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Abstract

Video-based recognition and prediction of a temporally ex-
tended activity can benefit from a detailed description of
high-level expectations about the activity. Stochastic gram-
mars allow for an efficient representation of such expecta-
tions and are well-suited for the specification of temporally
well-ordered activities. In this paper, we extend stochastic
grammars by adding event parameters, state checks, and
sensitivity to an internal scene model. We present an imple-
mented system that uses human-specified grammars to rec-
ognize a person performing the Towers of Hanoi task from a
video sequence by analyzing object interaction events. Ex-
perimental results from several videos show robust recogni-
tion of the full task and its constituent sub-tasks even though
no appearance models of the objects in the video are pro-
vided. These experiments include videos of the task per-
formed with different shaped objects and with distracting
and extraneous interactions.

1. Introduction
Humans often have strong prior expectations concerning
the constituent actions of an activity. For example, one
would expect a tennis player to hit a ball after it bounces
on her side, and a cook will almost always stir his batter
after adding the ingredients. In this paper, we present our
approach for supplying and leveraging this kind of knowl-
edge to support machine understanding and recognition of
longer-term human activities. We employ stochastic gram-
mars to represent such expectations and enhance this rep-
resentation by adding event parameters, state checks, and
sensitivity to an internal scene model.

Certainly, a full theory and specification of all human
behaviors is well beyond the capabilities of current knowl-
edge representation and reasoning systems. Specifying the
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relevant knowledge for a specific task in a reasonably con-
strained environment, however, is quite feasible. In such
situations, an intelligent system can benefit from the con-
straints provided by the expectations associated with the
task. These benefits include enhanced robustness, improved
error recovery, and the capability to make predictions about
future behavior at multiple levels of abstraction.

We present an implemented system capable of analyzing
video of a person performing complicated tasks. At present,
we focus on the Towers of Hanoi task since it provides a
reasonably complex, non-deterministic task that still fol-
lows clear rules. Our approach uses manually-specified ex-
pectations in the form of a parameterized stochastic gram-
mar in order to automatically generate a detailed annota-
tion of the video. This means that the system can iden-
tify when the Towers of Hanoi task occurs and when each
sub-activity (e.g.,movement of a disc from the first to the
third peg) occurs. We present several experiments that show
our system to be robust to image noise, imperfect fore-
ground/background segmentation, distracting actions, and
occlusions. Finally, we explore the boundaries implied by
the assumptions of our system, discuss possible enhance-
ments to our analysis algorithm, and outline future research
directions for activity specification and recognition.

2. Related Work

Recently, there has been significant progress in the area of
recognizing activities in video for surveillance, monitoring,
and data annotation tasks. While much work on activity
recognition research has focused on short-term, motion-
based activities such as gesture, pose, and isolated action
recognition (see [13] for examples of such contributions),
there has also been progress in the recognition of extended
sequences of actions.

A large body of work in the recognition of human ac-
tivity has relied on recovering a sequence of states using
stochastic, model-based approaches. For example, hidden
Markov models (HMMs) have become very popular for rec-



ognizing gestures [1, 12], sign language [17, 15], and ac-
tions [9, 2]. It has been shown, however, that the recog-
nition of extended activities with predefined context or in-
herent semantics is difficult to accomplish with a purely
probabilistic method unless augmented by additional struc-
ture. Examples of such activities include parking cars or
dropping people off at the curb [7, 10], longer-term office
and cooking activities [9], airborne surveillance tasks [3],
observing simple repair tasks [2], and American Sign Lan-
guage recognition [15].

Previous research has explored a variety of represen-
tations other than stochastic, state-based models includ-
ing event-based predicate logic [4], deterministic action
grammars [2], stochastic context-free grammars (SCFGs)
[7, 10], past-now-future (PNF) networks [11], and per-
frame correspondence graphs [8]. In addition, Fern and
Siskind,et al. [4, 14] present a major departure from the
motion and state-based paradigm by basing analysis on
force dynamic interactions.

