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Abstract

Inspired by the Defense Advanced Research Projects
Agency’s (DARPA) recent successes in speech recognition,
we introduce a new task for sign language recognition re-
search: a mobile one-way American Sign Language trans-
lator. We argue that such a device should be feasible in the
next few years, may provide immediate practical benefits for
the Deaf community, and leads to a sustainable program of
research comparable to early speech recognition efforts. We
ground our efforts in a particular scenario, that of a Deaf
individual seeking an apartment and discuss the system re-
quirements and our interface for this scenario. Finally, we
describe initial recognition results of 94% accuracy on a
141 sign vocabulary signed in phrases of fours signs using
a one-handed glove-based system and hidden Markov mod-
els (HMMs).

1. Introduction

Twenty—eight million Deaf and hard—of-hearing individ-
uals form the largest disabled group in the United States.
Everyday communication with the hearing population poses
a major challenge to those with hearing loss. Most hear-
ing people do not know sign language and know very little
about deafness in general. For example, most hearing peo-
ple do not know how to communicate in spoken language
with a Deaf or hard—of—hearing person who can speak and
read lips (e.g. that they should not turn their head or cover
their mouths). Although many Deaf people lead success-
ful and productive lives, overall, this communication bar-
rier can have detrimental effects on many aspects of their
lives. Not only can person—to—person communication bar-
riers impede everyday life (e.g. at the bank, post office, or
grocery store), but essential information about health, em-
ployment, and legal matters is often inaccessible.
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Common current options for alternative communication
modes include cochlear implants, writing, and interpreters.
Cochlear implants are not a viable option for all Deaf peo-
ple. In fact, only 5.3% of the deaf population in America has
a cochlear implant, and of those, 10.1% of these individu-
als no longer use their implant (complaints cited are similar
to those of hearing aides) [2]. The ambiguity of handwrit-
ing and slowness of writing makes it a very frustrating mode
of communication. Conversational rates (both spoken and
signed) range from between 175 to 225 WPM, while hand-
writing rates range from 15 to 25 WPM [5]. In addition,
English is often the Deaf person’s second language, Ameri-
can Sign Language (ASL) being their first. Although many
Deaf people achieve a high level of proficiency in English,
not all Deaf people can communicate well through written
language. Since the average Deaf adult reads at approxi-
mately a fourth grade level [1, 9], communication through
written English can be too slow and often is not preferred.

Interpreters are commonly used within the Deaf com-
munity, but interpreters can charge high hourly rates and
be awkward in situations where privacy is of high concern,
such as at a doctor or lawyer’s office. Interpreters for Deaf
people with specialized vocabularies, such as a PhD in Me-
chanical Engineering, can be difficult to find and very ex-
pensive. It can also be difficult to find an interpreter in un-
foreseen emergencies where timely communication is ex-
tremely important, such as car accidents.

2. The One-Way Translator

Our goal is to offer a sign recognition system as another
choice of augmenting communication between the Deaf and
hearing communities. We seek to implement a mobile, self—
contained system that a Deaf user could use as a limited in-
terpreter. This wearable system would capture and recog-
nize the Deaf user’s signing. The user could then cue the



system to generate speech for the hearing listener. However,
this idea is complicated with the problem of machine trans-
lation of ASL to English. To help constrain the problem, we
assume the signer will use Contact Sign.

2.1. Language Modeling

American Sign Language (ASL) grammar is signifi-
cantly different than English grammar, and many hearing
students of ASL have difficulty with its complex features
if they learn it after early childhood. Thus, native sign-
ers (someone who has learned from birth and is fully flu-
ent) will often use contact signing, which uses many of the
grammatical features of English and less of ASL, when en-
countering hearing signers [11]. By using Contact Sign, we
reduce the complexity of the language set we are seeking to
recognize, while maintaining a language set that is already
familiar to the Deaf community as a tool for when commu-
nicating with the hearing.

