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Abstract

This paper presents a new test-suite augmentation tech-
nique for use in regression testing of software. Our tech-
nique combines dependence analysis and symbolic evalua-
tion and uses information about the changes between two
versions of a program to (1) identify parts of the program
affected by the changes, (2) compute the conditions under
which the effects of the changes are propagated to such
parts, and (3) create a set of testing requirements based
on the computed information. Testers can use these re-
quirements to assess the effectiveness of the regression test-
ing performed so far and to guide the selection of new test
cases. The paper also presents MATRIX, a tool that par-
tially implements our technique, and its integration into a
regression-testing environment. Finally, the paper presents
a preliminary empirical study performed on two small pro-
grams. The study provides initial evidence of both the effec-
tiveness of our technique and the shortcomings of previous
techniques in assessing the adequacy of a test suite with re-
spect to exercising the effect of program changes.

1 Introduction

Software engineers spend most of their time maintaining
and evolving software systems to fix faults, improve perfor-
mance, or add new features. A fundamental activity during
software evolution is regression testing. Regression testing
is the testing of modified software to gain confidence that
the changed parts of the software behave as expected and to
ensure that the changes have not introduced new faults into
the rest of the software.

To date, researchers have mostly focused on three
regression-testing activities: regression-test selection, test-
suite reduction (or minimization), and test-suite prioritiza-
tion. Regression-test selection identifies test cases in an
existing test suite that need not be rerun on the new ver-
sion of the software (e.g., [6, 22, 28]). Test-suite reduction
eliminates redundant test cases in a test suite according to
given criteria (e.g., [13, 23, 30]). Test-suite prioritization
orders test cases in a test suite to help find defects earlier
(e.g., [24, 26]). Researchers have shown that the use of these
techniques can reduce considerably the regression testing
time. Little attention, however, has been paid to a funda-
mental problem of testing modified software: determining

whether an existing regression test suite adequately exer-
cises the software with respect to the changes and, if not,
providing suitable guidance for creating new test cases that
specifically target the changed behavior of the software. We
call this problem the test-suite augmentation problem.

The modified parts of a program can be tested by en-
suring that this modified code is executed. The most prob-
lematic regression errors, however, are typically due to un-
foreseen interactions between the changed code and the rest
of the program. Previous research has addressed this prob-
lem by creating criteria that focus on exercising control- or
data-flow relationships related to program changes (e.g., [3,
11, 21]). Our studies show that considering the effects of
changes on the control- and data-flow alone, as these tech-
niques propose, is often not sufficient for exercising the ef-
fects of the changes on the software. Even when test cases
exercise the data-flow relationships from the point of the
change(s) to the output [9], the modified behavior of the
software may not be exercised.

1.1 Motivating Example

To illustrate the inadequacy of these criteria, consider the
example in Figure 1, which shows a class E and its method
simple. For statements s1 and s2, alternative versions cl
and c2, respectively, are provided as comments. These al-
ternative versions can be used to construct modified versions
of E. Hereafter, we indicate with F.; (F.2) the version of
E obtained by replacing s1 (s2) with c1 (¢2). Consider pro-
gram F.5. The only difference between F and Es is the
conditional statement s2, which is changed from (x > 5)
to (x >= 5). A technique that tests the changed program
by rerunning all test cases that traverse the change would
generally not reveal the regression fault introduced by the
change (the division by zero at statement s3). Even a tech-
nique that exercises data-flow relationships from the point
of the change to an output would be unlikely to reveal the
problem. The only way to suitably exercise the change at c2
is to require that method simple in E.5 be called with 5 as
an argument.

The problem is that changes in the software affect, after
their execution, the state and the control-flow of the soft-
ware, but these effects often manifest themselves only un-
der specific conditions. Therefore, criteria that simply re-



public class E {
void simple(int i) {

sl int x=i; // cl: int x=i+b;
s2 if (x>5) { // c2: if (x>=5) {
s3 x = (5/(x=95));
s4 X— =
s5 if (x == 0) {
s6 System.out. print(x);

} else {
s7 System.out. print (10/x);

}

}
}

Figure 1. Example program FE and control-flow graph of
E’s method simple.

quire the coverage of program entities (e.g., statements and
data-flow relationships) are usually inadequate for exercis-
ing program changes. These criteria are satisfied when all
required program entities are executed and do not consider
the effects of changes on the state of the program caused by
program modification or the propagation of these changes.
To account for this limitation, one possibility is to use tech-
niques that consider the state of the program, such as sym-
bolic evaluation and model checking [7, 8]. However, these
techniques are complex and expensive and, if applied to the
whole program, would typically not scale.

1.2 Overview of the Approach

This paper presents a novel approach that addresses the
shortcomings of existing techniques by combining data- and
control-dependence information, gathered through program
analyses, with state-related information, gathered through
symbolic evaluation. Because of this combination, our crite-
ria are more likely to propagate the effects of the changes to
the output in a modified program than criteria based only on
the program’s structure or entities. To limit the cost of sym-
bolic evaluation and make the approach practical, we limit
the number of statements that we analyze based on their dis-
tance (in terms of data- and control-dependences) from the
changes. As our studies show, considering statements that
are only a few dependences away from the change lets us
build testing requirements that are effective in revealing re-
gression faults while keeping the cost of our technique con-
tained and making our overall approach practical.

