
Recognizing Behavioral Patterns at
Runtime using Finite Automata

Lothar Wendehals
Software Engineering Group

Department of Computer Science
University of Paderborn, Germany

lowende@uni-paderborn.de

Alessandro Orso
SPARC Group

College of Computing
Georgia Institute of Technology, USA

orso@cc.gatech.edu

ABSTRACT
During reverse engineering, developers often need to under-
stand the undocumented design of a software. In particu-
lar, recognizing design patterns in the software can provide
reverse engineers with considerable insight on the software
structure and its internal characteristics. Researchers have
therefore proposed techniques based on static analysis to
automatically recover design patterns in a program. Unfor-
tunately, most design patterns comprise not only structu-
ral, but also significant behavioral aspects. Although sta-
tic analysis is well suited for the recognition of structural
aspects, it is typically limited and imprecise in analyzing
behavior. To address this limitation, we present a new tech-
nique that complements our existing static analysis with a
dynamic analysis, so as to perform a more accurate design-
pattern recognition. The dynamic analysis is based on (1)
transforming behavioral aspects of design patterns into fi-
nite automata, (2) identifying and instrumenting relevant
method calls, and (3) monitoring relevant calls at runtime
and matching them against the automata. The results of the
dynamic analysis are then used to compute the likelihood of
a pattern to be in the code. This paper describes our tech-
nique and presents a preliminary empirical study performed
to assess the technique.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement-
Restructuring, reverse engineering, and reengineering ;

General Terms: Algorithms

Keywords: Design pattern recognition, static and dynamic
analysis, finite automata, tracing.

1. INTRODUCTION
Software engineers spend most of their time maintaining

software systems. Software is modified to fix faults or meet
new requirements. Because documentation is often not avail-
able or obsolete, engineers must reverse engineer a software
before changing it to understand its internals and recover its
design. In particular, identifying design pattern instances [6]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

can provide reverse engineers with considerable insight on
the software structure and its internal characteristics. De-
sign patterns are good design solutions to recurring problems
and form a common vocabulary among developers. The reco-
gnition and documentation of design pattern instances aids
program understanding by making the intention of a design
explicit and, most importantly, supports effective reuse.

Manually identifying design patterns in the code is an
extremely time consuming task. Therefore, researchers have
proposed techniques based on static analysis to automatical-
ly recover design patterns in a program (e.g., [1, 8]) based
on the patterns’ structure. However, most design patterns
comprise not only structural, but also significant behavioral
aspects that must be considered when recognizing patterns.
An implementation that satisfies the structural requirements
of a pattern, while violating its behavioral requirements, can
hardly be considered an instance of that pattern.

Context
request()

State
handle()

ConcreteStateA
handle()

ConcreteStateB
handle()

state

1

state.handle()

Figure 1: The State Design Pattern

The State design pattern (Figure 1), for instance, allows
an object to alter its behavior depending on its internal
state. An interface for handling the behavior is defined by
the abstract class State and implemented by different Con-
creteStates. A Context object delegates requests to the refe-
renced State that handles them. Although the structure of
this pattern is easily recognizable statically, there are beha-
vioral constraints imposed by the pattern. For example, the
state can be initially set by a client, but can be set only by
the Context or ConcreteStates afterwards. To be an instance
of the State pattern, an implementation should both match
the structure and satisfy such behavioral requirements.

Moreover, different design patterns may have the same
(or at least similar) structure. The Strategy design pattern
(Figure 2), for example, has exactly the same structure as
the State pattern, but a very different purpose. Without
looking at behavioral constraints, it would be impossible to
distinguish instances of these two patterns.

Static analysis can precisely identify the structural aspects
of a design pattern, but even the most accurate analysis is
typically too imprecise to be able to infer from the code
the dynamic information needed to unambiguously identify



Context
request()

Strategy
algorithm()

ConcreteStrategyA
algorithm()

ConcreteStrategyB
algorithm()

strategy

1

strategy.algorithm()

Figure 2: The Strategy Design Pattern

a design pattern. In most cases, this information can be
computed only by observing, at runtime, the actual behavior
of the instances of the classes participating in the pattern.