Stochastic grammars with context-sensitivity to an inter-
nal scene model are used in our system. This choice re-
flects an assessment of several relevant factors including (a)
the temporal complexity of tasks like the Towers of Hanoi
game, cooking a specific recipe, and monitoring complex
medical regiments (e.g.,blood glucose monitoring), (b) the
constraints imposed by the output of our segmentation and
tracking system (discussed in detail in section 3), and (c)
the ease of manually developing the activity specification.

The sub-tasks involved in solving the Towers of Hanoi
problem are well-ordered (i.e., no sub-tasks at the same
level of abstraction will temporally overlap) but non-
deterministic. This means that representations that allow
more complex temporal structures, such as PNF or full in-
terval algebra networks [11], are unnecessary for this do-
main. Furthermore, the uncertainty that arises due to the
existence of multiple, valid options during certain parts
of the activity suggest the need for probabilistic analysis.
Moore’s experiments [10] dealing with the recognition and
parsing of blackjack show that stochastic grammars are well
suited for this task. Ivanov and Bobick [7] discuss the com-
putational equivalence of state-based event networks and
context-free grammars when operating on finite (and thus
enumerable) activities, but show that many common tem-
poral structures are far easier to express within a grammar.
Finally, Möller and Posch [8] and Fernet al.[4] both present
sophisticated recognition systems for short actions, but do
not explore the analysis of longer-term activities.

Systems that employ grammatical structure must even-
tually transform their input into the symbols that compose
the alphabet of the grammar. In traditional parsing, this is
accomplished directly by a lexer, and in typical speech and
sign language recognition systems (e.g., [6, 15]) segmen-
tation at one level occurs implicitly during Viterbi decod-
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Figure 1:System overview: The system analyzes activities
in a video and generates detailed annotations.

ing while each HMM provides a probabilistic symbol for a
higher-level grammar.

In our domain, however, the visual input to the system is
not easily transformed into a symbol stream. This is largely
due to the absence of a well-defined basic unit of motion
analysis, analogous to the phoneme in speech. Without
such a basic unit, the development of an accepted prepro-
cessing stage, similar in purpose to the widely used Mel-
Frequency Cepstral Coefficients (MFCCs) in speech pro-
cessing, becomes very difficult. As an alternative, our ap-
proach extracts symbols based on object interactions using
an event-based paradigm [10, 7, 2, 8]. The details of this
transformation, along with other important aspects of the
system, are discussed in the following section.

3. System Overview
Although a holistic approach to the analysis of each object’s
behavior is possible, the computational complexity and req-
uisite training data is prohibitive. Instead, our system relies
on interactions between blobs, which represent the objects
in the scene. Three assumptions underlie our low-level vi-
sion system for blob extraction:

1. The system willnot, in general, be able to segment the
objects from each other in a static scene.

2. The system willnot, in general, be able to recognize
an object in a static scene, even if it is isolated and
properly segmented.

3. The systemwill , however, be able to distinguish be-
tween a foreground object and the background, even if
the foreground blob represents several objects.

The consequence of these assumptions is that our system is
not dependent on the performance of any particular appear-
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Figure 2: Distinct objects will appear as a single, merged
blob whenever one object partially occludes the other

ance modeling or object recognition technique. Our frame-
work, therefore, is designed to be independent of lighting
or other incidental appearance changes of the objects and
should perform equally well with easily discernable or very
similar objects (e.g.,compare the objects in Figures 7 and
8) so long as the foreground/background segmentation as-
sumption is not violated. Finally, it means that all objects
must be identified based on how theybehaverather than
how theyappear.

