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based SLAM may overcome the problems encountered dur-
ing loop closures. A further step will be the application of
this scenario to acquire 3D maps of the environment.
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Abstract

Using off-the-shelf Global Positioning System (GPS)
units, we reconstruct buildings in 3D by exploiting the re-
duction in signal to noise ratio (SNR) that occurs when
the buildings obstruct the line-of-sight between the moving
units and the orbiting satellites. We measure the size and
height of skyscrapers as well as automatically constructing
a density map representing the location of multiple build-
ings in an urban landscape.

1. Introduction

3D data sets of major buildings in urban areas are pro-
duced and sold commercially. These data sets are con-
structed by using expensive aerial photography, purchasing
access to building permit and architectural plan databases,
and performing street level laser surveying. Perhaps the
most widely known use of these data sets are in GIS vi-
sualization tools such as the popular Google Earth. Here,
we present an inexpensive way to produce 3D building data
sets using only GPS signals.

Linked by the internet, groups of cooperating users have
already begun to share GPS data for the purpose of creating
free open-source maps [1]. The advantage of worn GPS en-
abled devices (e.g. mobile phones) is that the data collection
can include relatively fine features such as walkways be-
tween buildings, footpaths in parks, and entrances to build-
ings. Here, we demonstrate that the addition of 3D build-
ing data-sets to these already existing efforts would only
require a minimal amount of additional computation. Our
technique requires many trips to collect data, and we imag-
ine its main advantage is supporting such “crowdsourcing”
or open-source data collection system. However, a moti-
vated mobile phone service provider or vehicle fleet oper-
ator could anonymize the location information provided by
their users’ GPS-enabled mobile phones or vehicle naviga-
tion systems to create a proprietary 3D map that is updated
daily as its users move about a city.

In this paper we will demonstrate the feasibility of us-

(a) (b) (c)

Figure 1. SNR reduction due to the ob-
struction of a building (Green indicates low
SNR)(a)(b), Testing site(c).

ing GPS signals to determine the location, size, and height
of buildings. Our approach takes advantage of the fact that
when a building obstructs the line-of-sight between a satel-
lite and a GPS receiver, it causes a detectable drop in the sig-
nal to noise ratio (SNR). To demonstrate initial feasibility of
our technique, we present the following evidence. Figure 1
demonstrates the SNR values for a satellite as the researcher
walks along the side of the Bank of America (BOA) build-
ing, occluding the direct line-of-sight path to the satellites
with the building. We observe that the SNR drops dramat-
ically when the vector from the GPS receiver to the satel-
lite intersects the target building. These results demonstrate
that our assumption –occlusions between the GPS receiver
and satellite will lower the SNR– is valid. Our technique
combines data samples from many GPS positions to detect
buildings and determine their location, size, and height.

2. Data Collection and Feasibility

We initially collected data by walking at a slower than
normal pace around the Bank of America (BOA) Plaza in
Atlanta, GA, a 55 story skyscraper that is 1023 ft (311.8m)
tall. We used two different off-the-shelf consumer grade
GPS receivers: a Garmin GPSmap-60CSx and a Garmin
GPS 35-LVS. The devices were carried mounted on a
wooden support above a backpack. By walking a com-
plete circuit around the building on three days we collected
NMEA data samples at a rate of one sample per second
which we cropped to use exactly 4000 samples.

After developing our technique, we also collected data
from around a different Atlanta skyscraper, the One Atlantic
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Center (OAC) building, and verified that the same technique
worked with a second set of data gathered at a different loca-
tion. We gathered data on two days using the Garmin GPS
35-LVS (walking two circuits around the building on each
day) to reach 4000 samples. Unlike the slow pace of data
sampling for the Bank of America building, when circling
the One Atlantic Center building the researcher walked at a
medium to fast walking pace, and each circuit took just over
fifteen minutes.

Note that for a GPS receiver to achieve a positional fix,
it must have a reasonable signal from at least four satellites.
In many conditions, GPS receivers detect signals from more
than four satellites but do not use the data from satellites
with very weak or reflected signals. Our technique makes
use of these signals as an indication that the direct line-of-
sight path to that satellite may be occluded. Some signals
(to satellites that are on or near the horizon) have an eleva-
tion that is too low to be of use. We found that ignoring all
vectors with an elevation below 15 degrees improved our
results significantly. Our techniques make use of statisti-
cal averages, so minor errors in GPS position do not greatly
harm our results. Our GPS receivers did occasionally drift
from the ground-truth path of travel (see traces in Figure 4).