Our technique for test-suite augmentation involves sev-
eral steps. First, the technique uses information about the
differences between the old program (P) and the new pro-
gram (P’), along with mappings between corresponding
statements in them, to identify pairs of corresponding state-
ments in P and P’. Second, the technique uses symbolic
evaluation to compute, for statements that could be executed
after the changed statements in P and P’, a path condition
and a symbolic state. Third, the technique compares path
conditions and symbolic states of corresponding statements
in P and P’ and defines testing requirements based on the

comparison. Fourth, the technique instruments P’ to assess,
during regression testing, the extent to which a test suite sat-
isfies these testing requirements. Finally, the set of unsatis-
fied testing requirements provides guidance to the tester for
the development of new test cases.

The current version of the technique works on a single
change at a time and shares symbolic execution’s current
limitations. In particular, it cannot handle some program
constructs (e.g., unbounded dynamically allocated objects),
but only when these constructs are affected by the changes.

The paper also presents a tool, MATRIX (Maintenance-
oriented Testing Requirements Identifier and eXaminer),
that partially implements our approach. The current version
of MATRIX incorporates data- and control-dependence
analyses and instrumentation capabilities, and is integrated
into a regression-testing environment. The environment in-
cludes other tools that perform supporting tasks for the test-
suite augmentation technique and regression testing in gen-
eral. We are currently working on a version of MATRIX
that incorporates symbolic evaluation.

Finally, the paper discusses two studies performed on
nine versions of two small software subjects. In the studies
we compare, in terms of effectiveness, our technique with
two alternative test-suite augmentation approaches: one that
requires test cases to traverse the changes in the software and
the other that requires test cases to exercise all definition-
use associations affected by the changes. The results of the
study show that, for our subjects and versions, test suites
that satisfy the testing requirements generated by our tech-
nique are more likely to reveal regression errors than test
suites that satisfy the testing requirements generated by the
alternative approaches but do not satisfy our requirements.

The main contributions of the paper are:

e A new test-suite augmentation technique that uses dif-
ferencing, program analysis, and symbolic evaluation
to compute a set of testing requirements that can be
used to assess and augment a regression test suite.

e A tool, MATRIX, that partially implements the test-
suite augmentation technique, and an environment, in
which the tool is integrated, that provides comprehen-
sive support for regression testing.

e Two preliminary empirical studies that compare our
test-suite augmentation technique to existing tech-
niques and show the potential effectiveness of our tech-
nique in revealing regression errors.

2 Computation of Testing Requirements

This section provides details of our test-suite augmenta-
tion approach. We first describe our change-based criteria
for testing changed programs and illustrate them with an ex-
ample. We then present our algorithm to compute testing
requirements that meet this change-based criteria.



2.1 Change-based Criteria

Ideally, a criterion for adequately testing changes be-
tween P and P’ should guarantee that the effects of the
changes that can propagate to the output actually propagate,
such that the effect of the changes will be revealed. Such an
approach can be seen as an application of the PIE model [27]
to the case of changed software: the criterion should ensure
that the change is executed (E), that it infects the state (I),
and that the infected state is propagated to the output (P).
However, generating testing requirements for such a crite-
rion entails analyzing the execution of P and P’ (e.g., using
symbolic evaluation) from the change until the program ter-
minates, which is impractical.

To make the approach practical, while maintaining its ef-
fectiveness, we define a set of criteria, each of which en-
sures that P and P’ are in different states after executing
statements at a specific distance from the change (i.e., it en-
sures that the effects of the change have propagated to these
statements). The distance, expressed in terms of data- and
control-dependence chains, provides the tester a way to bal-
ance effectiveness and efficiency of the criterion. On the
one hand, criteria involving longer distances are more ex-
pensive to compute and satisfy than those involving shorter
distances. On the other hand, criteria involving longer dis-
tances ensure that states farther away from the change differ
and, thus, that the effects of the change have propagated at
least to those points in the program. Intuitively, requiring
this propagation increases the likelihood that different (pos-
sibly erroneous) behaviors due to the changes will be exer-
cised and revealed. Note that, in some cases, it may not be
possible to propagate the effects of a change beyond a given
distance d. For example, imagine a change in the way an
array is sorted; after the sorting is done, the states should be
exactly the same in P and P’. In these cases, there would be
no testing requirements involving a distance d or higher be-
cause no different states in P and P’ could be generated. We
discuss this aspect in more detail in Section 2.2, where we
present our algorithm for computing testing requirements.

As stated above, we define distance in terms of data- and
control- dependences. A statement has distance 1 from a
change if it is data- or control- dependent on that change
(i.e., a statement that contains a use of the variable de-
fined at a modified statement or a statement that is control-
dependent on a modified predicate). A statement has dis-
tance n from a change if it is data- or control- dependent on
a statement that has distance n — 1 from the change. Note
that the change itself is considered to have distance 0, that
is, requirements defined for distance O refer to the state im-
mediately after the changed statement is executed.

For each change and distance value, our algorithm gener-
ates a set of testing requirements that must be met to satisfy
our criterion at that particular distance. The testing require-
ments are represented as boolean predicates, expressed in
terms of the constants and values of the variables at the point

COMPUTEREQS()

Input: P, P’: original and modified versions of the program, respectively
change: pair (cin P, ¢’ in P’) of changed statements
requested_distance: dependence distance requested

Output: regs: set of testing requirements, initially empty

Use: match(n’) returns a statement in P that corresponds to n” in P’
de f(n) returns the variable defined at statement n if any, or null
FDD(n,d, P) returns set of statements dependent on
PSE(c,n, P) returns program state at n
TRI(S, S") returns set of testing requirements

Declare: affected, next_affected: sets of pairs of affected statements
s, s’ : statement in P and P’, respectively
n,n’ : statement in P and P’, respectively
S, S’ : program states

(1) affected= {change} // Step 1: Identify affected parts of P’
(2) while requested_distance--> 0

3) next_affected = ()