Briefly, our analysis system proceeds as follows:

1. Low-level blobs are extracted from the video.

2. Multiple, hypothetical interpretations are generated for
each frame.

3. Inconsistent hypotheses are pruned.

4. Domain-general events are generated from the blob in-
teractions for each frame.

5. The events are transformed into domain-specific sym-
bols by the symbol generator and passed to the parser.

6. All valid parses are generated; each represents a differ-
ent interpretation of the activity.

7. Each parse generates a private internal model used to
detect future inconsistencies.

8. The most likely consistent parse is chosen as the cor-
rect interpretation of the activity.

In the following subsections we detail these steps and
discuss how they interact in our analysis algorithm. Figure
1 provides a schematic outline of the system.

Object Detection: A stationary camera captures a visual
record of each activity. Relevant objects are detected by
finding connected groups of foreground pixels labeled by a
background subtraction algorithm based on a simplified ver-
sion of the system by Horprasert,et al. [5]. This algorithm
provides consistent results even in the presence of lighting
intensity changes caused by shadows cast by either the hu-
man participant or the objects.

Blob Labelling and Tracking: Each blob found during
the object detection phase can represent zero, one, or sev-
eral actual objects (see Figure 2). Due to this ambiguity and
our assumption that static, appearance-based classification
is not generally possible, a “blob explanation” is created
that maps blobs to objects. A specialnoiselabel is used to
mark a blob that does not correspond to a real object (see
Figure 7),distracter is used for a blob representing a real
object that is not actually part of the activity (see Figures8
and 9), andhandis used to mark the blob corresponding to
the participant. All other blob labels are task-dependent
and, for the three-disc Towers of Hanoi task, are simply
Block A, Block B, andBlock C, representing each disc in
ascending size order.

Since it is not possible to accurately label the blobs from
a single frame, or even from a short sequence, our system
maintains multiple “frame explanations” for each ambigu-
ous time step. These frame explanations are composed of
several blob explanations, which specify the identity and
origin of each blob. Each frame explanation represents a
different hypothetical interpretation of the scene. As the
activity plays out, simple heuristics and probabilistic mea-
sures eliminate and rank the hypotheses. For example, only
thehandis self-propelled, so if a hypothesis contains a blob
labelled asBlock Aand that blob begins to move indepen-
dently, then the hypothesis will become inconsistent and
thus be pruned.

Probabilistic penalties help rank all of the self-consistent
label hypotheses. Such penalties may arise heuristically
(e.g.,a hand label is preferred to anoise label) or due to
tracking. Tracking in our system is handled using an ex-
planation based approach. The origin and disappearance of
each blob in every frame is explained using the eventsen-
ter, exit, merge, split, andtracked. Consistency is enforced
through time (e.g.,a trackedobject can not change identity)
and within a single frame (e.g.,a blob can notmergewith it-
self). The likelihood of each hypothesized explanation is in-
fluenced by a fixed penalty associated with the explanation
and by the similarity between the blobs representing each
trackedobject. This similarity is computed as a weighted
distance in a feature space composed of typical blob fea-
tures such as low-order moments, mean color, bounding-
box coordinates, and color variance.

Symbol Generation: Although domain-general events
form the basis of our activity specifications, a domain-
specific module transforms these events into context-
sensitive symbols corresponding to the terminals of the cur-
rent activity grammar. For example, in the Towers of Hanoi
task,mergeandsplit events are transformed intotouchX,
releaseX, removeX, andremovelast X symbols, whereX
represents one of the pegs in the task. This transformation
is possible due to a domain-specific internal model of the



ToH -> Setup, enter(hand), Solve, exit(hand);

Setup -> TowerPlaced, exit(hand);

TowerPlaced -> enter(hand, block_A, block_B, block_C),

                           Put_1(block_A, block_B, block_C);

Solve -> state(Tower = TowerStart), MakeMoves, state(Tower = TowerGoal);

MakeMoves -> Move(block) [0.1]  |  Move(block), MakeMoves [0.9];


Move -> Move_1-2 | Move_1-3 |  Move_2-1 | Move_2-3  |  Move_3-1 | Move_3-2;