We choose to further constrain the problem by lever-
aging the idea of “formulaic” language. Formulaic lan-
guage is language that is ritualized or prefabricated. It in-
cludes routines, idioms, set phrases, rhymes, prayers and
proverbs[16]. The DARPA one—way speech translation sys-
tems used by peace—keeping troops, maritime law enforce-
ment, and doctors uses this idea to ask questions designed
for specific responses. The system provides translations of
predetermined phrases designed to provide information or
elicit feedback. Informative phrases include sentences like
“I am here to help you” and “The doctor will be here soon”.
Requests and questions include “Please raise your hand if
you understand me”, “Is anybody hurt?” and “Are you car-
rying a weapon?”’[12]. Requests and questions are limited to
those whose answers involve simple gestures, such as nod-
ding yes/no, pointing, or raising a number of fingers (e.g.
“How many children do you have?”).

Cox describes a system, TESSA, that combines formu-
laic language with speech recognition and semantic phrase
analysis to generate phrases in British Sign Language for
Deaf customers at the post office [4]. A set of formulaic lan-
guage phrases were compiled from observed interactions at
the post office. These phrases were then translated into sign
and recorded on video. The postal employee speaks to a
system that performs speech recognition and uses semantic
mapping to choose the most likely phrase. The clerk may
say “Interest in the UK is tax free”, and the system would
cue the phrase “All interest is free of UK income tax” which
would then reference the video of a signed translation for
the Deaf customer to see.

The use of formulaic language allows for a reduction in
vocabulary size and allows for better error handling. Cox
showed a progressive decrease in error rates for the lan-
guage processor, by allowing a user to select from larger

N best lists: 1-best was 9.7%, 3—best was 3.8% and 5-best
was 2.8% [4]. The application of the phrase selection op-
tions also resulted in a significant increase in user satisfac-
tion with the system.

One of the reasons for TESSA’s success was its limited
domain. After consulting with members of the Deaf com-
munity, several scenarios were suggested where the one—
way ASL to English translator may be beneficial: doc-
tor’s/lawyer’s office, emergency situations such as car ac-
cidents, navigation in airports, and shopping for an apart-
ment. We chose the last scenario due to its interactive na-
ture and potentially limited vocabulary.

The apartment-hunting scenario is similar to the speech
recognition community’s Airline Travel Information Ser-
vice (ATIS) scenario [7] where users would try to solve spe-
cific airline travel problems using speech access to a com-
puterized database. Early versions of ATIS were actually
“Wizard of Oz” studies where a human would be substi-
tuted for the computer to respond to the user’s requests.
In this way the experimenters could elicit “natural” speech
from the subjects to determine what vocabulary should be
included in the the actual speech recognition system. Thus,
with a vocabulary of a few thousand words tuned to the spe-
cific scenario, the ATIS speech recognition system could
give the user the impression of a unlimited vocabulary. We
intend to perform similar studies with members of the Deaf
community to determine the appropriate vocabulary for the
apartment-hunting task.

2.2. Interface

In order to begin exploring the feasibility of a one-way
translator, we are working on both the interface as well as
the recognition components simultaneously. A preliminary
interface is necessary to perform Wizard of Oz studies and
elicit natural sign in the context of the apartment-hunting
task. In addition, the preliminary interface generates use-
ful feedback from the Deaf community.

Figure 1 shows an early prototype of the one-way trans-
lator. While the system shown is based on computer vision
only (note the camera in the hat), the image demonstrates
the head-up display used to provide a visual interface to the
user while he signs. An early finding from interacting with
the Deaf community is that the display should be mounted
on the non-dominant-hand side of the signer to avoid colli-
sion during signs made around the face.