To overcome the limitations of a solely static analysis, one
of the authors has proposed to combine static and dynamic
analysis to improve the precision of the pattern-recognition
process [14]. The previously defined static analysis [10] iden-
tifies a set of candidate design-pattern instances. The dyna-
mic analysis checks at runtime whether the instances actual-
ly satisfy the patterns’ behavioral requirements. More preci-
sely, our dynamic analysis (1) transforms behavioral requi-
rements of design patterns into finite automata, (2) uses the
candidates computed in the static analysis to identify and
instrument relevant method calls, and (3) monitors relevant
calls at runtime, while the software is being used, and mat-
ches them against the automata. The results of the dynamic
analysis are used to compute the likelihood of a pattern in-
stance to be in the code. The engineer is then presented with
a summary of both the static and dynamic matching results.

In this paper, we present our dynamic analysis. We also
present a preliminary empirical study performed using the
Eclipse framework [4] as a subject. We successfully identi-
fied several pattern instances in Eclipse, which could not
have been identified unambiguously by a purely-static ap-
proach. Their presence is actually documented [5], which
confirms that our results are accurate. Therefore, although
preliminary, the results are promising in showing the poten-
tial effectiveness and applicability of our approach.

The paper is organized as follows. Section 2 provides an
overview of our approach. In Section 3, the specification
of behavioral requirements is explained. Section 4 descri-
bes how these behavioral requirements are transformed into
finite automata, whereas Section 5 explains how method call
traces are checked against the automata. Section 6 presents
our empirical evaluation. Related work follows in Section 7.
Finally, Section 8 summarizes ongoing and future work.

2. OVERVIEW OF THE APPROACH
Before describing our approach, we introduce the pattern

catalog. The pattern catalog is a collection of pattern specifi-
cations. It contains specifications for many of the design pat-
terns presented in [6], such as State, Decorator, and Bridge.
For each pattern considered, the catalog contains two mo-
dels: the structural pattern and the behavioral pattern. The
former encodes the structural requirements for the pattern
using a notation similar to UML object diagrams and ex-
pressed at the abstract-syntax graph level (see [10]). The
latter encodes the behavioral requirements using UML se-
quence diagrams. The pattern catalog is the basis of our
design recovery process that consists of three phases: pat-
tern customization, static analysis, and dynamic analysis.

Pattern customization. Because the description of the pat-
terns provided in [6] is not formal, developers can tailor the
patterns to better suit their needs. To account for the exi-

Source 
Code

Design 
Documents

Dynamic
Analysis

Static
Analysis

Design
Pattern

Candidates

Behavioral
Patterns

TestsTests

Data flow

Program 
execution

Structural
Patterns

Executable
Program

Figure 3: The Design Recovery Process

stence of several implementation variants of a pattern, our
approach provides reverse engineers with the possibility of
customizing the structural and behavioral patterns to reflect
specific variants. The customization is performed in an ite-
rative fashion. First, the reverse engineer applies our static
analysis using the default catalog to a part of the software.
Then, based on the results, the engineer suitably adapts so-
me of the patterns and repeats the first step. This process
continues until the engineer is satisfied with the customized
catalog. At this point, the next phase takes place and the
analysis is applied to the whole software. Prior to the ana-
lyses, the structural and behavioral patterns are compiled
into a format amenable to the analyses’ algorithms.

Static analysis. The static analysis (cf. Figure 3) inputs
the source code of the system under analysis and the struc-
tural patterns. The source code is parsed into an abstract
syntax graph that is searched for the structural patterns.
Each match of a structural pattern is added to a set of
pattern-instance candidates. Because the static analysis was
defined in previous work [10], we do not further discuss it.

Dynamic analysis. The dynamic analysis inputs the exe-
cutable program, the behavioral patterns, and the set of
candidates. The goal of this phase is to check, for each can-
didate, whether the interactions of its constituents at runti-
me conform to the behavioral requirements of the pattern.
The technique monitors method calls at runtime, while the
program is executed either by the user or against a test suite.

Each method call trace that conforms to a behavioral pat-
tern increases the confidence in the existence of the design
pattern instance. Conversely, traces that violate a behavi-
oral pattern decrease such confidence. The results for both
kinds of traces are presented to the reverse engineer in the
form of design documents (e.g., annotated class diagrams).

3. BEHAVIOR SPECIFICATION
As discussed above, we specify a structural and a behavi-

oral pattern for each design pattern. A behavioral pattern
encodes the dynamic aspects of a pattern using a sequence
diagram. Our behavioral patterns take full advantage of the
syntax elements introduced in UML 2.0 [15]. In particular,
we use combined fragments, visualized as rectangles with an
operator in the upper left corner, with various kinds of ope-
rators. For example, we use opt to define optional sequences,
loop (1,n) to define a sequence executed at least once and
up to n times, and alt to define alternative sequences.