Move_1-2 -> Grab_1, Put_2;

Move_1-3 -> Grab_1, Put_3;

Move_2-1 -> Grab_2, Put_1;

Move_2-3 -> Grab_2, Put_3;

Move_3-1 -> Grab_3, Put_1;

Move_3-2 -> Grab_3, Put_2;


Grab_1 -> touch_1, remove_1(hand, ~)  |  touch_1(~), remove_last_1(~);

Grab_2 -> touch_2, remove_2(hand, ~)  |  touch_2(~), remove_last_2(~);

Grab_3 -> touch_3, remove_3(hand, ~)  |  touch_3(~), remove_last_3(~);


Put_1 -> release_1(~) | touch_1, release_1;

Put_2 -> release_2(~) | touch_2, release_2;

Put_3 -> release_3(~) | touch_3, release_3;


Figure 3:Stochastic grammar for the Towers of Hanoi task:
The full grammar specification includes other declarations,
for example that block A is a block. Also, the tilde (∼) as a
parameter means that the particular terminal should inherit
arguments from its parent rule’s invocation.

scene and the ability to map blob bounding-box coordinates
to a peg.

The transformation of low-level events into symbols is
both local in time and relative to an internal model. The sys-
tem keeps a different model for each track hypothesis and,
as discussed in the following section, for each valid parse
of that track (see Figure 4). That the transformation from
events to symbols is local means that not all symbols will be
correct. The system handles this by assigning a fixed proba-
bility to each symbol and by maintaining multiple parse hy-
potheses. As additional visual evidence becomes available,
the system will choose one of the parses based on a discov-
ered inconsistency or because one is more likely overall.
Thus, local errors are reduced by pooling evidence through
time.

4. Stochastic Parsing
The parameterized stochastic grammar used to represent the
Towers of Hanoi is shown in Figure 3. The parsing algo-
rithm used by our system is derived from the original work
by Stolcke [16] and its subsequent application to computer
vision by Ivanov and Bobick [7] and Moore and Essa [10].
Here we only discuss deviations in our system from this
previous research.

Parameters: Parameterized grammars increase the speci-
ficity of a stochastic grammar without resorting to cus-
tomized vision detectors as used in [10]. Our system per-
mits both specific objects and object types as parameters
and also allows the matched object to be bound to a name
for later reference in the grammar. Thus, an activity spec-
ification could includeenter(block A)to signify thatblock

A must enter the scene at a particular time, or it could in-
clude enter(block:FirstBlock)to mean that any block can
enter and that the particular block observed can later be ref-
erenced by the name “FirstBlock.” Object types are defined
in the grammar and are part of the activity specification, not
the recognition system itself.

Scene Model Generation & Maintenance: Each valid
parse maintains an internal model of the current scene. The
model is an abstract, domain-specific structure. In the Tow-
ers of Hanoi task, it represents where each object is located
and whether it is supported by the hand or the table. Ini-
tialization places all objects outside of the scene and each
parsed event-symbol effects a change. For example, are-
lease1 event would cause the block currently supported by
the hand to move to the first peg in the model. Note that the
model does not need to be probabilistic because each parse
keeps a separate version. Since all valid parses are main-
tained simultaneously, an incorrect model will be naturally
eliminated when the associated parse is pruned.

Activity States: Activity states ensure that a particular as-
sertion about the scene holds at a given point during the ac-
tivity. In the Towers of Hanoi task, for example,state(Tower
= TowerGoal)signifies that the task has not completed un-
til the tower is in the goal state. Note that this assertion
is not checked directly in the current video frame, as this
would require complex, static scene analysis. Instead, the
assertion is verified by consulting the internal model of the
scene. In thestate(Tower = TowerGoal)case, the assertion
is easily checked by verifying that all blocks are on the last
peg.

