . . . . . . . . . . . . . 66

6.5 Examples of direct and indirect polymorphic definitions and uses 69

6.6 INIT procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.7 AVAILP procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.8 EVALDUP procedure. . . . . . . . . . . . . . . . . . . . . . . . . . 73

v



vi LIST OF FIGURES

6.9 Method ���������	��
��
��� of class ��� �����	� . . . . . . . . . . . . . . . . 79

6.10 Classes ���	��
������ , ��� �	����� , and ��� �����	� . . . . . . . . . . . . . . . . 80

6.11 An example in which the contain relation would be computed
incorrectly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.12 The subset of the ICCFG for the method ���������	��
��
��� . . . . . . . 82

7.1 Context diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Data flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 State transition diagram for the prototype . . . . . . . . . . . . . 88

7.4 Module architecture for the first subsystem . . . . . . . . . . . . 89

7.5 Module architecture for the second subsystem . . . . . . . . . . 91



List of Tables

5.1 Classification of integration errors . . . . . . . . . . . . . . . . . 58

6.1 Set def � (n) for the example . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Set use � (n) for the example . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Polymorphic definition-use pairs for the example . . . . . . . . . 84

6.4 A possible set of paths satisfying the all-du-paths � criterion . . . 84

vii



viii LIST OF TABLES



Chapter 1

Introduction

Object-oriented technology is becoming more and more popular in several dif-
ferent contexts. The Object-oriented paradigm has been applied in the areas
of programming languages, databases, user interfaces, specification and de-
sign methodologies. Object-oriented languages are widely applied in industry,
and several commercial applications are designed and developed with object-
oriented technology.

As a consequence, the attitude towards object-oriented software quality
has undergone a rapid change during the last years. Initially, the object-
oriented paradigm has been considered powerful enough to assure software
quality without any additional effort. Several analysis and design method-
ologies [75, 11, 23] state that a well-designed object-oriented system would
only need minimal testing. Unfortunately, although object-orientation enforces
many important programming principles, such as modularity, encapsulation,
and information hiding, it is not enough to guarantee the quality of software
products. Today, both practitioners and researchers are aware that object-
oriented software contains errors just like traditional code. Moreover, object-
oriented systems present new and different problems with respect to tradi-
tional programs, due to their peculiarities.

In the last years, quality of object-oriented software has been addressed
from two different viewpoints, namely, quality assessment and quality
achievement. Research addressing quality assessment lead to the definition
of specific object-oriented metrics [25, 53, 19, 20, 7, 44, 4, 3]. These metrics pro-
vide quality indicators for identifying parts of the system which are more likely
to be error-prone. Quality assessment methods are complementary to quality
achieving techniques. When the level of quality of a class, a cluster of classes,
or a system is inadequate, we need a way of improving it. As far as quality
achievement is concerned, it is possible to identify two main approaches:

methodology based: using techniques and methodologies that aim at improv-

1



2 CHAPTER 1. INTRODUCTION

ing the software development process and specifically address the anal-
ysis, design, and development of object-oriented systems [75, 23, 12].
These methodologies pay little attention to verification of the developed
system, according to the underlying hypothesis that a suitable applica-
tion of the methodology should lead to well designed systems, which are
easy to maintain.

verification based: using static or dynamic analysis techniques that aim at re-
vealing faults. The underlying idea is that, despite the effectiveness of
the process, human beings are error-prone and program will always con-
tain faults. Examples of static analysis techniques are formal proofs of
correctness and code inspections. Examples of dynamic techniques are
testing techniques.

This thesis is about testing of object-oriented systems, with particular atten-
tion to integration testing related issues.

1.1 Focus and Contribution

While sharing some commonalities with traditional procedural languages, the
object-oriented paradigm introduces novel aspects that have to be specifically
addressed. Encapsulation and information hiding raise visibility problems, in-
heritance implies incremental testing concerns, polymorphism and dynamic
binding introduce undecidability related issues. Moreover, the structure of
object-oriented software is quite different from that of traditional programs.
In object-oriented programs, procedures (methods) tend to be small and well
understood. The complexity tends to move from within code modules to the
interfaces between them. As a consequence, testing at the unit level tends to
be less complex in the object-oriented case than for traditional procedural sys-
tems, and integration testing becomes necessarily more expensive.

Several techniques have been proposed in literature for addressing object-
oriented testing issues. Most of these techniques present interesting solutions
for problems related to unit testing of object-oriented systems [32, 70, 79, 18, 40,
39, 33]. Only a few papers specifically address problems related to integration
of object-oriented systems [48, 66, 69].

This thesis proposes a new strategy for integration testing of object-oriented
systems, and a new technique for testing interactions among classes in the pres-
ence of polymorphism. The architectural design of a tool supporting the appli-
cation of the proposed approach is also presented.

The starting point of this work is the analysis of traditional integration test-
ing issues from an object-oriented perspective. First, we clearly identify the
different testing levels for object-oriented systems and examine the problem of
integration strategies. Then, we define a taxonomy of object-oriented integra-
tion errors with respect to their traditional counterparts. We identify two main



1.1. FOCUS AND CONTRIBUTION 3

classes of integration errors, namely, errors which can occur in object-oriented
systems as well as in traditional programs and errors which are specific to the
object-oriented case. The former can be addressed by suitably adapting tradi-
tional approaches. The latter require new techniques in order to be addressed.

Starting from the above analysis, we identify two main problems to be ad-
dressed as far as integration is concerned:

Choice of an integration strategy: Traditional integration testing strategies
can still fit object-oriented systems, as long as we adapt them accord-
ing to the new kind of relationships which can occur between classes and
are not present in traditional systems. Association, aggregation, com-
position, and specialization introduce dependencies which must be con-
sidered, when choosing an integration order for object-oriented software
systems. The combined effects of different relationships can result in
complex and cyclic dependencies between the classes composing a sys-
tem, which must be suitably addressed by the integration strategy.

Presence of polymorphic entities: Object-oriented programs can be seen as
sets of objects which dynamically exchange messages. Polymorphism
can introduce specific errors related to the impossibility of statically iden-
tifying the actual receiver of a message. Critical combinations of bindings
can occur, along specific execution paths, that lead to failures. Exercising
this kind of interactions exhaustively is infeasible. A technique must be
defined, which allows for selecting meaningful test data to adequately
exercise polymorphic interactions among classes.

For the solution of these problems, we propose an integration strategy that
aims at exercising polymorphic interactions among the different classes com-
posing a system. The technique is composed of two steps: the identification of
an integration order, and the incremental testing of the polymorphic interac-
tions while adding classes to the system.

Starting from relationships between classes, we propose a method for defin-
ing a total order on the set of classes. This allows for identifying an integration
order satisfying the following two properties: parent classes are always tested
before their heirs; a given class is always integrated with all classes it depends
on. The approach is based on the analysis of a graph representation of the sys-
tem under test. Classes together with their relations define a directed graph.
The analysis of the graph results in the definition of an integration order for
either classes or groupings of classes (clusters). Although specially defined for
polymorphism, the identified strategy of integration can be used in general, to
incrementally build and test software systems starting from their components.

After the definition of the integration order for the system, we address the
problem of selecting adequate test cases for testing combinations of polymor-
phic calls during the integration phase. The approach is based on a new data-
flow test selection technique. We extend the traditional def and use sets [73] by
defining two new sets, namely, def � and use � , which contain also information



4 CHAPTER 1. INTRODUCTION

about possible dynamic bindings responsible for the definiton or the use of a
given variable. Starting from these new sets, traditional data-flow test selection
criteria [34] can be suitably extended, and a set of new criteria can be obtained.
The new criteria allow for selecting execution paths and bindings that might
reveal failures due to incorrect combinations of polymorphic calls. Besides al-
lowing for defining test selection criteria, the technique can be used to define
test adequacy criteria for testing in the presence of polymorphism.

The proposed technique requires to be automated in order to be applicable
on non-trivial examples. A tool for applying the approach has been designed
and partially implemented. The tool analyzes Java-like code, provides the user
with information about critical paths and bindings within the code, and incre-
mentally evaluates the coverage achieved by test runs.

1.2 Outline

This thesis is organized as follows:

The first two chapters have an introductory purpose. They recall the ba-
sic principles of the object-oriented technology and of the software testing, re-
spectively. Chapter 2 starts introducing the fundamental characteristics of an
object-oriented language. It provides the common vocabulary used through-
out the thesis. In the chapter, special attention is payed on relationships among
classes and polymorphism, which are fundamental issues as far as our ap-
proach is concerned. The chapter identifies also the target languages of this
work. Chapter 3 presents software testing as the activity of exercising the pro-
gram with a set of inputs, to verify that the produced outputs correspond to
those stated in a given specification. It identifies the main classes of techniques
for selecting test cases, namely, specification based, program based, and fault
based techniques. The presented concepts are used in Chapter 4, to identify
the main differences between traditional and object-oriented software testing
techniques.

In Chapter 4 we show how traditional testing approaches can break down
in the presence of object-oriented features. In particular, we illustrate the im-
pact on testing of issues such as information hiding and encapsulation, poly-
morphism and dynamic binding, inheritance. After the introduction of each
problem, we critically summarize the main techniques proposed so far in liter-
ature for addressing it.

Chapter 5 describes the impact of the object technology at the integration
testing level. It illustrates the different levels of integration for an object-
oriented system, and shows how traditional integration strategies have to be
adapted for the object-oriented case. It classifies possible object-oriented inte-
gration errors with respect to errors occurring in traditional software, identifies
new errors specific to object-oriented integration testing, and presents the inte-
gration strategy that is proposed in this thesis, which is based on the choice of
an integration order according to relationships among classes.



1.2. OUTLINE 5

In Chapter 6, we identify a new class of failures which can occur during
integration of object-oriented software in the presence of inclusion (or subtyp-
ing) polymorphism. We present a new technique addressing such class of er-
rors. We provide the details of the approach and discuss its feasibility. Finally,
an example of application of the technique is presented

Chapter 7 presents a tool for applying the proposed approach. It describes
the architectural design of the tool and details the implemented subset of mod-
ules.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Object Oriented Systems

Object-orientation is widely used in several areas. Many related terms have
assumed different meanings, depending on the context in which they are used.

The goal of this chapter is to define a common vocabulary. We mostly focus
on the aspects of procedural object-oriented languages with particular atten-
tion to the topics that will be specifically addressed in the following chapters.

To ease the understandability of the presented concepts, a running example
written in Java language will be built incrementally through the chapter. In this
way we will be able to show practical examples of the concepts as soon as they
are introduced.

2.1 The Object-oriented Paradigm

The object-oriented paradigm is based on the assumption (or intuition) that it
is natural to specify, design, and develop a software system in terms of objects.
Such an assumption is justified by the observation that computer programs
model real world entities together with their interactions, and human beings
tend to see their environment in terms of objects. In a very general way, we
may say that we apply the object-oriented paradigm every time we think about
software systems in terms of objects and interactions between them.

It is impossible to trace a borderline between what can be considered object
technology a what can not. There exist different degrees of object-orientation,
and different classifications have been proposed to reflect how much a system
implements the object-oriented paradigm. The presented classifications dif-
fer in the concepts they are based upon. Here, we present the classification
of Wegner and Shriver [76], which is based on features. Wegner and Shriver
define three levels to which a language can belong, according to its features:

Object based : languages which provide features for defining objects, which

7



8 CHAPTER 2. OBJECT ORIENTED SYSTEMS

are entities characterized by an encapsulated state and functionalities for
accessing and/or modifying it.

Class based : object based languages which provide features for defining
classes; classes are implementations of abstract data types (ADTs) and
represent object templates, i.e., objects are instances of classes.

Object-oriented : class based languages which provide the possibility of incre-
mentally defining classes and support both polymorphism and dynamic
binding.

More precisely, it is possible to identify a set of basic features provided by
object-oriented systems, namely, data abstraction, encapsulation, information
hiding, inheritance, polymorphism, and dynamic binding.

Data abstraction refers to the possibility of defining objects as implementa-
tions of abstract data types.

Encapsulation refers to the ability of enclosing related data, routines, and def-
initions into a single entity.

Information hiding refers to the possibility for the programmer of specifying
whether one feature, encapsulated into some module, is visible to the
client modules or not; it allows for clearly distinguishing between the
module interface and its implementation.

By supporting both encapsulation and information hiding a language al-
lows for defining and implementing abstract data types (ADTs).

Inheritance allows for defining ADTs which derives some of their features
from existing ones; in general, there exist different inheritance schemas,
but for the languages we consider, we may safely consider that the in-
heriting ADT is only allowed to add new features and/or redefine some
features of the parent ADT.

Polymorphism allows program entities to refer to objects of more than one
type at run-time.

Dynamic binding is the ability of resolving at run-time the identity of an op-
eration called on a polymorphic entity; in a language featuring dynamic
binding the result of applying an operation to a polymorphic variable
(i.e., the operation actually called) depends on the actual type of the ob-
ject the variable is referring to at the time of the call.

In the following we present in detail these different aspects of object-
oriented languages.



2.2. OBJECTS 9

2.2 Objects

Objects are the core of object-oriented systems. They represent the entities com-
posing the system, whose interactions and characteristics define the behavior
of the system itself. Intuitively, an object can be seen as an abstraction repre-
senting a real-world entity or a conceptual element.

An object is characterized by three properties:

State : The state of an object is characterized by the values associated to its
attributes. Attributes can be either primitive types or references to other
objects. From a theoretical viewpoint, the state of an object should be
modifiable and inspected only through the services it provides.

Services : They represent the functionalities provided by the object. Services
are commonly called methods, and can be used for either altering or in-
specting the state of the object they belong to.

Identity : this is an intrinsic property of objects, which assures that two differ-
ent instantiations of a class are always distinguishable, even if their states
are identical.

Attributes and methods of an object are denoted as its features, members, or prop-
erties. Objects have an identity, but are nameless. They are referenced through
special entities called references. Here we use the term reference in a general
way, without considering how such reference is actually implemented (e.g.,
pointers in C++ [81] or actual references in Java [37]).

Usually, objects follow a life-cycle composed of different, well identifiable
phases. An object is firstly created by both allocating the resources it needs
and defining its initial state. Then, the methods of the object are used to inspect
and/or modify its state. After the invocation of each method, the object reaches
a new state (not necessarily different from its previous state). When the object
is no longer necessary, it is usually destroyed and the resources it is using are
released.

2.3 Classes

Object-oriented languages provide specific constructs which allow the pro-
grammer to define abstract data types and to classify set of object sharing both
a common structure and the same behavior. As far as terminology is con-
cerned, we use the term class to refer to such construct. The class construct
is provided by most object oriented languages, like Java, C++, Eiffel.

Classes can be considered as typed modular templates. The definition of a
class implies the definition of a new type. It declares the number and type of
attributes together with the provided operations.



10 CHAPTER 2. OBJECT ORIENTED SYSTEMS

As an example, Figure 2.1 shows the definition of a Java class representing
a generic person, characterized by its height and its weight.

class Person {
float height;
double weight;

Person() {
height=0.0f;
weight=0.0;

}
Person(float h, double w) {

height=h;
weight=w;

}

void setHeight(float h) {
height=h

};
void setWeight(double w) {

weight=w
};
float getHeight() {

return height
};
double getWeight() {

return weight
};

}

Figure 2.1: An example of class

Such class has two attributes of type
� ���	��� and ������� ��� , which represent the

� � � � � � and the � � � � � � of the person, respectively. In addition, it provides six
operations, namely, �����	� � � � � � , ������
 � � � � � , � �
�	� � � � � � , and � ����
 � � � � � .

Classes enforce both encapsulation and information hiding. Encapsulation
is achieved by tracing a crisp line between interface and implementation. The
clients of a given class only need to know its interface, which is represented by
the operations they can invoke on that class, while they are in general not con-
cerned with the way such operations are implemented. Information hiding is
achieved by separating the private part of a class from its public part. Program-
mers are provided with constructs that allow them to declare some members of
the class as only accessible by objects belonging to such class, and some other
members as publicly accessible. Different object-oriented languages adopt dif-
ferent policies of information hiding. In general there exist many different in-
termediate levels of visibility for the members of a class. Since this aspect is



2.4. METHODS 11

highly language dependent, for the purpose of the presentation we just con-
sider a member as being either public or private.

As stated above, in object-oriented languages classes represents object
templates and objects are defined as instances of classes. For example, in Java
the statement

��� � � ��� jack � � � � ��� � � �������

declares � ����� as a reference to an object of type ��� � � ��� and associates to
it a newly created instance of the corresponding class.

2.4 Methods

When considering classes as implementations of abstract data types, methods
represent operations of such ADTs. They are characterized by their name and
their signature, where the signature of a method is represented by the arity and
the type of its formal arguments and by the type of the value returned by the
method (if any).

In some languages, such as Eiffel, methods can be provided with pre and
post-conditions, which specify conditions that must be satisfied prior to or af-
ter the execution of the method, respectively. Clients of the class providing
the method are in charge of verifying that pre-conditions are satisfied before
invoking the method. On the other side, if pre-conditions are satisfied, meth-
ods assure that post-conditions will be satisfied after their execution. Pre and
post-conditions are usually used together with invariants, which are assertions
defined at the class level and which must be valid before and after the execu-
tion of each method. Preconditions, postconditions and invariants define the
concept of design by contract, introduced by Meyer [59]. Figure 2.2 shows an
example of pre and post-conditions in Eiffel.

Methods can be classified in different categories, depending on their pur-
pose:

Constructors : They provide the specific instance of the class they are invoked
upon, i.e., the newly created object, with meaningful initial values. There
are different kinds of constructors: default constructors are constructors
that take no arguments and usually initialize the object with default val-
ues (if not provided, they are usually automatically generated when a
class is defined); copy constructors define how to initialize an object start-
ing from another object of the same class and they take a reference to the
object they must “copy” from; all the other constructors have a variable
number of arguments, whose values are used to initialize the newly cre-
ated object. In the Java language, constructors are methods having the
same name as the class. For example, the class ��� � � ��� in Figure 2.1 pro-
vides two constructors, ��� � � ������� and ��� � � ����� � ���	��� �
	 ����� � ��� � � , where



12 CHAPTER 2. OBJECT ORIENTED SYSTEMS

class Account export
withdraw,deposit,...
...
feature
balance, status: INTEGER;
...
deposit(amount: INTEGER) is
require --pre-condition

status /= -1
do

...
ensure --post-condition

balance = old balance + amount;
end;
...

Figure 2.2: Pre and post-conditions

the former is the user defined default constructor and the latter is a
generic constructor taking two values it uses for initializing attributes
� � � � � � and � � � � � � .

Observers (or selectors) : They provide their caller with information on the
state of the object they are invoked upon. As their name suggest, these
methods do not modify the state of the object. Methods �
���	� � � � � � and
������
 � � � � � shown in Figure 2.1 are observers of class ��� � � ��� .

Modifiers (or mutators) : Their purpose is to allow for modifying the state of
the object they are invoked upon by changing the value of its attributes.
Methods � ���	� � � � � � and � �
��
 � � � � � shown in Figure 2.1 are modifiers of
class ��� � � ��� , since they allow for setting the value of attributes

� � � � � �
and � � � � � � , respectively.

Destructors : They are in charge of performing specific actions when an ob-
ject is no longer needed and it is thus eliminated. Usually, destructors
are used for freeing resources allocated to the object being destroyed. In
the case of languages without garbage collection, where the programmer
is in charge of both allocating and deallocating memory, destructors are
usually devoted to memory management. In the Java language a destruc-
tor is a � � � � method identified by the name

� � � ��� ��� � .

It is worth mentioning that a method can be an observer and a modifier at
the same time, when it allows for both modifying and inspecting the state of
an object.

Another important distinction can be made between object and class meth-
ods. Class methods are methods that can be invoked on the class, even in the ab-



2.5. ATTRIBUTES 13

sence of an instance of it. Conversely, object methods are methods that can only
be invoked on a specific instance of a class, i.e., on an object. Since class meth-
ods can also be invoked on the class, they can only operate on class attributes
(see Section 2.5). The methods provided by class ��� � � ��� are all examples of
object methods. An example of a class method is provided in Section 2.5, when
we introduce the concept of class attributes.

2.5 Attributes

Attributes, or instance variables, define together with their values the state of a
class. As an example, the state of an object of class ��� � � ��� , shown in Figure 2.1,
is defined by the value of attributes

� � � � � � and � � � � � � .
To enforce information hiding, attributes should never be directly accessible

by client classes. Methods should be provided for both inspecting and defining
attributes when needed, as done for class ��� � � ��� of Figure 2.1.

In this simple example, the attributes of the class are represented by pre-
defined, or scalar, types of the language. In the general case, an attribute can
also be a reference to another object. In such a situation, the state of the object
is given by both the value of its scalar attributes and the state of the objects it
references.

class Pair {
int identifier;
Person first;
Person second;
...

}

Figure 2.3: An example of reference attributes

For example, in Figure 2.3 we show a fragment of the definition of a class
whose attributes are two references to objects of type ��� � � ��� . The state of an
object of type ��� � � is given by the value of the scalar attribute � ��� ��� � � � � � and
by the state of the two objects of type ��� � � ��� it references.

In addition to “normal”, or object, attributes, programmers are given the
possibility of defining class attributes. One instance of a class attribute is shared
among all the objects belonging to the class in which the attribute is defined.
Object attributes can only be accessed by object methods. Class attributes can
be accessed by both object and class methods. In Java, class attributes and
methods are identified by means of keyword static.

As an example, we enrich class ��� � � ��� with a class attribute ��������� � � , allow-
ing us to count the number of objects of type ��� � � ��� instantiated in a given in-
stant. Attribute ����� ��� � � is initialized to

�
“statically”, incremented every time



14 CHAPTER 2. OBJECT ORIENTED SYSTEMS

a new object is created, and decremented every time an object is destroyed. We
have to modify the constructor and the destructor accordingly. In addition, we
add to the class a new class method for inspecting ����� ��� � � ’s value even if no
instance of ��� � � ��� is present. The new version of class ��� � � ��� is shown in
Figure 2.4.

class Person {
float height;
double weight;
static counter=0;

Person() {height=0.0f; weight=0.0; counter++;}
Person(float h, double w) {height=h; weight=w;}
void finalize() {counter--;}

static int getCounter() {return counter;}
void setHeight(float h) {height=h};
void setWeight(double w) {weight=w};
float getHeight() {return height};
double getWeight() {return weight};

}

Figure 2.4: An example of class with class attributes

2.6 Relationships

Classes are not stand-alone entities, but mutually collaborate in several dif-
ferent ways. Relationships among classes are a fundamental characteristic of
object-oriented systems. Relationships define the nature of the interactions
among classes, and allow for identifying subsets of the systems which are
closely relate, the so-called clusters.

It is possible to classify relationships with respect to the role played by the
involved classes. A first classification distinguishes between client-supplier and
hierarchical relationships. It is possible to further classify relationships belong-
ing to this main categories. We present a classification similar to the one pro-
posed by Booch, Jacobson, and Rumbaugh [12].

2.6.1 Client-Supplier Relationship

Client-supplier relationships are ordered relations between two objects, such
that the first object (the client) uses the services provided by the second ob-
ject (the supplier) to operate. In a client-supplier relationship the client usually



2.6. RELATIONSHIPS 15

owns a reference to the supplier. This kind of relations are charachterized by
the two roles played by the classes involved in the relation, and by two car-
dinalities which indicate how many objects can participate in the relation on
each side.

It is possible to identify four different kinds of client-supplier relationships:

Association : They define generic relations between two classes. The relation-
ship between a class � ��� � � � � ��� and a class � � � ��� ��� is an example of as-
sociation. In this example, on the � �	� � � � � ��� side the role is teach and the
cardinality is ����� � (professors teach students), while on the � � � ��� ��� side
the role is learn and the cardinality � (students learn from professors).

Aggregation : Also known as has-a or part-of relations. This relation holds
between two classes when an object of the first class can include one or
more objects of the second class. An example of aggregation can be the
relation between a company and its employees. With respect to the class
��� � � of Figure 2.3, there is an aggregation relation between class ��� � � ,
which plays the role of the client, and class ��� � � ��� , which plays the role
of the supplier.

Composition : This is a stronger version of aggregation, characterized by ob-
jects of the client class being “physically” composed of one of more ob-
jects of the supplier class. Moreover, the contained objects can belong
to only one whole and do not have a proper existence outside their con-
tainer. The relation between a car and its wheels can represent a typical
example of composition.