To derive the initial definition of a behavioral pattern, we
start from the (typically informal) description of the cor-
responding design pattern. For example, this is an excerpt



a:abstractStatebp State b:abstractStatecl:client co:context

opt setState(a)

loop (1,*) request()
handle()

setState(b)

setState(b)alt

handle()
request()loop (1,*)

Figure 4: The State Behavioral Pattern

from the description of the State pattern provided in [6]:
“... Clients can configure a context with State objects. On-
ce a context is configured, its clients don’t have to deal with
the State objects directly. Either Context or the Concrete-
State subclasses can decide which state succeeds another and
under what circumstances.”. From this description, we can
infer the requirement that a state may be initially set by a
client, but can only be changed by Context or ConcreteState
objects afterwards. Another, somehow implicit, requirement
is that the state should actually change during execution, for
the notion of states to make sense.

Figure 4 shows the State behavioral pattern that enco-
des the above requirements. The behavioral pattern invol-
ves four objects, namely cl:client, co:context, a:abstractState,
and b:abstractState. The opt operator indicates that cl:client
can optionally configure the context initially by calling set-
State with a as argument. The cl:client object calls request
on co:context, which in turn calls handle on a:abstractState.
As specified by operator loop(1,*), this sequence must occur
at least once, but may occur an arbitrary number of times.

Then, either the a:abstractState or the co:context itself
must change the state by calling setState with b as argument.
After the state change, the cl:client must call request on
co:context, and co:context must call handle on b:abstractState.
Also in this case, this sequence must occur at least once.

All names in the behavioral patterns are variables. The
variables for classes and methods, such as context or request,
are bound to concrete classes and methods during the static
analysis. Conversely, object names, such as co and cl are
bound to actual objects during the dynamic analysis.

Behavioral patterns do not require to consider all method
calls that might occur at runtime. Only relevant method
calls are specified. The matching between an execution and
the pattern is performed by considering only calls of me-
thods that are used within the pattern. Other methods calls
are simply ignored and, thus, can occur in any order and in-
terleaved with the method calls of interest. However, method
calls that appear in the behavioral pattern must occur ex-
actly in the order specified. This requirement complies with
the semantics of the consider operator in UML 2.0, which
implicitly holds for all behavioral patterns.

4. FROM BEHAVIORAL PATTERNS TO
FINITE AUTOMATA

Behavioral patterns can be interpreted as regular expres-
sions. The symbols used in these regular expressions consist
of a combination of the method call, its caller, and callee.
We use finite automata to match the regular expressions. In
this section, we describe how behavioral patterns are trans-

formed into Deterministic Finite Automata (DFA) that get
method call events as input and check method traces for
their conformance to the behavioral patterns.

To generate DFAs, we define, for each syntactic element
of a behavioral pattern (e.g., method call, optional, and al-
ternative fragment), a transformation into parts of a Non-
Deterministic Finite Automaton (NFA). The complete NFA
for a behavioral pattern is constructed by combining the
NFA parts for each element of the pattern. The NFA is then
transformed into a DFA. For the sake of space, we do not
present the complete set of transformations for all syntacti-
cal elements. Instead, we illustrate a few of these transfor-
mations (Figure 5) to give the reader the intuition of how
our transformation works. Specifically, we show how we (1)
transform a method call that occurs in a behavioral pattern
into its corresponding part of an NFA, (2) combine two par-
tial NFAs that correspond to two consecutive calls, and (3)
transform a loop into its corresponding NFA fragment.

m1()

m2()

b:Ba:A

m1()

a:A b:B

m1()
m2()

b:B

loop

a:A

(a:A)->(b:B).m1

(a:A)->(b:B).m1 (a:A)->(b:B).m2

(a:A)->(b:B).m1 (a:A)->(b:B).m2

1.

2.

3.

Figure 5: Transformation of Behavioral Pattern into
Finite Automaton

Method calls are the simplest syntactic element in a beha-
vioral pattern. We transform a method call into two states
and a transition between them, as shown in Figure 5(1). The
symbol accepted by the transition consists of the concaten-
ation of variables derived from the behavioral pattern: the
caller’s object, (a:A), a call symbol, “->”, the callee’s object,
(b:B), and the called method, m1 (the latter two separated
by a dot). The variables will be bound to concrete values
incrementally during the dynamic analysis.

In the case of two subsequent method calls, such as the
ones shown in 5(2), we translate both of them individually,
in the way we just discussed, and then combine them by
merging the end state of the NFA for the first call with the
start state of the NFA for the second call.