3 Detecting Multiple Buildings

In this section, we demonstrate a method to calculate a
density map of each site and decide the location of domi-
nant buildings within the testing site. Each NMEA sample
collected has multiple signals (each representing a vector to
a specific satellite’s elevation and azimuth from the current
position of the GPS receiver) that have different SNR val-
ues. We convert the vector data into a 2D density map by
projecting each vector onto the ground plane. Each vector
that has a weak SNR value (possibly due to an occlusion)
contributes to the values along a line on the ground plane.
Multiple “occluded” vectors passing through the same vol-
ume have lines that pass through the same space on the 2D
ground plane, and, similar to a Hough transform, probabil-
ity values combine at the true locations of occlusions while
noise values are randomly distributed.

The proceeding overview of our method ignores several
key points. Obviously, as we are looking for weak sig-
nals (signifying occlusions), we invert the SNR values when
adding it to the accumulation buffer. Also, SNRs vary be-
tween satellites based upon both their ID and distance. If we
add all signal vectors into the buffer directly, the results are
biased towards satellites that have overall weaker signals.

To compensate for satellites with different signal levels,
we first calculate the maximum, minimum and average SNR
values of all signals from each satellite in the data set. We
define Smax

j , Smin
j and Savg

j as the maximum, minimum
and average SNR respectively of the j th satellite. SNR val-

(a) (b) (c)

Figure 2. (a) BOA testing site, (b) generated
density map, (c) clustering to detect building
centers.

(a) (b) (c)

Figure 3. Estimating the region of the BOA
building using accumulation of multiple oc-
cluded vectors.

ues of individual vectors are labeled as Vij which is the SNR
at the ith sample along the traveled path to the jth satellite.
Note that all vectors from the ith position share the same
real-world origin i|x,y , which is determined by the position
of the GPS receiver in real-world coordinates. These x, y
coordinates, combined with the vectors’ azimuth and eleva-
tion, determine the projection of the vector into the accu-
mulation buffer.

At every point in the accumulation buffer, where the
vector is projected onto the ground plane, we add the value
L(i, j). It is calculated from all samples that fall below the
Savg

j as follows:

L(i, j) =

{ ∣∣∣ Smax
j −Vij

Smax
j

−Smin
j

∣∣∣ , if Vij ≤ Savg
j

0 , if Vij > Savg
j

Once we process all signals over every i and j, we nor-
malize the accumulation buffer entries from 0 to 1. Now,
the accumulation buffer becomes the density map.

Figure 2 shows an overhead view of the Bank of America
testing site and the density map generated using our tech-
nique. Buildings higher than five stories are marked with
green lines in Figure 2(a). The density map shows all five
tall buildings with higher than 50% probability. Figure 2(c)
shows the clustered result. We applied the mean shift al-
gorithm [3] to find the peak points. These clusters identify
candidate regions where buildings are likely to exist. We
use the dominant cluster (the blue cluster, which has proba-
bilities larger than 60% on average) as the target building to
reconstruct.
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(a) (b)

Figure 4. Density map of the OAC site us-
ing 4000 samples (red dots) (a), Compared
to map imagery (blue dots are sample posi-
tions) (b).

4 Building Reconstruction

In this section, we will demonstrate that by using mul-
tiple signal vectors passing near and through the dominant
cluster target region we can determine the approximate 3D
size and shape of the building. As an example of how we
estimate the building region, Figure 3(a) shows ”occluded”
vectors (in green) from a single satellite that pass through
a dominant cluster. First we select all vectors that pass
through the cluster. Of these vectors, the occluded vec-
tors are those whose SNR falls under a manually selected
threshold. By combining all occluded vectors from multi-
ple satellites (Figure 3(b)) we can determine the 2D region
of the building. We determine our final building region es-
timate by selecting the top 10% of the accumulation buffer.

Our result, denoted in red in Figure 3(c), shows our
method’s estimate of the BOA building’s region. The
ground truth region is denoted with yellow lines. In this
result the difference between the center point of the ground
truth region and that of our estimate is only 12 ft (4m). To
evaluate our method quantitatively, we calculated the error
between our results and ground truth by measuring area dif-
ference.

Although visually our result is quite impressive, the ac-
tual area difference reports both false-positive regions out-
side of the ground truth region, and false-negative areas in-
side of the ground truth region. This result still represents
a 23% error in region match. We will analyze the effect
that using fewer data samples has on estimation accuracy in
Section 5.