2.6.2 Hierarchical Relationships

Hierarchical relationships reflect a fundamental aspect of object oriented lan-
guages, i.e., the possibility of defining the implementation of an ADT starting
from an existing one. This feature, typical of this kind of systems is known
as inheritance. Inheritance is an ordered relation with well established roles.
When two classes participate in an inheritance relation, the inheriting class is
defined as a subclass, a specialized class, a heir, or a descendant, while the inher-
ited class is defined as a superclass, a parent class, or an ancestor. This kind of
relation is also known as generalization or specialization relation.

In the most popular object-oriented languages, inheritance can be used for
two different purposes. It is a way of re-using code, and it is also a way of
defining a type hierarchy.

To avoid ambiguity, we distinguish between these two different kinds of
hierarchical relationships:

Subclassing : It is more a syntactic than a semantic relation, which reflects the
idea of inheritance as a means for supporting reuse. With subclassing,
it is possible to take advantage of the features provided by one (single



16 CHAPTER 2. OBJECT ORIENTED SYSTEMS

inheritance) or more (multiple inheritance) existing classes and to specialize
them for specific purposes. Specialization is performed by either adding
new properties to the class, or redefining (overriding) existing properties
(in some languages it is also possible to remove properties).
Different languages provide different rules for overriding, which
are referred to as covariance, contravariance, and invariance. To
understand the meaning of these three schemes let us consider
the example of a class � providing a method � declared as
“ � �	��� ��� ��� 
 � ��� � � � ��� ��� � � ��� � 
 � ��� ��� � � ”. With invariance the method can
only be redefined by maintaining its original signature. With covariance,
the overriding of method � must be such that its return type is a subtype
of � �	��� � ����� � 
 � ��� and its argument type is a subtype of � ��� ��� � � ����� � 
 � ��� .
This policy is called covariance since arguments and result vary together.
Contravariance represents the reverse policy, where arguments and result
vary in opposite directions in the hierarchy tree.

Subtyping : Also indicated as is-a relationship. It is a semantic relationship be-
tween classes seen as types, which indicates a conformance of behavior
between the two classes involved in the relation. Subtyping is a relation-
ship between specifications, while subclassing is a relationship between
modules. Intuitively, a class is a subtype of another class when it can be
used in any place where such class is used, i.e., when it can be substi-
tuted to it. As for subclassing, subtyping can be either single or multi-
ple. Starting from subtyping relations it is possible to organize classes
within a hierarchical tree, where each type has its subtypes as direct de-
scendant. The root of such hierarchical tree represents the unique (if any)
higher class in the type hierarchy. If the type hierarchy is semantically
well formed, a subtype can be used in any context where one of its su-
pertypes is expected. The concept of substitution has been rigorously
expressed by Liskov [54] in two forms, namely, weak and strong.
In the weak formulation, � is a subtype of � if an instance of type � can be
substituted when an instance of type � is expected and no type error will
occur. This form of the principle is only concerned with syntactic issues.
Intuitively, it says that an object of type � provides at least all the methods
provided by an object of type � .
In the strong formulation, � is a subtype of � in a system � if an instance of
type � can be substituted when an instance of type � is expected and the
behavior of � remains unchanged. This form of the principle includes
the weak form and is also concerned with semantic issues. Intuitively,
the principle says that in any situation where a method � is invoked on
an object expected to be of type � , no difference can be observed in the
behavior of � if the type of the object is actually � (whether or not � has
been overridden in class � ).

The most common object-oriented languages comply with the weak form of
the principle. They enforce the syntactic correspondence between original and
redefined methods, while their semantic conformance is left to developers. In



2.6. RELATIONSHIPS 17

the absence of semantic constraints subtyping and subclassing tend to coincide.
Therefore, in most modern object-oriented languages inheritance implies both
subclassing and subtyping.

Nevertheless, the application of the strong form of the principle is still ad-
visable from the viewpoint of the good programming practice. Java does not
allows for defining semantic constraints on methods and does not permit to
define pure subclassing relations, but it provides a way of separating imple-
mentation dependencies and type-subtype relations. The possibility provided
by the language of defining interfaces allows for specifying a pure type hierar-
chy. An interface identifies a type by indicating its name and the functionalities
it provides. Any class which implements a specific interface becomes a subtype
of the type defined by it. Before providing an example of subclassing and sub-
typing in Java, we must introduce an additional feature related to inheritance,
namely, abstract classes.

2.6.3 Abstract Methods and Abstract Classes

There are cases in which it is possible to provide only a partial definition of a
class. In situations like these, an interface may be inappropriate, since it does
not allow for defining attributes and methods, but only to declare method in-
terfaces. Most modern object oriented languages provide the possibility of
defining abstract methods and abstract classes. An abstract method is a method
which is only declared, but not implemented (just like it happens with inter-
faces). A class providing one or more abstract methods is an abstract class.

Abstraction is very useful when we want to provide a common interface for
a set of classes in mutual hierarchical relation, and such classes share a subset
of their behavior. In this case the abstract class only provides the common be-
havior, leaving the implementation of abstract functionalities to its heirs. Since
abstract classes are only partially implemented, it is only possible to define
references to them, but they cannot be instantiated.

As an example, in Figure 2.5 we enrich our little system by introducing
the abstract class � � � ����� � � � � � , by modifying class ��� � � ��� to make it in-
herit from � � � � ��� � � ��� � , and by introducing an interface ( � � � ����

��� ) and two
classes which both implement such interface ( � ��� ���
� � and � ��� �	�
� ����
 ) and in-
herit from ��� � � ��� . Class � � � ����� � � ��� � is defined as an abstract class since
it contains the declaration of the abstract method ��� � ����� � � � � � � � � ��� . Class
��� � � ��� , which inherits from � � � � ��� � � ��� � , has to provide the implementa-
tion for the inherited abstract method in order to be defined as a concrete (i.e.,
non-abstract) class. The interface � � � ����

��� provides two functionalities, for
retrieving the seniority and the title of the employee, which must be imple-
mented in any class implementing such interface (in this case class � ��� ���
� �
and class � ��� �	��� ����
 ). Classes � ��� ����� � and � � ������� ����
 provide new definitions
of method � � � ����� � � ��� � � � � ��� inherited from class ��� � � ��� , i.e., they override
that method. Since in Java subclassing implies subtyping, classes � ��� ���
� �
and � � ������� ����
 are subtypes of ��� � � ��� (“implicit” subtyping), beside being



18 CHAPTER 2. OBJECT ORIENTED SYSTEMS

abstract class NamedObject �
String name;
NamedObject(String n) � name=new String(‘‘‘‘); �
NamedObject(String n) � name=m; �
String getName() � return name; �
abstract void printDescription();

�

class Person extends NamedObject �
float height;
double weight;
static counter=0;

Person() height=0.0f; weight=0.0; counter++;
Person(float h, double w) height=h; weight=w;
void finalize() counter--;

static int getCounter() return counter;
void setHeight(float h) � height=h � ;
void setWeight(double w) � weight=w � ;
float getHeight() � return height � ;
double getWeight() � return weight � ;
printDescription() � System.out.println(‘‘I am a Person...’’); �

�

interface Employee �
int seniority();
String title();

�

class Manager extends Person implements Employee �
...
int seniority() � <specific implementation of method seniority> �
String title() � <specific implementation of method title> �
void printDescription() � System.out.println(‘‘I am a Manager...’’); �
...

�

class Secretary extends Person implements Employee �
...
int seniority() � <specific implementation of method seniority> �
String title() � <specific implementation of method title> �
void printDescription() � System.out.println(‘‘I am a Secretary...’’); �
...

�

Figure 2.5: An example of class hierarchy in Java



2.7. POLYMORPHISM 19

subtypes of � � � ����

� � (“explicit” subtyping). The resulting type hierarchy is
shown in Figure 2.6.

abstract class

NamedObject

class

Person

class

Manager

interface

Employee

Secretary

class

Figure 2.6: A type hierarchy

2.7 Polymorphism

Polymorphism refers to the possibility for an entity to refer at run-time to ob-
jects of several types. More specifically, in an object-oriented programming
language which provides polymorphism, objects can belong to more than one
type and methods can accept as formal parameters actual parameters of more
than one type [35]. Cardelli and Wegner [16] have identified several differ-
ent kinds and levels of polymorphism, which are shown in Figure 2.7. A first
distinction is between ad hoc and universal polymorphism.

2.7.1 Ad Hoc Polymorphism

In ad hoc polymorphism, type substitutability is constrained to a finite and usu-
ally small set of types and there are no behavioral constraints on subtypes. It
can be considered in some way a “fake” and purely syntactic polymorphism.
There are two main forms of ad hoc polymorphism, namely, overloading and
coercion.



20 CHAPTER 2. OBJECT ORIENTED SYSTEMS

� �	��
 � ��� � � � � �

���������� ���������
��� � � � � � ���

��� �� � ���	� � ��� � � � � � 
���� ��� � � �

� � � ����� � �

� � � ��� � � ���

��� � �	� � � � � �����	��� � � �
���	� �	� � ���

(2.1)

Figure 2.7: Taxonomy of polymorphism

Overloading is the kind of polymorphism such that a name can identify dif-
ferent functions performing a “syntactically analogous” operation on dif-
ferent kinds of object, but with different semantics. An “ ����� ” function
operating on integer numbers and real numbers is a typical example of
overloading. It is possible to think at overloaded functions as a set of
monomorphic functions, rather than a unique polymorphic function.

Coercion is an operation which converts, in a specific point of a program, an
entity of a type into an entity of the type expected in that point. Coercion
is an implicit operation which can be performed both statically and dy-
namically, depending on the type system. Coercion can be illustrated by
the example of the “ ����� ” function mentioned above: if we add an integer
value to a real value, the integer value is converted to a real value and
then the version of ����� defined for real numbers is invoked.

2.7.2 Universal Polymorphism

Universal polymorphism can be considered as the “true” form of polymor-
phism. There are two major forms of this kind of polymorphism.

Inclusion polymorphism (also called subtyping polymorphism) is the form of
polymorphism which corresponds to the case of a set of different imple-
mentations of a method in a type hierarchy. The name inclusion derives
from the fact that an object of a given type belongs to all the supertypes of
that type. Thus, such object can be substituted in every situation where
an object of one of the supertypes is expected. In the case of a method
invocation on a polymorphic reference to a supertype attached to an ob-
ject of a subtype, the method actually called would be the one provided
by that object. This mechanism is called dynamic binding, which can be
expressed as the ability of choosing the method to be actually executed
according to the dynamic type of the object rather than to its static type.
The static type of a reference is the one provided in its declaration, while
its dynamic type is the actual type of the object attached to it.



2.8. OBJECT-ORIENTED LANGUAGE 21

With respect to the example of Figure 2.5 the following fragment of code

Person susie=new Manager();
susie.printDescription();

would lead to the invocation of the method � � � ����� � � � � � � � � ��� defined in
class � ��� ���
� � , since the static type of � � � � � is ��� � � ��� , but its dynamic
type is � ��� ���
� � .
If a method has several different implementations within a type hierar-
chy, it is impossible in the general case to statically determine which ac-
tual binding will occur as a consequence of an invocation of such method
on a polymorphic entity during execution. The actual binding in such
cases is chosen at run-time by examining the type of the actual object the
method is invoked upon.

Parametric polymorphism is such that “the same object or function can be used
uniformly in different type contexts without change, coercion, or any kind of
run-time test or special encoding of representation” [16]. This kind of poly-
morphism can assume two forms, namely, syntactic and semantic.

Syntactic polymorphism corresponds to generic units, i.e., units which are
parametrized with respect to one or more types. This polymorphism is
called syntactic polymorphism because to use generic units, they must be
instantiated with actual parameters that are known at compile-time. In
such a situation, there is no “dynamic” polymorphism and every invo-
cation in a generic unit can be statically bound. The set of instantiations
of the generic units can be considered as a set of monomorphic units, but
with a difference with respect to overloading: in this case all the units in
the set share a common semantics.

Semantic polymorphism is the most genuine form of polymorphism. It does
not provide polymorphism through a set of different implementations se-
lected at run-time or at compile-time. On the contrary, it provide a unique
implementation which can be uniformly invoked on several different ob-
jects.

Among the ones presented above, the most common form of polymor-
phism provided by modern object-oriented languages is inclusion polymor-
phism, which is the one we address in this thesis.

2.8 Object-oriented Language

In our work we address a specific subset of object-oriented languages. We refer
to a Java-like language by taking into account only a subset of Java constructs.



22 CHAPTER 2. OBJECT ORIENTED SYSTEMS

In this way we can define a general enough testing technique by avoiding as-
sumptions which are too much language dependent.

The characteristics of the language we consider are:

� basic control structures, namely, if...then, while, do...while, and for con-
structs.

� scalar types, namely, int, float, double, char, and boolean.
� all parameters are treated as references, except for parameters whose type

is scalar, i.e., parameter passing is always performed by reference, but for
scalar types.

� class construct for implementing abstract data types.
� abstract classes (resp., methods) can be defined through the keyword ab-

stract put in front of the class (resp., method) declaration.
� interfaces can be defined through the keyword interface.
� only single inheritance, provided by means of subclassing. Inheritance is

achieved by specifying the name of the superclass preceded by the key-
word extends before the class implementation.

� a class can implement an interface by specifying the name of such inter-
face preceded by the keyword implements before the class implementa-
tion.

� subclassing implies subtyping. Thus, in the following we will use the
term subtype with its original meaning and the term subclass with such
dual meaning.

� subclasses can both define new methods and override inherited ones by
following an invariance policy.

� inclusion polymorphism, according to the type hierarchy defined by
class-subclass relationships.

� dynamic binding.



Chapter 3

Testing

Software verification is the activity of establishing whether a program cor-
rectly implements a given model. Verification techniques can be distinguished
among static and dynamic analysis techniques. Static analysis techniques do
not require the program under test to be executed, while dynamic analysis
techniques do. Examples of static analysis techniques are formal proofs of
correctness, code inspections, data-flow analysis. Examples of dynamic tech-
niques are testing techniques.

Since this thesis focuses on testing of object-oriented systems, in this chap-
ter we only recall the main principles of software testing.

3.1 Goal

Ideally, a program can be seen as a function where inputs are domain elements
and outputs are codomain elements. The role of testing is to reveal when such
function is not behaving as expected (as specified) by executing it. In other
words, software testing is the activity of verifying through execution whether
a given program � provides a faulty implementation of a given model � . The
underlying idea is that, under the hypothesis for the test to be well-designed,
its inability to reveal failures can increase our confidence in the tested code.

In order to accomplish this task, three steps are needed: it is necessary to
select a set of input data for � , to determine the expected behavior of the pro-
gram for such data with respect to � , and to check the actual results against
the expected behavior.

The inputs to be provided to the program under test are called test data,
while a test case is made of test data together with the corresponding expected
result. A test (also called test suite or test set) is a set of test cases. Finally, the
execution of the program with respect to given test data is called a test run.

A test run is said to be successful if the obtained result do not corresponds

23



24 CHAPTER 3. TESTING

to the expected result [36]. This means that a test is defined as successful if it
reveals a failure. Myers [63] shares the same point of view, by defining test-
ing as the process of executing a program with the intent of finding errors 1. This
definition, some way counterintuitive, highlights a fundamental aspect of soft-
ware testing: testing can be used to reveal the presence of faults, but it can not
demonstrate their absence.

To demonstrate the correctness of a program � with respect to a model �
by means of testing, would require exhaustive testing (i.e., the execution of
the program with all possible inputs) and the ability of correctly predicting
the expected output for any given input (i.e., the presence of a so-called ideal
oracle). Unfortunately, exhaustive testing is an undecidable problem, due to the
impossibility of deciding termination for a generic program.

Being exhaustive testing infeasible in general, to obtain a given degree of
confidence in the code under test it is necessary to select an appropriate set of
representative data to execute the program with. This means that there exists
a trade-off between the accuracy of the test and the number of selected data.
The optimal solution in this case is achieved by sampling the domain of the
input data according to some criterion allowing for revealing as many failures
as possible with the minimum number of input data.

The starting point for defining such a criterion is a so-called fault hypoth-
esis. A fault hypothesis corresponds to an assumption about which particular
program aspects or program entities are more likely to be error-prone. The
rational here is that specific faults are more likely to occur in some circum-
stances. An example of a fault hypothesis is the assumption that “the use of
pointer arithmetic can lead to faults”. In this case the sampling criterion should
select data exercising as many points of the program where pointer arithmetic
is performed as possible. Fault hypotheses are commonly based on experi-
ence. Catalogs have been created, which archive these experiences from differ-
ent developers/testers. Hypotheses can be of different kinds and range from
very simple to very sophisticated ones. For example, in the case of statement
coverage (see below) we could identify the trivial underlying hypothesis that
statement can contain errors.

After having identified a set of possibly “dangerous” entities of the pro-
gram starting from a fault hypothesis, it is possible to relate the degree of cov-
erage of such entities achieved by a test set with the degree of confidence in the
code. This is the principle on which test data selection criteria are based.

The introduction of sampling criteria moves the original target of verifica-
tion, i.e., establishing the conformance of a program to a given model, to a sim-
pler one: to identify whether a program correctly implements a given model
according to the chosen selection criterion. The complexity of achieving this
task depends on the selected criterion, but is in general lower with respect to
the original task.

Before presenting the different classes of test selection criteria we need to

1An alternative viewpoint is to see testing as a way of providing confidence in the code



3.2. LEVELS 25

introduce the concept of testing levels.

3.2 Levels

It is possible to identify different levels of testing depending on the granularity
of the code we are testing. Each level of testing presents specific problems
that require specific techniques and strategies. It is possible to identify the
following different levels:

Unit testing : The testing of a single program unit, where the term unit can
assume different meanings depending on the specific environment. A
unit can be a single procedure or module. Unit testing is characterized
by being usually carried on by the programmer that actually developed
the code and thus has a complete visibility and maximum insight on the
code.
Due to the high level of understandability of the software at this level,
the selection of test data exercising specific elements of the code is usu-
ally much simpler in this case than during integration and system testing.
The major problems with unit testing is the construction of the scaffold-
ing (i.e., drivers, stubs, and oracles) allowing for actual executing single
units in isolation, which can be a very complex task. In particular, in
the case of object-oriented systems the construction of drivers and stubs
requires the “emulation” of missing classes, which can provide complex
functionalities whose behavior is depending on the interactions among
them and are thus hard to emulate in a meaningful way.

Integration testing : The testing of individual units helps in removing local
faults, but does not exercise the interactions among different units. In-
tegration testing is the activity of exercising such interactions by pulling
together the different modules composing a system. It is characterized
by involving different interacting units which have been in general de-
veloped by different programmers. In this case the code is still visible,
but with a higher granularity.
Faults that can be revealed by means of integration testing include in-
terface problems, missing functionalities, and unforeseen side-effects of
procedure invocation (as far as traditional procedural programming lan-
guages are concerned). The above are only a few examples of all the
possible problems that can arise during integration of a software system.
In particular, many problems are language specific, or specific to classes
of languages. Before choosing an integration testing strategy, it is thus
very important to take into account the class of problems the test must
address. For example, when using a strongly typed language, many dif-
ferent interface errors as the ones related to the wrong type of parameters
in a procedure call can statically be identified and removed.
The fundamental issue in integration testing is the choice of an integra-
tion order, i.e., the order in which the different units, or modules, are



26 CHAPTER 3. TESTING

integrated. It is possible to identify five main strategies as far as the inte-
gration order is concerned, namely, top-down, bottom-up, big-bang, threads,
and critical modules. The top-down integration strategy is the one in which
the integration begins with the higher module in the hierarchy defined
by the use relation among modules, i.e., it starts with the module that is
not used by any other module in the system. The other modules are then
added to the system incrementally, following the use hierarchy. In this
way, there is no need for drivers, but complex stubs are needed.

The bottom-up integration strategy is the one in which the integration be-
gins with the lower modules in the use hierarchy, i.e., it starts with the
modules that do not use any other module in the system, and continues
by incrementally adding modules that are using already tested modules.
In this way, there is no need for stubs, but complex drivers are needed.

To avoid the construction of drivers and stubs it is possible to follow
the big-bang integration order, where all modules are integrated at once.
While avoiding the problem of scaffolding construction, this approach
has severe drawbacks. First of all, identification and removal of faults are
much more difficult when coping with the entire system instead of sub-
systems. In addition, the achieved degree of testing of the code is lower
with respect to the two alternative approaches, where modules compos-
ing the incrementally growing subsystems are tested several times dur-
ing each integration step.

In the threads integration strategy, units are merged according to expected
execution threads. Finally, in the critical modules integration strategy,
units are merged according to their criticality level, i.e., most critical units
are integrated first.

System testing : System testing is the testing of the system as a whole. It
is characterized by being performed on a code which is in general not
visible, due to both accessibility and complexity reasons.

This kind of test addresses all the properties of software that can not be
expressed in terms of the properties of the subsystems composing it. At
this level the software behavior is compared with the expected one ac-
cording to the specifications. An examples of system testing is load test-
ing, which aims at verifying whether the software under test is robust
enough to handle a load of work bigger than expected.

Acceptance testing : Acceptance testing, also known as validation, is the set
of activities performed by the end-user whose goal is to verify whether
the system is behaving as it was intended to. This level is characterized
by the absence of visibility of specification and design documents. In
addition, the tester has no access to the source code in general.

While the previously presented levels of testing were concerned with the
verification of the software against a more or less formal specification
produced by an analyst, validation compares the software system behav-
ior with the end-user informal requirements.



3.3. TECHNIQUES 27

Regression testing, although traditionally considered as a testing level, is
“transversal” with respect to the other ones. In fact, it is possible to perform
regression testing on modules, subsystems, and system. Regression testing is
performed during maintenance. As a system is used, it often requires to be
modified to correct faults, to enrich its functionalities, or to adapt it to envi-
ronmental changes. Modifications performed on system imply the need for
re-testing it, even when small changes are concerned. Such activity is known
as regression testing. The main problem with regression testing is that we cannot
rely on a principle of locality of the fault, i.e., the effect of changes in a specific
point of the code may propagate all over in the program. When re-testing a
new version of an already tested software system, we need to consider any
portion of the program that may have been influenced by the modifications
performed on the code. The most important factor for reducing the costs of
regression testing is testing documentation. In addition, if scaffolding, test har-
nesses, test data, and results have been cataloged and preserved, duplication
of effort can be minimized.

3.3 Techniques

Tests can be derived from three different sources:, specifications, code, and
fault models. This allows for identifying three classes of testing techniques,
which are not mutually exclusive, but rather complementary. A technique can
be more effective in revealing a specific class of errors, i.e., there exist errors
which can only be revealed by one technique and might remain uncaught us-
ing the other ones. In addition, there may be cases such that one of the tech-
nique is not applicable.

In this section we present this three main classes of testing techniques,
namely, specification based, program based, and fault based techniques.

3.3.1 Specification Based Testing

Specification based testing techniques, also known as functional testing tech-
niques, derive test data from software specifications. Tests are derived from
requirements specification (for system testing), design specifications (for inte-
gration testing), and detailed module specifications (for unit testing). These
techniques are also called black-box techniques, since the program � is treated
as an opaque box, i.e., the structure of its code is not taken into account.

In order to derive test data, an analysis of the functional specifications is
performed, with the goal of identifying abstract elements to be covered dur-
ing testing. There exist several techniques, which can be used depending on
the notation and the level of formality of the specification. In the presence of
formal specifications, it is possible to perform the mapping from specification
entities to program entities almost automatically. More precisely, in this case it
is possible to extract information useful for both selecting test data and infer-



28 CHAPTER 3. TESTING

ring expected results in an automatic or semi-automatic way.

The kind of entities identified by these techniques may vary, ranging from
specific values to whole functionalities. As examples, in the following we
briefly introduce three common specification based techniques.

Equivalence partitioning The idea behind equivalence partitioning is that
testing is more effective if tests are distributed over all the domain of the pro-
gram, rather than concentrated on some points. Input values which are treated
the same way by the program can be considered equivalent (i.e., they exercise
the same part of the software). Equivalent data defines a partition of the do-
main of the program. For the test data to be effective, it is better to chose inputs
from each partition, than to chose inputs from only one partition. For example,
let us consider a program � , which reads an integer whose value is consid-
ered valid if it is in the interval

� � ��� � � �
. In such a case, it is possible to identify

three partitions of the input domain. Values from 0 to 1000 define the valid
partition, since we expect the program to treat all the values in that interval in
the same way. Values less than 0 and values greater than 1000 define two ad-
ditional partitions, the one of invalid values below the valid partition and the
one of invalid values above the valid partition, respectively. It is reasonable to
say that the test set ��� 	������ 	 ��� � �

is more likely to reveal a failure than the test
set �
	 � 	 � � � � 	���� �

. The above is just a simple example for illustrating the basic
principle of the technique. In the general case, partitioning may be more com-
plex than that. The general technique also considers partitioning dependent on
previous input, stored data-value, or context information.