4) foreach (s, s’) € affected

) foreach n’ € FDD(s',def(s"), P’)
(6) n = match(n’)

(@) next_affected = next_affected U(n, n")
®) endfor

(O] endfor

(10) affected = next_affected

(11) endwhile

(12) foreach (s, s’) € affected // Step 2: Compute testing requirements
(13) S = PSE(c,s, P); S’ = PSE(c',s’, P')

(14) regs = reqs U TRI(S,S")

(15) endfor

(16) return regs

Figure 2. Algorithm to compute testing requirements.

immediately before the change in P’. For example, consider
version E.; of class E/ (Figure 1). The testing requirement
generated for distance 0 is a predicate ig # g + bg (i.e.,
bo # 0, when simplified), where iy and by are the values
of variables ¢ and b, respectively, at the point immediately
before executing s1 and cl. This predicate ensures that the
states of F and E; differ after executing s1 and cl1.

2.2 Algorithm

Our algorithm for computing testing requirements for a
change in a program, ComputeReqgs (shown in Figure 2),
takes three inputs: P and P’, the original and modified ver-
sions of the program, respectively; change, a pair (c, ¢')
of statements where ¢’ is modified in, added to, or deleted
from P’; and requested_distance, the dependence distance
for which the testing requirements are generated. A new
(deleted) statement is matched to a dummy statement in P
(P"). If the new (deleted) statement contains a definition of
a variable v, then the algorithm adds the dummy statement
v =wvin P (P’)." (This is needed to ensure the correct be-
havior of our algorithm.) Otherwise, the dummy statement
is a simple no-op. Analogously, a new (deleted) branching
statement is matched to a dummy branching statement in P
(P’) with the same control dependent region and predicate
true. After the dummy statements have been introduced,
new and deleted statements are simply treated as modified
statements.

'Without loss of generality, we assume that a single statement can de-
fine only one variable. Any statement that defines more than one variable
can be transformed into a number of statements with one definition each.



stmt | C v c’ Vv’

sl C1: True Vi:{i=1do,x =10} C1: True Vi :{i =0, =0+ bo,b="bo}

s2 Ci:990>5 ‘/it{i:io,I:io} C{Zio+b0>5 Vllt{i:io,m:io-f—bo,b:bo}

Co:190<5 ‘/Qi{izio,l‘:io} Cé:io+b0§5 ‘/Qli{izio,wzio—f—bo,b:bo}
s3 Ci:10>5 Vll{i:io,$:5/(io*5)} C{:io+b0>5 ‘/{:{i:io,x:5/(io+bof5),b:bo}
s4 Ci:990>5 ‘/it{i:io,I:(S/(io—5))—1} C{tio+b0>5 Vllt{i:’io,mz(5/(i0+bo—5))—1,b:bo}
Co:190<5 ‘/Qi{izio,l‘:io—l} Cé:io+bo§5 ‘/Q/Z{Z'I’L'o,w:io—f—bo—l,b:bo}
Table 1. Path conditions and symbolic states at s1-s4 of £/ and F, the version of £ with modification c1

ComputeReqgs outputs regs, a set of testing require- Vix =i
ments that must be met to satisfy the criterion at the re- Gy true
quested distance. ComputeReqgs uses five external func- % X
tions: match(n’) returns the statement in P that corre- _
sponds to n/ in P’; def(n) returns the variable defined i =5i° aix o
at statement n or null if n does not define a variable; e ro
FDD(n,d,P), PSE(c,n,P), and TRI(S,S’) are ex- s3
plained below. Vi x=5/(iy-5) "

ComputeReqgs consists of two main steps: identifica- Cyip>5
tion of the affected statements in P and P’ at the requested 4
distance and computation of the testing requirements, which
correspond to the conditions under which the change in- Vi x=(5/(i5 5))-1 Viix =il
duces different states, in P and P’, after the execution of Cip>5 Cr <=5

the affected statements.

In the first step, ComputeReqgs initializes affected, a
set of pairs of affected statements, to the pair of changed
statements (line 1). For each iteration of the while loop,
ComputeReqgs computes the affected statements one more
dependence distance away from the change by comput-
ing forward direct dependences for each affected statement
at the current distance (line 5). Forward Direct Depen-
dence (FDD) identifies the statements control-dependent
on the input statement, s’, or data-dependent on the def-
inition of variable def(s’) at s’. For each affected state-
ment n/, ComputeRegs finds a matching statement n in
P (line 6), forms a pair of affected statements (n,n’), and
adds the pair to set next_affected (line 7). For example,
to compute affected statements at distance 1 from sl in
E and version E.; of E (see Figure 1), ComputeReqgs
calls FDD(cl,z, E.1), which returns statements s2, s3,
and s4. (F'DD does not include statements s5, s6, and
s7 because the analysis can establish that statement s4 kills
the definition of x at s1.) ComputeReqgs then finds a
match for each statement that F'D D returns. In our exam-
ple, ComputeReqs would identify (s2, s2'), (s3, s3'), and
(s4, s4’) as pairs of affected statements at distance 1 from
the change, where s2’, s3/, and s4’ are statements in F.;
that correspond to statements s2, s3, and s4 in E, respec-
tively. After ComputeReqs processes each pair of affected
statements, it assigns next_affected to affected.