Distracter Objects: Although thenoiselabel can be ap-
plied to any blob that does not correspond to an object rel-
evant to the current activity, it is inappropriate in some sit-
uations. During many activities, concurrent tasks may be
taking place. Although the system does not have any expec-
tations concerning these other tasks, they should not disrupt
the recognition and analysis of the main activity.

To handle such situations, the system uses thedistracter
label. Distracter objects are ignored during parsing, thus
making it possible for the system to correctly identify an ac-
tivity even while unrelated object interactions occur in the
scene. However, because there are no expectations associ-
ated withdistracter objects, semantic inconsistencies can
not be detected and thus misinterpretations involving the
behavior of thedistracter objects will not be pruned. In-
stead, the system ranks hypotheses by always preferring ex-
planations with fewerdistracterobject interactions. This is
a useful heuristic in practice, but it can be inappropriately
applied in certain, ambiguous situations.
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Figure 4: Multiple parse hypotheses are maintained simul-
taneously; each keeps its own internal model of the scene.
Note that model C is inconsistent with the rules of the Towers
of Hanoi task and thus will be pruned.

Symbol Error Handling: Three kinds of symbol errors
can occur: insertion, deletion, and substitution errors. Sub-
stitution errors are treated as a simultaneous pair of one in-
sertion and one deletion error. Insertion and deletion er-
rors are handled by maintaining multiple activity parses.
Whenever a new symbol is scanned, two parse states are
created. The first represents the case in which the symbol is
valid, while the second assumes that an insertion error has
occurred. In the latter case, the parse is penalized accord-
ing to the probability that the symbol is erroneous, namely
1 − p(Symbol). This allows the parser to ignore the cur-
rent symbol but still scan an equivalent symbol later in the
activity, albeit with a lower probability.

Deletion errors, on the other hand, are handled by “hallu-
cinating” the missing symbols when it is necessary to form
a complete parse. If a real event-symbol is later encoun-
tered, any equivalent hallucinations are eliminated. Also,
the probability of a hallucinated symbol is set to be signifi-
cantly lower than the typical probability of a valid observa-
tion, thus naturally leading the system to prefer parses with
the most visual evidence.

5. Experiments
We performed several experiments to test our system. In
the Towers of Hanoi domain, the experiments varied along
four dimensions: the type and color of the objects repre-
senting the discs, the number of steps used to complete
the game, the presence of a distracter object, and the pres-
ence of complete occlusions. We also developed com-
ponents for another task modeled after the Simon game
(see Figure 10). In this activity, the player places three
blocks and then taps either a specified pattern (e.g.,ABC),
a palindrome (e.g.,ABCBA), or a set of pairs (e.g.,AAB-
BCC). The videos for each experiment and the gram-
mar for the Simon game can be found on the web at
http://www.cc.gatech.edu/cpl/projects/expectationGrammars.

Blocks of different colors and sizes were used as the
discs in Experiment I (see Figure 5). The initial tower was

Figure 5:Experiment I: Blobs can merge due to grasping or
occlusion

[113-739 (1-29) ToH . ]


  [113-739 (1-29) Setup, Solve, exit(hand) . ]


    [113-234 (1-4) TowerPlaced, exit(hand), enter(hand) . ]


      [113-169 (1-2) enter(hand, red, green, blue), Put_1(red, green, blue) . ]


        [169-169 (2-2) release_1 . ]


    [248-733 (5-28) state(Tower=TowerStart), MakeMoves, state(Tower=TowerGoal) . ]


      [248-733 (5-28) Move(block), MakeMoves . ]

        [248-315 (5-7) Move_1-3 . ]


          [248-315 (5-7) Grab_1, Put_3 . ]


            [248-270 (5-6) touch_1, remove_1(hand) . ]


            [315-315 (7-7) release_3 . ]


        [337-733 (8-28) Move(block), MakeMoves . ]


          [337-385 (8-10) Move_1-2 . ]


            [337-385 (8-10) Grab_1, Put_2 . ]