Boundary value analysis Boundary analysis is a special case of the equiva-
lence partitioning technique. Values which lie at the edge of an equivalence
partition are called boundary values. The underlying idea of this approach is
that “out by one” errors are very common, i.e., errors which cause the bound-
ary of the partition to be out by one. As an example, consider the case of a con-
dition written as ����� � � � , where it should have been ���
� � � . For the example
in the previous paragraph, boundary values would be � � ,

�
, � � � �

and � � � � . If
there is an out by one error, then for example, the program might consider
value �

� �
� valid, or value �

� � �
invalid. Again, we are simplifying the tech-

nique. There might be cases in which the identification of a boundary is not so
straightforward. Equivalence partitions and boundary values can be identified
on output values as well as on input values. When possible, test data should be
defined, which produce both valid and invalid output boundary values. In ad-
dition to input and output boundaries, there can also be “hidden” boundaries,
i.e., boundaries related to the internal structure of the program. For example,
in the case of an internal variable whose value is constrained to belong to an
interval, we might want to identify test data causing such variable to assume
boundary values. The concepts behind equivalence partitioning and boundary
value analysis have been formalized in domain testing [21, 92].



3.3. TECHNIQUES 29

Cause-effect graphs This approach aims at extracting test cases from high-
level specifications. It is a systematic way of organizing combinations of inputs
(causes) and outputs (effects) into test cases. The steps for the application of
the technique requires examining the specification, optionally constructing a
Boolean network expressing how effects are related to combinations of causes,
eliminating redundant combinations, and constructing a decision table sum-
marizing conditions and actions. Starting from the decision table, test cases
can be identified to exercise each column of the table.

3.3.2 Program Based Testing

Program based testing techniques are structural techniques, i.e., techniques
which derive test data from the code under test. These techniques are also
known as white-box testing, since they are concerned with the internal struc-
ture of � , treated as a transparent box.

Given a program, these techniques aim at identifying test data that ade-
quately cover its structures. Different structural coverage metric have been de-
fined, which provide different levels of confidence in the software under test.
The underlying idea is that only by exercising a given element it is possible
to say whether it contains an error or not. It is possible to identify two main
classes of structural based test selection criteria for imperative programs:

Control-flow based criteria These criteria are based on the coverage con-
trol structure of the program under test. Any program can be modeled as a
control-flow graph, where nodes represent single-entry single-exit regions of
executable code and edges represent the flow of control among these regions.
Starting from this representation it is possible to define several selection crite-
ria based on coverage metrics. The simplest criterion requires all statements in
the program to be executed, i.e., all nodes in the control-flow graph to be tra-
versed. A slightly stronger criterion is the one requiring all possible decision
to be taken, i.e., all edges in the control-flow graph to be traversed. Edge cov-
erage implies node coverage, i.e., it subsumes node coverage. By requiring the
coverage of each single conditions in decisions depending on multiple condi-
tions we obtain an additional criterion, which does not subsume the previous
one. The combination of decision and condition coverage produces another
criterion. Additional criteria require the covering of paths in the graph (infea-
sible in the presence of loops) or all paths containing at most � execution of
each loop in the graph. The stronger the criteria, the higher the number of test
cases selected, i.e., testing based on stronger criteria exercise the program in a
deeper way, but are more expensive.

Data-flow based criteria Data-flow analysis techniques have been widely
used in the context of software testing. In data-flow testing such techniques have
been used for selecting test cases according to the results of data-flow analysis.



30 CHAPTER 3. TESTING

In data-flow testing, paths to be tested are selected according to specific com-
binations of operations on the data of the program. As in traditional data-flow
analysis, for each definition of each variable the set of reachable uses is identi-
fied. Each definition-use pair identifies one or more paths containing both the
definition and the related use. It is possible to define several criteria by select-
ing different subsets of all the possible combinations of definitions and uses,
and thus different set of execution paths to be covered by the corresponding
test data. For example, the following criteria has been defined: all-defs, which
requires, for each definition, to cover at least one use of such definition; all-uses,
which requires, for each definition, to cover all uses of such definition; all-du-
paths, which requires, for each definition, to cover all uses of such definition
along all loop-free possible paths.

Structural criteria can be used either as selection criteria, or as test evaluation
criteria, or both. As with specification based testing, there are same specific
kind of errors which can not be identified with structural based techniques,
e.g., missing functionalities (i.e., functionalities which should be provided by
the system according to the requirement specification, but which are not im-
plemented).

There are three main problems as far as structural testing is concerned:

scalability : While these techniques are well suited for unit and integration
testing, problems arise when using them with system testing. In addition,
some criteria may become impractical in the interprocedural case, e.g.,
criteria that require the traversal of specific paths comprising procedure
calls.

incrementality : due to their nature, these techniques are more likely to be
applied “from scratch”, than in an incremental fashion. This can lead
to problems when coping with even small modifications performed on
large programs, e.g., during regression testing.

path feasibility : Infeasible paths are paths which are present in the control-
flow graph representation of the program, but are not actually executable,
no matter what input data are used. The problem of identifying infeasible
paths is in the general case indecidible. While the ideal goal would be to
achieve a 100% level of coverage, the possible presence of infeasible path
makes it impossible to evaluate the actual coverage achieved by a given
test set and forces the tester to accept an approximated coverage.

3.3.3 Fault Based Testing

Fault based testing techniques [38, 27, 91, 61, 64] derive tests neither from spec-
ifications nor from the code, but rather from assumptions on which errors are
more likely to be present in the source code [62]. Given a program � , these
techniques are based on the generation of alternate faulty programs ��� , ..., ��� ,
which we want to be able to distinguish from � . More precisely, a fault based



3.3. TECHNIQUES 31

testing technique identifies a set of locations in a program, where each location
l denotes an expression (e.g., a statement). An alternate expression f for l, is an ex-
pression that can legally substitute the expression identified by l. The program
resulting from the substitution of an expression with one of its alternative ex-
pressions is called an alternate program. The scope of fault based testing is to of
generate a test set that distinguishes a program P from all of its alternate pro-
grams.

There are two main classes of fault based testing techniques: mutation anal-
ysis and PIE (Propagation, Infection, and Execution).

Mutation analysis Mutation analysis is a fault based unit testing technique
proposed by DeMillo, Lipton and Sayward [27], and Hamlet in [38]. Accord-
ing to Budd [15], “Mutation analysis serves to asses the adequacy of a test set�

for a program � relative to a set � of almost correct versions of � .” Although
mutation analysis was initially defined as a method for evaluating test cases,
research has been performed on its use as a test case selector (generator) [28].
Given a program � , an almost correct version of it can be obtained by introduc-
ing a fault. In this case, faults correspond to syntactic changes, which imply
slight semantic changes (e.g., the deletion of a statement, the substitution of
a relational operator, the modification of a constant) . Programs obtained in
this way are called � � � ����� � . Some of the generated mutants may be equiva-
lent to the original program. Since identifying equivalent mutants implies to
state program equivalence, which is an undecidable problem, it must be solved
manually by the analyst through inspection. Adequacy of

�
for � relative to

� is called mutation adequacy and is calculated as the ratio of non equivalent
mutants in � that are identifiable by executing them with test cases in

�
. The

main drawback of execution analysis is its cost, mostly in terms of number of
mutants to be generated (and thus number of executions to be performed).

PIE PIE (Propagation, Infection, and Execution) is a fault based testing tech-
nique [89, 90, 87] aiming at evaluating software testability [88]. The technique
attempts to identify code segments where faults may be harder to find be-
cause they are rather rarely executed, or they do not propagate anomalous data
states. The basis of the technique is the estimation of the probabilities of the fol-
lowing events: a given location in the program will be executed (Execution), a
mutated location will produce a state different than the state produced by the
original (non-mutated) location (Infection), random values injected to a vari-
able during program execution will cause a failure (Propagation). Execution
analysis is performed monitoring the number of times a given location is exe-
cuted when the program is executed with a set of input data. Infection analysis
is performed by mutating the location under analysis, executing the mutant
with a set of input data, and evaluating the ratio of executions producing a dif-
ferent state with respect to the original program. Finally, propagation analysis
is performed by executing the program with a set of input data, halting each
execution in the location under analysis, assigning a random value to a vari-



32 CHAPTER 3. TESTING

able, resuming the execution, and evaluating the ratio of executions revealing
a failure. The final scope of the technique is that of identifying code segments
that need particular testing procedures because they can “hide” faults.

3.4 Process

As stated above, the test process comprises three main steps, namely, selection,
execution, and evaluation. During the selection step test cases are selected ac-
cording to a selection criterion. Then, during the execution phase the program
under test is executed with respect to all test data in the set. During this phase
failures may occur. In this case the faults causing these failures must be iden-
tified and corrected. When all tests fail, it is necessary to assess the degree of
adequacy of the performed test. This corresponds to the test evaluation phase.

Commonly, test sets are initially selected by means of specification based
(functional) techniques. The analysis of the specification allows also for identi-
fying the expected outcome for a given input. Program based (structural) test-
ing is most effectively used as a way to evaluate the adequacy of the functional
testing performed. Adequacy is evaluated by analyzing the structural cover-
age achieved by functional test sets. If the test is adequate (e.g., it achieves a
given degree of coverage) the test process can be halted; otherwise, it is nec-
essary to reiterate the process from the first step, and to select additional test
cases for exercising the entities not yet exercised by means of structural tech-
niques. Since it is possible to re-cycle through these three steps several times,
usually additional criteria are used to decide when to stop testing (e.g., criteria
based on limits of the resources are commonly used in real-world situations).

In order to reduce the cost of the testing process, tools can be used. Tools
reduce the effort of testing by automating some of the parts of the process.
Computer Aided Software Testing (CAST) has been demonstrated to be very
effective on real-world case studies. There exist documented examples of 80%
reduction in testing costs, and noticeable improvements in software release
schedules [31]. Tool support for automated testing is mainly in the second
and third phases of the testing process. While test execution and coverage
evaluation are time consuming but straightforward activities, which can be
easily automated, test design and test planning are not completely suitable for
automation, being too much dependent on human skills.



Chapter 4

Testing Object Oriented
Software

In this chapter we present the impact of object-oriented characteristics on test-
ing. Surveys on object-oriented testing have been proposed on several pa-
pers [5, 6, 10, 65, 1].

In particular, the work of Binder [10] provides a comprehensive overview
of the main approaches to object-oriented testing proposed up to 1996. The
goal of this chapter is to classify the different problems arising when testing
object-oriented systems, with respect to object-oriented features. The chapter
provides also a survey of the main approaches proposed so far in literature for
addressing specific problems.

While it is still possible to apply traditional testing techniques to object-
oriented problems, object-orientation characteristics introduce new testing
concerns, that cannot be adequately addressed with traditional approaches and
require the definition of new techniques. In general, it is possible to classify
object-oriented testing problems as traditional problems, that can be solved
with traditional techniques, and new problems, that require new solutions.

Examples of traditional problems are the ones related to system testing, e.g.,
problems related to robustness, security, memory leaks. When considered as a
whole, object-oriented systems are analogous to traditional systems, and thus
no specific technique is needed for system testing them.

Since new problems are related to object-oriented specific characteristics,
their identification require an analysis of the features provided by object-
oriented languages. We identify six critical features to be considered, namely,
information hiding, shadow invocations, polymorphism and dynamic bind-
ing, conversions, inheritance, and genericity. In the rest of this chapter, we
consider these features separately, to identify the different problems each of
them can introduce as far as testing is concerned. For each problem identi-
fied, we provide a survey of the most relevant approaches proposed so far for

33



34 CHAPTER 4. TESTING OBJECT ORIENTED SOFTWARE

addressing it.

4.1 Information Hiding

In traditional procedural programming the basic component is the subroutine
and the testing method for such component is input/output based [36, 91]. In
object-oriented programming things change. The basic component is repre-
sented by a class, composed of a data structure and a set of operations.

Objects are run-time instances of classes. The data structure defines the
state of the object which is modified by the class operations (methods). In this
case, correctness of an operation is based not only on the input/output relation,
but also on the initial and resulting state of the object. Moreover, the data
structure is in general not directly accessible, but can only be accessed using
the class public operations.

Encapsulation and information hiding make it difficult for the tester to
check what happens inside an object during testing. Due to data abstraction
there is no visibility of the insight of objects. Thus it is impossible to directly
examine their state. Encapsulation implies the converse of visibility, which in
the worst case means that objects can be more difficult, or even impossible to
test.

Encapsulation and information hiding raise the following main problems:

1. Problems in identifying which is the basic component to test, and how to
select test data for exercising it.

2. Problems introduced by opacity in the construction of oracles:

� in general, it is not enough to observe input/output relations
� the state of an object can be inaccessible
� the private state is observable only through class methods (thus re-

lying on the tested software)

The possibility of defining classes which cannot be instantiated, e.g., ab-
stract classes, generic classes, and interfaces, introduces additional problems
related to their non straightforward testability.

Figure 4.1 illustrates an example of information hiding. The attribute � � ��� � �
is not accessible, and the behavior of � � �����
���	� � � � �	� is strongly dependent on
it.

There are fundamentally two approaches proposed in literature for testing
object-oriented programs as soon as encapsulation and information hiding are
concerned:

Breaking encapsulation: it can be achieved either exploiting features of the
language (e.g., the C++ friend construct or the Ada child unit) or instrumenting



4.1. INFORMATION HIDING 35

class Watcher {
private:

...
int status;
...

public:
void checkPressure() {

...
if(status==1) ...
else if(status...)
...

}
...

};

Figure 4.1: An example of information hiding

the code. This approach allows for inspection of private parts of a class. The
drawback in this case is the intrusive character of the approach.
An example of this approach can be found in [55].

Equivalence scenarios: this technique is based on the definition of pairs of
sequences of method invocations. Such pairs are augmented with a tag speci-
fying whether the two sequences are supposed to leave the object in the same
state or not. In this way it is possible to verify the consistence of the object state
by comparison of the resulting states instead of directly inspecting the object
private parts. In the presence of algebraic specifications this kind of testing
can be automated. The advantage of this approach is that it is less intrusive
than the one based on the breaking of encapsulation. However, it is still in-
trusive, since the analyst needs to augment the class under test with a method
for comparing the state of its instances. The main drawback of this technique
is that it allows for functional testing only. Moreover, the fault hypothesis is
non-specific: different kind of faults may lead to this kind of failure and many
possible faults may not be caught by this kind of testing.
Equivalence scenarios have been introduced in [29]. Another application of
this approach can be found in [85]. In this case, when testing a class, states
are identified by partitioning data member domains. Then, interactions be-
tween methods and state of the object are investigated. The goal is to identify
faults resulting in either the transition to an undefined state, or the reaching of
a wrong state, or the incorrectly remaining in a state.



36 CHAPTER 4. TESTING OBJECT ORIENTED SOFTWARE

4.2 Shadow Invocations

Shadow invocations are operations automatically or implicitly invoked. There
is no explicit invocation of these operations in the program. Examples of oper-
ations often invoked in this way are:

� constructors
� destructors
� casting operators

class Foo {
   ...
   public:
       Foo();
       Foo(Foo& f);
       ~Foo();
   ...
}

void bar(Foo f) {
   Foo f1;
   f1=f;
}

Foo(Foo& f);
Foo();
f1=f;
~Foo();
~Foo();

Figure 4.2: An example of shadow invocations

Since these invocations never appear in the code, they cannot be taken into
account either to write scenarios or to compute coverage values. Figure 4.2
shows an example of implicit invocations of methods when method bar is in-
voked. In this case the two lines of code composing the procedure correspond
to the dynamic invocation of the methods shown on the rightmost part of the
figure: two Foo’s constructors are invoked and Foo’s destructor is invoked
twice.

So far, the problem of shadow invocations has not been specifically ad-
dressed in literature. The only reference to such problem we found is in the
work of Barbey, Ammann, and Strohmeir [5], which identifies the problem,
but does not provide any solution.

4.3 Polymorphism and Dynamic Binding

As stated in Chapter 2, the term polymorphism refers to the capability for a
program entity to dynamically change its type at run-time. This introduces
the possibility of defining polymorphic references (i.e., references that can be
bound to objects of different types). In the languages we consider, the type of
the referred object must belong to a type hierarchy. For example, in C++ or



4.3. POLYMORPHISM AND DYNAMIC BINDING 37

Java a reference to an object of type A can be assigned an object of any type B
as long as B is either a heir of A or A itself.

A feature closely related to polymorphism is dynamic binding. In traditional
procedural programming languages, procedure calls are bound statically, i.e.,
the code associated to a call is known at link time. In the presence of poly-
morphism, the code invoked as a consequence of a message invocation on a
reference depends on the dynamic type of the reference itself and is in general
impossible to statically identify it. In addition, a message sent to a reference
can be parametric, and parameters can also be polymorphic references.

Void foo(Shape polygon) {
    ...
    area=polygon.area();
    ...
}

Shape

Triangle Square Pentagon Circle...

Figure 4.3: A simple example of polymorphism

Figure 4.3 shows a simple Java example of method invocation on a poly-
morphic object. In the proposed example, it is impossible to say at compile-
time which implementation of the method area will be actually executed.

Late binding can lead to messages being sent to the wrong object. An over-
riding changes the semantics of a method and can fool the clients of the class
it belongs to. Since sub-classing is not inherently sub-typing, dynamic binding
on an erroneous hierarchical chain, can produce undesirable results. More-
over, even when the hierarchy is well formed, errors are still possible, since the
correctness of a redefined method is not guaranteed by the correctness of the
superclass method.

Due to their dynamic nature, polymorphism and late binding introduce
undecidability concerns in program-based testing. To gain confidence in code
containing method calls on polymorphic entities, all the possible bindings
should be exercised, but the exhaustive testing of all possible combinations
of bindings may be impractical.



38 CHAPTER 4. TESTING OBJECT ORIENTED SOFTWARE

A---(X, W)--->D

A---(X, Z) --->D

A---(Y, W)--->D

A---(Y, Z) --->D

A---(X, W)--->E

...

A---(X, W)--->F

...

B---(X, W)--->D

...

A

B C

D

E F

X

Y

W

Z

Message(X, W)

Figure 4.4: An example of polymorphic invocation

Figure 4.4 illustrate a method invocation (represented in a message send-
ing fashion), where both the sender and the receiver of the message are poly-
morphic entities. In addition, the message has two parameters, at their turn
polymorphic. In such a case, the number of possible combinations (type of the
sender, type of the receiver and type of parameters) is combinatorial. More-
over, the different objects may behave differently depending on their state, and
this leads to a further explosion of the number of test cases to be generated.

In such a situation, a technique is needed, which allows for selecting ade-
quate test cases. The trade-off here is between the possible infeasibility of the
approach and its incompleteness.

Further problems arise when classes to be tested belong to a library. Classes
built to be used in one specific system can be tested by restricting the set of pos-
sible combinations to the ones identifiable analyzing the code [68]. Re-usable
classes need a higher degree of polymorphic coverage, because such classes
will be used in different and sometimes unpredictable contexts.

The problems introduced by polymorphism can be summarized as follows:

� Program based testing in the presence of polymorphism may become in-
feasible, due to the combinatorial number of cases to be tested.

� New definition of coverage are required to cope with the testing of oper-
ations on a polymorphic object.

� The creation of test sets to cover all possible calls to a polymorphic oper-
ation can not be achieved with traditional approaches.

� The presence of polymorphic parameters introduces additional problems
for the creation of test cases.



4.4. CONVERSIONS 39

� Interactions among specific polymorphic invocations along a particular
execution path may lead to problems during integration. Such interac-
tions have to be considered and a way must be defined for exercising
them.

The solutions proposed so far for this problem focus on the testing of poly-
morphic calls in isolation. We survey the main proposals for testing inclu-
sion polymorphism. Proposals for different kinds of polymorphism are not
reviewed since they are not directly related with the work described in this
thesis.

Kirani and Tsai [49] propose a technique for generating test cases from func-
tional specification for module and integration testing of object-oriented sys-
tems. The method generates test cases that exercise specific combinations of
method invocations. The method addresses object-oriented testing in general,
but is not specifically designed for coping with polymorphism and dynamic
binding. In particular, it does not address the problem of selecting bindings for
the polymorphic calls in the exercised combinations. A full solution of such
problem would require analysis of the code, while Kirani and Tsai focus on
functional testing.

McDaniel and McGregor [58] propose a technique for reducing the com-
binatorial explosion of the number of test cases for covering all combinations
of polymorphic caller, callee, parameters, and related states. The technique is
based on latin squares [56]: a set of specific orthogonal arrays are used to iden-
tify the subset of combinations of the state of each object and its dynamic type
to be tested. The method ensures coverage of all pairwise combinations. It
applies to single calls but does not consider the combined effects of different
calls.

Paradkar [69] proposes a pairwise integration strategy based on the rela-
tionships between classes, and a heuristic method for selecting test cases based
on the states of objects. The method allows for identifying some infeasible
combinations, and thus limiting the number of test cases for integration test-
ing, focusing on the integration order.

In Chapter 6 a technique is proposed which address a new class of failures
not considered by the above techniques, i.e., failures that are not caused by
single invocations, but by the combined effects of different invocations along
an execution path. Such failures might remain uncaught while focusing on
isolated calls.

4.4 Conversions

Some object-oriented languages allow the programmer to cast objects. In these
languages it is possible to perform type conversions which can not be checked
at compile-time. Casting errors may cause failures, unless the run-time system
provides a way to catch and handle them. Unfortunately, there are languages



40 CHAPTER 4. TESTING OBJECT ORIENTED SOFTWARE

(e.g., C++) where this kind of errors are hardly detected at run-time, thus they
often result in program termination with a run-time error.

Stack myStack;
...
Shape shape=myStack.top();
((Circle)shape).radius=28;
...

Figure 4.5: A risky conversion that can lead to a failure

Figure 4.5 shows an example of a possibly wrong casting. If the dynamic
type of object shape is different from Circle a failure occurs at run-time.

So far, no authors addressed the problem of wrong conversions as far as
the dynamic testing of object-oriented programs is concerned. Some work has
been done both on static analysis of object-oriented programs to check static
type correctness [22, 47] and on enrichment of the programming language to
make it strongly-typed [24, 82, 59]

4.5 Inheritance

In traditional procedural programming languages code is structured in sub-
routines, which are possibly enclosed in modules. Modules are composed in
bottom-up or top-down hierarchies. In this situation, when a subroutine has
been tested and accepted there is no need to re-test it.

Inheritance is probably the most powerful feature provided by object ori-
ented languages. As stated in Section 2.6.2, classes in object-oriented system
are usually organized in a hierarchy originated by the inheritance relationship.
In the languages considered in this work, subclasses can override inherited
method and add new methods not present in their superclass.

Inheritance, when conceived as a mechanism for code reuse, raises the fol-
lowing issues:

Initialization problems: it is necessary to test whether a subclass specific con-
structor (i.e., the method in charge for initializing the class) is correctly
invoking the constructor of the parent class.

Semantic mismatch: in the case of subtyping inheritance we are considering,
methods in the subclasses may have a different semantics and thus they
may need different test suites [78].

Opportunity for test reduction: the problem here is to know whether we can
trust features of classes we inherit from, or we need to re-test derived
classes from scratch. An optimistic view claims that only little or even



4.5. INHERITANCE 41

no test is needed for classes derived from thoroughly tested classes [18].
A deeper and more realistic approach argues that methods of derived
classes need to be re-tested in the new context [39]. An inherited method
can behave erroneously due to either the derived class having redefined
members in an inappropriate way or the method itself invoking a method
redefined in the subclass.

Re-use of test cases: we want to know if it is possible to use the same test cases
generated for the base class during the testing of the derived class. If this
is not possible, we should at least be able to find a way of partially reusing
such test cases [29, 30].

Inheritance correctness: we should test whether the inheritance is truly ex-
pressing an is-a relationship or we are just in the presence of code reuse.
This issue is in some way related to the misleading interpretation of in-
heritance as a way of both reusing code and defining subtypes, and can
lead to problems that have been addressed in Section 4.3.

Testing of abstract classes: abstract classes can not be instantiated and thus
can not be thoroughly tested. Only classes derived from abstract classes
can be actually tested, but errors can be present also in the super (ab-
stract) class

class Shape {
private:

Point referencePoint;
public:

void erase();
virtual float area()=0;
void moveTo(Point p);
...