In the second step, ComputeReqgs computes the test-
ing requirements for the affected statements identified in the
first step. To do this, the algorithm considers each pair of
statements in affected. At each statement s in P (resp., s’
in P'), ComputeRegs uses partial symbolic evaluation to
identify the path conditions and symbolic states of s (resp.,

Figure 3. Symbolic execution tree for s1-s4 in £/

s"). Partial Symbolic Evaluation (PSE) is similar to global
symbolic evaluation [8], except that the changed statement
c is the starting point, all live variables at the changed state-
ment are input variables, and s (resp., s’) is the ending point.
PSE differs from global symbolic evaluation in two re-
spects. First, rather than considering all paths from pro-
gram inputs to program outputs, PSE considers only finite
subpaths from the change to s (resp., s’) along dependence
chains up to the desired distance. Second, instead of rep-
resenting path conditions and symbolic states in terms of
input variables, PSE expresses them in terms of constants
and program variables representing the state of the program
at the point immediately before the change. Analogous to
global symbolic evaluation, P.S F represents a program state
with case expression. More formally, the program state at
statement s, is defined as the set {(Cs; : Vi,)|i > 1},
where C ; is the path condition to reach statement s from
the change through path ¢, and V; is the symbolic state
when Cj ; holds. A symbolic state is represented as a set of
variable assignments, V; ; = {v1 = e1,v2 = ea, ...}, where
e; is the value of v; expressed symbolically.

For our example, PSE(sl, s4, P) evaluates s4 in terms
of 79, the value of variable 7 at the point immediately before
s1, on two paths: (s1, s2, 53, s4) and (s1, s2, s4). Figure 3
illustrates the symbolic execution tree from sl to s4. Each
rectangle represents a state in £, and each edge, labeled with
a statement, represents the transformation from one state to
another when that statement is executed. Note that, because
1 = 19 at every point, we do not show i in the tree. From the
tree, PSE returns {(ip > 5: 2 = (5/(ip — 5)) — 1), (ig <
5:x=1ip—1)}.



After each pair of affected statements at the requested
distance is symbolically evaluated, ComputeReqs per-
forms Testing Requirement Identification (TRI), which com-
pares each statement and its counterpart in terms of their
path conditions and symbolic states to identify testing re-
quirements. For each pair of corresponding statements
(s,s")in P and P’, T RI produces two testing requirements.
These requirements guarantee that a test input satisfying ei-
ther one of them would result in different states after exe-
cuting s’ (regardless of whether s is executed).

More precisely, the two testing requirements correspond
to these two conditions: (1) the execution reaches statement
s when running on P and statement s’ when running on P’,
and the program states after executing those statements dif-
fer, or (2) the execution reaches statement s’ when running
on P’ but does not reach statement s when running on P
(i.e., it takes other subpaths that do not contain s). Us-
ing the representation of a program state, 7[RI can be de-
scribed as follows. Let Sy = {(Cs,; : V54)|1 < i < m}
and Sy = {(Cs; : Vo, )|l < j < n} be the pro-
gram states after executing statements s and s’ in P and
P’, respectively, where V;;, = {v1 = e1,v3 = ea,...}
and Vi ; = {v] = ej,v5 = €5,...}. In the following,
for simplicity, we abbreviate X, with X and X, with X’
for any entity X. Condition (1) above can be expressed
as (C; A C;) A R; ; for all 4, j, where clause R; ; evalu-
ates to true if the program states differ after executing the
statements on paths ¢ and j. Because the program states
differ if the value of at least one variable differs in the two
states, ?; ; can be expressed as the disjunction of the terms
(ex # e},) for all k. Condition (2) can be expressed as
(C" A =C), where C' = \/7_, Cjand C =\, C;.

Note that, to measure coverage of the generated require-
ments, the requirements need not be simplified or solved.
Checking whether a test case satisfies any of these require-
ments can be performed by substituting each variable in a
requirement with its value (obtained during the execution of
the test case at the point immediately before the change) and
evaluating the truth value of the requirement. Simplification
and constraint solving are necessary only if we want to use
the requirements to guide test-case generation or determine
the requirements’ feasibility.

As discussed above, there are changes whose effects
do not propagate beyond a certain distance (see the array-
sorting example provided in Section 2.1). In these cases, if
the constraints corresponding to conditions (1) and (2) can
be solved, they evaluate to false, which means that the cor-
responding requirements are unsatisfiable and testers do not
need to further test the effects of that change.

For the example in Figure 1, the path conditions and
symbolic states of sl-s4 in E and E. are shown in
Table 1. When identifying testing requirements at dis-
tance 1, ComputeReqs computes the requirements nec-
essary for revealing different states at s4 and s4’ by calling

TRI(Ss4,57,). The testing requirement that corresponds to

condition (1) is:
((Cl A Ci AN Rlyl) V (C1 N C; N R1Y2)V
(C2 A C{ AR21)V (Ca A Cé A Rg2,2)), where
Ry 1= (5/(io —5)) —1# (5/(io +bo —5)) — 1)
Ry 2 =(5/(io —5)) —1#i0+bg — 1)
Ro1 = (io — 1 # (5/(i0 +bo — 5)) — 1)
Ro = (io — 1 #io + bo — 1).

The requirement can be simplified to:
(((i0 > 5) A (o +bo > 5) A (bo # 0))V
((i0 > 5) A (@0 + bo < 5)A
(((Go # 6) V (bo # —1)) A ((i0 # 10) V (bo # —9))))V
((io < 5) A (’io + by > 5)/\
(((Go # 5) V (bo # 1)) A ((d0 # 1) V (bo # 9))))V
((G0 < 5) A (o +bo < 5) A (bo # 0))).

The testing requirement that corresponds to condition (2) is
((C] v C%) A—=(Cy Vv C3)), which can be simplified to false
(i.e., every execution reaching s4’ in P’ reaches s4 in P).
The testing requirements for changes at any distance can be
generated using the same process described above.