              [337-350 (8-9) touch_1, remove_1(hand) . ]


              [385-385 (10-10) release_2 . ]


          [396-733 (11-28) Move(block), MakeMoves . ]


            [396-442 (11-14) Move_3-2 . ]


              [396-442 (11-14) Grab_3, Put_2 . ]


                [396-396 (11-12) touch_3, remove_last_3 . ]


                [418-442 (13-14) touch_2, release_2 . ]


            [452-733 (15-28) Move(block), MakeMoves . ]


              [452-529 (15-17) Move_1-3 . ]


                [452-529 (15-17) Grab_1, Put_3 . ]

                  [452-452 (15-16) touch_1, remove_last_1 . ]


                  [529-529 (17-17) release_3 . ]


              [537-733 (18-28) Move(block), MakeMoves . ]


                [537-588 (18-20) Move_2-1 . ]


                  [537-588 (18-20) Grab_2, Put_1 . ]


                    [537-553 (18-19) touch_2, remove_2(hand) . ]


                    [588-588 (20-20) release_1 . ]


                [602-733 (21-28) Move(block), MakeMoves . ]


                  [602-654 (21-24) Move_2-3 . ]


                    [602-654 (21-24) Grab_2, Put_3 . ]


                      [602-602 (21-22) touch_2, remove_last_2 . ]


                      [632-654 (23-24) touch_3, release_3 . ]


                  [673-733 (25-28) Move(block) . ]


                    [673-733 (25-28) Move_1-3 . ]


                      [673-733 (25-28) Grab_1, Put_3 . ]


                        [673-673 (25-26) touch_1, remove_last_1 . ]


                        [709-733 (27-28) touch_3, release_3 . ]


Figure 6: Experiment I: Annotation for a typical Towers of
Hanoi video: Each line shows the time interval (in frames)
followed by the symbol range and the actual label.

placed on the first peg as part of the setup phase of the ac-
tivity, and then the Towers of Hanoi game was played . The
final parse for this video is shown in Figure 6, which repre-
sents the full annotation for a successfully recognized game.

Experiment II used plastic, torus-shaped objects for the
discs, this time all of the same size and color (see Figure
7). The results from analysis are identical to similar exper-
iments using the more easily distinguishable blocks. Note
that the yellow pegs used in this video are considered part
of the background and thus are not identified or analyzed by
our system.

In Figure 8 you can see a frame from Experiment III that



Figure 7:Experiment II: All of the discs have the same size
and shape. Also, note that the dark shadow under the hand
is labelled as noise

Figure 8: Experiment III: The small foreground block is a
distracter object in this scene. The system must determine
from behavior that it is irrelevant to the activity even when
placed on a tower.

includes a distracter object. The small, foreground block is
not part of the Towers of Hanoi task, even though it looks
similar to the other blocks and does occasionally move from
one tower to another. During analysis, the system does not
initially know how to classify this block. It will explore
interpretations in which it is part of the task, but visual evi-
dence later in the video will show these interpretations to be
inconsistent. In some situations, a lack of visual evidence
will permit multiple valid interpretations, and the system
will be forced to choose between the possibilities. The parse
and track likelihoods serve as a basis for this decision as the
most likely parse is always preferred.

Finally, Experiment IV deals with full occlusion of part
of the activity (see Figure 9). The system depends on the vi-
sual evidence from the first two pegs to substantiate a posi-
tive recognition of the task. Two kinds of unavoidable errors
arise in this situation. First, since there is no direct evidence
for the hidden events, there is no way to determine when,
or even if, they actually occur. If enough indirect evidence
exists, the system will assign an arbitrary time for the hallu-
cinated events, corresponding to the time when the relevant
object is first hidden or first reappears. The second problem
deals with the fact that the system can hallucinate events in-
definitely, although even the hallucinated symbols must be
consistent with the internal scene model. In theory, every
blob in a video could be labelled asnoiseor distracterob-
jects and any activity can be hallucinated. In practice, how-
ever, such an interpretation will be highly improbable and
a more realistic interpretation will be chosen. The system

Figure 9: Experiment IV: In this frame, the book fully oc-
cludes the third peg. The system must infer the interactions
that are hidden.