Once we estimate the region of a building we can gen-
erate its volume based on the collected vectors and their
SNRs. We reconstruct a 3D model of the building by us-
ing a grid-based voxelization algorithm [8]. As shown in
Figure 5, we render voxels that intersect with an occluded
vector when they pass above the estimated region.

So far our work has used the law of large numbers to
average data samples, removing noise and reducing the ef-

Centroid Region Real Estimated Height
Site dist(ft) err(%) height(ft) height(ft) err(%)

BOA 7.398 22.73 1023 862.80 15.65
OAC 22.59 22.20 820 705.32 13.98

Table 1. Error results using 4000 samples
from each site.

800 samples 2400 samples 4000 Samples

Figure 5. Voxel rendering as the number of
data samples increases.

fect of outliers. When using individual vectors to vox-
elize buildings, near-vertical outliers adversely affect the
height estimate. To avoid this problem, we exclude out-
liers near the top of the building by checking for agreement
between at least 10 vectors at each 30 ft increment. This
procedure tends to underestimate the height of the building
slightly, however, not removing outliers sometimes resulted
in a massive height over-estimate. Please view our technical
report [7] for more details about our technique.

5 Results and Error Analysis

Our approach produces reasonably accurate results using
only 4000 sample points (approximately sixty-six minutes
of data collection). Table 1 shows the final result using 4000
samples for both sites. We have determined the building
centroids to within 7 and 23 ft when compared to commer-
cially available data sets. Region error approaches 22%, and
as shown in Figure 3(c), the visual region is quite close to
our comparison data set.

Although the accuracy of building reconstruction may be
improved by the use of more sophisticated radio-wave prop-
agation models [10] or better algorithms, it does not appear
that our current method can be improved upon by collect-
ing more data samples. The graphs in Figure 6 show the
behavior of our error metrics with respect to the number of
samples collected. The results clearly show that collecting
more data samples markedly improves the results from zero
to 1000 samples. An additional 1000 samples (2000 in to-
tal) can double the accuracy. Two-thousand samples can be
collected in 33 minutes with a consumer GPS device, and in
our case, consisted of two circuits around the surveyed area.
By the time 2000 samples are used, most results have con-
verged, and additional data produces diminishing returns.

Obviously, the geographical coverage of data samples
also plays an important role. In our data collection, 1000
samples corresponds to a complete circuit by the researcher.
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Figure 6. Normalized error metrics as the
number of samples increase.

It may be that a smaller number of samples equally spaced
along a complete circuit of the area/building under survey
will provide equivalent results. Our density map, region
estimation, and voxel filling approaches all require widely
spaced data around the area/building under examination.

6 Related Work

GPS signals have a long history of being used to detect
user motion and make predictions of their goals and context.
Additionally, the lack of GPS signals has been used to infer
the existence (but not location or size) of tall buildings [6]
and as an indoor context detector [2].

Volumetric ray-tracing techniques similar to our ap-
proach but using ultrasonics have been used on a small scale
with ceiling mounted ultrasonic transmitters and a mobile
robot based receiver to build a room-scale environmental
model [5]. Volume rendering using data from CT scanners
and ultra-sound is widely studied in computer graphics and
diverse research efforts already have been proposed [4].

In the only similar work using GPS signals for build-
ing detection, Swinford experimented with using non-
availability of expected GPS signals to suggest interven-
ing obstacles in the environment. However, this work used
GPS data only to add height data to building outlines de-
rived from cartographic maps. Our approach uses only GPS
data to detect and measure buildings and does not rely on
pre-existing cartographic data. Additionally, Swinford did
not present measurements of the accuracy he obtained [9].

7 Conclusion

We have shown that a standard GPS receiver can de-
tect and localize buildings by measuring reduction of SNR
caused when an object comes between the receiver and one
or more satellites. We introduced an approach that can es-

timate the region of a target building and reconstruct its lo-
cation, volume and height using only GPS signals. Our ap-
proach generated reasonable estimates with around 14-22%
errors in region and height. We also demonstrated a method
to calculate a density map that predicts where buildings ex-
ist in a given area.

This approach is well suited for swarm or crowd-
sourcing applications, where multiple cooperative agents
roam throughout a space sharing GPS data to generate an
overview of buildings and other large objects. Even though
our approach is less accurate than carefully calibrated com-
puter vision or laser scanning, it has the advantage that GPS
receivers are passive, do not require active aiming, automat-
ically self-calibrate, and are inexpensive.

Additional motivation and results including larger fig-
ures are available in the associated technical report [7].
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