A loop is also transformed into a start state, an end state,
and a transition consuming the empty symbol ε. This tran-
sition is directed from the end state to the start state to
repeat the loop. The inner elements of the loop are inserted
between the two states. In the example in Figure 5(3), the
sequence of two method calls is inserted and their start state
and end state are merged with the states from the loop.

Using this approach, we transform the State behavioral
pattern shown in Figure 4 into the NFA depicted in Figure 6.
This NFA starts with an optional method call (states 0 and



0 1 3

45

2

6

(cl:client)->(co:context).setState

(cl:client)->(co:context).request (co:context)->(a:abstractState).handle

(cl:client)->(co:context).request(co:context)->(b:abstractState).handle

(co:context)->(co:context).setState

(a:abstractState)->(co:context).setState

Figure 6: NFA for the State Behavioral Pattern

1). States 1 to 3 represent a loop that involves two method
calls. The transitions between states 3 and 4 correspond to
the alternative in the pattern, whereas the transitions bet-
ween states 4 and 6 define a second loop. The accepting
state of the NFA is the end state of the last element of the
behavioral pattern (state 6). Note that an NFA might ha-
ve multiple accepting states if, for example, the behavioral
pattern ends with an optional fragment.

0

1

3

4

5

2

6

(cl:client)->(co:context).setState (a:abstractState)->(co:context).setState

(cl:client)->(co:context).request

(co:context)->(b:abstractState).handle

(co:context)->(co:context).setState

(cl:client)->(co:context).request

(cl:client)->(co:context).request

(co:context)->(a:abstractState).handle

(cl:client)->(co:context).request

(cl:client)->(co:context).request

Figure 7: DFA for the State Behavioral Pattern

After constructing the NFA, the technique transforms it
into a minimal DFA that is used by the dynamic analysis.
Figure 7 shows the DFA for the State behavioral pattern.

So far, this DFA only accepts method call traces that con-
form to the behavioral pattern. However, behavioral pat-
terns do not only describe valid method call traces, but also
invalid ones. The methods mentioned in the behavioral pat-
tern have to be called in exactly the order that is described
by the pattern. Call traces in which such calls occur in any
different order are invalid.

32

(co:context)->(a:abstractState).handle

*->(co:context).setState

*->(co:context).request

*->(b:abstractState).handle

*/(co:context)->(a:abstractState).handle

Figure 8: Excerpt from DFA with Rejecting State

For this reason, we introduce an explicit rejecting state
(the crossed-out state in Figure 8) with no outgoing transi-
tions. If a DFA reaches a rejecting state when processing a
certain method call trace, that trace is invalid. To account
for all possible invalid method traces, the rejecting state has

incoming transitions from every state of the DFA (except
for the start—it makes no sense to reject a trace consisting
of a single call). For each state, these outgoing transitions
consume method calls that are not allowed in that state.

To illustrate, Figure 8 shows the transitions that must be
added to State 2 of the DFA in Figure 7. State 2 has an out-
going transition with the symbol (co:context)->(a:abstract-
State).handle, which indicates that this call is the only valid
call from State 2 that involves the methods in the behavioral
pattern. Therefore, all other calls involving such methods
must be consumed by transitions going to the reject state.
These calls are: calls to handle performed on a:abstractState
by callers other than co:context (*/(co:context)->(a:abstract-
State).handle); calls to request and setState on co:context;
calls to handle on b:abstractState. The callers are irrelevant
for the latter calls because any call of these methods on the
given objects is invalid at this point.

If for a method call event in a certain state there is no
transition consuming it, the call event is ignored by the DFA.
This means that, as mentioned in Section 3, any call to a
method not mentioned in the behavioral pattern is ignored.

5. BEHAVIOR RECOGNITION
The purpose of the dynamic analysis is to monitor me-

thod calls of the program under analysis and match them
against the automata derived from the behavioral patterns.
The candidate patterns identified by the static analysis are
used to instantiate the automata using the right mappings
for class and method names. Figure 9 shows, as an example,
a possible State design pattern candidate.

PlayerState
pause()

Playing
pause()

Paused
pause()

playing

1Stream
setState(PlayerState)
pause()

state.pause()

1

Stateclient

context abstractState

state

Player

Figure 9: A State Design Pattern Candidate

The Player class has been identified as the client of the be-
havioral pattern. The Stream class has been identified as the
context and the PlayerState class as the abstractState. The
context.setState method of the behavioral pattern has been
mapped to Stream.setState. The context.request method has
been mapped to Stream.pause, whereas PlayerState.pause has
been identified as abstractState.handle. Assume that we per-
form the dynamic analysis for this pattern and for the trace
shown in Figure 10. We use this example to demonstrate
how our technique matches the events in the trace against
the automaton for the State behavioral pattern.