Note that our algorithm, as currently defined, handles
one isolated change at a time. Although the case of mul-
tiple changes (or a change involving multiple statements)
could theoretically be handled by computing requirements
for each change in isolation, we might need to adapt the al-
gorithm to handle cases of interacting changes. Also, we do
not explicitly consider multi-threading in our algorithm. We
believe that the presence of multi-threading will not affect
the generation of requirements directly, but it could compli-
cate the symbolic-evaluation part of the approach.

3 Implementation

To evaluate our test-suite augmentation technique and
conduct empirical studies, we developed a tool that partially
implements our algorithm. In this section, we first discuss
the regression-testing environment in which our implemen-
tation is integrated and then present the details of our tool.

3.1 Regression-testing Environment

Our regression-testing system is written in Java, operates
on Java programs, and assists users in several regression-
testing tasks. The tasks supported by the system are depicted
in Figure 4. The system takes three inputs: P, the original
version of a program; P’, a modified version of P; and T,
an existing test suite for P. The system outputs two test
suites, 7" and T, that can be used to exercise the parts of
P’ affected by the changes.

We provide a high-level overview of how the different
tasks inter-operate. Given P and P’, a differencing tech-
nique, JDIFF [1], computes change information, summa-
rized as the set of new, deleted, and modified statements.
Our testing-requirements identification technique, imple-
mented in the MATRIX IDENTIFIER, uses the change in-
formation to produce a set of testing requirements for the
portions of the program affected by the changes. These
testing requirements then guide the instrumentation of P/,
performed by the MATRIX INSTRUMENTER. The instru-
mented P’ is executed with 77, a subset of T selected by
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Figure 4. Our regression-testing environment.

DEJAVOO [19], a safe regression-test selection tool that
also provides test-suite reduction and prioritization. When
the instrumented P’ is executed against 7", it generates the
necessary execution information for change coverage anal-
ysis, which is performed by the MATRIX ANALYZER. The
result of this analysis is the set of testing requirements that
have not been satisfied by 7.

A test-case generator module takes the set of unsatisfied
testing requirements and produces a new set of test cases
T aimed at satisfying them. The test-case generation, exe-
cution, and coverage analysis cycle continues until all test-
ing requirements (or a user-specified percentage thereof) are
satisfied. All parts of the regression-testing environment are
automated except for the test-case generation, which is now
performed manually. As discussed later, in Section 6, we are
currently investigating how to use the testing requirements
to automate, completely or in part, test-case generation.

3.2 MATRIX Toolset

The MATRIX toolset implements the three main com-
ponents of our test-suite augmentation technique: the MA-
TRIX IDENTIFIER identifies testing requirements related to
the change from P to P’; the MATRIX INSTRUMENTER in-
struments P’ so that, when it executes, it will record which
testing requirements are satisfied; and the MATRIX AN-
ALYZER examines the recorded information to determine
which testing requirements have been satisfied.

A complete implementation of the MATRIX IDENTI-
FIER would require a full-fledged symbolic-evaluation en-
gine for Java programs. To perform an early evaluation of
our algorithm, we implemented a partial MATRIX IDEN-
TIFIER, with no symbolic-evaluation capabilities, that iden-
tifies the subset of the change-related requirements corre-
sponding to condition (2) (see Section 2.2). In other words,
the MATRIX IDENTIFIER currently generates testing re-
quirements that are satisfied when the execution follows dif-
ferent paths in P and P’, but it does not generate require-
ments that require the state to be different after the execu-
tion of corresponding statements in P and P’ (i.e., condition
(1) in Section 2.2). Because only a subset of requirements is
generated, the results obtained with this implementation of
the MATRIX IDENTIFIER constitutes a lower bound for the
actual performance of our algorithm. The MATRIX IDEN-
TIFIER is implemented on top of JABA (Java Architecture

for Bytecode Analysis®) and uses a JABA-based program
slicer to compute data and control dependences. It inputs P,
P’, a change ¢, and the distance d for which requirements
are to be generated and computes the subset of testing re-
quirements discussed above for the set of statements at dis-
tance d from c.

The generated requirements are used by two components:
the MATRIX INSTRUMENTER, which instruments the code
to collect coverage of our requirements, and the MATRIX
ANALYZER, which analyzes the coverage information pro-
duced by the instrumented program. Both components are
implemented as plug-ins for INSECTJ [25], an instrumen-
tation framework for Java programs.

4 Empirical Studies

We performed two empirical studies to evaluate effec-
tiveness and cost of existing test-adequacy criteria and of
our change-based criteria. To evaluate existing criteria, we
extended MATRIX to compute and measure coverage of
each criterion’s testing requirements. In these studies, we
used as subjects nine versions of two of the Siemens pro-
grams [15]: Tcas and Schedule. We chose Tcas and Sched-
ule, two arguably small programs, because we wanted to
have complete understanding of the subjects’ internals to be
able to thoroughly inspect and check the results of the stud-
ies. Moreover, selecting two small subjects let us use ran-
dom test case generation to create suitable test suites for the
studies. Because Tcas and Schedule were originally written
in C, and our tool works on Java programs, we converted all
versions of Tcas and Schedule to Java.

The Java versions of Tcas have two classes, 10 methods,
and 134 non-comment LOC. The Java versions of Schedule
have one class, 18 methods, and 268 non-comment LOC.
Schedule requires some of the C standard library, which re-
sults in 102 additional LOC when converted to Java. In the
studies, we use one base version (v0) and four modified ver-
sions (v1-v4) of Tcas and one base version (v0) and five
modified versions (v1-v5) of Schedule. The changes in the
modified versions are faults seeded by Siemens researchers,
who deemed the faults realistic based on their experience.