}

class Circle : public Shape {
private:

int radius;
public:

erase();
float area();
...

}

Figure 4.6: An example of inheritance in C++

Figure 4.6 shows an example of inheritance. Questions which may arise
looking at the example are whether should we retest the method Cir-



42 CHAPTER 4. TESTING OBJECT ORIENTED SOFTWARE

cle::moveTo() and whether is it possible to reuse test sets created for the
class Shape to test the class Circle.

Different approaches have been proposed in literature for coping with the
testing problems introduced by inheritance. Simplistic approaches assume that
inherited code needs only minimal testing. As an example, Fiedler [32] states
that methods provided by a parent class (which has already been tested) do
not require heavy testing. This viewpoint is usually shared by practitioners,
committed more to quick results than to rigorous approaches.

Techniques addressing the problem from a more theoretical viewpoint have
also been proposed. They can be divided in two main classes:

1. Approaches based on the flattening of classes

2. Approaches based on incremental testing

Flattening-based approaches perform testing of subclasses as if every inher-
ited feature had been defined in the subclass itself (i.e., flattening the hierarchy
tree). The advantage of this approaches is related to the possibility of reusing
test cases previously defined for the superclass(es) for the testing of subclasses
(adding new test cases when needed due to the addition of new features to the
subclass). Redundancy is the price to be paid when following such approach.
All features are re-tested in any case without any further consideration.

Examples of flattening-based approaches can be found in the work of
Fletcher and Sajeev [33], and Smith and Robson [78]. Fletcher and Sajeev
present a technique that, besides flattening the class structure, reuses speci-
fications of the parent classes. Smith and Robson present a technique based
on the flattening of subclasses performed avoiding to test “unaffected” meth-
ods, i.e., inherited methods that are not redefined and neither invoke redefined
methods, nor use redefined attributes.

Incremental testing approaches are based on the idea that both re-testing
all inherited features and not re-testing any inherited features are wrong ap-
proaches for opposite reasons. Only a subset of inherited features needs to be
re-tested in the new context of the subclass. The approaches differ in the way
this subset is identified.

An algorithm for selecting the methods that need to be re-tested in sub-
classes is presented by Cheatham and Mellinger [18]. A similar, but more rig-
orous approach is presented by Harrold, McGregor, and Fitzpatrick [39]. The
approach is based on the definition of a testing history for each class under test,
the construction of a call graph to represent intra/inter class interactions, and
the classification of the members of a derived class. Class members are classi-
fied according to two criteria: the first criterion distinguishes added, redefined,
and inherited members; the second criterion classifies class members accord-
ing to their kind of relations with other members belonging to the same class.
Based on the computed information, an algorithm is presented. The algorithm
allows for identifying, for each subclass, which members have to be re-tested,
which test cases can be re-used, and which attributes require new test cases.



4.6. GENERICITY 43

4.6 Genericity

Most traditional procedural programming languages do not support generic
modules. Supporting genericity means providing constructs allowing the pro-
grammer to define abstract data types in a parametric way (i.e., to define ADTs
as templates, which need to be instantiated before being used). To instantiate
such generic ADTs the programmer needs to specify the parameters the class
is referring to. Genericity is considered here because, although not strictly an
object-oriented feature, it is present in most object-oriented languages. More-
over, genericity is a key concept for the construction of reusable component
libraries. For instance, both the C++ Standard Template Library (STL [80]) and
Booch components [13] for C++, Ada and Eiffel are strongly based on generic-
ity.

template <class T> Vector {
private:

T* v;
int sz;

public:
vector(int);
void sort();
...

};

Vector<Complex> complexVector(100);
Vector<int> intVector(100);

Figure 4.7: An example of genericity in C++

A generic class could not be tested without being instantiated specifying its
parameters. In order to test a generic class it is necessary to chose one (or more)
type to instantiate the generic class with and then to test this instance(s).

Figure 4.7 shows a template class representing a vector defined in C++. The
main problem in this case is related to the assumptions that can be made on
the types used to instantiate the class when testing the method sort (int and
complex in the example).

In detail, the following topics must be addressed when testing in the pres-
ence of generic classes: parametric classes must be instantiated to be tested,
no assumptions can be made on the parameter that will be used for instantia-
tion, “trusted” classes are needed to be used as parameters. Such classes can
be seen as a particular kind of “stubs”, and a strategy is needed which allows
for testing reused generic components.

The problem of testing generic classes, referenced in [6], is addressed by



44 CHAPTER 4. TESTING OBJECT ORIENTED SOFTWARE

Overbeck [67], which shows the necessity for instantiating generic classes to
test them, and investigates the opportunities for reducing testing on subse-
quent instantiations of generic classes. Overbeck reaches the following con-
clusions: once instantiated, classes can be tested in the same way non-generic
classes are; each new instantiation needs to be tested only with respect to how
the class acting as a parameter is used; interactions between clients of the
generic class and the class itself have to be retested for each new instantiation.



Chapter 5

Integration Testing of Object
Oriented Software

Integration of object-oriented system is a complex task. One of the major
strengths of object-oriented programming is the possibility of building inde-
pendently manageable blocks (i.e., classes), which can be combined to obtain
the whole system. A well designed object-oriented application is composed of
simple building blocks assembled together. Therefore, in object-oriented sys-
tems the complexity tends to move from modules to interfaces between mod-
ules, i.e., from units to interactions among them. If for traditional imperative
language 40% of software errors can be traced to integration problems [8], we
could expect percentage to be much higher in object-oriented software.

The rest of this chapter is organized as follows. In Section 5.1, we illus-
trate the different levels of integration testing of object-oriented systems. In
Section 5.2, we discuss how traditional integration strategies can be adapted
to the object-oriented case and present different approaches proposed so far
for object-oriented integration testing. In Section 5.4 we propose an integra-
tion strategy that takes into account the different relations between classes,
and combine them to identify a suitable order of integration for either bottom-
up or top-down integration. Finally, in Section 5.5 we classify possible object-
oriented integration errors with respect to errors occurring in traditional soft-
ware, and identify which errors can be considered specific to the object-
oriented case and require new techniques to be addressed.

5.1 Levels

In Section 3.2 we presented integration testing as the activity of exercising inter-
actions among units. While for traditional software there is a general consen-
sus on considering single procedures as units, the definition of the elemental
unit for object-oriented systems is not straightforward. Even though it would

45



46CHAPTER 5. INTEGRATION TESTING OF OBJECT ORIENTED SOFTWARE

still be possible to treat methods as units, most authors agree on considering
unproductive treating anything smaller than a class as an independent unit. A
well-designed class is a strongly cohesive entity, and the test driver that would
be required to test individual methods would essentially be a reinvention of
the class [57].

Provided that classes can be considered as the basic units of object-oriented
systems, object-oriented integration testing aims at verifying whether classes
(more precisely, their instances) cooperate as expected. Such activity is also
referred to as interclass level testing.

In general, it is possible to consider different and more sophisticated lev-
els of integration for object-oriented programs. Due to the particular structure
of object-oriented systems, the simple distinction between intra and interclass
testing may lack the expressiveness required for precisely representing the dif-
ferent aspects of integration. In literature, different classifications of testing lev-
els have been proposed [78, 57, 41, 48], and the same terms have been used for
identifying different concepts in different contexts. To avoid misunderstand-
ing, in the rest of this work we refer to the following terminology:

inter-class testing : testing of any set of cooperating classes, aimed at verify-
ing that involved classes correctly interact. There are no constraint on
how these classes are selected.

intra-cluster testing (or cluster testing) : testing of the interactions between
the different classes belonging to a subset of the system having some spe-
cific properties (a cluster). Usually, a cluster is composed of cooperating
classes providing particular functionalities (e.g., all the classes which can
be used to access the file-system, or the classes composing a Java pack-
age). Clusters should provide a well-defined interface, i.e., their inter-
faces should be well understood and they should mutually interact only
by means of their interfaces.

inter-cluster testing : testing of the interactions between already tested clus-
ters. The result of the integration of all clusters is the whole system.

integration testing : a general way of indicating any of the above.

5.2 Integration Strategies

As stated in Section 3.2, the main traditional integration testing strategies can
be classified as top-down integration, bottom-up integration, big-bang integration,
threads integration, and critical modules integration. Some of these strategies can
be suitably tailored for object-oriented systems, while some other might not be
applicable in this context. In the following we reconsider these strategies in an
object-oriented environment.



5.2. INTEGRATION STRATEGIES 47

5.2.1 Top-down and Bottom-up Strategies

Top-down and bottom-up integration strategies are still applicable to object-
oriented systems, provided that we correctly identify dependencies among
classes. Unlike traditional procedural languages, where the identification of
the use relation among modules is straightforward, object-oriented systems are
characterized by several different relations which can hold between classes (see
Section 2.6). These relations have to be taken into account, and more subtle in-
teractions between units have to be considered, with respect to the traditional
case. A class can depend on another class even if it does not “use” it in the
traditional sense of the term. As an example, let us consider a class � ��� � � to-
gether with its elements of type � ��� � � � ��� � � ��� , which represent a typical case
of aggregation relation. In this case, objects of class � ��� � � contains objects of
class � � � ��� � ��� � � ��� , but they might never invoke any of their methods (i.e.,
might never “use” them). Nevertheless, the presence of class � � � � � � ��� � � ���
is necessary for class � � � ��� to be instantiated (to be tested). The same holds
for hierarchical relations. A subclass cannot be tested in the absence of its an-
cestors. The main problem when applying this strategies to object-oriented
systems is related to the presence of cyclic dependencies among classes. In
the presence of cycles, it is impossible to find an integration order for bottom-
up (resp., top-down) strategies which allows for avoiding the construction of
stubs (resp., drivers).

In its incremental integration strategy, Overbeck [66] provides a detailed
analysis of integration testing and a bottom-up integration strategy addressing
the problem of cyclic dependencies. The approach is based on test patterns,
defined according to relationships between client and server classes and by
taking into account inheritance relationships. Two basic level of testing are
identified: unit test (performed by means of self-test suites) and pairwise inter-
class test (performed by means of contract-test suites). Overbeck addresses the
problem of cyclic dependencies within a system by means of stubs which are
used to break cycles. To minimize the cost of scaffolding, attention is paid to
accurately select which classes have to be replaced by stubs.

Kung [51] proposes a technique for defining the integration order when
testing an object-oriented system. The technique is based on a program rep-
resentation called the Object Relation Diagram (ORD). This diagram contains
information about the classes composing the system and the relations between
them. In order to address the problem of cycles, Kung proposes a technique
based on the breaking of cycles. The author asserts that every cycle must con-
tain at least one association, whose elimination allows for breaking that cycle.
When the testing has been completed, the association may be reintroduced and
tested. Even though the proposed solution is interesting, the author does not
provide any evidence supporting his assertion about the inevitable presence of
associations within cycles. Moreover, no explanation is provided about how
association elimination can be accomplished.



48CHAPTER 5. INTEGRATION TESTING OF OBJECT ORIENTED SOFTWARE

5.2.2 Big-bang Strategies

Big-bang integration strategies can be straightforwardly applied by just pulling
all the objects composing a system together and exercising the whole resulting
system. We consider this approach to be applicable only to small systems, com-
posed of a few classes. In accordance to Siegel’s experience [77], we expect such
an approach to be ruinous in the general case. Due to the complexity of the in-
teractions among objects, integration should aim at minimizing the number of
interfaces exercised at once. Localization of faults by means of debugging can
become prohibitive, in the case of a whole system whose components’ interac-
tions have never been exercised on smaller subsets.

5.2.3 Threads Integration

Threads integration strategies can be adapted to object-oriented systems as fol-
lows. As long as we consider object-oriented systems as sets of cooperating en-
tities exchanging messages, threads can be naturally identified with sequences
of subsequent message invocations. Therefore, a thread can be seen as a sce-
nario of normal usage of an object-oriented system. Testing a thread implies
testing interactions between classes according to a specific sequence of method
invocations. This kind of technique has been applied by several authors.

Kirani and Tsai [49] propose a technique for generating test cases from
functional specification for module and integration testing of object-oriented
systems. The method aims at generating test cases that exercise specific com-
binations of method invocations and provides information on how to choose
classes to be integrated.

A similar approach is proposed by Jorgensen and Erickson [48], which in-
troduce the notion of method-message path (MM-path), defined as a sequence of
method executions linked by messages. For each identified MM-path, inte-
gration is performed by pulling together classes involved in the path and ex-
ercising the corresponding message sequence. More precisely, Jorgensen and
Erickson identify two different levels for integration testing, orthogonal with
respect to the ones presented in Section 5.1:

Message quiescence : This level involves testing a method together with all
methods it invokes, either directly or transitively.

Event quiescence : This level is analogous to the message quiescence level,
with the difference that it is driven by system level events. Testing at this
level means exercising message chains (threads), such that the invocation
of the first message of the chain is generated at the system interface level
(i.e., the user interface) and, analogously, the invocation of the last mes-
sage results in event which can be observed at the system interface level.
An end-to-end thread is called an atomic system function (ASF)

The main drawback of this method is the difficulty in the identification of ASFs,



5.3. CRITICAL INTEGRATION 49

which requires either the understanding of the whole system or an analysis of
the source code.

McGregor and Korson [57] propose a strategy called wave front integration,
based on a specific development technique. Developers reach an agreement
on the functionality to be achieved for each component during each integra-
tion. To achieve such functionality all involved classes must provide a subset
of their features. Therefore, development proceeds across all of the classes at
the same time. This approach can be considered a variation of the threads in-
tegration strategies, characterized by development and testing being tightly
coupled. The main drawback of this approach is that it requires much com-
munications among different teams. Its main advantage is the little need for
scaffolding.

5.3 Critical Integration

We do not see many differences between critical integration for traditional and
object-oriented systems. As long as the characteristics of the system under test
require it to be integrated according to some criticality related criterion, and
it is possible to order classes according to their criticality level, this strategy
can be applied by simply integrating more critical classes first. This strategy is
usually very costly in terms of scaffolding production.

5.4 The Proposed Strategy

In this section we present our strategy for integrating classes composing a sys-
tem. In our work, we assume that:

� we are provided with the whole code of the system we are testing,

� the system is written in a language compliant with the Java-like language
presented in Section 2.8,

� adequate unit testing has already been performed, and thus classes com-
posing the system have already been exercised in isolation.

Our main goal is to choose an integration order allowing for incrementally
adding classes one at a time and testing the interactions between such class and
the already tested subsystem. Besides considering association, aggregation,
and composition relations, we take into account hierarchical relationships. A
superclass must always be tested before its subclasses for both implementation
and efficiency reasons: firstly, when testing a subclass, it is in general quite
complex to build a dependable mockup to replace its parent class with; sec-
ondly, testing the parent class before its heirs allows for minimizing the effort
by partially reusing test documentation and test suites [74].



50CHAPTER 5. INTEGRATION TESTING OF OBJECT ORIENTED SOFTWARE

With respect to the different strategies presented in Section 5.2, our tech-
nique can be classified as a bottom-up integration testing strategy (it could be
applied for top-down integration as well). To address the problem of defin-
ing a suitable incremental integration order, we consider dependencies be-
tween classes induced by all the different relationships which can hold be-
tween the elements composing a system. The approach, partially inspired by
the work on modular formal specification presented by San Pietro, Morzenti,
and Morasca [71], is based on the representation of the system under test in
terms of a directed graph, whose nodes are the classes composing the system.
The edges of the graph represents the relations between classes within the sys-
tem.

In the following we provide the details of the approach. In particular, we
firstly illustrate how the graph is built starting from the code to be integrated
and taking advantage of the modular structure typical of object-oriented sys-
tems. Then, we consider two techniques allowing for identifying a meaningful
integration order according to the characteristic of the graph (which can be ei-
ther acyclic or cyclic). At the end of the section we provide some consideration
about the applicability of the approach on real-world systems.

5.4.1 Class Relation Graph

The class relation graph (hereafter CRG) is defined for an object-oriented system
� , which can be either a complete program or a set of classes (e.g., a library).
We define � as a tuple � � 	 � � � � � 	 ������� ��� 	 � � � � 	 � � � ��� � where:

C models the set of classes composing the system. Each element of � corre-
sponds to a class of the system.

ASSOC is a relation defined on ��� � modeling association relationships
within the code, i.e., for any � � , ����	 � , � � � 	 ��� ��	 � � � � � iff in the code
class there is an association relationship from � � to ��� .

AGGREG is analogous to the ��� � � � relation, but it models aggregation re-
lationships between classes.

COMP is analogous to the � � � � � and �
����� ��� relations, but it models
composition relationships between classes.

GENER is a relation defined on ��� � . For any � � , ����	 � , � � � 	 �
� ��	 � � � ���
iff class � � is a subclass of class �
� (or, conversely, �
� is a superclass of � � )

We define an additional binary relation on � , that we call � � � � � � , which
is evaluated starting from the above relations:

� � � � � � � ��� � � ��� ������� ����� � � � � ��� � � ���
Given a system � , the set � together with the binary relation � � � � � �
defines a directed graph. We call this graph the class relation graph ����� � � � .



5.4. THE PROPOSED STRATEGY 51

In the following we assume the ����� � � � to be connected. This is a safe
assumption: a non-connected ����� � � � would imply the presence of at least
two subsets � � and � � of � such that� � � � 	 � � 	 ����	 � � such that � � � 	 ����� 	 � � � � � �
In such a case, we would be in the presence of at least two independent
systems, which can be addressed separately for integration purposes.

Depending on the structure and on the dependencies within � , two possible
situations may arise, namely, ����� � � � is cyclic and ����� � � � is acyclic. We treat
these two cases separately, since they need to be addressed in different ways.

Acyclic CRGs

In the case of the ����� � � � for system � being acyclic, i.e., being a DAG [17],
there exists a partial order on the elements of � . It is possible to define a topo-
logical total order, i.e., a total order which is compatible with the partial order.
The integration of classes according to this total order allows for always test-
ing a parent before its heirs and for incrementally adding callers to already
tested subsystems. When defining the topological order, we obey the rule that

class

B11

class

class class

class

class

B2

B

B1A1

A

Figure 5.1: A set of classes to be integrated

whenever more than one successor for a class � can be chosen we always select
subclasses of � first (if any). By following this rule we maximize the testing of
polymorphic interactions. The effect of the rule is that a class invoking meth-
ods on a polymorphic entity � is always integrated with � and all of its heirs.
Moreover, in this way we overcome the problem of classes that cannot be in-
stanciated (i.e., abstract classes and interfaces). In Figure 5.1 we show a simple
example of seven classes to be integrated. In this case, the partial order in-
duced by relations would be:

� � � � � � ,
� � � � � � ��� ,

� � ���

By applying the above rule we would select a topological order such as



52CHAPTER 5. INTEGRATION TESTING OF OBJECT ORIENTED SOFTWARE

� � � � � � ��� � � � � � � � �
or

� � � � � � � � � ��� � � � � �
It is immediate to verify that both the above orders require all subclasses of

�

to be integrated before � . This property does not hold if we choose an arbitrary
topological order, such as

� � � � � � � ��� � � � � � � � .

Cyclic CRGs

If the ����� for a given system � is cyclic, then there exist cyclic dependencies
among the classes of � . In such a situation, it is impossible to define a partial
order on � .

Every directed graph � � � 	
� � can be reduced to a DAG, called the graph���

of the strongly connected components. A strongly connected component
(hereafter � ��� ) of a directed graph � is a maximal subgraph of � that is
strongly connected, i.e., within the � ��� each node can be reached from any
other node. It has been demonstrated that such reduction can be performed in
time � ��� � ����� � � � [86]. The set of nodes of

� �
contains the SCCs of � together

with the nodes of � which do not participate in any cycle of � . The set of edges
of � is composed only of the arcs of � that do not participate in any circuit of
� .

In the case of cyclic ����� s, we consider the acyclic
�
	�� �

obtained by re-
ducing it as explained above. Let us consider the kind of nodes we might
have in this new graph. In general, some of the nodes are still plain classes
(these are nodes not contained in any of the � ��� s in the original graph), while
some other nodes are � ��� s, i.e., aggregates of classes. We identify a � ��� with
the concept of cluster. More precisely, given a system � and the correspond-
ing ����� � � � graph, we define a cluster as a strongly connected component of
����� � � � .

It is worth notice that our definition of a cluster is slightly different with
respect to the one provided by other authors [78, 57]. We define clusters ac-
cording to some properties of the system under test. In our approach, cluster
are univocally defined by the relations between the classes of the system.

Analogously to the case of the acyclic ����� graph,
� 	
� �

induces a partial
order on the nodes composing it, and thus it is possible to define a topological
order on its nodes. This allows us to define an integration order for the nodes
of
� 	
� �

. Unlike the case of acyclic ����� s, the order of integration in this case
involves both classes and clusters.

5.4.2 Applicability

This strategy forces us to deal with different levels of abstraction simultane-
ously, since clusters and classes are present at the same time. Moreover, it im-
plies the integration at once of all the classes of a cluster, since the graph-based



5.4. THE PROPOSED STRATEGY 53

technique for identifying the order of integration is not applicable within a
cluster, by definition.

A possible solution for the cluster integration problem would be to big-
bang integrate all the classes in a cluster as a first step, and then integrate
classes and clusters according to the identified order. According to our previ-
ous considerations on big-bang integration strategies, we expect the applicabil-
ity of this approach to be highly dependent on the characteristics of the system.
For systems with small clusters (i.e., clusters composed of a few classes) the
big-bang integration of classes composing a cluster would not be a problem.
Integration of systems containing several big clusters (i.e., clusters composed
of many classes) would be problematic at the inter-cluster level. More pre-
cisely, it is possible to identify the two orthogonal dimensions of the problem
as follows:

Number of clusters (NOC) : It is the number of clusters which can be identi-
fied in the system.

Average cardinality of clusters (ACC) : It is defined as the mean of the num-
ber of classes per cluster evaluated on all the clusters within the system.

The � � � does not impact on the applicability of the approach. Once clus-
ters have been identified, and an integration order has been defined, they are
integrated exactly as if they were classes.

The situation changes when considering the � ��� dimension. We can iden-
tify two extreme situations: a system with no clusters and a system containing
a cluster whose cardinality equals the cardinality of the system itself. In the
former (optimal) case, we would obtain an acyclic graph, and we could start
integrating classes as soon we have defined the total order on � . In the latter
(worst) case, integration would reduce to a big-bang integration of the system
as a whole. In the middle, there are all possible intermediate situations. There-
fore, the more a system tends to the optimal case, the more our approach is
suitably applicable.

According to Booch [14]: “The dependency structure for released compo-
nents must be a DAG. There can be no cycles.” Therefore, if we restrict our
analysis to the so called well-designed object-oriented systems, we can count on
the absence of cycles from the ����� s representing such systems. Without will-
ing to be so restrictive, we refer to the concept of what we can call reasonably-
designed systems. With this term, we refer to real-world average object-oriented
applications. For these applications, we expect to have a few small-to-medium
clusters and the approach to be applicable.

After an order of integration has been identified, classes are added to the
system accordingly, and their interactions are exercised. In order to efficiently
exercise these interactions, we need information about the possible problems
that can arise during integration. Up to now, no taxonomy has been proposed
for object-oriented integration errors, and we must rely on classification de-
fined with respect to traditional programs. In the following section, we attempt



54CHAPTER 5. INTEGRATION TESTING OF OBJECT ORIENTED SOFTWARE

at classifying object-oriented integration problems by analyzing differences be-
tween characteristics of traditional and object-oriented integration testing. We
consider such a distinction as a fundamental prerequisite for being able to cor-
rectly define specific approaches addressing integration of object-oriented sys-
tems.

5.5 Integration Errors

When integrating object-oriented systems, we may expect to have both prob-
lems similar to the ones typical of the traditional procedural case and new fail-
ures specifically related to the object-oriented paradigm. In addition, some of
the traditional errors may become less frequent or less dangerous in the case
of statically typed object-oriented languages. For example, in a well designed
program developed in a pure object-oriented language 1, side effects should
reduce, due to the absence of global variables and global functions operating
on them. In the rest of this section, we classify integration errors according to
the following framework.

1. Traditional faults that can occur with the same probability and can be
addressed in the same way they are addressed in traditional systems:
as far as these faults are concerned, there should be no need for defining
new techniques, and it should be possible to apply traditional approaches
straightforwardly.

2. Traditional faults less frequent in an object-oriented context: it could be
the case that this class of faults occur too seldom to justify the testing
effort required to address them.