The dynamic analysis processes method-call events in two
steps. In the first step, the analysis checks whether the call
is a trigger for one of the behavioral patterns considered.
A trigger is any method that labels a transition from the
initial state of the pattern’s automaton. If the call is a trigger
for a behavioral pattern, an instance of the automaton for
that pattern is instantiated, and the rest of the execution is
checked for conformance with this behavioral pattern.



p:Player s:Stream pl:Playing ps:Paused
setState(pl)

pause()
pause()

setState(ps)
pause()

pause()

Figure 10: Trace of the Program’s Execution

An automaton for a behavioral pattern may be instan-
tiated multiple times during an execution (once for every
time the automaton is triggered). Instantiating this potenti-
ally large number of automata may result in many instances
of the various automata running concurrently, with obvious
performance problems. To address this issue, we use a hybrid
approach that combines Petri nets and finite automata. Mo-
re specifically, we introduce tokens in the automata’s states.
An automaton may have an unlimited number of tokens in
each of its states. Instead of instantiating a new automaton
every time a trigger method is called, we simply add a token
to the initial state of a single instance of the automaton.

(cl:client)->(co:context).setState

(cl:client)->(co:context).request

(cl:client)->(co:context).request

(co:context)->(a:abstractState).handle

(cl:client)->(co:context).request

Figure 11: Excerpt from an Automaton with Token

Variable Entity Variable Entity

client Player cl -
context Stream co -
abstractState PlayerState a -
setState Stream.setState(PlayerState) b -
request Stream.pause()
handle PlayerState.pause()

Table 1: Initial Variable Binding of the Token

The position of the token in the DFA indicates the state
for that automaton’s instance. In addition, the token en-
codes the bindings of the behavioral pattern variables (i.e.,
the class, method, and object names) to the entities iden-
tified by the static analysis (i.e., classes and methods) and
dynamic analysis (i.e., objects). When adding a new token
to the automaton, the token is initialized with the classes’
and methods’ mappings identified by static analysis, where-
as the object variables are unbound (cf. Table 1). Figure 11
shows an excerpt of the automaton1 for the State behavioral
pattern with a token in its initial state.

In the second step, after triggering all necessary behavi-
oral patterns, the method-call event is sent to all automata.
For each token, the analysis checks whether there is an out-
going transition from the token’s state that consumes the
event. The analysis matches the method call event to the
values of the symbol’s variables. First, the event’s caller and
callee classes must match the ones specified in the transiti-
on’s symbol (i.e., be the same class or a subclass of it). The

1To improve readability, the rejecting state and all transiti-
ons to it are not represented in the figure.

called method matches if its signature is the same as the
one specified in the mapping (i.e., it is the same method or
a method that overrides it). If the caller and callee objects
have already been bound, the objects involved in the cur-
rent method call must be the same. Otherwise, the unbound
object variable(s) is (are) bound to the caller and/or callee
objects of the current method call event. If the method call
event matches these criteria, the transition consumes it and
moves the token to the target state of the transition.

Variable Entity Variable Entity

client Player cl p
context Stream co s
abstractState PlayerState a -
setState Stream.setState(PlayerState) b -
request Stream.pause()
handle PlayerState.pause()

Table 2: Variable Binding after applying Transition

Table 2 shows the variable binding of the token after pro-
cessing the first method call setState(pl) from p to s. Two of
the four object variables are bound: cl to p, and co to s.

Interpreting the Results. When an execution terminates,
all tokens are collected, and the result is calculated. Again,
it is likely that multiple tokens have been created for each
candidate because the candidate was instantiated and/or
executed multiple times.

A token ends in a non-accepting, accepting or rejecting
state. Because accepting states are allowed to have outgoing
transitions, a token could have traversed an accepting state
and terminate in a non-accepting or rejecting state. We the-
refore count the number of times a token traverses an ac-
cepting state, rather than simply counting how many tokens
terminate in an accepting state. This number is an indicator
of the likelihood for the candidate to correspond to the be-
havioral pattern considered. The higher the number of times
a token traverses an accepting state, the longer the trace and
the higher the confidence in the matching.