Figures 2-5 demonstrate a typical progression of the cur-
rent interface during translation. Note that the interface is
being designed for a hybrid computer vision and accelerom-
eter approach where the signer wears a camera in a hat
aimed at his or her hands, as in Figure 1. Thus, a video
image from the camera is included in the interface so that
the signer knows when the system is successfully tracking



Figure 1. Prototype one-way translator (vi-
sion system only shown). The head-up dis-
play provides a 640x480 color interface for
the signer.

his hands. Figure 2 shows the initial screen for the transla-
tor. To start the system, the signer clicks a button mounted
on his wrist. Such an interface may be implemented as part
of a Bluetooth enabled wristwatch. At present, the inter-
face is emulated with the buttons of a small optical mouse.
As the user signs (Figure 3), the system collects data un-
til the user clicks the wrist button again to indicate the end
of the phrase. The user can also click a second button on the
wrist to re-start the process. After clicking the stop sign-
ing button, the system recognizes the signed phrase, deter-
mines the most similar phrases in English from its phrase
list, and allows the signer to select between them using a
wrist mounted jog-dial (Figure 4). Note that these phrases
could be displayed as a series of miniature sign language
icons for signers completely unfamiliar with written En-
glish. Once the signer selects the closest phrase, the sys-
tem speaks the phrase, showing its progress in bar as shown
in Figure 5. The signer can interrupt the system or repeat
the English phrase as desired.

While this interface is preliminary, it has been used for
a simple demonstration recognizer combining computer vi-
sion and wrist-mounted accelerometers. Testing with native
signers is necessary to determine if the system is acceptable
to the community and if it can be used to reach conversa-
tional speeds. However, initial reaction has been positive.

3. Sign Language Recognition

In the past, we have demonstrated a HMM based sign
language recognition system limited to a forty word vocab-
ulary and a controlled lighting environment [13]. The user

Sian Signing Fedo

Figure 2. Initial screen for the translator. To
start the system, the signer clicks a button
mounted on the wrist.

N— T =
Siop Signing Stan Over

Figure 3. The system collects data as the
user signs a phrase.

wore a hat-mounted camera to capture their signing. Data
sets were taken in a controlled laboratory environment with
standard lighting and background. The images were then
processed on a desktop system and recognized in real-time.
The system was trained on a 40 word vocabulary consisting
of samples of verbs, nouns, adjectives, and pronouns and
reached accuracy of 97.8% on an independent test set us-
ing a rule-based grammar.

However, this system was more appropriate to labora-
tory conditions than to a mobile environment. More re-
cently, we have shown that combining accelerometer-based
sensing with a computer vision hand-tracking system may
lead to better results in the harsh situations typical of mo-
bile sensing [3]. The systems are complementary in that the
hat-based vision system tracks the hands in a plane paral-
lel to the ground while the wrist-worn accelerometers, act-
ing as tilt sensors due to the acceleration due to gravity, pro-



Where is he master bathraom?
Hone rany bediaoms are there in this apartment?
Isthere a laundry raom?

Ars there tnnis oaurs?

Isthere exrra storage?

Do you have elevatars?

Stan Signing Start Over

Figure 4. The signer selects among potential
phrase translations.

How many bathaams are there in this aparment?

Start Sigring Repeat Phrase

Figure 5. The translator speaks the selected
English phrase.

vide information as to the angle of the hands in the vertical
plane.

The Acceleglove (see Figure 6) provides another ap-
proach to mobile sign recognition. Accelerometers on the
individual fingers, wrist, and upper arm provide orientation
and acceleration information with respect to each other and
potentiometers at the elbow and shoulder provide informa-
tion as to the hand’s absolute position with respect to the
body. In previous work [8], the Acceleglove system was
shown to recognize 176 signs in isolation using decision
trees. Many signs are taught with a beginning hand shape, a
movement, and an ending hand shape. With the Acceleglove
system, the user makes the initial hand shape, and the rec-
ognizer shows which signs correspond to that hand shape.
The system eliminates signs interactively as the user pro-
ceeds with the movement and end hand shape.