3. Traditional faults more frequent in an object-oriented context: the in-
creasing of their probability of occurrence may justify additional testing
effort aiming at revealing them. Roughly speaking, testing devoted to
identify them might become cost-effective in an object-oriented context.

According to Beizer [9], integration errors can be of eight different kind:
protocol design errors, input/output format errors, protection against cor-
rupted data, wrong subroutine call, call parameter errors, misunderstood entry
or exit, incorrect parameter values, and multi-entry/multi exit routines. Leung
and White [52] provide a more accurate taxonomy of integration errors, which
attempts to distinguish among errors occurring at the integration level due to
inadequate unit testing and errors really specific to integration.

Starting from the taxonomy presented by Leung and White, we classify
traditional integration errors with respect to our framework. Our purpose
is to demonstrate that most object-oriented integration problems are already

1With the term pure object-oriented languages, we identify languages where every entity is encap-
sulated within a class



5.5. INTEGRATION ERRORS 55

present in traditional code, and can be addressed by straightforwardly adapt-
ing traditional techniques. This is an important point which deserves a further
explanation. By classifying these errors as “analogous to their traditional coun-
terpart”, we do not mean that they represent no problem for object-oriented
systems, but rather that they can be addressed with traditional techniques. In
this work we are mostly interested in addressing new problems, unforeseen in
systems developed with traditional procedural programming languages.

In the next sections we analyze the different kind of errors considered in
the classification of Leung and White in isolation, and we place them in the
presented taxonomy.

Interpretation Errors

Interpretation errors are due to the common problem of a caller misunderstand-
ing the behavior of a callee. The misunderstanding is about either the function-
ality the module provides or how it provides it. An interpretation error occurs
every time the interpreted specification differs from the actual behavior of the
module. Interpretation errors can be further classified as follows.

Wrong function errors : The functionalities provided by the callee may not be
those required by the caller, according to its specification. In this case,
the developer’s error is to assume that the callee actually provides the
functionalities needed by the caller. The error is neither in the misunder-
standing of the callee’s behavior nor in a wrong use of its interface, but
rather in a faulty implementation of the caller.

There is no reason to believe that in object-oriented systems the probabil-
ity of occurrence of such errors could differ with respect to the traditional
case. The wrong interpretation of a specification can occur for a class ex-
actly as for a module. We thus place such errors in the first category of
the framework.

Extra function errors : There are some functionalities provided by the callee
which are not required by the caller. The developer is aware of the ex-
istence of these extra functionalities, but he wrongly assumes that no in-
puts to the caller will ever result in an invocation of them on the callee. In
this case, the developer’s error is to overlook some particular input to the
caller causing it to invoke such functionalities, with unexpected results.
This kind of errors can easily occur as a consequence of either modifica-
tion to the caller or reuse in a different context of the pair caller-callee.
This type of errors have to be considered as specific to the integration.
They are not identifiable by testing single modules, since the problem
involves verifying that no input to the caller will cause an input to the
callee that in turn results in an invocation of these extra functionalities.

In the case of object-oriented systems, this kind of errors could occur in
two different contexts, and different cases worth a separate analysis.



56CHAPTER 5. INTEGRATION TESTING OF OBJECT ORIENTED SOFTWARE

� The problem could occur in relation to interactions between differ-
ent methods belonging to the same class. According to the hypoth-
esis of adequately tested unit, this should never be the case while
performing integration testing. During unit (i.e., intra-class) testing
the developer/tester should never put any constraint on the allowed
inputs to methods, since a class is a cohesive unit and its method
should cooperate as specified no matter how they are invoked. Er-
rors of this kind would imply that inadequate unit testing has been
performed. We can safely consider this kind of problem as a compe-
tence of unit testing.

� The problem could be related to interactions among two methods
belonging to different classes. As long as we consider classes as
modules together with their operations, this problem is analogous
to its traditional counterpart. Nevertheless, we consider these errors
much more likely to occur in object-oriented systems than in tradi-
tional code. Object-orientation enforces reuse. It is very common
that a class designed and developed to be used in a specific system
is reused in many different contexts. Moreover, if the caller is a sub-
class and one of its ancestors happens to be modified, this can result
in a different behavior of the caller itself causing the invocation of
the extrafunction. These kind of errors might deserve an additional
testing effort in object-oriented systems, and thus we place them in
the third category of our framework.

Missing function errors : There are some specific inputs from the caller to the
callee that are outside the domain of the callee. Such inputs usually re-
sult in unexpected behaviors of the callee. Unit testing has no means
of revealing these kind of problems, whose identification is thus left to
integration testing.

In this case, the presence of polymorphism and dynamic binding compli-
cate the picture. The programmer might overlook that a valid input for
a method in a superclass is outside the domain of some redefinition of
the method in a subclass. Moreover, since type hierarchies can grow, the
problem could arise even when the developer has verified a method and
all of its redefinitions. We consider this type of errors to be more frequent
in the object-oriented case, and thus we place it in the third category of
the framework.

Miscoded Call Errors

Miscoded call errors occur when the programmer places an instruction contain-
ing an invocation in a wrong position in the code of the caller. These errors can
lead to three possible faults:

Extra call instruction : The instruction performing the invocation is placed on
a path that should not contain such invocation.



5.5. INTEGRATION ERRORS 57

Wrong call instruction placement : The invocation is placed on the right path,
but in a wrong position.

Missing instruction : The invocation is missing on the path that should con-
tain it.

In object-oriented systems, this kind of errors might occur as frequently as
they do in the traditional case. Nevertheless, they are well localized errors, that
should be revealed by class testing and should be given little attention during
integration. We can classify them as belonging to the second category of the
framework.

Interface Errors

Interface errors occur when the defined interface between two modules is vio-
lated. It is possible to identify several kinds of interface errors. We illustrate
some example: parameters of the wrong type, parameters not in the correct
order, parameter in the wrong format, violation of the parameter rules (e.g.,
call by value instead of call by reference), mismatching between the domains
of actual and formal parameters. Beizer [9] identifies interface errors as the
most frequent errors during integration testing. In the general case, most (if
not all) interface errors cannot be identified during unit testing. They have to
be addressed during the integration phase

When using a statically typed object-oriented language, most of these errors
can be caught statically, during compilation. We can safely consider this kind
of errors much less frequent in the object-oriented case, and thus place them in
the second category with respect to the framework.

Global errors

A global error is an error related to the wrong use of global variables. This kind
of errors have necessarily to be addressed during integration testing.

In the object-oriented languages we are considering, there is no way of
defining global variables. Nevertheless, we have to consider the case of pub-
licly accessible static attributes. Being globally accessible and possibly modifi-
able, they are analogous to global variables of traditional languages. This kind
of use of static attributes is an example of bad programming practice. We con-
sider such situation as very unlikely to occur in well-designed object-oriented
systems, and thus consider this class of errors as less frequent in the object-
oriented case than in the traditional case.

Table 5.1 summarizes the classification, with respect to our framework, of
traditional errors identified by Leung and White. Three types of errors re-
sult to be less likely to occur in an object-oriented system, namely, miscoded
call, interface, and global errors, while wrong function errors resulted to be as
frequent in object-oriented systems as they are in traditional programs. Even



58CHAPTER 5. INTEGRATION TESTING OF OBJECT ORIENTED SOFTWARE

1 2 3
Wrong function error X
Extra function error X
Missing function error X
Miscoded call error X
Interface error X
Global error X

Table 5.1: Classification of integration errors

though this information can provide several hints for interclass testing, we are
mostly interested in errors which appear to be more frequent in object-oriented
systems than in traditional programs. Such errors are more likely to require
specific techniques to be adequately addressed.

According to what stated above, we can relate the types of errors in the
third category of the framework to two specific object-oriented characteristics:
inheritance and polymorphism.

Inheritance can cause problems due to the consequences of modifications in
ancestors on the behavior of heirs (also referred to as the fragile class prob-
lem [60]). Such consequences cannot be easily foreseen, since in general
they can occur in any point of the type hierarchy, and not necessarily on
the direct descendant of the class that has been modified.

Polymorphism can introduce specific integration testing errors related to the
impossibility of statically identifying the actual receiver of a message (see
Section 4.3).

In the following chapter we specifically address polymorphism related is-
sues by further analyzing them, and by providing a new technique for integra-
tion testing in the presence of polymorphism.



Chapter 6

Polymorphism and Testing

In this chapter we address the problem of integration testing of procedural
object-oriented systems in the presence of inclusion polymorphism, as pro-
vided by the Java-like language illustrated in Section 2.8. We stress that this
particular kind of polymorphism has been chosen since it is the one provided
by most common procedural object-oriented languages, like Java, C++, Eiffel,
and Ada95.

The technique presented in this chapter specifically addresses the problem
of selecting adequate test cases for testing combinations of polymorphic calls
during integration testing. The approach is based on a new data-flow test se-
lection technique which allows for testing combination of polymorphic calls
along specific paths. In detail, we extend the traditional def and use sets [73]
by defining two new sets, namely, def � and use � , which take into account dy-
namic binding related aspects. Starting from these sets, traditional data-flow
test selection criteria [34] can be suitably extended, and a set of new criteria
can be obtained. The new criteria allows for selecting execution paths that
might reveal failures due to incorrect combinations of polymorphic calls. The
possibility of extending traditional criteria allows for applying a well known
body of knowledge to the new problem, and the easy combination of new and
traditional coverage criteria.

In the rest of this chapter, we assume the modified bottom-up integration
testing strategy proposed in Section 5.4, i.e., we consider the case in which class
� is integrated with all classes containing methods that can be bound to calls
occurring in class � itself and after its ancestors have been integrated.

The chapter is organized as follows. In Section 6.1 we summarize the main
problems of testing in the presence of polymorphism. In Section 6.2 we intro-
duce the proposed data-flow testing technique and the necessary background.
In Section 6.3 we show how traditional path selection criteria can be adapted
to define new criteria specific to polymorphism. In Section 6.4 we discuss the
feasibility of the approach. Finally, in Section 6.5 we provide an example of
application of the technique.

59



60 CHAPTER 6. POLYMORPHISM AND TESTING

6.1 Polymorphism and Testing

As stated in Section 4.3, testing programs in the presence of polymorphism
raises new problems related to the presence of dynamic binding. We summa-
rize the main problems as far as testing of polymorphism is concerned:

Undecidability of bindings In the presence of polymorphism and dynamic
binding, the static identification of bindings of polymorphic entities is an un-
decidable problem.

Combinatorial explosion In a method invocation such that the caller, the
callee, and the parameters are polymorphic, the number of possible situation
is combinatorial. If we also consider the state of the involved objects, there is a
further explosion of the number of test cases to be generated.

Critical combinations In traditional programs, many failures are not caused
by a single invocation, but rather by the combined effects of different invoca-
tions along an execution path. When invocations are dynamically bound, an
orthogonal dimension has to be considered, that is, the run-time binding. In
the presence of polymorphic invocations, it is important to be able to select
paths allowing for exercising the combined effects of different invocations dy-
namically bound to different objects..

Section 4.3 surveys interesting techniques presented in literature for ad-
dressing the problem of testing polymorphic calls. We briefly review these
techniques with respect to the above problems. Both Paradkar [69] and Mc-
Daniel and McGregor [58] address the problem of undecidability of bindings
by simply considering all bindings as feasible. The combinatorial explosion
problem is addressed by Paradkar by carefully choosing a specific integration
order, by limiting the test of methods in subclasses according to the adequacy
criteria of Perry and Kaiser [70], and by using heuristics. The approach for
coping with the combinatorial explosion problem proposed by McDaniel and
McGregor is based on a reduction of the combinations to be tested by means of
latin squares, which assure all pairwise combinations to be tested. None of the
authors addresses the critical combinations problem. Both approaches focus
on the testing of the effects of single invocations.

We mostly focuses on the least addressed problem, that is, critical combina-
tions. We consider this problem as very specific of object-oriented systems. To
give a more precise idea of situations in which this problem could occur, in the
following we provide a simple example.

Let class Person, with a public method height, be specialized into two
classes, Woman and Man, both redefining the method height. Let us assume
that, for some error in the internationalization of the code, method height in
class Man returns the value in inches, while method height in class Women re-
turns the value in centimeters. Testing the two polymorphic invocations in the



6.2. A DATA-FLOW TECHNIQUE FOR TESTING POLYMORPHISM 61

fragment of code shown in Figure 6.1 independently, could not reveal the triv-
ial problem derived from comparing inches and centimeters. More precisely,
a test selection technique which focuses on single calls would not lead in the
general case to test the code in a way such that � � and �

�
refer to objects of dif-

ferent types. Thus, such a technique would not be able to reveal the problem
and could succeed only by chance.

In this case, we can conclude that an adequate test for the example pro-
gram should consider combinations of invocations and corresponding bind-
ings along execution paths.

1. Person p1=null, p2=null;
int h1=0, h2=0;
...

2. if(p1!=null) h1=p1.height();
3. if(p2!=null) h2=p2.height();

...
4. if(h1 < h2) ...

Figure 6.1: Faulty polymorphic invocations in Java

6.2 A Data-Flow Technique for Testing Polymor-
phism

Addressing the critical combinations problem is not trivial. Programs may fail
due to specific combinations of dynamic bindings that occur along an execu-
tion path, and behave correctly for different combinations of dynamic bindings
for the same path. To adequately test such programs, we need selection crite-
ria that identify paths differing only for the specific combinations of dynamic
bindings. Traditional data-flow test selection criteria distinguish paths that dif-
fer for occurrences of definitions and uses of the same variables, but do not take
into account the possibility that such definitions or uses may depend on invo-
cations of different methods dynamically bound. In this section we propose a
new data-flow test selection technique that distinguish different combinations
of dynamic bindings for the same paths.

Before describing the new technique, we briefly illustrate the mechanism
referring to the example of Figure 6.1. Let us assume that the fragment of code
shown in the figure is part of a large program, comprising different complex
paths. A test selection criterion able to reveal the failure due to the different
units of measure must generate test data that exercise a path containing the
nodes representing statements 2, 3, and 4, but this is not enough. The fault is
revealed only if at least one of these test cases corresponds to different bind-
ings of the polymorphic invocations that occur at nodes 2 and 3, e.g., a test



62 CHAPTER 6. POLYMORPHISM AND TESTING

case that causes the polymorphic invocation at line 2 to be dynamically bound
to method height of class Man and the invocation at line 3 to be bound to
method height of class Woman. Traditional data-flow testing criteria do not
distinguish among different bindings, and thus cannot generate the required
test data. They could succeed in revealing the failure only by chance. Our
technique overcomes this problem by defining new sets def � and use � , that con-
tain variables together with the polymorphic methods that can be “directly” or
“indirectly” responsible for their definition or use.

In the example of Figure 6.1, the node representing the statement at line 2
would be associated with a def � set containing the two pairs

� � �
	
� ��� �

� � � � � � � , � � �
	 
 � � ��� �

� � � � � � �

that reflect the different methods that can be dynamically responsible for
the definition of variable

�
� . Analogously, the node corresponding to line 3

would be associated with a def � set containing the two pairs � � � 	 � ��� �
� � � � � � �

and � � � 	 
 � � ��� �
� � � � � � � . The node representing the statement at line 4 would

be associated with a use � set containing the four pairs � � �
	
� ��� �

� � � � � � � ,
� � �

	 
 � � ��� �
� � � � � � � , � � � 	 � ��� �

� � � � � � � , and � � � 	 
 � � ��� �
� � � � � � � . This latter

case is less intuitive than the former ones. As explained in detail in Sec-
tion 6.2.2, in this case the set use � capture how the result of the computation
could depend on the invocation of different polymorphic methods, either
directly or through intermediate variables.

The new sets allow for easily adapting traditional data-flow test selection
criteria to cover paths differing only for the specific combinations of dynamic
bindings. The new testing criteria require the coverage of different combina-
tions of elements of the defined sets, and thus different combinations of bind-
ings of polymorphic methods. In particular, any of the criteria described later
on would select test data required to reveal the failure of the program in Fig-
ure 6.1 (see below).

It could be objected that this approach is equivalent to the unfolding of all
polymorphic calls (i.e., the transformation of each polymorphic call in a set
of conditional statements which invoke a different method according to some
sort of type attribute) combined with traditional data-flow testing techniques.
This is not the case, since such an approach would not be able to distinguish
between polymorphic and non-polymorphic definitions and uses. This would
lead to test selection criteria which necessarily consider all definitions and uses,
whether or not they are related to methods dynamically bound. As a conse-
quence, starting from a control-graph representation of an “unfolded” version
of the code annotated only with traditional def and use sets, none of the data-
flow selection criteria proposed in Section 6.3 could be expressed. Moreover,
being traditional criteria not concerned with the problem of combinations, they
need to be applied in their strongest form to have reasonable chances of select-
ing meaningful test data, as shown in the following example. In Figure 6.2, we
represent an unfolded version of the code of Figure 6.1.



6.2. A DATA-FLOW TECHNIQUE FOR TESTING POLYMORPHISM 63

1. Person p1=null, p2=null;
int h1=0, h2=0;
...

2a. if(p1!=null) {
2b. if(p1.type==’’Man’’)
2c. h1=p1.ManHeight();
2d else if(p1.type==’’Woman’’)
2e h1=p1.WomanHeight();

}
3a. if(p2!=null) {
3b. if(p2.type==’’Man’’)
3c. h2=p2.ManHeight();
3d. else if(p2.type==’’Woman’’)
3e. h2=p2.WomanHeight();

}
...

4. if(h1 < h2) ...

Figure 6.2: Unfolding of polymorphic invocations

We apply traditional data-flow test selection criteria to the example. For the
sake of clarity, we consider only definitions and uses of

�
� and

� �
.

all-defs criterion could be satisfied by executing, for example, the following
paths: (1, 2a, 3a, 4a), (1, 2a, 2b, 2c, 3a, 4a), (1, 2a, 2b, 2c, 2d, 2e, 3a, 4a), (1, 2a,
3a, 3b, 3c, 4a), and (1, 2a, 3a, 3b, 3c, 3d, 3e, 4a). Such paths do not exercise
the faulty combination.

all-uses criterion is satisfied by the same set of paths that satisfy the all-defs
criterion, which do not exercise the faulty combination.

all-du-paths criterion is satisfied by executing the following sixteen paths: (1,
2a, 2b, 2c, 3a, 3b, 3c, 4), (1, 2a, 2b, 2c, 3a, 3b, 3d, 3e, 4), (1, 2a, 2b, 2c, 3a, 3b,
3d, 4), (1, 2a, 2b, 2c, 3a, 4), (1, 2a, 2b, 2d, 2e, 3a, 3b, 3c, 4), (1, 2a, 2b, 2d, 2e, 3a,
3b, 3d, 3e, 4), (1, 2a, 2b, 2d, 2e, 3a, 3b, 3d, 4), (1, 2a, 2b, 2d, 2e, 3a, 4), (1, 2a,
2b, 2d, 3a, 3b, 3c, 4), (1, 2a, 2b, 2d, 3a, 3b, 3d, 3e, 4), (1, 2a, 2b, 2d, 3a, 3b, 3d,
4), (1, 2a, 2b, 2d, 3a, 4), (1, 2a, 3a, 3b, 3c, 4), (1, 2a, 3a, 3b, 3d, 3e, 4), (1, 2a, 3a,
3b, 3d, 4), and (1, 2a, 3a, 4). In this case, paths which are able to reveal the
error are selected, but the number of test data needed for exercising them
is considerably higher with respect to the number of test data needed for
satisfying the all-defs � criterion (see Section 6.3).

Examples of application of the new criteria have to be deferred until Sec-
tion 6.3. We anticipate that, with respect to the original example, the weakest
“polymorphic” criterion (i.e., all-defs � ) would require the selection of test data
which exercise the critical combinations at least once. Moreover, for this simple



64 CHAPTER 6. POLYMORPHISM AND TESTING

example, exactly two test cases would satisfy the criterion, and both of them
would be able to reveal the failure.

Although traditional criteria applied on unfolded code might be able to re-
veal the same errors, they would do it at a higher costs. As far as the critical
combinations problem is concerned, such a solution is in general more expen-
sive with respect to the criteria proposed in Section 6.3. The proposed criteria
represent interesting intermediate cases, that allow for identifying smaller set
of notable test cases. Considering only polymorphically related definitions and
uses allows for focusing on the class of failures we identified as specific of poly-
morphism.

In the rest of the section, the technique for the testing of polymorphic in-
teractions is illustrated in detail. After recalling the definition of Inter Class
Control Flow Graph (ICCFG), used as a reference model for the software to
be tested, we introduce the new concepts of polymorphic definition and polymor-
phic use. Finally, we describe how traditional data-flow selection criteria can be
adapted to the new sets, and discuss problems of infeasible paths, scalability,
and complementarities with traditional data-flow test selection criteria.

6.2.1 ICCFGs

Traditional data-flow test selection criteria are defined starting from a control
flow graph representation of the program to be tested. In this work, we re-
fer to a simplified version of the Inter Class Control Flow Graph (ICCFG) [42],
that extends inter-procedural control flow graphs to the case of object-oriented
programs. For presenting the technique, we consider the usual Java-like pro-
gramming language defined in Section 2.8, which allows us to avoid language
dependent assumptions.

As an example, Figure 6.3 shows a simple Java-like program, and Figure 6.4
shows the corresponding ICCFG. In ICCFGs, each method is represented by a
Control Flow Graph (CFG). Nodes represent single-entry, single-exit regions
of executable code. Edges represent possible execution branches between code
regions. Each CFG corresponding to a method has an entry node and an exit
node, both labeled with the name of the method. Classes are represented with
class nodes, labeled with the name of the class. Class nodes are connected to the
entry nodes of all the methods of the class with class edges. The hierarchy relation
among classes is represented with hierarchy edges between class nodes.

Each Method invocation is represented with a call node and a return node,
suitably connected to the entry node and the exit node of the invoked method
with inter-method edges. Each non-polymorphic call corresponds to a single
pair of inter-method edges. Each polymorphic call corresponds to a set of
pairs of inter-method edges, one for each method in the binding set, i.e., the
set containing all the possible dynamic bindings of the invoked method. In
both cases, inter-method edges must be properly paired in a path, i.e., when
exiting a method, we need to follow the edge corresponding to the considered
invocation. Paths comprising only properly paired inter-method edges are tra-



6.2. A DATA-FLOW TECHNIQUE FOR TESTING POLYMORPHISM 65

class A {
public void m1() {...};
public void m2() {...};

};

class B extends A {
public void ml() {...};

};

class C {
private A refToA;
private A a;
public C() {
refToA=null;
a=new A;

}
public void setA(A a) {
refToA=a;

}
public void m() {
if(refToA != null)

refToA.m1();
...
a.m2();
...
return;

}
};

Figure 6.3: A fragment of Java code



66 CHAPTER 6. POLYMORPHISM AND TESTING

A

m1() entry m2() entry

B

...

m1() exit

return refToA.m1()

m() exit

...

m2() exit

return m2()

...

m1() entry

...

m1() exit

C

C() entry setA(A a) entry m() entry

refToA=NULL

C() exit

refToA=a

setA(A a) exit

if(refToA!=NULL)

a=new A call refToA.m1()

T

...

F

call m2()

Legend:

code regions/call nodes/return nodes

entry/exit nodes

class nodes

control edges

inter-method edges

class edges

hierarchy edges

Figure 6.4: The ICCFG for the program of Figure 6.3



6.2. A DATA-FLOW TECHNIQUE FOR TESTING POLYMORPHISM 67

ditionally called valid paths. Hereafter, we refer only to valid paths.

The problem of statically identifying the binding set corresponds to the Un-
decidability of bindings problem defined in Section 6.1. In the general case, a su-
perset of the binding set can be statically constructed as follows: if A is the static
type of the object the method m1 is invoked upon, then we add to the approxi-
mated binding set A.m1 and all the methods overriding A.m1 in A’s subclasses.
In the example shown in Figure 6.3, the approximated binding set constructed
in this way for the call “refToA.m1()” would contain A.m1 and B.m1. This
simple algorithm can include many infeasible bindings. More accurate approx-
imations of the binding set can be constructed by applying several methods,
most of which corresponding to polynomial algorithms [50, 68, 45, 72, 46].
However, being the general problem of identifying the exact binding set un-
decidable, the algorithms proposed so far work for special cases and in gen-
eral can determine an approximation, not the exact set. As discussed later in
this section, the determination of a good approximation of the binding set can
greatly alleviate the problem of infeasible paths, but does not solve the prob-
lem addressed in this chapter, namely, the identification of a reasonable set
of test cases for exercising relevant combinations of bindings occurring along
execution paths.