In both studies, we measure the effectiveness of a crite-
rion as the ability of test suites that satisfy the criterion to
reveal different behaviors in the old and new versions of a
program. To obtain this measure, we first pair a modified
version (P’) with its base version (P). We then identify the
types and locations of changes between P and P’ using JD-
IFF [1] and feed the change information to MATRIX IDEN-
TIFIER to generate a set of testing requirements. We next
use MATRIX INSTRUMENTER to instrument P’ based on
the generated requirements. Executing the instrumented P’
against a test suite generates the information that is used by
MATRIX ANALYZER to determine which testing require-
ments are satisfied by that test suite.

Zhttp://www.cc.gatech.edu/aristotle/Tools/jaba.html



To create coverage adequate test suites for the different
criteria considered, we proceeded as follows. For each mod-
ified version of the subject programs and each criterion, we
built 50 coverage-adequate test suites by generating random
test cases and selecting only test cases that provided addi-
tional coverage over those already added. We used a 30-
minute time limit for the random generation: if the genera-
tor did not create a test input that covered additional testing
requirements for 30 minutes, we stopped the process and
recorded only the test cases generated thus far. To be able to
generate randomly a sufficiently large number of coverage-
adequate test suites, we limited the maximum distance to
two (i.e., we created test suites for distances zero, one, and
two). We measured the effectiveness of a criterion by count-
ing the number of test suites for that criterion that contained
at least one test case showing different behaviors in P and
P’. As a rough approximation of the cost of a criterion, we
used the number of test inputs in the test suites satisfying
that criterion.

Threats to validity. The main threat to external validity is
that our studies are limited to two small subjects. Moreover,
these subjects were originally written in C, so they do not
use object-oriented features such as inheritance and poly-
morphism. Therefore, the results may not generalize. An-
other threat to external validity is that the test suites used in
the studies may not be a representative subset of all possi-
ble test suites. Threats to internal validity concern possible
errors in our implementations that could affect outcomes.
Nevertheless, we carefully checked most of our results, thus
reducing these threats considerably.

4.1 Study1

The goal of this study is to evaluate the effectiveness
and cost of existing criteria for testing changes. The test-
adequacy criteria we consider are statement and all-uses
data-flow criteria. As discussed in Section 2, we define these
criteria for modified software: the statement adequacy crite-
rion is satisfied if all modified statements are exercised. For
the all-uses data-flow adequacy criterion, we expand the cri-
terion into a set of criteria, each of which requires du-pairs
up to a specific dependence distance from the changes to be
exercised. More precisely, the all-uses distance-0 criterion
requires all du-pairs containing modified definitions to be
exercised; and the all-uses distance-n criterion requires the
du-pairs whose definitions are control- or data-dependent on
the uses of du-pairs at distance n — 1 to be exercised.

To measure the effectiveness and cost of each criterion,
we followed the process described earlier. Note that, for
each of the all-uses distance-i criterion, where 7 > 1, we
built the 50 test suites starting from the test suite satisfying
the all-uses distance-(¢ — 1) criterion, rather than generating
them from scratch.

Tables 2 and 3 show the percentage of test suites reveal-
ing different behaviors over all test suites satisfying state-

version vl | v2 | v3 | v4
% dift-revealing suites 2|14 | 22| 40

Tcas
version vl | v2 | v3 | v4 | V5
% dift-revealing suites 0|14 |20 |10 0
Schedule

Table 2. Percentage of test suites revealing different be-
haviors over 50 test suites that satisfy the statement
adequacy criterion for Tcas and Schedule.

ver distance ver distance
0 1 2 0 1 2
vl 0 4 12 vl 0 0 0
v2 6 6 | 100 v2 16 | 30 | 50
v3 18 | 68 68 v3 14 | 30 | 32
vd | 80 | 94 94 v4 12 | 30 | 38
v5 0 0 0

Tcas Schedule
Table 3. Percentage of test suites revealing different be-
haviors over 50 test suites that satisfy all-uses distance-
1 adequacy criteria (0 < 7 < 2) for Tcas and Schedule.

ment and all-uses data-flow adequacy criteria, respectively
(e.g., Table 3 shows that, for Schedule v2, only 16% of test
suites satisfying all-uses distance-0 criterion reveal different
behaviors). The data in the tables shows that, in all but one
case, 22% or less of the test suites satisfying the statement
adequacy criterion will reveal different behaviors. In the
case of the all-uses distance-¢ adequacy criterion, 0 < ¢ < 2,
the data also shows that the all-uses distance-2 adequacy cri-
terion is adequate for Tcas v2. However, none of the all-uses
distance-7 adequacy criteria, 0 < ¢ < 2, is adequate for
Schedule because the average percentage of test suites re-
vealing different behaviors is only 16.8%. The results con-
firm our intuition that all-uses adequate test suites are more
effective in revealing different behaviors than statement ad-
equate test suites, and that the longer the dependence dis-
tances considered, the more effective the criteria become.
However, the results also show that, in many cases, these
test-adequacy criteria do not effectively exercise changes.
To measure the cost of generating a test suite satisfying
the existing test-adequacy criteria, we measure the average
size of the test suites we created. The size of all test suites
satisfying the statement-adequacy criterion for any changes
is 1. (Therefore, we do not show this result in the tables.)
Table 4 shows the average number of test cases in test suites
that satisfy an all-uses distance-7 criterion for 0 < ¢ < 2.
For example, the average size of the test suites satisfying
all-uses distance-1 adequacy for the changes in Tcas v1 is
1.24. The data shows that the average size of the test suite
satisfying any of the all-uses adequacy criteria is 3.00 or
below in most cases, with the exception of the changes in
Tcas v3 at distances 1 and 2, which is 4.22. Overall, the
results show that the cost of generating test suites satisfying
data-flow adequacy criteria considering only du-pairs that



ver distance ver distance

0 1 2 0 1 2
vl 1.00 | 1.24 | 2.22 vl 1.00 | 1.54 | 1.78
v2 1.00 | 1.00 | 3.00 v2 | 1.00 | 1.68 | 2.56
v3 1.14 | 1.80 | 1.80 v3 1.00 | 1.68 | 2.10
v4d | 274 | 422 | 422 vd | 1.00 | 2.08 | 2.38
v5 134 | 144 | 1.68
Tcas Schedule