If a token ends in a non-accepting state without ever tra-
versing an accepting state, we simply ignore it—such a token
represents an incomplete trace and we have not enough evi-
dence to decide whether the trace might have eventually got
the token in an accepting or rejecting state. If a token ends
in a rejecting state, we count the trace as evidence against
the conformance to the behavioral pattern. If the same to-
ken traversed one or more accepting states before reaching
the rejecting state, we still count the number of times the
token traversed the accepting states. The rationale is that
a part of the matched trace does conform to the behavioral
pattern, and we want to take this fact into account.

At the end of the dynamic analysis, we report to the rever-
se engineers the ratio of the number of conforming traces to
the number of non-conforming traces for each candidate de-
sign pattern. The reverse engineers can then decide whether
they are satisfied with the results or they prefer to (further)
adapt the pattern catalog and rerun the analysis.

6. PRELIMINARY EVALUATION
To demonstrate the feasibility of our approach, we per-

formed a case study on parts of the Eclipse framework [4].
We used our current implementation of the approach that
leverages the Fujaba Tool Suite [12] for the pattern speci-



fication and the static analysis. The dynamic analysis is only
partially implemented yet, in that the event capturing and
the runtime monitors are automated, but the transformati-
on of the behavioral patterns into DFAs is mostly manual.
Therefore, we generated DFAs only for two patterns: State
and Strategy. As the basis for our case study, we chose three
Strategy design pattern instances whose use in Eclipse is
documented [5]. The first instance occurs in the Standard
Widget Toolkit (SWT) and consists of a composite class
that layouts its GUI components using various algorithms.
The other two instances occur in a tree viewer in the JFace
package and are used for sorting and filtering tree entries.

The static analysis recognized the three instances of the
Strategy design pattern mentioned above. Because the struc-
tural patterns of State and Strategy are identical, the analy-
sis also recognized them as States. Table 3 shows the context
and the abstract strategy/state classes for these candidates.

Cand. Context org.eclipse.swt.widgets.Composite
1 Strategy/State org.eclipse.swt.widgets.Layout

Cand. Context org.eclipse.jface.viewers.StructuredViewer
2 Strategy/State org.eclipse.jface.viewers.ViewerSorter

Cand. Context org.eclipse.jface.viewers.StructuredViewer
3 Strategy/State org.eclipse.jface.viewers.ViewerFilter

Table 3: Candidates identified by Static Analysis

We executed Eclipse and captured method call traces.
For this preliminary study, we simply started Eclipse and
opened a project, and did not consider more complex execu-
tions. Table 4 shows the result of our dynamic analysis. For
each candidate and behavioral pattern, two numbers are gi-
ven. The former is the number of times a token traversed an
accepting state; the latter is the number of rejected tokens.

Behavioral Pattern Candidate 1 Candidate 2 Candidate 3

Strategy 104/154 8/8 0/12
Strategy (modified) 502/14 110/0 92/10
State 0/1236 0/156 0/22

Table 4: Result of the Dynamic Analysis

For the study, we actually used two different versions of
the Strategy behavioral pattern. We first performed the dy-
namic analysis with a version of the pattern that was di-
rectly derived from the pattern description [6]. The analysis
correctly matched two of the three instances of the Strategy
pattern. Candidate 3, however, was not confirmed. A manual
inspection of the code revealed that the context class, na-
mely StructuredViewer, references multiple strategies of type
ViewerFilter. The request method of the viewer class itera-
tes over all referenced ViewerFilters and calls their algorithm
method, but the iteration is aborted as soon as one of the
called methods returns false. This behavior deviates signifi-
cantly from the descriptions of the Strategy design patterns
in [6]. In fact, it corresponds more to a Chain of Responsi-
bility than to a Strategy pattern.

By manually inspecting the rejected traces, we identified
implementation variants of the Strategy behavior in Eclipse
compared to [6]. For instance, the object setting the strategy
and the object sending the request are different in contrast
to [6]. We modified the Strategy behavioral pattern to re-
flect these variants. This customization shows the flexibility
of our technique. Moreover, it is in line with our overall
idea of an approach that allows for starting with a predefi-
ned pattern catalog and adapting the catalog to the actual

context in which it is used. As expected, the dynamic analy-
sis performed using this second version obtained better re-
sults for the first two candidates. Actually, it confirmed also
the third candidate, even though we believe that it should
not be considered an instance of the Strategy pattern. This
shows that such customizations, although useful, must be
used with care. Behavioral patterns that are too permissi-
ve could decrease the precision of the dynamic analysis in
matching patterns and generate false positives.