A path in the ICCFG is a finite sequence of nodes (n � , n � , ..., n � ), with k �
2,

such that there is an edge from n � to n ���
� for i= 1, 2, ..., k-1. A path is loop-free

if all occurring nodes are distinct. A path is complete if its first node is the entry
node of a method, and its last node is the exit node of the same method.

We model statements containing more than one polymorphic invocation
with several nodes, to have at most one polymorphic invocation per node. For
example, the statement “if(p.m() < q.m())”, where both invocations are
polymorphic, is modeled with two nodes corresponding to statements “tmp-
var = p.m()” and “if(tmpvar < q.m())”, respectively. We assume that
code regions contain at most one polymorphic call and only mutually related
definitions and uses, i.e., if a variable � � belongs to the set use(n), and a variable
� � belongs to the set def(n), then � � contributes to the definition of � � .

6.2.2 Polymorphic Definitions and Uses

The data-flow testing technique we propose aims at identifying paths contain-
ing polymorphic invocations whose combination may lead to incorrect results.
As stated above, incorrect behaviors may depend on the specific bindings of
the invocations along the execution paths. Traditional def(n) and use(n) sets [73]
indicate which variables are defined and used by a given statement, respec-
tively. They do not distinguish among different bindings, and thus they do
not provide enough information for our goal. To meet the goal, we annotate
nodes of the ICCFG graph with the new sets def � (n) and use � (n), that provide
the required information. Sets def � (n) and use� (n) contain only variables de-
fined or used as a consequence of a polymorphic invocation. Variables in the
sets def � (n) and use� (n) are paired with the polymorphically invoked method



68 CHAPTER 6. POLYMORPHISM AND TESTING

responsible for their definition or use, respectively. The same variable often
occurs in several pairs of the same def � (n) or use � (n) set, since it can be de-
fined or used as a consequence of the polymorphic invocations of different
methods. These definitions of sets def � (n) and use � (n) allow for easily adapting
traditional data-flow test selection criteria to the case of programs containing
polymorphic invocations. The obtained criteria distinguish among paths that
differ for the polymorphically invoked methods responsible for the definitions
and uses of the same variable. Thus, they can identify paths containing differ-
ent polymorphic invocations whose combination may lead to incorrect results.
In this section, we introduce sets def � (n) and use � (n). Test selection criteria are
discussed in the next section.

Let us assume that each node n of the ICCFG graph is annotated with the
traditional sets def(n) and use(n). Sets def(n) contain all the variables which are
bound to a new value as a consequence of the execution of the code region
modeled with node n. Sets use(n) contain all the variables whose values are
used by the code region modeled with node n. A def-clear path with respect to
a variable v is a path (n � , n � , ..., n � ) such that v

�	 def(n) for n= n � , n � , ..., n ���
� .

Each node n of the ICCFG is associated with two additional sets def � (n) and
use� (n). Sets def � (n) contain pairs composed of a variable name and a method
name. Here we assume that names uniquely identify the corresponding ele-
ments, i.e., are disambiguated by prefixing the name of the class they occur in,
when needed. A pair � � 	 � � belongs to set def � (n) if variable v is either directly
or indirectly defined by virtual method m at node n. A variable v is directly de-
fined by a virtual method m at node n if the statement that defines variable v
contains an invocation that can be dynamically bound to method m. In this
case, the polymorphic invocation is directly responsible for the computation
of the new value of variable v. A variable v is indirectly defined by a virtual
method m at node n if a variable w that contributes to define variable v is di-
rectly or indirectly defined by virtual method m at a node p, and there exists a
def-clear path from node p to node n with respect to w. In this case there ex-
ists a chain of related definitions and uses from a polymorphic definition of a
variable � � to the definition of variable v. More specifically, the polymorphic
invocation of method � is directly responsible for the computation of the new
value of a variable � � ; such value may be used to define the value of a variable
� � , and so on; a path of uses and definitions leads to the definition of variable
w, whose value is used to compute the new value of variable v. Such a path,
that can be arbitrarily long, cannot contain additional definitions of one of the
involved variables, i.e., each sub-path from the definition of � � to its use to
define � ���

� is a def-clear path with respect to � � .

Similarly, sets use � (n) contain pairs composed of a variable name and a
method name. A pair � � 	 � � belongs to the set use � (n) if variable v is used
in either direct or indirect relation with a virtual method m. A variable v is used
in direct relation with the virtual method m at node n, if it is used in a state-
ment that contains an invocation that can be dynamically bound to method m.
In this case, the result of the computation depends on the combination of the
value of variable v and the results of the polymorphic invocation. A variable



6.2. A DATA-FLOW TECHNIQUE FOR TESTING POLYMORPHISM 69

v is used in indirect relation with the virtual method m at node n if it is used
in a statement that uses a variable w, variable w is directly or indirectly defined
by virtual method m at a node p, and there exists a def-clear path from node
p to node n with respect to w. In this case the result of the computation de-
pends on the combination of the value of variable v and the value of variable
w, whose definition depends on a polymorphic invocation. Intuitively, the re-
sult of the computation depends on the combination of the value of variable v
and the results of the polymorphic invocation through the chain of definitions
and uses that determine the indirect polymorphic definition of variable w. In
general, the concepts of indirect definitions and uses avoid loss of information
caused by the use of intermediate variables between different polymorphic in-
vocations.

Examples of variables directly and indirectly polymorphically defined or
used by virtual methods are given in Figure 6.5:

1. k=9;
2. y=0;
3. x=polRef.m()+k;
4. do {
5. z=y;
6. y=x*2;
7. } while(z < w);

Figure 6.5: Examples of direct and indirect polymorphic definitions and uses

direct polymorphic definition : Variable x is polymorphically directly defined
by all methods � � , � � � � � , that can be dynamically bound to the invoca-
tion polRef.m() at statement 3. Thus, pairs ��� 	 � � � � � � ��� 	 � � � belong to the
set def � (3) associated to statement 3.

indirect polymorphic definition : Variable y is polymorphically indirectly de-
fined at statement 6 by all methods � � , � � ��� � that can be dynamically
bound to the invocation polRef.m() at statement 3, since 
 is defined using
� at statement 6; � is polymorphically defined at statement 3; and there
exists a def-clear path with respect to � from statement 3 to statement 6
((3, 4, 5, 6)). Thus, pairs � 
 	 � � � � � � � 
 	 � � � belong to the set def � (6) associ-
ated to statement 6.
Variable � is polymorphically indirectly defined at statement 5 by all
methods � � , � � � � � that can be dynamically bound to the invocation
polRef.m() at statement 3, since � is defined using 
 at node 5; 
 is poly-
morphically defined at node 6; and there exists a def-clear path with re-
spect to 
 from node 6 to node 5 ((6, 7, 4, 5)). Thus, pairs � � 	 � � � � � � � � 	 � � �
belong to the set def � (5) associated to statement 5.

direct polymorphic use : Variable � is polymorphically directly used by all
methods � � , � � � � � that can be dynamically bound to the invocation



70 CHAPTER 6. POLYMORPHISM AND TESTING

polRef.m() at statement 3, since � is used in an expression comprising such
polymorphic call. Thus, pairs � � 	 � ��� � � � � � 	 � � � belong to the set def � (3)
associated to statement 3.

indirect polymorphic use : Variable � is polymorphically indirectly used at
statement 7 by all methods � � , � � � � � that can be dynamically bound to
the invocation polRef.m() at statement 3, since � is used in an expression
that also uses � ; � is polymorphically defined at statement 5; and there ex-
ists a def-clear path with respect to � from statement 5 to statement 7 ((5,
6, 7)). Thus, pairs � � 	 � � � � � � � � 	 � � � belong to the set use � (7) associated
to statement 7.

An algorithm for computing sets def � (n) and use � (n) is given in Fig-
ures 6.6, 6.7, and 6.8. Since we are mostly concerned with demonstrating the
essentials of the proposed technique, we only consider alias-free programs and
we focus on intramethod definition-use chains. The algorithm is applied to
a subgraph of the ICCFG corresponding to the control flow graph of a sin-
gle method. The algorithm assumes that the code regions associated to the
nodes of the ICCFG contain only definitions and uses mutually related, as
stated above. We are currently working on extending the algorithm to the
intermethod case by following an approach similar to the one presented by
Harrold and Soffa [43].

6.2.3 Complexity

In this section we provide a step by step evaluation of the worst-case time
complexity of the algorithm. The relevant dimensions for the time complexity
are:

� the number � of nodes of the graph, that is, � � �

� the number � of variables in the scope of the method

� the number � of virtual methods in the subset of classes considered

The presented algorithm is polynomial in the number of nodes, variables in
the scope of the method, and virtual methods. We provide some additional
considerations which can ease the following complexity analysis:

� Since the goal is to demonstrate the algorithm to be polynomial, we do
not consider a specific representation for the sets involved in the algo-
rithm. We just safely assume that intersection, union, and search are
polynomial operations.

� Sets def(n) can safely be considered as having cardinality 1, for the alias-
free case we are considering.



6.2. A DATA-FLOW TECHNIQUE FOR TESTING POLYMORPHISM 71

Input:���������
	��
�����
: a subgraph of the ICCFG, corresponding to the control flow graph

of a method annotated with code regions corresponding to each node��������� �����
: given a pair composed of a variable name and a method name, returns

the variable name.
Output:��	 ���!�"�

: set of #%$ � �&�'� , one for each node
�)(��

.*,+ 	��!�"�
: set of - � $ �&�.� , one for each node

�)(��
.��	 �0/1�!�"�

: set of #%$ � /1�&�'� built by considering only direct polymorphic definitions,
one for each node

�)(��
.*,+ 	 / �!�"�

: set of - � $ / �&�'� built by considering only direct polymorphic uses, one
for each node

�)(2�
.��	 �,3!�!�"�

: set of #%$ � 34�&�'� built by considering only non-polymorphic definitions,
one for each node

�)(��
.*,+ 	 3 �!�"�

: set of - � $ 3 �&�'� built by considering only non-polymorphic uses, one for
each node

�5(2�
.687 6:9%; �!�"�

: set of initialized <>=?< �!@ �&�'� , one for each node
�5(A�

.
1: for all nodes

�)(��
do

2: /* build the sets #%$ � �&�'� and - � $ �&�'� */
3: #%$ � �&�'�0�CB =�D = is a variable defined by a statement occurring in the code region

of node
�.E

4: - � $ �&�'�,�CB =�D = is a variable used by a statement occurring in the code region of
node

�FE
5: /* build the initial sets #%$ � / �&�'� and - � $ / �&�'� considering only direct definitions

and uses */
6: #%$ � / �&�'�G�HB%I = �KJ2L D = is a variable defined by a statement occurring in the code

region of node
�

and
J

is a virtual method which can be dynamically bound to
an invocation occurring in the same node

E
7: - � $ / �&�'�M�NB?I = �
J2L D = is a variable used by a statement occurring in the code region

of node
�

and
J

is a virtual method which can be dynamically bound to an
invocation occurring in the same node

E
8: end for
9: for all nodes

�)(��
do

10: /* build the initial sets <%=?< �O@ /��&�'� from the initial sets #%$ � /��&�'� , thus considering
only direct definitions */

11: #%$ � 3O�&�.�P�NB =�D = ( #%$ � �&�'�
QSR T��A( #%$ � / �&�.�U� �������U� �����V� = �
E
12: - � $ 3 �&�'�M�NB =�D = ( - � $ �&�'�
Q�R T���( - � $ /1�&�'�U� ���!���U� �����V� = �
E
13: /* build the sets #%$ � 3 �&�'� , which contain variables defined in a non polymorphic

way at node
�

*/
14: <>=?< �!@ / �&�'�M��W�XZY /�[]\4^K\K_O`ba�c B #%$ � / ��d1�
E
15: end for

Figure 6.6: INIT procedure.



72 CHAPTER 6. POLYMORPHISM AND TESTING

Input:�N� �����
	��
� � �
: a subgraph of the ICCFG, corresponding to the control flow graph

of a method annotated with code regions corresponding to each node.��	 � / �!�"�
: set of #%$ � / �&�'� built by considering only direct polymorphic definitions,

one for each node
� (2�

.��	 ���!�"�
: set of #%$ � �&�'� , one for each node

�5(2�
.*,+ 	��!�"�

: set of - � $ �&�'� , one for each node
�)(A�

.��	 �,3!�!�"�
: set of #%$ � 3O�&�'� built by considering only non-polymorphic definitions,

one for each node
� (2�

.6,7"609%; �!�"�
: set of initialized <%=?< �!@ �&�'� , one for each node

�)(2�
.� � $ � $ � ����� : a function defined on

�
with values in

���
that, given a node of graph�

, returns the set of its immediate predecessors.
Output:6,7"609%; �!�"�

: set of <%=?< �!@ �&�'� containing
J <�� information on available polymorphic

definitions at node
�

, one for each node
�5(A�

.
1: ����< �
	 $ # � �4� - $
2: while ����< ��	 $ # do
3: /* build the sets <>=?< �!@ /��&�'� by incrementally adding pairs

I = �
JAL such that either
one of the following conditions holds:
1)
I = �KJ2L belongs to the set <%=?< �O@ / ��d�� , being

d
an immediate predecessor of node�

, and variable = is not defined by any statement occurring in the code region of
node

d
2) variable = is defined in a non-polymorphic way by a statement occurring in
the code region of node

�
which uses variable =�
 , and the pair

I =�
 �
JAL belongs to<>=?< �!@ / ��d1� , of an immediate predecessor of node
�

.
Terminate when the last iteration does not modify any of the sets. */

4: ����< �
	 $ # � � < @ � $
5: for all nodes

�5(A�
do

6: � @ # � <%=?< �!@ / �&�'�
7:

� $ � 
 � B?I = �
J2L D T>d (�� � $ � $ � �&�'�U�
I = �4JAL ( <%=?< �!@ / ��d���Q = R( #%$ � ��d1�
�
E
8:

� $ ��� � B%I = �
JAL D = ( #%$ � 3 �&�'�0Q T =�
 ( - � $ �&�'� Q T1d ( � � $ � $ � �&�'�U�
I =�
 �
J2L (<%=?< �!@ / ��d1�
�
E
9: <%=?< �O@ / �&�'� � <%=?< �!@ / �&�'��� � $ � 
 � � $ � �

10: if <%=?< �!@ /1�&�.����� � @ # then
11: ���1< �
	 $ # � �K� - $
12: end if
13: end for
14: end while

Figure 6.7: AVAILP procedure.



6.2. A DATA-FLOW TECHNIQUE FOR TESTING POLYMORPHISM 73

Input:���������
	��
� � �
: a subgraph of the ICCFG, corresponding to the control flow graph

of a method annotated with code regions corresponding to each node.��	 �0/1�!�"�
: set of #%$ � /1�&�'� built by considering only direct polymorphic definitions,

one for each node
�)(��

.*,+ 	 / �!�"�
: set of - � $ / �&�'� built by considering only direct polymorphic uses, one

for each node
�)(2�

.��	 �,3!�!�"�
: set of #%$ � 34�&�'� built by considering only non-polymorphic definitions,

one for each node
�)(��

.*,+ 	 3 �!�"�
: set of - � $ 3 �&�'� built by considering only non-polymorphic uses, one for

each node
�5(2�

.687 6:9%; �!�"�
: set of initialized <>=?< �!@ �&�'� , one for each node

�5(A�
.

Output:��	 � / �!�"�
: set of #%$ � / �&�'� , one for each node

�5(A�
.*,+ 	 / �!�"�

: set of - � $ / �&�'� , one for each node
�)(A�

.
1: for all nodes

�)(��
do

2: /* build the complete sets #%$ � / �&�.� starting from sets <%=?< �!@ / �&�.� , thus considering
also indirect polymorphic definitions; a pair

I = �
J2L is added to the set #%$ � / �&�'� if
variable = is defined in a non-polymorphic way by a statement occurring in the
code region of node

�
, and the pair

I = �
JAL belongs to <%=?< �!@ / �&�.� */
3: #%$ � / �&�'�M� #%$ � / �&�'����B%I = �
J2L D = ( #%$ � 3 �&�'�'Q I = �
J2L ( <>=?< �!@ / �&�'�
E
4: end for
5: for all nodes

�)(��
do

6: /* build the complete sets - � $ / �&�'� starting from sets <%=?< �O@ / �&�'� , thus considering
also indirect polymorphic uses; a pair

I = �
JAL is added to the set #%$ � / �&�'� if vari-
able = is used in a non-polymorphic way by a statement occurring in the code
region of node

�
in conjunction with the use of a variable = 
 , and the pair

I =�
 �
JAL
belongs to <%=?< �O@ / �&�'� */

7: - � $ /1�&�'�H� - � $ /1�&�.� � B%I = �
JAL D = ( - � $ �&�'�
Q R T%J


�
I = �KJ 


L ( - � $ /1�&�'�
��QT = 
 �
I = 
 �
JALM( <%=?< �O@ / �&�'��Q = 
 ( - � $ �&�'�
�
E
8: end for

Figure 6.8: EVALDUP procedure.



74 CHAPTER 6. POLYMORPHISM AND TESTING

� The def� (n) sets built by considering only direct polymorphic definitions
contain at most one single element, by construction of the ICCFG (see
Section 6.2.1).

� The upper bound for the cardinality of use(n) sets is the number of vari-
ables in the scope of the method, that is, � (in the worst case, a single
statement can fetch the value of all variables in its scope).

� Sets avail � (n) contain pairs representing possibly available polymorphic
definitions, either direct or indirect. The worst case is that of all possible
combinations variable–polymorphic call (i.e., � � � ) being available at a given
point.

� The preset of a given node � has a worst-case cardinality � � � (when all
the other nodes in the graph are immediate predecessors � ).

We analyze the three procedures composing the algorithm in isolation, and
evaluate their time complexities. The complexity of the whole algorithm is
then given by the highest complexity among these.

INIT contains two loops, which are executed once for each node and perform
only operations with at worst polynomial time complexity. The resulting
complexity is thus polynomial.

AVAILP is the core of the algorithm. It iteratively computes a fixed-point so-
lution for the sets avail � (n), by propagating local information about poly-
morphic definitions. In the worst case, the �

� � ��� loop
� � � 	 is executed

as many times as the maximum number of possible elements in avail � (n),
that is, � � � . Each iteration of the loop requires the visit of all nodes (step
5). For every visit, two sets are built ( � ��� � and � �
� � ) and their union is
then performed. We analyze the construction of the two sets separately.
� ��� � : each direct predecessor of the current node is visited (at worst ( � � � )
visits). For each node � in the preset, all pairs in the corresponding
avail � (k) set are selected as long as their first element is not in def(k) (car-
dinality 1). This results in ��� � � � � � � � � � searches on def(k), and thus the
construction of � ��� � is polynomial in the dimensions of the problem.
� ��� � : for each element of the use(n) set (where � is the current node),
each immediate predecessor of � is visited, and a search operation is per-
formed on the correspondent avail � (k) set. As for the construction of � ��� � ,
the whole step is performed in polynomial time.
As a consequence, the overall time complexity of � � ����� � is polyno-
mial.

EVALDUP , as well as INIT, is composed of two loops performing operations
with polynomial time complexity. Its time complexity is thus polynomial.

The worst case time complexity of the algorithm is polynomial. It is worth
noting that, as far as a precise evaluation of the time complexity is concerned,



6.3. PATH SELECTION CRITERIA 75

the sets we are using for this specific algorithm can be represented by means of
bit-vectors

� � � ��� , which are very efficient. In addition, we made pessimistic
assumptions: we expect the number of nodes in the preset, the number of vari-
ables in the scope, and the number of virtual methods to have an upper bound
in the average case.

6.3 Path Selection Criteria

The traditional concepts of du-path and du-set[73] can be suitably extended to
the polymorphic case as follows. A du-path � with respect to a variable v is a
path (n � , n � , ..., n � ) such that � � 	 � � � 	 def� (n � ), � � 	 � � � 	 use � (n � ) (for any vir-
tual methods � � and � � belonging to different classes), and (n � , n � , ..., n � ) is
a def-clear path with respect to v. Requiring � � and � � to belong to different
classes allows for discarding all the pairs of definitions and uses that do not
exercise real polymorphic interactions. A polymorphic du-set, du � (v,n), for a
variable v and a node n is the set of nodes i such that there exists a du-path from
node n to node i. Starting from the data-flow information associated with the
ICCFG, it is possible to define a family of test adequacy criteria for exercising
polymorphic interactions among classes by extending traditional data-flow se-
lection criteria [34]. The extensions consider the differences between the tradi-
tional sets def(n) and use(n) and the newly defined sets def � (n) and use � (n). Tra-
ditional data-flow selection criteria only require given nodes to be traversed
according to given sequences of definitions and uses. New criteria take into
account also the dynamic type of the polymorphic references occurring in the
paths, i.e., they indicate which dynamic bindings must be exercised. To formal-
ize this principle, we introduce the concepts of polymorphic coverage (p-coverage)
and coverage of polymorphic uses (u-coverage). Given a node � , a pair � � 	 � � in
def � (n) (resp. in use � (n)), and a path � that includes node � , an execution of
path � p-covers the pair � � 	 � � for node � if the definition (resp. the use) of
variable � at node � depends (either directly or indirectly) on the polymorphic
invocation of method � in the considered execution of path � . Informally, the
execution of path � p-covers the pair � � 	 � � at node � if the virtual invocation
that defines (resp. uses) variable v is dynamically bound to method m while
executing path � .
Given a node � , a pair � � 	 � � in use � (n), and a set � of paths that include node
� , the set � u-covers � for � if for each pair � � 	 � � � 	 use � (n), there exists a path
� 	 � whose execution p-covers � � 	 � � � for � . Informally, a set of paths � u-
covers variable � for node � if the executions of the paths in � p-cover all pairs
containing � in use � (n). In the following we also use the expression “a path
p-covers a pair � � 	 � � ” to indicate that an execution of the path p-covers such
pair. Extended criteria require not only the traversal of specific paths, but also
that the executions of such paths p-cover specific pairs.

Most traditional data-flow test selection criteria can be extended to the
polymorphic case. To illustrate the technique, we present both “pure” poly-
morphic criteria (i.e., all-defs, all-uses, and all-du-paths criteria extended for def �



76 CHAPTER 6. POLYMORPHISM AND TESTING

and use� sets) and “hybrid” ones (i.e., criteria based on the use of both tradi-
tional and new sets).

Given an ICCFG and a method m, let
�

be a set of test cases corresponding
to executions of the set of complete paths P for the control flow graph � of a
method:

T satisfies the all-defs � criterion if for every node n belonging to � and every
pair � � 	 � � 	 def� (n), at least one path in P p-covers � � 	 � � for � and the set �
u-covers � for at least one node ���
	 du � (v,n).
Intuitively, for each polymorphic definition of each variable, the all-defs � crite-
rion exercises all possible bindings for at least one polymorphic use. It natu-
rally extends the traditional all-defs criterion by requiring the execution of all
bindings for the chosen use.

T satisfies the all-uses � criterion if for every node n belonging to � and every
pair � � 	 � � 	 def� (n), at least one path in P p-covers � � 	 � � for � and the set �
u-covers � for all nodes � ��	 du� (v,n).
Intuitively, the all-uses � criterion subsumes the all-defs � criterion by extending
the coverage to all polymorphic uses of each polymorphic definition, exactly
like the traditional all-uses criterion subsumes the all-defs criterion.

T satisfies the all-du-paths � criterion if for every node n belonging to � , for
every pair � � 	 � � 	 def � (n), and for every node ����	 ��� � � � 	 �
� , at least one path
in P p-covers � � 	 � � for � and � u-covers � for � � along all possible def-clear
paths with respect to � .
Intuitively, the all-du-paths � criterion subsumes the all-uses � criterion, by requir-
ing the selection of all def-clear paths from each polymorphic definition to each
corresponding polymorphic use for all possible bindings.

Any of the defined criteria applied to the simple example of the fragment
of code shown in Figure 6.1, would require the two possible binding of the
virtual method height to be exercised in combination. Thus, for this simple
example, any of the proposed methods would reveal the failure of the pro-
gram, that might remain uncaught with other approaches that focus on single
polymorphic calls.

The criteria proposed here add a new dimension, namely the dynamic bind-
ings, to the traditional dimensions of definitions and uses. Ignoring the dif-
ferent bindings, the new criteria do not differ from the corresponding tradi-
tional criteria projected on the variables involved in polymorphic definitions
and uses. Integrated approaches can be straightforwardly defined by applying
a traditional criterion to all variables, and extending the coverage of variables
involved in polymorphic definitions and uses referring to the corresponding
new criterion.