Table 4. Average number of test cases in test suites that
satisfy all-uses distance-; adequacy criteria (0 < 7 < 2)
for Tcas and Schedule.

are only a few dependences away from the changes is not
much higher than the cost of generating test suites satisfying
the statement adequacy criterion.

We can also use these data to compute a measure of cost-
effectiveness of the criteria, by computing the ratio of the
percentage of test suites revealing different behaviors to the
average size of the test suites. For example, for the all-uses
distance-0 and distance-1 adequacy criteria for Tcas v3, the
ratios are 15.79 (18/1.14) and 37.78 (68/1.8), respectively.
The results show that, for the subjects and versions con-
sidered, the cost-effectiveness for the all-uses-based criteria
tends to increase with the distance.

4.2 Study 2

The goal of this study is to evaluate the effectiveness and
the cost of our change-based criteria. We use the same ef-
fectiveness and cost measures as in Study 1 and also follow
the same process.

Table 5 shows the percentage of test suites revealing dif-
ferent behaviors for each of our distance-7 criteria and for
each version of our subjects. As the data shows, our change-
based criteria are more effective than the corresponding all-
uses criteria—and much more effective than the statement
adequacy criterion—for distances greater than zero. (They
are more effective in most cases also for distance 0.) In par-
ticular, for Tcas, between 90% and 100% of the test suites
that satisfy the distance-2 requirements reveal different be-
haviors between old and modified versions of the program.
The results for Schedule are not as good from an absolute
standpoint, but are still considerably better than the results
for the corresponding all-uses criteria.

Note that, for changes in Schedule v1 and v5, none of the
test suites that satisfy our criteria reveals different behav-
iors. After inspecting the subjects, we discovered that the
changes in these versions affect the program state but not
the control- and data-flow of the program. Criteria based on
control- or data-flow are therefore unlikely to reveal these
changes, as the results for the statement- and all-uses-based
criteria show (see Tables 2 and 3). The reason why our tech-
nique does not reveal the difference either is that its current
implementation does not generate requirements to exercise
differences in the program state, as discussed in Section 3.2.

ver distance ver distance
0 1 2 0 1
vl 30 30 90 vl 0 0 0
v2 4 | 100 | 100 v2 | 10 | 48 | 94
v3 100 | 100 | 100 v3 16 | 64 | 82
v4 | 100 | 100 | 100 vd | 36 | 56 | 60
v5 0 0 0
Tcas Schedule

[\

Table 5. Percentage of test suites revealing different be-
haviors over 50 test suites that satisfy our distance-:
criteria (0 < i < 2) for Tcas and Schedule.

ver distance ver distance

0 1 2 0 1 2
vl 1.00 | 1.00 | 1.80 vl 1.88 | 344 | 3.44
v2 1.00 | 1.96 | 1.96 v2 | 1.00 | 1.84 | 4.50
v3 1.70 | 1.70 | 1.70 v3 1.00 | 2.08 | 3.42
v4 | 376 | 3.94 | 4.88 v4d | 1.50 | 2.38 | 3.20
v5 1.58 | 244 | 2.64
Tcas Schedule

Table 6. Average number of test cases in test suites that
satisfy our distance-; criteria for 0 < ¢ < 2 and for
modified versions of Tcas and Schedule.

Table 6 shows the average number of test cases in test
suites that satisfy each of our distance-¢ criteria for each sub-
ject version. The results show that our set of criteria needs at
most (for Schedule v1 and distance 1) about twice as many
test cases as the all-uses adequacy criterion at the same dis-
tance. Note that, because the test suites for longer distances
are built on those for lower distances, and they are not re-
duced, the number of test cases per test suite for longer dis-
tances (for both our change-based criteria and the all-uses
criteria) may not accurately reflect the actual test-suite gen-
eration costs. This explains why, in some cases, all-uses
adequacy criteria require more test cases than our change-
based criteria for the same distance and the same subject
(e.g., for Tcas v1 and distance 2).

In terms of cost-effectiveness, our criteria are more cost-
effective than both statement-based and all-uses-based cri-
teria in most cases. (In the following, we do not consider v1
and v5 of Schedule, for which none of the criteria generate
test cases that can reveal changes in behavior.) For distances
greater than zero, our criteria are more cost-effective than
the alternative criteria in all but one case (Tcas v4). For dis-
tance 0, our criteria are more cost-effective in eight out of
14 cases.

The results of our preliminary studies are encouraging
and promising, especially if we consider that we obtained
them with a partial implementation of the approach that
computes only a subset of requirements. Overall, the results
show that our approach can be quite effective in comput-
ing requirements for changed software and seems to outper-
form, in most cases, alternative existing techniques.