As far as the results for the State candidates are concer-
ned, the dynamic analysis did not match any of the traces
with the State behavioral pattern. Therefore, it did not con-
firm any of the candidates identified by the static analysis.

Overall, we consider this case study very promising. The
three spurious static analysis results (i.e., the three State
pattern candidates) were not confirmed. Two of the three
supposedly correct results (according to [5]) were confirmed.
The third Strategy pattern candidate was not confirmed, but
manual inspection revealed that the pattern does violate the
pattern definition in [6]. Moreover, we have shown that the
catalog could be easily customized to obtain better results.

7. RELATED WORK
Most existing techniques for detecting design patterns in

source code are based on static analysis of structural aspects
of the patterns only (e.g., [1, 8]). Because this paper focuses
mostly on the detection of patterns based on dynamic be-
havior, we concentrate on approaches that perform design
pattern detection using either dynamic analysis or a combi-
nation of static and dynamic analysis.

Heuzeroth et al. [7] combine static and dynamic analy-
ses to detect design patterns. Static and dynamic patterns
are specified as predicates using two Prolog-based langua-
ges, SanD-Prolog and SanD. The source code is represented
in the form of predicates that encode its abstract syntax
tree. The static analysis queries the source code represen-
tation based on the static specifications. The dynamic ana-
lysis checks the conformance of the program’s runtime be-
havior with the dynamic specification, expressed as a state
sequence. Although effective, this technique is limited by
the use of the ad-hoc specification languages: SanD-Prolog
is powerful, but specifications tend to be complicated and
lengthy. SanD is more intuitive, but less powerful. For ex-
ample, it cannot specify negative constraints.

Brown [3] also uses static and dynamic analyses to reco-
gnize design patterns. However, unlike our technique, Brown
does not combine the two analyses. Patterns are detected
using either static or dynamic analysis in isolation, which
misses opportunities of leveraging the analyses’ complemen-
tary strengths. Furthermore, the matching algorithms are
hard-coded, which makes their maintenance difficult.

Kemmerer and Vigna present NetSTAT [13], a tool for
network-based intrusion detection. Their approach models
dynamic behavior by Labeled Transition Systems. The mo-
dels encode intrusion scenarios based on network events.
NetSTAT collects network events and matches them against
the models to detect and prevent attacks in real time. Our
approach is similar in spirit to NetSTAT, but targets a
different problem and operates in a different context and
under different constraints (e.g., overhead is not an issue for
NetSTAT). In fact, we could probably leverage NetSTAT’s
infrastructure in our implementation.



8. CURRENT WORK AND CONCLUSIONS
We presented our technique for detecting design patterns

by combining static and dynamic analysis. We also discus-
sed a preliminary study that assesses the feasibility of the
approach by applying it to a real, non-trivial application.

Although the study’s results show that our approach can
be effective, we are currently working on a more extensive
evaluation. More precisely, we will apply our static analy-
sis on the whole Eclipse framework and use the results for
a dynamic analysis in the field. Our evaluation will levera-
ge software tomography [2] to split monitoring tasks across
many instances of the software and collect data by means
of light-weight instrumentation. We expect this approach to
work nicely because, in our context, monitoring tasks are
split by construction—each design-pattern candidate natu-
rally defines an independent monitoring task. A few of those
tasks can be assigned to each deployed instance of Eclipse.
When run in the field, these instances would then perform
the dynamic analysis remotely and send back the results.
Initially, we will have students in our research labs as users.

Another direction for future work is the use of our ap-
proach in different contexts. Our evaluation showed that
this approach can not only recover design patterns, but also
uncover “misuses” of design patterns with respect to their
intended protocol. In this context, we are also investigating
the application of our dynamic analysis in forward enginee-
ring. When designing interfaces for classes or components,
behavioral patterns define a protocol of use for the interface.
During the implementation phase, the program can then be
tested for its compliance with those protocols.

Finally, from an implementation standpoint, we currently
capture method call events using a tracing tool that levera-
ges the debugging interface of the Java Virtual Machine [9].
This approach requires the execution of the software by the
tracing tool which is inconvenient for evaluation in the field.
To address this issue, we will change our implementation to
gather method call events using instrumentation [11].

Why Might the Approach Fail?
Some of the design patterns presented in [6] comprise too
”little” behavior. For example, the Adapter or Proxy pat-
terns just delegate a method call to another object. Using
the dynamic analysis on such patterns would likely produce
too many false positives. Our approach may not be applica-
ble to patterns that have a too simple dynamic behavior.