“Hybrid” criteria can also be straightforwardly defined by introducing new
criteria that refer to a mixture of traditional and polymorphic def and use sets.
Here we present a set of meaningful hybrid criteria by suitably combining such
different sets. Every traditional criterion leads to the identification of two dif-
ferent hybrid criteria, depending on whether we consider polymorphic defini-



6.3. PATH SELECTION CRITERIA 77

tions and traditional uses or vice-versa. We name each criterion by prefixing
“h” to the name of the corresponding traditional criterion and by adding “p”
to the name of the criterion considering polymorphic definitions.

T satisfies the h-all-defs � criterion if for every node n belonging to � and
every pair � � 	 � � 	 def � (n), at least one path in P p-covers � � 	 � � for � and in-
cludes a def-clear path with respect to � from � to at least one node in du(v,n).
Intuitively, the h-all-defs � criterion exercises at least one use of each polymor-
phic definition of each variable. It naturally extends the traditional all-defs to
the case of polymorphic definitions and without considering the presence of
polymorphic uses.

T satisfies the h-all-defs criterion if for every node n belonging to � and
every variable � in def(n), at least one path in P includes � and the set � u-
covers � for at least one node � � 	 du(v,n).
Intuitively, for each definition of each variable, the h-all-defs criterion exercises
all possible bindings for at least one polymorphic use. It naturally extends the
traditional all-defs criterion by requiring to exercise all bindings for the chosen
use.

T satisfies the h-all-uses � criterion if for every node n belonging to � , ev-
ery pair � � 	 � ��	 def � (n), and every node � � in du(v,n), at least one path in P
p-covers � � 	 � � for � and includes a def-clear path with respect to � from � to
� � .
Intuitively, the h-all-uses � criterion subsumes the h-all-defs � criterion by extend-
ing the coverage to all uses of each polymorphic definition, exactly like the
traditional all-uses criterion subsumes the all-defs criterion.

T satisfies the h-all-uses criterion if for every node n belonging to � and ev-
ery variable � 	 def(n), at least one path in P includes � and the set � u-covers
� for all nodes ���
	 du(v,n).
Intuitively, the all-uses � criterion subsumes the h-all-defs criterion by extending
the coverage to all polymorphic uses of each definition, exactly like the tradi-
tional all-uses criterion subsumes the all-defs criterion.

T satisfies the h-all-du-paths � criterion if for every node n belonging to � ,
for every pair � � 	 � ��	 def � (n), and for every node ��� 	 � � � � 	 �
� , at least one
path in P p-covers � � 	 � � for � and includes all def-clear paths with respect to
� from � to � � .
Intuitively, the h-all-du-paths � criterion subsumes the h-all-uses � criterion, by
requiring the selection of all def-clear paths from each polymorphic definition
to each corresponding use for all possible bindings.

T satisfies the h-all-du-paths criterion if for every node n belonging to � , for
every variable � 	 def(n), and for every node � � 	 ��� � � 	 �
� , at least one path
in P includes � and � u-covers � for � � along all possible def-clear paths with
respect to � .
Intuitively, the h-all-du-paths criterion subsumes the h-all-uses criterion, by re-
quiring the selection of all def-clear paths from each definition to each corre-
sponding polymorphic use for all possible bindings.



78 CHAPTER 6. POLYMORPHISM AND TESTING

6.4 The Feasibility Problem

The impossibility of determining the feasibility of execution paths and dy-
namic bindings causes problems similar to the ones experienced in traditional
approaches, namely, the impossibility of determining the exact coverage. In-
feasible execution paths affect the new criteria as the traditional criteria, since
polymorphism does not modify the set of feasible paths. Infeasible dynamic
bindings create new problems, that depend on the approximation of the com-
puted binding sets. The simple algorithm sketched in Section 6.2.1 can identify
many infeasible bindings that can greatly reduce the effectiveness of the ap-
proach. However, a careful choice of an appropriate methods for computing
the binding set, e.g., one of the methods cited in Section 6.2.1, can greatly re-
duce the problem. As in the traditional case, the problem of infeasible paths
depends on the chosen criterion: we did not notice any notable change with
respect to the traditional case when using simple criteria, such as the all-def �
criterion; the infeasibility problem can become heavier with more sophisticated
criteria, like the all-du-paths � .

The current absence of tools for automatically performing the presented
kind of analysis, limits the experiments conducted so far to small size pro-
grams. A tool is being built to extend the experimental work (see Chapter 7).
The experiments conducted so far on small size programs did not reveal a no-
table increase of infeasible paths due to bad approximations of the binding
sets, computed with an appropriate method. In the next section, an example of
application of the data-flow selection technique on a set of classes is provided.

6.5 Example

In this section we present the application of the proposed approach to an
example: a set of four Java classes: Polygon, Circle, Square, and Fig-
ure. Figures 6.9 and 6.10 show the skeleton of the Java code of the example.
The complete code of the example is provided in Appendix A. The statements
composing the method addPolygon have been numbered and edited to have
at most one polymorphic call per line of code, thus simplifying the correspon-
dence between the code itself and the partial ICCFG shown in Figure 6.12.
Class Figure is a container of objects of type Polygon, hierarchically spe-
cialized to Circle and Square. In the example, class Figure can contain up
to two polygons. The limitation on the number of contained polygons allows
for a readable representation of results. Managing a higher number of objects
would make it difficult to represents path and bindings in a suitable way, while
it would not increase the meaningfulness of the example. We are interested in
computing the area of objects of type Figure starting from the areas of the con-
tained objects. Contained objects of type Polygon are provided with a sign,
determining whether their area has to be computed as positive or negative.

Figures can be built by adding Polygons with the following rules: a poly-



6.5. EXAMPLE 79

class Figure {
...
public boolean addPolygon(Polygon p) {

1 if(poly1==null) {
2 poly1=p;
3 return true; }
4 else if(poly2 != null) return false;
5 else {
6 int pminX=p.minX();
7 int pmaxX=p.maxX();
8 int pminY=p.minY();
9 int pmaxY=p.maxY();
10 if(pminX < poly1.minX()) {
11 if(pmaxX > poly1.maxX()) {
12 if(pminY < poly1.minY()) {
13 if(pmaxY > poly1.maxY()) {
14 poly1.setSign(1);
15 poly2=p;
16 return true; }}}}
17 if(pminX > poly1.minX()) {
18 if(pmaxX < poly1.maxX()) {
19 if(pminY > poly1.minY()) {
20 if(pmaxY < poly1.maxY()) {
21 p.setSign(-1);
22 poly2=p;
23 return true; }}}}
24 if(!(pminX>poly1.maxX())) {
25 if(!(pmaxX<poly1.minX())) {
26 if(!(pminY>poly1.maxY())) {
27 if(!(pmaxY<poly1.minY())) {
28 return false; }}}}
29 poly2=p;
30 return true; }

}
public double area() {

double a=0;
if(poly2 != null) a+= poly2.area();
if(poly1 != null) a+= poly1.area();
return a;

}
}

Figure 6.9: Method <%#?# � � @ � 	 � � of class
� � 	 - � $



80 CHAPTER 6. POLYMORPHISM AND TESTING

abstract class Polygon {
...
protected abstract double unsignedArea();
public abstract int minX();
public abstract int minY();
public abstract int maxX();
public abstract int maxY();
...
final public int getX() {return x;}
final public int getY() {return y;}
final public void setX(int xx) {x=xx;}
final public void setY(int yy) {y=yy;}
final public void setSign(int s) {...}
final public int getSign() {...}
final public double area() {...}

}

class Circle extends Polygon {
...
protected double unsignedArea()

{return (3.14*radius*radius);}
public int minX() {return (getX()-radius/2);}
public int maxX() {return (getX()+radius/2);}
public int minY() {return (getY()-radius/2);}
public int maxY() {return (getY()+radius/2);}
...

}

class Square extends Polygon {
...
protected double unsignedArea()

{return (edge*edge);}
public int minX() {return (getX()-edge/2);}
public int minY() {return (getY()-edge/2);}
public int maxX() {return (getX()+edge/2);}
public int maxY() {return (getY()+edge/2);}
...

}

Figure 6.10: Classes
� � @ � 	 � � , � ��� � @ $ , and

+�� - < � $



6.5. EXAMPLE 81

gon cannot intersect previously inserted polygons; if the inserted polygon is
completely contained in a previously inserted polygon, then its sign becomes
negative; if the inserted polygon completely contains a previously inserted
polygon, then the sign of the contained polygon becomes negative. Classes
Square and Circle are implemented as subclasses of Polygon. Class Poly-
gon is an abstract class which defines the concrete methods getX, getY, setX,
setY, setSign, getSign, and area, which are inherited unchanged by both
classes Square and Circle. Class Polygon declares also the abstract meth-
ods minX, minY, maxX, maxY, and unsignedArea, which are defined in the
two subclasses.

Figure 6.11: An example in which the contain relation would be computed
incorrectly

In the example, method addPolygon checks if a newly inserted polygon is
enclosed in an existing one by comparing their cartesian coordinates, that are
computed by the dynamically bound methods minX, minY, maxX, and maxY.
Due to the way coordinates are computed, method addPolygon would er-
roneously consider cases like the one shown in Figure 6.11. This fault can be
revealed only by suitable combining dynamic bindings of polymorphic invoca-
tions of methods minX, minY, maxX, and maxY in method addPolygon. Test-
ing techniques dealing with single calls would not reveal such faults, since the
fault is not due to a single invocation, but to the combined use of different dy-
namic bindings. In this section we show how the all-du-paths � criterion used
for integration testing of the four classes would select a sequence of dynamic
bindings that could reveal the fault.

For this example, the definition of an integration order is a trivial task. By
applying the integration strategy presented in Section 5.4, we identify the fol-
lowing possible order of integration: Polygon � Square � Circle, � Figure. The
faulty class Figure is integrated last. In the following, we show the application
of the technique to method addPolygon, that contains the fault.

The subset of the ICCFG for method addPolygon of class Figure is
shown in Figure 6.12. Nodes containing relevant polymorphic invocations are
highlighted with double circles; nodes call, return, and relative inter-method
edges are omitted. Tables 6.1 and 6.2 show the sets def � (n) and use � (n), respec-
tively, for all relevant nodes of the ICCFG.



82 CHAPTER 6. POLYMORPHISM AND TESTING

Class Figure

6

7

8

9

10

11

true

17

false 12

true

false

13

true

false

false

14

true

18

true

24

false 19

true

false

20

true

false

false

21

true

25

true

29

false26

true

false

27

true

false

false

28

true

Figure

Figure::addPolygon(Polygon p) entry

1

2

true

4

false

3

Figure::addPolygon(Polygon p) exit

false

5

true

15

16

22

23

30

Figure 6.12: The subset of the ICCFG for the method <%#?# � � @ � 	 � �



6.5. EXAMPLE 83

Table 6.3 pairs polymorphic definitions with related polymorphic uses
on def-clear paths. Each line indicates a polymorphic definition as a pair
� � ��� � � � ��� 	 � ��� � �	� � , the corresponding use, and the nodes of the ICCFG they
are associated with.

Node def
/
(n)

6
�

pminX,Circle.minX
�

,
�

pminX,Square.minX
�

7
�

pmaxX,Circle.maxX
�

,
�

pmaxX,Square.maxX
�

8
�

pminY,Circle.minY
�

,
�

pminY,Square.minY
�

9
�

pmaxY,Circle.maxY
�

,
�

pmaxY,Square.maxY
�

Table 6.1: Set def
/
(n) for the example

The all-du-paths � criterion requires at least a test case for each path covering
all pairs shown in Table 6.3. Table 6.4 shows a possible set of (sub)paths cov-
ering all such pairs, and indicates the pairs covered by each (sub)path. Any
set of test cases, that exercise a set of complete paths including the sub-paths
shown in Table 6.3 satisfy the all-du-paths � criterion. In Table 6.4, when neces-
sary, bindings for a node n belonging to a path are shown with the following
syntax: “ref � Circle” (resp., Square) states that the reference ref must be
bound, in node n, to an object of type Circle (resp., Square), while any indi-
cates that there are no constraints on the bindings for node n.

Node use
/
(n)

10
�

pminX,Circle.minX
�

,
�

pminX,Square.minX
�

11
�

pmaxX,Circle.maxX
�

,
�

pmaxX,Square.maxX
�

12
�

pminY,Circle.minY
�

,
�

pminY,Square.minY
�

13
�

pmaxY,Circle.maxY
�

,
�

pmaxY,Square.maxY
�

17
�

pminX,Circle.minX
�

,
�

pminX,Square.minX
�

18
�

pmaxX,Circle.maxX
�

,
�

pmaxX,Square.maxX
�

19
�

pminY,Circle.minY
�

,
�

pminY,Square.minY
�

20
�

pmaxY,Circle.maxY
�

,
�

pmaxY,Square.maxY
�

24
�

pminX,Circle.maxX
�

,
�

pminX,Square.maxX
�

25
�

pmaxX,Circle.minX
�

,
�

pmaxX,Square.minX
�

26
�

pminY,Circle.maxY
�

,
�

pminY,Square.maxY
�

27
�

pmaxY,Circle.minY
�

,
�

pmaxY,Square.minY
�

Table 6.2: Set use
/
(n) for the example

The paths selected by the all-du-paths � criterion represent all combinations
of possible dynamic bindings, including the ones leading to the described fail-
ure, i.e., paths covering the polymorphic definitions-use pairs of lines 9, 21, 33,
45 of Table 6.3. Tests selected according to the boundary values criteria for the
given paths and bindings would reveal the fault.



84 CHAPTER 6. POLYMORPHISM AND TESTING

def use
1

�
pminX, Circle.minX

�
(6)

�
pminX, Square.minX

�
(10)

2
�

pminX, Circle.minX
�

(6)
�

pminX, Square.minX
�

(17)
3

�
pminX, Circle.minX

�
(6)

�
pminX, Square.maxX

�
(24)

4
�

pminX, Square.minX
�

(6)
�

pminX, Circle.minX
�

(10)
5

�
pminX, Square.minX

�
(6)

�
pminX, Circle.minX

�
(17)

6
�

pminX, Square.minX
�

(6)
�

pminX, Circle.maxX
�

(24)
7

�
pmaxX, Circle.maxX

�
(7)

�
pminX, Square.maxX

�
(11)

8
�

pmaxX, Circle.maxX
�

(7)
�

pminX, Square.maxX
�

(18)
9

�
pmaxX, Circle.maxX

�
(7)

�
pminX, Square.minX

�
(25)

10
�

pmaxX, Square.maxX
�

(7)
�

pminX, Circle.maxX
�

(11)
11

�
pmaxX, Square.maxX

�
(7)

�
pminX, Circle.maxX

�
(18)

12
�

pmaxX, Square.maxX
�

(7)
�

pminX, Circle.minX
�

(25)
13

�
pminY, Circle.minY

�
(8)

�
pminY, Square.minY

�
(12)

14
�

pminY, Circle.minY
�

(8)
�

pminY, Square.minY
�

(19)
15

�
pminY, Circle.minY

�
(8)

�
pminY, Square.maxY

�
(26)

16
�

pminY, Square.minY
�

(8)
�

pminY, Circle.minY
�

(12)
17

�
pminY, Square.minY

�
(8)

�
pminY, Circle.minY

�
(19)

18
�

pminY, Square.minY
�

(8)
�

pminY, Circle.maxY
�

(26)
19

�
pmaxY, Circle.maxY

�
(9)

�
pminY, Square.maxY

�
(13)

20
�

pmaxY, Circle.maxY
�

(9)
�

pminY, Square.maxY
�

(20)
21

�
pmaxY, Circle.maxY

�
(9)

�
pminY, Square.minY

�
(27)

22
�

pmaxY, Square.maxY
�

(9)
�

pminY, Circle.maxY
�

(13)
23

�
pmaxY, Square.maxY

�
(9)

�
pminY, Circle.maxY

�
(20)

24
�

pmaxY, Square.maxY
�

(9)
�

pminY, Circle.minY
�

(27)

Table 6.3: Polymorphic definition-use pairs for the example

Path du pairs

6(p � Circle), 7(p � Circle), 8(p � Circle), 9(p � Circle), 10(poly1 � Square),
11(poly1 � Square), 12(poly1 � Square), 13(poly1 � Square), 14, 15, 16

1, 7, 13, 19

6(p � Square), 7(p � Square), 8(p � Square), 9(p � Square), 10(poly1 � Circle),
11(poly1 � Circle), 12(poly1 � Circle), 13(poly1 � Circle), 14, 15, 16

4, 10, 16, 22

6(p � Circle), 7(p � Circle), 8(p � Circle), 9(p � Circle), 10(any),
17(poly1 � Square), 18(poly1 � Square), 19(poly1 � Square), 20(poly1 � Square),
21, 22, 23

2, 8, 14, 20

6(p � Square), 7(p � Square), 8(p � Square), 9(p � Square), 10(any),
17(poly1 � Circle), 18(poly1 � Circle), 19(poly1 � Circle), 20(poly1 � Circle),
21, 22, 23

5, 11, 17, 23

6(p � Circle), 7(p � Circle), 8(p � Circle), 9(p � Circle), 10(any), 17(any),
24(poly1 � Square), 25(poly1 � Square), 26(poly1 � Square), 27(poly1 � Square),
28

3, 9, 15, 21

6(p � Square), 7(p � Square), 8(p � Square), 9(p � Square), 10(any), 17(any),
24(poly1 � Circle), 25(poly1 � Circle), 26(poly1 � Circle), 27(poly1 � Circle), 28

6, 12, 18, 24

Table 6.4: A possible set of paths satisfying the all-du-paths
/

criterion



Chapter 7

A Prototype Environment

The approach presented in Chapter 6 is being automated to be extensively
studied. The construction of the ICCFG (see Section 6.2.1) requires a straight-
forward but time consuming analysis of the code. The annotation of the IC-
CFG, the identification of critical paths, the instrumentation of the code, and
the evaluation of the achieved coverage require the computation and the man-
agement of a big amount of data, and are thus more suitable for automated
processing than for human beings.

In the rest of this chapter we describe the high-level design of a prototype
environment which allows for validating the technique presented in the previ-
ous chapter. We also provide an example of application of the technique to a
case study within the environment.

The chapter is organized as follows. In Section 7.1 we briefly show the sys-
tem requirements. The design of the system and its architecture are presented
in Section 7.2 and in Section 7.3, respectively. In Section 7.4 we illustrate the
modules already implemented.

7.1 Requirements

Our goal is to implement an integrated set of modules which allow users for
applying the proposed technique. To accomplish this task, the environment
must provide functionalities for analyzing the code, extracting an abstract rep-
resentation of it, annotate the abstract representation with sets containing the
data-flow related information illustrated in the previous chapter, compute du
and du � paths, instrument the code, and incrementally evaluate the polymor-
phic coverage of the instrumented code with respect to one or more tests.

The input to the prototype is the Java-like code under test, the selected cov-
erage criteria and a set of test data. Its output is the coverage report, which
shows in a syntax highlighting fashion the degree of coverage achieved with

85



86 CHAPTER 7. A PROTOTYPE ENVIRONMENT

respect to the provided test data. In the case of further iterations of the pro-
cess, the degree of coverage must be evaluated incrementally, i.e., by taking
into account the level of coverage achieved by previous test runs.

7.2 Design

In this section we provide the high-level design of the system in terms of struc-
tured design [26]. The functional high level design of the system is represented
in Figure 7.1 by means of its context diagram, which clearly identifies the
boundaries of the system and its interactions with the outside world through
such boundaries, with respect to the data exchange. As shown in the diagram,
we identify one external entities, namely, the tester.

Tester

Prototypal
Environment

Criti
cal pths

and bindings

Cover
age r

eport

Test d
ata

Java co
de

Sele
ctio

n cr
iter

ion

Figure 7.1: Context diagram

According to requirements, we define five data types:

Java code : a program compliant with the Java-like language illustrated in Sec-
tion 2.8.

Selection criteria : the test selection criteria chosen by the tester.

Critical paths and bindings : a set of paths and relative bindings which are
critical with respect to polymorphism related issues.

test data : the data that the tester intend to use for exercising the program
under test.

coverage report : according to requirements, it provides information to the
user about the polymorphic coverage achieved by the execution of the
program with respect to the provided data.



7.2. DESIGN 87

To refine the system we firstly identify the two main functionalities it pro-
vides:

Analysis : the activities of analyzing the source code, extracting polymor-
phism and data-flow related information, and instrumenting the code
according to such information and to the criteria chosen by the user.

Test evaluation : the system must also be able, after the instrumented code has
been compiled and executed, to evaluate the achieved level of coverage;
in addition, the coverage evaluation must be performed incrementally,
and thus it must be able to store and retrieve historical coverage informa-
tion.

Tester

AIS

Raw
Coverage
Data

TEES

and bindings

Coverage report

Test data

Repository

Selection criterion
Java code

Criti
cal paths

In
st

ru
m

en
te

d 
co

de

Figure 7.2: Data flow diagram

According to the above distinction, we decompose the system in two dif-
ferent subsystems. The analysis and instrumentation subsystem (hereafter AIS) is
in charge of the analysis activities, while the test execution and evaluation subsys-
tem (hereafter TEES) takes care of test evaluation activities. Figure 7.2 shows
the data flow diagram representing these two subsystems. The diagram shows
how the data flows have been divided between the two process representing
the subsystems.

The Java code is provided by the tester to the AIS subsystem, which in turn
builds the set of critical paths and bindings and supplies it to the tester.



88 CHAPTER 7. A PROTOTYPE ENVIRONMENT

The set of critical paths and bindings is produced by the AIS by means of
analysis of the code and is then provided to the tester. According to this set, the
tester can choose one (or more) test selection criterion, among the ones defined
in Section 6.3, and provide it to the AIS. The tester could take a decision also
in the absence of such information, but the number of paths and bindings can
provide useful hints on the cost of the application of a given criterion.

After the tester defines a set of test data for the code under test, the TEES
subsystem can compile the code, execute it, and collect coverage information.
The coverage related information is produced by the instrumented program
during its execution in raw format (raw coverage data), and needs to be elab-
orated by the system to be presented to the user in a suitable way (coverage
report). Before being elaborated, the raw information is stored in a repository.

Instrumenting
and compiling

Waiting for test run

Evaluating coverage

Initial state

Waiting for the code

Analyzing

Waiting for criteria

Final state

Evaluating coverage

source code inserted

beginning analysis

critical paths and
bindings evaluated

criterion/a chosen

beginning instrumentation

beginning coverage evaluation

execution finished

test data inserted

test data inserted

exit request

Figure 7.3: State transition diagram for the prototype

Analyzing the received coverage report, the user can decide whether the per-
formed test can be considered adequate or not. In this second case, the last
steps can be reiterated by providing the TEES with additional test data. The
only difference in the behavior of the system during additional iterations is
that the evaluation of the coverage is performed incrementally, by taking into
account historical raw coverage data, retrieved from the repository.



7.3. ARCHITECTURE 89

The above high-level description of the dynamical evolution of the system
is given in Figure 7.3 by means of a state transition diagram.

7.3 Architecture

In this section we present the architecture of the AIS and TEES subsystems.

7.3.1 AIS Subsystem

Figure 7.4 shows the modules composing the AIS subsystem.

Java
Code

ICCFG

Critical
Paths
and
Bindings

Code
Instr.

ICCFG
annot.

Tester

Selection
Criterion

Java Parser

ICCFG Analyzer

Instrumenter

Analysis and
Instrumentation
Subsystem

Figure 7.4: Module architecture for the first subsystem

In the following, each module composing the environment is considered in
isolation and an explanation of its behavior is provided:

Java parser
Input: a set of Java-like classes
Output: an ICCFG
Description: This module performs a parsing of the input code and produce the
corresponding ICCFG.



90 CHAPTER 7. A PROTOTYPE ENVIRONMENT

ICCFG analyzer Input: an ICCFG
Output: a set of critical paths and bindings; an annotated ICCFG
Description: This module analyzes the ICCFG provided as input, with the pur-
poses of evaluating the sets containing data-flow and polymorphism related
information of relevance; then, it annotates the ICCFG with such information;
finally, it identifies a set of critical paths and relative bindings (i.e., the set of
du � paths).

Instrumenter Input: a set of Java-like classes; the corresponding annotated IC-
CFG; one or more selection criteria
Output: instrumented code
Description: This module instruments the Java-like code according to both the
data-flow information in the annotated ICCFG and the selection criteria cho-
sen by the tester. As a result, it produces a modified version of the input code
which, during execution, produces information about the coverage of defini-
tions and uses, the exercised binding, and the traversed paths (in the case of
criteria involving the coverage to be achieved along all paths).