5 Related Work

Many existing techniques are related to our test-suite
augmentation approach. A first class of related techniques
shares our goal of creating testing requirements based on
program changes. Binkley [4] and Rothermel and Har-
rold [21] use System Dependence Graph (SDG) based slic-
ing [14] to select testing requirements based on data- and
control-flow relations involving a change. SDG-based tech-
niques typically do not scale due to the memory and pro-
cessing costs of computing summary edges [2]. Gupta and
colleagues [11] propose a technique that is still based on
slicing, but uses an on-demand version of Weiser’s slicing
algorithm [29] and avoids the costs associated with building
SDGs. Their technique computes chains of control and data
dependences from the change to output statements, which
may include a considerable part of the program and are
likely to be difficult to satisfy. Our technique differs from
these previous efforts in both efficiency and effectiveness.
In terms of efficiency, our technique computes dependences
only up to a given distance from the change, which consid-
erably constrains its costs—our initial results suggest that a
short distance may be enough to generate effective require-
ments. In terms of effectiveness, in addition to considering
control- and data-flow related to a change, our technique
incorporates path conditions and symbolic states, related
to the impact of the change, into our testing requirements.
Our empirical studies show that, for the subjects consid-
ered, test suites satisfying these testing requirements have
a higher likelihood of revealing errors than those that are
based only on control- and data-flow (even when output-
influencing data-flow chains [9, 20, 17] are considered).

A second class of techniques computes testing require-
ments for changed software in terms of program entities:
control-flow entities or data-flow entities (e.g. [10, 16, 18]).
Among these techniques, the most closely related to ours is
Ntafos’s [18] required-elements (k-tuples of def-use associ-
ations). This technique relies on additional tester-provided
specifications for inputs and outputs to detect errors un-
likely to be discovered by definition-use-association cover-
age alone. Our technique imposes stronger conditions than
definition-use-tuple coverage, thus resulting in more thor-
ough testing criteria. Furthermore, our technique automates
the computation of the conditions and, thus, does not rely
on possibly error-prone and incomplete specifications from
the tester.

A third class of related techniques incorporates propaga-
tion conditions into their testing requirements. In their RE-
LAY framework, Richardson and Thompson [20] describe a
precise set of conditions for the propagation of faults to the
output, using control- and data-flow. Morell [17] also builds
a theory of fault-based testing by using symbolic evaluation
to determine fault-propagation equations. These techniques
do not target changed software and, moreover, rely on sym-
bolic evaluation of an entire program, which is impractical

for large software. Our technique, in contrast, constrains
complexity by limiting the generation of testing require-
ments to the selected distance and incorporating conditions
that guarantee propagation up to that distance. Furthermore,
to compute the adequacy of a test suite, our technique does
not need to solve such conditions but just check whether
they are satisfied at runtime.

A fourth class of related techniques augments exist-
ing test suites to strengthen their fault-revealing capability.
Harder and colleagues [12] introduce operational coverage,
a technique based on a model of the behavior of methods.
Whenever a candidate test case refines an operational ab-
straction (i.e., invariant) of a method, the candidate is added
to the test suite. Bowring and colleagues [5] present an-
other behavior-based technique that builds a classifier for
test cases using stochastic models describing normal execu-
tions. These techniques do not provide an adequacy crite-
rion for evaluation of test suites, but rather a means to clas-
sify and group test cases. Moreover, they do not perform
any kind of change-impact propagation. Overall, these tech-
niques are mostly complementary to our criteria.

6 Conclusions and Future Work

In this paper, we presented our technique for test-suite
augmentation. The technique can be used to determine
whether an existing regression test suite adequately exer-
cises the changes between two versions of a program and
to provide guidance for generating new test cases that ef-
fectively exercise such changes. We also presented MA-
TRIX, a prototype tool that partially implements our tech-
nique, along with a description of the regression-testing en-
vironment in which MATRIX is integrated.

Although our empirical evaluation is preliminary in na-
ture, and its results may not generalize, it provides initial ev-
idence that our technique is more effective (and often cost-
effective) than existing test-adequacy criteria in exercising
the effects of software changes. Encouraged by these re-
sults, we are currently investigating several research direc-
tions.

First, as we described in Section 3, our current tool
is a partial implementation of the ComputeReqgs algo-
rithm. This implementation lets us perform initial stud-
ies on the effectiveness of our technique, but we require
a complete implementation to perform a more extensive
evaluation and further studies. We are extending our im-
plementation by integrating a customized version of the
symbolic-evaluation engine provided by Java PathFinder
(http://javapathfinder.sourceforge.net/) into MATRIX.

Second, our empirical evaluation shows the potential ef-
fectiveness of our technique only on two subjects of lim-
ited size and with no object-oriented features such as inher-
itance, polymorphism, and exception handling. Also, the
evaluation does not measure the expense of the symbolic-
evaluation component of our algorithm. Although our tech-



nique requires symbolic evaluation on a small part of the
program (the part close to the changes), and we expect that
it will scale to large programs, evaluation on more and larger
subjects is needed to assess the actual applicability of the ap-
proach. With the new implementation of MATRIX, we will
conduct studies on larger subjects that have object-oriented
features and evaluate the efficiency of our approach. We will
also empirically investigate the efficiency and effectiveness
tradeoffs that arise when different thresholds for dependence
distances are used.

Third, the technique presented in this paper is defined to
operate on one change at a time. We are currently investi-
gating the effectiveness of our technique in the presence of
multiple, interacting changes. We will suitably extend and
adapt our approach based on the results of this investigation.

Finally, we believe that the information gathered during
symbolic evaluation can be leveraged to support develop-
ers in generating test-cases that satisfy the change-related
requirements. We will investigate how to extend the current
technique and tool so that it can semi-automatically generate
test cases based on our testing requirements. This compo-
nent, together with a full implementation of MATRIX, will
complete our regression-testing system.
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