The quality of our results depends on the representativen-
ess of the considered execution sequences—the use of se-
quences that cover only a small fraction of the program’s
behavior would generally result in unreliable results. Howe-
ver, applying the approach in the field, on deployed software
and on real executions, will help us address this issue. Mo-
reover, finding a representative set of executions is a general
problem for dynamic analysis, and our technique is affected
by it like any other dynamic-analysis based technique.

We have not yet assessed the performance of the analy-
sis in connection with the light-weight instrumentation and
execution in the field. Based on our experience in instru-
mentation and data collection [11], we do not expect per-
formance issues. If we do experience performance problems,
we may have to trade space efficiency for time efficiency and
analyze the collected event traces off-line.

Acknowledgments
This work is part of the Finite project funded by the Ger-
man Research Foundation (DFG), project-no. SCHA 745/2-
2. The work is also supported in part by NSF awards CCR-
0205422 and CCR-0306372 to Georgia Tech.

9. REFERENCES
[1] G. Antoniol, R. Fiutem, and L. Christoforetti. Design

Pattern Recovery in Object-Oriented Software. In Proc. of
the 6th International Workshop on Program
Comprehension, pages 153–160. IEEE Computer Society
Press, June 1998.

[2] J. Bowring, A. Orso, and M. J. Harrold. Monitoring
Deployed Software Using Software Tomography. In Proc. of
the 2002 Workshop on Program Analysis for Software
Tools and Engineering (PASTE), pages 2–9, Charleston,
SC, USA, November 2002. ACM Press.

[3] K. Brown. Design Reverse-Engineering and Automated
Design Pattern Detection in Smalltalk. Master’s thesis,
North Carolina State University, June 1996.

[4] Eclipse Foundation. The Eclipse Platform. Online at
http://www.eclipse.org. Last visited: January 2006.

[5] E. Gamma and K. Beck. Contributing to Eclipse:
Principles, Patterns, and Plug-Ins. Addison-Wesley,
Boston, MA, USA, 2003.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, Reading, MA, USA, 1995.

[7] D. Heuzeroth, S. Mandel, and W. Löwe. Generating Design
Pattern Detectors from Pattern Specifications. In Proc. of
the 18th IEEE International Conference on Automated
Software Engineering, pages 245–248, Montreal, Quebec,
Canada, October 2003. IEEE Computer Society Press.

[8] C. Krämer and L. Prechelt. Design Recovery by Automated
Search for Structural Design Patterns in Object-Oriented
Software. In Proc. of the 3rd Working Conference on
Reverse Engineering (WCRE), pages 208–215, Monterey,
CA, USA, November 1996. IEEE Computer Society Press.

[9] M. Meyer and L. Wendehals. Selective Tracing for
Dynamic Analyses. In Proc. of the 1st Workshop on
Program Comprehension through Dynamic Analysis
(PCODA) at 12th WCRE, Pittsburgh, PA, USA, volume
2005-12 of Technical Report, pages 33–37. Universiteit
Antwerpen, Belgium, November 2005.

[10] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh. Towards Pattern-Based Design Recovery. In
Proc. of the 24th International Conference on Software
Engineering (ICSE), Orlando, FL, USA, pages 338–348.
ACM Press, May 2002.

[11] A. Seesing and A. Orso. InsECTJ: A Generic
Instrumentation Framework for Collecting Dynamic
Information within Eclipse. In Proceedings of the eclipse
Technology eXchange (eTX) Workshop at OOPSLA 2005,
pages 49–53, San Diego, CA, USA, October 2005.

[12] University of Paderborn, Germany. Fujaba Tool Suite.
Online at http://www.fujaba.de/.

[13] G. Vigna and R. A. Kemmerer. NetSTAT: A
Network-based Intrusion Detection Approach. In Proc. of
the 14th Annual Computer Security Application
Conference, Scottsdale, AZ, USA, December 1998. IEEE
Computer Society Press.

[14] L. Wendehals. Improving Design Pattern Instance
Recognition by Dynamic Analysis. In Proc. of the ICSE
2003 Workshop on Dynamic Analysis (WODA), Portland,
OR, USA, pages 29–32, May 2003.

[15] L. Wendehals. Specifying Patterns for Dynamic Pattern
Instance Recognition with UML 2.0 Sequence Diagrams. In
Proc. of the 6th Workshop Software Reengineering, Bad
Honnef, Germany, Softwaretechnik-Trends, volume 24/2,
pages 63–64, May 2004.