Figure 10:Screenshot from the Simon game demonstrating
analysis of another domain.

should detect, however, if the activity was not completed
correctly rather than always hallucinating a valid interpreta-
tion. In this case, a simple threshold on the average symbol
likelihood will distinguish between scenes that have enough
visual evidence to substantiate the activity and those thatdo
not.

6. Discussion & Future Work
Our approach to activity recognition has several limitations
in both its ability to represent and track blob configurations
and in its ability to represent expectations about an activ-
ity. We outline several such issues and propose methods of
enhancing our system below.

Additional blob explanations: Several kinds of low-
level vision errors can be accommodated by our framework
but are not currently incorporated into the system. Although
we correctly handle erroneous blobs by labelling them as
noise, sometimes noise will cause divisions in legitimate
foreground objects. In the presence of such noise, an object
might disappear for several frames or might split into what
appears to be two distinct objects. By increasing the blob
explanation labels to includepartial-blob, partial-merge,
noise-disappear, andnoise-reappear, we can explicitly de-
tect and account for these low-level errors.

Appearance models for event disambiguation: In the
description of our system, we discussed how our system
does not use object appearance models. In some instances,
however, even cursory knowledge about the appearance of
an object can be useful. For example, if the hand passes
behind a block, knowledge of the appearance of the block
can be used to decrease the likelihood of agrabevent since



grasping will generally require the hand to partially occlude
the block. More importantly, consider a situation in which
two blocks are on a peg and the hand touches them. If
a drastic change in the shape or color distribution of the
blocks follows a subsequentsplit event, it is likely that the
hand removed one of the blocks. If, however, no change is
observed, then the hand probably touched or just passed by
the blocks. In the current system, this ambiguity would not
be resolved until a later interaction occurs, for example a
put action on another tower.

Adaptive tracking via high-level feedback: Although
our high-level parser can influence tracking results by
deeming certain interpretations inconsistent with the speci-
fied grammar, we would like to build a more tightly coupled
system. Consider an object that appears as two blobs due to
noise, as discussed above. When the parser detects that a
single object apparently split into two pieces, it could no-
tify the tracker rather than immediately eliminating that in-
terpretation. The tracker could then try an alternative fore-
ground/background segmentation method or adjust its pa-
rameters in an effort to bring the low-level vision in line
with the high-level interpretation.

Limitations of stochastic grammars: Finally, we
would like to explore more expressive activity representa-
tions. Stochastic grammars can only implicitly represent
concurrent actions (e.g., stir the batterwhile holding the
bowl), and are not able to express global rules except by
explicit enumeration. For example, during the Towers of
Hanoi task, the hand can always exit and then reenter the
scene without disrupting the activity. Our system can only
handle such occurrences by assuming that both theenter
andexit events are insertion errors. To correctly represent
this knowledge in a stochastic grammar, however, would re-
quire a modification that includes an optionalexit/enterpair
between every pair of “real” events. This is both cumber-
some and unnecessarily complex. One of our goals for fu-
ture research is to develop a more expressive activity speci-
fication that could represent such knowledge directly.

7 Conclusion

Stochastic grammars provide a useful representation for
specifying high-level expectations about an activity. This
representation is easily understood by humans and can be
efficiently employed by a computational system. We show
how a stochastic grammar can be used to pool evidence
through time in order to recover from local errors and find a
consistent overall interpretation of an activity. Our system
demonstrates that static object recognition is unnecessary
for the recognition of activities governed by strong expec-
tations and contextual constraints. Finally, we discuss pos-
sible extensions to our system including enhanced blob ex-
planations and a low-level feedback and adaptation scheme

based on high-level constraints.
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