7.3.2 TEES Subsystem

Figure 7.5 shows the modules composing the TEES subsystem. We represented
with gray boxes the modules which can be considered part of the subsystem,
but are pre-existing modules, namely, the Java Compiler and the Java Run-Time
System. In the following, each module composing the environment is consid-
ered in isolation and an explanation of its behavior is provided.:

Java Compiler Input: Java-like instrumented code
Output: Java bytecode
Description: This module compiles the instrumented Java-like code to produce
Java bytecode, which can be executed by a Java Virtual Machine (JVM)

Java Run-Time System Input: Java bytecode; Test data
Output: raw coverage data
Description: This module executes the Java bytecode with respect to test data
provided by the tester to produce the raw coverage data that provide unstruc-
tured information about the level of coverage achieved by the test runs.

Coverage Evaluator Input: raw coverage data; historical coverage data
Output: coverage report; historical coverage data
Description: This module analyses raw coverage data to establish the level of
coverage achieved. If historical data are available, it compares them to the
current data, to define the incremental coverage. In addition, it takes care of
storing the updated historical coverage data in the repository.



7.4. IMPLEMENTATION 91

Critical
Paths
and
Bindings

Code
Byte

Raw
Coverage
Data

Tester

Code
Instr.

Test
Data

Coverage
Report

Java Compiler

Java Run-Time
System

Repository

Test

Evaluation
Subsystem

Execution
and

Coverage
Evaluator

Figure 7.5: Module architecture for the second subsystem

7.4 Implementation

The system is currently under development, and only a subset of modules has
been implemented. However, due to the modularity of the design, the imple-
mented modules can still be used to semi-automate the process, provided that
the output of the missing modules is manually provided to the system. The
modules already present are the Java parser, the coverage evaluator, the Java Com-
piler, and the Jave Run-Time System. In the following, we provide details about
the technology used for the development of these modules.

Java parser It has been implemented with JavaCC [83], a freely available
parser generator developed by Sun Microsystems. The definition of the Java
grammar written in JACK is retrievable from the Sun Microsystems web site.
Starting from the complete Java grammar, we modified it to build a parser for
the subset of the language that we address. The result of the analysis is a data



92 CHAPTER 7. A PROTOTYPE ENVIRONMENT

structure representing the ICCFG. The data structure is defined in terms of Java
classes. In addition, the ICCFG can be exported in a textual format, which can
be visualized using dotty [2], a freely available application for graph visualiza-
tion by AT&T Researc Labs.

Coverage evaluator The implementation details of this module are highly re-
lated to the characteristic of our instrumentation policy. Code instrumentation
(not yet automated) builds into classes a capability to produce persistent exe-
cution traces. Traces are written by the instrumented code into a file. They con-
tains information about bindings, coverage of definitions and uses, and traver-
sal of branch nodes (only in the case of selection criteria involving paths). So
far, we do not take into account recursion. We are currently working on the
definition of a stack-based approach allowing for distinguishing different in-
carnations of the same variable. As far as coverage criteria are concerned, the
coverage evaluator can currently be used for all-defs � and all-uses � criteria only.
Starting from the trace file, it performs a parsing, looking for occurrencies of
polymorphic definitions and uses. The coverage report is built incrementally
by adding information every time one or more polymorphic uses of a given
variable at a given node match a previous definition of the same variable. Once
the report has been produced, it is compared to previously produced reports (if
any) to identify whether a better coverage has been achieved. The comparison
is currently performed by ordering entries in the two reports according to the
same policy, and then checking for common entries.

Java Compiler We chose the Java compiler provided with the Java Develop-
ment Kit (JDK [84]) by Sun Microsystems, since it is freely available and it is
released for several platforms (e.g., Sun Solaris, Linux i386, Linux Sparc, Win-
dows95/98/NT). The compiler can be used without any modification, since it
has to compile programs written in a subset of the Java language.

Jave Run-Time System The run-time system is the Java Virtual Machine
freely distributed by Sun Microsystems within JDK. It is used by simply
launching the Java application from the command line.



Chapter 8

Conclusion

This thesis has presented a new approach for integration testing of object-
oriented programs in the presence of polymorphism. The goal of the technique
is to define an integration strategy suitable for object-oriented systems, to iden-
tify critical paths and bindings during integration testing, and to provide test
adequacy criteria.

8.1 Contributions

The main contribution of the work presented in this thesis, can be summarized
as:

� An analysis of the main problems related to object-oriented testing. This
allows for identifying several issues which are still to be addressed. In
particular, it allows for identifying relationships among classes, polymor-
phism and dynamic binding as a major problem with respect to object-
oriented integration testing.

� A study on how object-oriented languages influence traditional integra-
tion testing strategies, and the proposal for an integration strategy spe-
cific to the object-oriented case. The proposed strategy is based on the
analysis of a graph representing the system under test. It takes into ac-
count new dependencies, introduced by relations among classes, which
are more subtle than the ones occurring between traditional modules and
need to be specifically addressed.

� The identification of a new class of failures occurring during integration
of object-oriented systems in the presence of inclusion polymorphism.

� The definition of a technique for addressing them. The technique, based
on data-flow analysis, allows for identifying critical paths and bindings

93



94 CHAPTER 8. CONCLUSION

to be exercised during integration. Besides allowing for defining test se-
lection criteria, the technique can be used to define test adequacy criteria
for testing of polymorphic calls between classes.

� The design of a tool which allows for applying the technique in a semi-
automated way.

8.2 Open Issues and Future Work

There are still several open issues with respect to the approach, both theoret-
ical and practical. They can be summarized in three main points, which are
mutually related:

� We need to obtain more experimental evidence than we have now about
the failure detection capabilities of the technique and about the applica-
bility of the integration strategy on real-world examples..

� We need to extend the proposed algorithm for evaluating data-flow rel-
evant set to the case of inter-class analysis in the presence of aliases, in
order to assess the feasibility of the approach in the general case.

� The implementation of the tool have to be completed, to both validate
the technique and provide an environment which allows to efficiently
performing experimentation on real-world case studies.

To address the first problem, we are currently collecting meaningful exam-
ples and defining ad-hoc ones to experiment with. In parallel, we are defining a
general conservative and approximated algorithm addressing inter-class poly-
morphic definitions and uses. The definition of the algorithm is a prerequisite
for the developing of the prototype.



Appendix A

Code of the Example

Class Polygon

abstract class Polygon {
private int x;
private int y;
private int sign;

protected abstract double unsignedArea();
public abstract int minX();
public abstract int minY();
public abstract int maxX();
public abstract int maxY();
public Polygon() {

x=0;
y=0;
sign=1;

}
public Polygon(int xx, int yy) {

x=xx;
y=yy;
sign=1;

}
final public int getX() {return x;}
final public int getY() {return y;}
final public void setX(int xx) {x=xx;}
final public void setY(int yy) {y=yy;}
final public void setSign(int s) {

if(sign>=0) {
sign=1;

}

95



96 APPENDIX A. CODE OF THE EXAMPLE

else {
sign=-1;

}
}
final public int getSign() {return sign;}
final public double area() {return (sign * unsignedArea());}

}

Class Square

class Square extends Polygon {
private int edge;
protected double unsignedArea() {return (edge*edge);}
public int minX() {return (getX()-edge/2);}
public int minY() {return (getY()-edge/2);}
public int maxX() {return (getX()+edge/2);}
public int maxY() {return (getY()+edge/2);}
public Square() {
super();
edge=0;

}
public Square(int x, int y, int e) {
super(x, y);
edge=e;

}
}

Class Circle

class Circle extends Polygon {
private int radius;
protected double unsignedArea() {re-

turn (3.14*radius*radius);}
public int minX() {return (getX()-radius/2);}
public int maxX() {return (getX()+radius/2);}
public int minY() {return (getY()-radius/2);}
public int maxY() {return (getY()+radius/2);}
public Circle() {
super();
radius=0;

}
public Circle(int x, int y, int r) {
super(x, y);
radius=r;



97

}
}

Class Figure

import Polygon;

class Figure {
private Polygon polygon1;
private Polygon polygon2;

public Figure() {
polygon1=null;
polygon2=null;

}

public boolean addPolygon(Polygon p) {
if(polygon1==null) {
polygon1=p;
return true;

}
else if(polygon2 != null) return false;
else {
int pminX=p.minX();
int pmaxX=p.maxX();
int pminY=p.minY();
int pmaxY=p.maxY();
if((pminX < polygon1.minX()) &&

(pmaxX > polygon1.maxX()) &&
(pminY < polygon1.minY()) &&
(pmaxY > polygon1.maxY())) {

polygon1.setSign(1);
polygon2=p;

}
else if((pminX > polygon1.minX()) &&

(pmaxX < polygon1.maxX()) &&
(pminY > polygon1.minY()) &&
(pmaxY < polygon1.maxY())) {

p.setSign(-1);
polygon2=p;

}
else if((pminX>polygon1.maxX()) ||

(pmaxX<polygon1.minX()) ||
(pminY>polygon1.maxY()) ||
(pmaxY<polygon1.minY())) {

polygon2=p;



98 APPENDIX A. CODE OF THE EXAMPLE

}
else return false;
return true;

}
}

public double area() {
double a=0;

if(polygon2 != null) a+= polygon2.area();
if(polygon1 != null) a+= polygon1.area();
return a;

}
}

Class FigureTool

import Figure;
import java.io.*;

class FigureTool {
private Figure figure=new Figure();
public static void main(String argv[]) {
FigureTool ft=new FigureTool();
System.out.println("\nFigures version 2.0.0\n");
if(! ft.figure.addPolygon(new Square(100, 100, 120))) {

System.out.println("Problem adding figure #1");
System.exit(1);

}
if(! ft.figure.addPolygon(new Circle(99, 99, 62))) {

System.out.println("Problem adding figure #2");
System.exit(1);

}
System.out.println("Area: " + ft.figure.area());
System.exit(0);

}
}



Bibliography

[1] Object-Oriented Software Testing, volume 37 of Communications of the ACM
(special issue). ACM Press, Sept. 1994.

[2] Graphviz - Reference Material, 1998. http://www.research.att.com/sw/tools.

[3] C. B. Archer and M. Stinson. Object-oriented software product metrics.
In R. Agarwal, editor, Proceedings of the ACM SIGCPR Conference (SIGCPR-
98), pages 305–306, New York, Mar.26–28 1998. ACM Press.

[4] J. Bansiya and C. Davis. Automated metrics and object-oriented develop-
ment: Using QMOOD++ for object-oriented metrics. Dr. Dobb’s Journal of
Software Tools, 22(12):42, 44–48, Dec. 1997.

[5] S. Barbey, M. Ammann, and A. Strohmeier. Open issues in testing Object
Oriented software. In K. F. (Ed.), editor, ECSQ ’94 (European Conference
on Software Quality), pages 257–267, vdf Hochschulverlag AG an der ETH
Zürich, Basel, Switzerland, October 1994. Also available as Technical Re-
port (EPFL-DI-LGL No 94/45).

[6] S. Barbey and A. Strohmeier. The problematics of testing Object Oriented
software. In M. Ross, C. A. Brebbia, G. Staples, and J. Stapleton, editors,
Second Conference on Software Quality Management, pages 411–426, Edin-
burgh, Scotland, UK, July 1994. vol. 2.

[7] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engi-
neering, 22(10):751–761, Oct. 1996.

[8] V. R. Basili and B. T. Perricone. Software errors and complexity: An empir-
ical investigation. Communications of the ACM, 27(1):45–52, January 1984.

[9] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York,
2nd edition, 1990.

[10] R. V. Binder. Testing Object-Oriented Programs: A Survey. Technical Re-
port 94-003, Robert Binder Systems Consulting, Inc., Chicago, 1994.

[11] G. Booch. Object Oriented Design. The Benjamin/Cummings Publ., USA,
1991.

99



100 BIBLIOGRAPHY

[12] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User
Guide. Addison-Wesley, 1997.

[13] G. Booch and M. Vilot. The design of the C++ Booch components. SIG-
PLAN Notices, 25(10):1–11, 1990.

[14] G. Booch and M. Vilot. Simplifying the Booch components. The C++ Re-
port, June 1993.

[15] T. A. Budd and D. Angluin. Two notions of correctness and their relation
to testing. Acta Informatica, 18(1):31–45, November 1982.

[16] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 1985.

[17] B. Carre. Graphs and Networks. Oxford, 1979.

[18] T. J. Cheatham and L. Mellinger. Testing Object-Oriented Software Sys-
tems. In Proceedings of the Eighteenth Annual Computer Science Conference,
pages 161–165. ACM, Feb. 1990.

[19] S. Chidamber and C. Kemerer. A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[20] N. I. Churcher and M. J. Shepperd. Comments on “A metrics suite for ob-
ject oriented design”. IEEE Transactions on Software Engineering, 21(3):263–
265, Mar. 1995.

[21] L. A. Clark, J. Hassel, and D. Richardson. A close look at domain testing.
IEEE Transactions on Software Engineering, SE-8(4):380–390, July 1982.

[22] A. Coen-Prosini, L. Lavazza, and R. Zicari. Assuring type safety of object-
oriented languages. Journal of Object-Oriented Programming, 5(9):25–30,
February 1994.

[23] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and
P. Jeremaes. Object-Oriented Development - The Fusion Method. Prentice
Hall, 1994.

[24] W. Cook. A proposal for making eiffel type-safe. The Computer Journal,
32(4), 1989.

[25] J. C. Coppick and T. J. Cheatham. Software Metrics for Object-Oriented
Systems. In Proceedings of the ACM Computer Science Conference, pages 317–
322, Mar. 1992.

[26] T. DeMarco. Structured Analysis and System Specification. Yourdon Press,
New York, NY, 1979.

[27] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection:
Help for the practicing programmer. IEEE Computer, 11(4), April 1978.



BIBLIOGRAPHY 101

[28] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data gener-
ation. IEEE Transactions on Software Engineering, 17(9):900–910, September
1991.

[29] R. Doong and P. Frankl. The astoot approach to testing object-oriented
programs. ACM Transactions on Software Engineering and Methodology,
3(2):101–130, April 1994.

[30] R.-K. Doong and P. G. Frankl. Case Studies on Testing Object-Oriented
Programs. In Proceedings of the Symposium on Testing, Analysis, and Verifica-
tion (TAV4), pages 165–177, Victoria, CDN, Oct. 1991. ACM SIGSOFT, acm
press.

[31] M. Fewster. The manager wants 100 Journal of Software Testing, Verification
and Reliability, 1(2):43–45, July–Sept. 1991.

[32] S. P. Fiedler. Object-Oriented Unit Testing. HP Journal, 40(3):69–74, Apr.
1989.

[33] R. Fletcher and A. S. M. Sajeev. A framework for testing object-oriented
software using formal specifications. In A. Strohmeier, editor, Reliable
Software Technologies, number 1088 in Lecture Notes in Computer Science,
pages 159–170. Springer, 1996.

[34] P. Frankl and E. J. Weyuker. An Applicable Family of Data Flow Testing
Criteria. IEEE Transactions on Software Engineering, SE-14(10):1483–1498,
Oct. 1988.

[35] C. Ghezzi and M. Jazayeri. Programming Languages Concepts. John Wiley
& Sons, Inc., third edition, 1997.

[36] J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection.
ACM SIGPLAN Notices, 10(6):493–493, June 1975.

[37] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, Inc., 1996.

[38] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transac-
tions on Software Engineering, SE-3(4):279–290, July 1977.

[39] M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick. Incremental Testing of
Object-Oriented Class Structures. In Proceedings of the 14th International
Conference on Software Engineering, pages 68–80, Melbourne/Australia,
May 1992.

[40] M. J. Harrold and G. Rothermel. Performing data flow testing on classes.
In 2nd ACM-SIGSOFT Symposium on the foundations of software engineering,
pages 154–163. ACM-SIGSOFT, December 1994.

[41] M. J. Harrold and G. Rothermel. Performing data flow testing on classes.
In 2nd ACM-SIGSOFT Symposium on the foundations of software engineering,
pages 154–163. ACM-SIGSOFT, December 1994.



102 BIBLIOGRAPHY

[42] M. J. Harrold and G. Rothermel. A coherent family of analyzable graph
representations for object-oriented software. Technical Report OSU-
CISRC-11/96-TR60, The Ohio State University, November 1996.

[43] M. J. Harrold and M. L. Soffa. Computation of interprocedural definition-
use chains. ACM Transactions on Programming Languages and Systems,
16(2):175–204, March 1994.

[44] B. Henderson-Sellers. Object-Oriented Metrics: Mesures of Complexity.
Prentice-Hall, 1996.

[45] D. G. J. Dean and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP’95, pages 77–101. Springer-
Verlag, 1995. LNCS 952.

[46] R. N. H. J. Vitek and J. S. Uhl. Compile-time analysis of object-oriented
programs. In Springer-Verlag, editor, Proceedings of the 4

���

International
Conference on Compiler Construction (CC’92), pages 236–250, 1992. LNCS
641.

[47] R. Jones. Extended type checking in eiffel. Journal of Object-Oriented Pro-
gramming, 5(2):59–62, 1992.

[48] P. Jorgensen and C. Erickson. Object-oriented integration testing. Commu-
nications of the ACM, 37(9):30–38, September 1994.

[49] S. Kirani. Specification and Verification of Object-Oriented Programs. PhD
thesis, University of Minnesota, Minneapolis, Minnesota, December 1994.

[50] J. Knoop and W. Golubski. Abstract interpretation: A uniform frame-
work for type analysis and classical optimization of object–oriented pro-
grams. In Proceedings of the 1st International Symposium on Object–Oriented
Technology “The White OO Nights” (WOON’96) (St. Petersburg, Russia).,
pages 126 – 142, 1996. Proceedings are also available by anonymous ftp:
ftp.informatik.uni–stuttgart.de/pub/eiffel/WOON 96.

[51] D. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toioshima. Design recovery for
software testing of object-oriented programs. In Proceedings of the Working
Conference on Reverse Engineering, pages 202–211, Los Alamitos, California,
U.S.A., May 1993. IEEE Computer Society Press.

[52] K. N. Leung and L. White. A study of integration testing and software re-
gression at the integration level. In Proceedings of the conference on Software
Maintenance-90, pages 290–301, San Diego, California, 1990.

[53] W. Li and S. Henry. Object-Oriented Metrics that Predict Maintainability.
Journal of Systems and Software, 23:111–122, Nov. 1993.

[54] B. Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices,
23(5):17–34, May 1988. Revised version of the keynote address given at
OOPSLA ’87.



BIBLIOGRAPHY 103

[55] I. I. P. Ltd. Achieving testability when using ada packaging and data hid-
ing methods. Web page, 1996. http://www.teleport.com/ qcs/p824.htm.

[56] R. Mandl. Orthogonal latin squares: An application of experimental desig
n to compiler testing. Communications of the ACM, 1985.

[57] J. McGregor and T. Korson. Integrated object-oriented testing and devel-
opment processes. Communications of the ACM, 37(9):59–77, September
1994.

[58] J. McGregor and T. Korson. Testing of the polymorphic interactions of
classes. Technical Report TR-94-103, Clemson University, 1994.

[59] B. Meyer. Object-oriented Software Construction. Prentice Hall, New York,
N.Y., second edition, 1997.

[60] L. Mikhajlov and E. Sekerinski. A study of the fragile base class problem.
Lecture Notes in Computer Science, 1445:355–376, 1998.

[61] L. J. Morell. A Theory of Error-Based Testing. PhD thesis, University of
Maryland, April 1984.

[62] L. J. Morell. A theory of fault-based testing. IEEE Transactions on Software
Engineering, 16(8):844–857, August 1990.

[63] G. J. Myers. The Art of Software Testing. Wiley - Interscience, New York,
1979.

[64] A. J. Offutt. Automatic Test Data Generation. PhD thesis, Department of
Information and Computer Science, Georgia Institute of Technology, 1988.

[65] J. Overbeck. Testing Object Oriented software - State of the art and re-
search directions. In 1st European International Conference on Software Test-
ing, Analysis and Review, London, UK, October 1993.

[66] J. Overbeck. Integration Testing for Object Oriented Software. PhD thesis,
Vienna University of Technology, 1994.

[67] J. Overbeck. Testing Generic Classes. In Proc. 2nd European International
Conference on Software Testing, Analysis and Review, Brussels/B, Oct. 1994.

[68] H. D. Pande and B. G. Ryder. Static type determination for c++. Techni-
cal Report LCSR-TR-197-A, Rutgers University, Lab. of Computer Science
Research, October 1995.

[69] A. Paradkar. Inter-Class Testing of O-O Software in the Presence of Poly-
morphism. In Proceedings of CASCON96, Toronto, Canada, November
1996.

[70] D. Perry and G. Kaiser. Adequate testing and object-oriented pro-
gramming. Journal of Object-Oriented Programming, 2(5):13–19, Jan-
uary/February 1990.



104 BIBLIOGRAPHY

[71] P. S. Pietro, A. Morzenti, and S. Morasca. Generation of Execution Se-
quences for Modular Time Critical Systems. to appear in IEEE Transactions
on Software Engineering, 1999.

[72] J. Plevyak and A. A. Chien. Precise concrete type inference for object-
oriented languages. In Proceedings of the 9

���

ACM SIGPLAN Annual Con-
ference on Object-Orinted Programming, Systems, Languages, and Applications
(OOPSLA’94), pages 324–340, 1994. ACM SIGPLAN Notices 29, 10.

[73] S. Rapps and E. J. Weyuker. Selecting Software Test Data Using Data Flow
Information. IEEE Transactions on Software Engineering, SE-11(4):367–375,
Apr. 1985.

[74] G. Rothermel and M. J. Harrold. Selecting regression tests for object-
oriented software. In International Conference on Software Maintenance,
pages 14–25, September 1994.

[75] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, 1991.

[76] B. Shriver and P. Wegner, editors. Research Directions in Object-Oriented
Programming. The MIT Press, Cambridge, Mass., 1987.

[77] S. M. Siegel. Strategies for testing object-oriented software. Compuserve
CASE Forum Library, Sept. 1992.

[78] M. Smith and D. Robson. A framework for testing object-oriented pro-
grams. Journal of Object-Oriented Programming, 5(3):45–53, June 1992.

[79] M. D. Smith and D. J. Robson. Object-oriented programming: the prob-
lems of validation. IEEE, November 1990.

[80] A. Stepanov and M. Lee. The standard template library. Technical report,
Hewlett-Packard, July 1995.

[81] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 2nd edi-
tion, 1994.

[82] B. Stroustrup and D. Lenkov. Run-time type identification for C++ (re-
vised). In Proc USENIX

�
*C Conference, Aug. 1992.

[83] SUN Microsystems. JavaCC Documentation, 1998.
http://www.sun.com/suntest/products/JavaCC/DOC/index.html.

[84] SUN Microsystems. JDK ��� 1.1.7 Documentation, 1998.
http://www.java.sun.com/products/jdk/1.1/docs/index.html.

[85] C. D. Turner and D. J. Robson. The state-based testing of object-oriented
programs. In International Conference on Software Maintenance, pages 302–
310. IEEE Society Press, September 1993.

[86] W. T. Tutte. Graph Theory. Addison-Wesley, Reading/Amsterdam, 1984.



BIBLIOGRAPHY 105

[87] J. M. Voas. A dynamic failure model for estimating the impact that a
program location has on the program. In Proccedings of the 3rd European
Software Engineering Conference, pages 308–331, Milan, Italy, Octiber 1991.
LNCS 550.

[88] J. M. Voas and K. W. Miller. Software testability: The new verification.
IEEE Software, May 1995.

[89] J. M. Voas, K. W. Miller, and J. E. Payne. PISCES: A Tool for Predicting
Software Testability. In Proc. of the Symp. on Assessment of Quality Software
Development Tools, pages 297–309, New Orleans, May 1992. IEEE Com-
puter Society.

[90] J. M. Voas, L. Morell, and K. Miller. Predicting where faults can hide from
testing. Software, 8(2):41–48, March 1991.

[91] E. J. Weyuker and T. J. Ostrand. Theories of program testing and the appli-
cation of revealing subdomains. IEEE Transactions on Software Engineering,
SE-6(3):236–246, May 1980.

[92] L. J. White and E. I. Cohen. A domain strategy for computer program
testing. IEEE Transactions on Software Engineering, SE-6(3):247–257, May
1980.