In this paper, we combine the Acceleglove hardware with
the Georgia Tech Gesture Toolkit (GT2K) [15] to attempt

Figure 6. The Acceleglove. Five micro two-
axis accelerometers mounted on rings read
finger flexion. Two more in the back of the
palm measure orientation. Not shown are two
potentiometers which measure bend at the
shoulder and elbow and another two-axis ac-
celerometer which measures the upper arm
angles.

phrase-level recognition with a 141 sign vocabulary. Our
goal is to prove the feasibility of a phrase level ASL one-
way translator using a mobile apparatus. A high word accu-
racy in a continuous sign recognition task with this system
would suggest that a mobile phrase level translator is possi-
ble.

4. Recognition Experiment

Acquiring data with which to train our system began
with choosing a set of signs to recognize. Since the Accele-
glove was already part of an existing recognition system,
a subset of signs was chosen from the list of signs under-
stood by the original system. These signs were then orga-
nized into parts of speech groups of noun, pronoun, adjec-
tive, and verb for a total of 141 signs. Using a fairly rigid
grammar of “noun/pronoun verb adjective noun”, a list of
665 sentences was generated, ensuring that each sign ap-
peared in the data at least 10 times.

To capture the sign data, the original Acceleglove recog-
nition program was altered to include user prompts and to
log the data from the glove’s sensors. The signer sat in front
of the capturing computer at a fixed distance, wearing the
glove on his right arm, and holding in his left a pair of
buttons attached to the glove, with both arms on the arm-
rests of the chair. The program displayed the sentence to be
signed, and when the signer was ready, he would press one
of the buttons to begin capture. At the end of the sentence,
the signer would return his arms to the armrests, and press
the other button to signify that the sentence had ended. The
computer would then save the captured data to a numbered
file, and increment to the next sentence in the list. This pro-



Grammar Testing on training | Indep. test set
part—of—speech 98.05% 94.47%
unrestricted 94.19% 87.63%

Table 1. Sign accuracies based on a part—of—
speech and an unrestricted grammar.

cess was repeated for all 665 sentences, with a camera film-
ing the process to aid in the identifying incorrect signs.

Training of the HMM-based recognizer was done with
GT2K [15]. After filtering the data to account for irreg-
ular frame-rates from the glove, the data was labeled us-
ing the sentence list. To minimize the impact of the signer’s
arms beginning and ending at the chair armrests, the “signs”
start—sentence and end—sentence were added to the recog-
nition list. A pair of grammars was created. The first fol-
lows the same parts of speech based form used to generate
the sentence list, surrounded by the start—sentence and end-
sentence signs. The second was a more unrestricted gram-
mar, looking only for the start—sentence sign, followed by
any number of any of the signs in the vocabulary, followed
by the end—sentence sign. A set of training and testing sets
were created using a randomly selected 90% of the data
for training and the remaining 10% for model validation.
The model was then trained with the automatic trainer. Sign
boundaries were re-estimated over several iterations to en-
sure better training. After training, the models were tested
against the remaining 10% of the sentences. Recognition ac-
curacy was determined, with the standard penalties for sub-
stitutions, insertions, and deletions. This process of training
and testing was repeated 21 times, yielding an overall accu-
racy based on the average of each of the 21 sets. The models
created were each tested with both the strict and the unre-
stricted grammars, resulting in accuracy ratings of 94.47%
average for the strict grammar and 87.63% average for the
unrestricted. An additional model was created, using all of
the data for training and all of the data again for testing.
Accuracy ratings for this testing—on—training model were
94.19% for the unrestricted grammar, 98.05% for the strict
(see Table 1).

Accuracy was determined following the standard speech
recognition formula of

(N—-D-8-1)

Acc =
cc N

x 100%

where N is the number of signs, D is the number of dele-
tions, I is the number of insertions, and S is the number of
substitutions. Note that only substitutions are possible with
the strict part—of—speech grammar.

5. Discussion and Future Work

The results above are very promising. HMM recognition
systems tend to scale logarithmically with the size of the
vocabulary in both speed and accuracy. Since ASL has ap-
proximately 6000 commonly used signs, the pattern recog-
nition framework of this project should be scalable to the
larger task. In addition, there is a significant amount of work
in the spoken language community for applying context,
grammar, and natural language frameworks to HMM rec-
ognizers. Hopefully, this prior work will allow rapid adop-
tion of such framework for ASL. Even so, ASL is signifi-
cantly different from spoken language in that it allows spa-
tial memory and spatial comparisons. In addition, face and
body gestures communicate a significant amount of infor-
mation in ASL. Thus, we expect this field to be a challenge
for many years in the future.

The results suggest the feasibility of our goal of a phrase
level translator. A phrase level translator with the interface
described previously has significant tolerance to individual
sign errors. The system simply needs to recognize enough
of the signs so that the closest phrase is returned in the top
few choices for the user to select. Hopefully, the planned
Wizard of Oz studies will show that a relatively low num-
ber of phrases and signs are necessary to handle most situ-
ations in the apartment-hunting scenario. However, as soon
as this sign and phrase lexicon is gathered, the system will
be tested against these phrases as signed by multiple na-
tive signers. These experiments will help to further refine
the models as well as to produce an initial automatic recog-
nition system that can be used to test the translator in situ.
As the system improves, more signers can experiment with
the system, and a larger corpus develops. If the system is
successful with the apartment-hunting scenario, we hope to
expand the translator’s scope to other scenarios of concern
to the Deaf community. In this way we hope to copy the
model of the speech recognition community which lever-
aged its success in the ATIS task to more difficult scenarios
such as taking dictation.

We also expect to experiment with the translator appa-
ratus. We wish to combine the Acceleglove system with
a computer vision system to determine which features and
signs each system can best recognize. In addition, we will
discuss the various wearable hardware options with mem-
bers of the Deaf community to determine which options are
most desirable. Finally, we will improve the translator in-
terface as we gain more experience in making practical sys-
tems with the community.

6. Related Work

Following a similar path to early speech recognition,
many early attempts at machine sign language recognition



concentrated on isolated signs or fingerspelling. Space does
not permit a thorough review, but, in general, most cur-
rent systems rely on instrumented gloves or a desktop-based
camera system. Before 1995 most systems employed a form
of template matching or neural nets for recognition; how-
ever, many current systems now employ HMMs.

In 1998, Liang and Ouhyoung’s work in Taiwanese Sign
Language [10] showed very encouraging results with a
glove-based recognizer. This HMM-based system recog-
nizes 51 postures, 8 orientations, and 8 motion primitives.
When combined, these constituents can form a lexicon
of 250 words which can be continuously recognized in
real-time with 90.5% accuracy. At ICCV’°98, Vogler and
Metaxas described a desk-based 3D camera system that
achieves 89.9% word accuracy on a 53 word lexicon [14].
Since the vision process is computationally expensive in
this implementation, an electromagnetic tracker is used in-
terchangeably with the three mutually orthogonal calibrated
cameras for collecting experimental data. Most recently at
ICMI2003, Fang, Gao, and Zhao discussed a decision tree
and SOFM/HMM recognizer that achieved approximately
91% accuracy on isolated Chinese Sign Language signs in a
5113-sign vocabulary [6]. This system is restricted to desk-
based use as it employs two fully instrumented Cybergloves
and three Polhemus six degree of freedom trackers.

7. Conclusion

We have introduced the concept of a one-way sign to
spoken translator as a suitable task for sign language recog-
nition research. We have demonstrated a preliminary sys-
tem for phrase-level sign recognition with a per sign accu-
racy of 94%, suggesting that sufficiently large vocabularies
and high enough accuracies are possible for a mobile one-
way American Sign Language to English translator in a lim-
ited domain. Finally, we have discussed an interface design
for the one-way translator that puts the signer-in-the-loop
for selecting and verifying the appropriate phrase transla-
tion.
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