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Abstract. The Perceptive Workbench endeavors to create a
spontaneous and unimpeded interface between the physical
and virtual worlds. Its vision-based methods for interaction
constitute an alternative to wired input devices and tethered
tracking. Objects are recognized and tracked when placed on
the display surface. By using multiple infrared light sources,
the object’s 3-D shape can be captured and inserted into the
virtual interface. This ability permits spontaneity, since ei-
ther preloaded objects or those objects selected at run-time by
the user can become physical icons. Integrated into the same
vision-based interface is the ability to identify 3-D hand po-
sition, pointing direction, and sweeping arm gestures. Such
gestures can enhance selection, manipulation, and navigation
tasks. The Perceptive Workbench has been used for a vari-
ety of applications, including augmented reality gaming and
terrain navigation. This paper focuses on the techniques used
in implementing the Perceptive Workbench and the system’s
performance.
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1 Introduction

Humans and computers have interacted primarily through de-
vices that are constrained by wires. Typically, the wires limit
the range of movement and inhibit freedom of orientation. In
addition, most interactions are indirect. The user moves a de-
vice as an analogue for the action in the display space. We
envision an untethered interface that accepts gestures directly
and can accept any objects the user chooses as interactors.
In this paper, we apply our goal to workbenches, large tables
that serve simultaneously as projection displays and as inter-
action surfaces. Demonstrated by Myron Krueger as early as
the 1980’s [15], and later refined and commercialized by Wolf-
gang Krueger et al. in 1995 [16], they are now widely used in
virtual reality (VR) and visualization applications.

Computer vision can provide the basis for untethered in-
teraction because it is flexible, unobtrusive, and allows direct
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interaction. Since the complexity of general vision tasks has
often been a barrier to widespread use in real-time applica-
tions, we simplify the task by using a shadow-based architec-
ture.

An infrared light source is mounted on the ceiling. When
the user stands in front of the workbench and extends an arm
over the surface, the arm casts a shadow on the desk’s surface,
which can be easily distinguished by a camera underneath.

The same shadow-based architecture is used in the Per-
ceptive Workbench [19,20] to reconstruct 3-D virtual repre-
sentations of previously unseen real-world objects placed on
the desk’s surface. In addition, the Perceptive Workbench can
illuminate objects placed on the desk’s surface to identify and
track the objects as the user manipulates them. Taking its cues
from the user’s actions, the Perceptive Workbench switches
automatically between these three modes: gesture tracking,
object tracking, and 3D reconstruction.

In this paper, we will discuss implementation and perfor-
mance aspects that are important to making the Perceptive
Workbench a useful input technology for virtual reality. We
will examine performance requirements and show how our
system is optimized to meet them.

2 Related work

While the Perceptive Workbench [20] is unique in its ability
to interact with the physical world, it has a rich heritage of
related work [1,15,16,24,27,35,36,38,44]. Many augmented
desk and virtual-reality designs use tethered props, tracked by
electromechanical or ultrasonic means, to encourage interac-
tion through gesture and manipulation of objects [1,3,27,33,
38]. Such designs tether the user to the desk and require the
time-consuming ritual of donning and doffing the appropriate
equipment.

Fortunately, the computer vision community is interested
in the tasks of tracking hands and identifying gestures. While
generalized vision systems track the body-in-room- and desk-
based scenarios for games, interactive art, and augmented
environments [2,45], the reconstruction of fine hand detail
involves carefully calibrated systems and is computationally
intensive [23]. Even so, complicated gestures, such as those
used in sign language [32,39] or the manipulation of physical
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objects [29], can be recognized in less constrained environ-
ments. The Perceptive Workbench uses such computer-vision
techniques to maintain a wireless interface.

Most directly related to the Perceptive Workbench, Ullmer
and Ishii’s “Metadesk” identifies and tracks objects placed
on the desk’s display surface using a near-infrared computer-
vision recognizer, originally designed by Starner [35]. Unfor-
tunately, since not all objects reflect infrared light and since
infrared shadows are not used, objects often need infrared
reflective “hot mirrors” placed in patterns on their bottom
surfaces to aid tracking and identification. Similarly, Reki-
moto and Matsushita’s Perceptual Surfaces [24] employ 2-D
barcodes to identify objects held against the “HoloWall” and
“HoloTable.” In addition, the HoloWall can track the user’s
hands (or other body parts) that are near or pressed against its
surface; but its potential recovery of the user’s distance from
the surface is relatively coarse compared to the 3-D pointing
gestures of the Perceptive Workbench. Davis and Bobick’s
SIDEshow [6] is similar to the HoloWall except that it uses
cast shadows in infrared for full-body 2-D gesture recovery.
Some augmented desks have cameras and projectors above the
surface of the desk; they are designed to augment the process of
handling paper or to interact with models and widgets through
the use of fiducials or barcodes [36,44]. Krueger’s VideoDesk
[15], an early desk-based system, uses an overhead camera
and a horizontal visible light table to provide high-contrast
hand-gesture input for interactions, which are then displayed
on a monitor on the far side of the desk. In contrast with the
Perceptive Workbench, none of these systems address the is-
sues of introducing spontaneous 3-D physical objects into the
virtual environment in real-time and combining 3-D deictic
(pointing) gestures with object tracking and identification.

3 Goals

Our goal is to create a vision-based user interface for VR ap-
plications. Hence, our system must be responsive in real-time
and be suitable for VR interaction. In order to evaluate the fea-
sibility of meeting this goal, we need to examine the necessary
performance criteria.

3.1 System responsiveness

System responsiveness, the time elapsed between a user’s ac-
tion and the response displayed by the system [42], helps de-
termine the quality of the user’s interaction. Responsiveness
requirements vary with the tasks to be performed. An accept-
able threshold for object selection and manipulation tasks is
typically around 75–100 ms [40,42]. System responsiveness
is directly coupled with latency. It can be calculated with the
following formula:

SystemResponsiveness = SystemLatency

+DisplayT ime (1)

System latency, often called device lag, is the time it takes
our sensor to acquire an image, calculate and communicate
the results, and change the virtual world accordingly. Input
devices should have low latency, ideally below 50 ms. Ware

and Balakrishnan [40] measured several common magnetic
trackers and found them to have latencies in the range of 45–
72 ms.

In our situation, system latency depends on the time it
takes the camera to transform the scene into a digital image,
the image-processing time, and the network latency to com-
municate the results.An average delay of 1.5 frame intervals at
33 ms per interval to digitize the image results in a 50 ms delay.
In addition, we assume a 1.5-frame interval delay in render-
ing the appropriate graphics. Assuming a constant 60 frame
per second (fps) rendering rate results in an additional 25 ms
delay for system responsiveness. Since we are constrained by
a 75 ms overhead in sensing and rendering, we must minimize
the amount of processing time and network delay in order to
maintain an acceptable latency for object selection and ma-
nipulation. Thus, we concentrate on easily computed vision
algorithms and a lightweight UDP networking protocol for
transmitting the results.

3.2 Accuracy

With the deictic gesture tracking, we estimate that absolute
accuracy will not need to be very high. Since the pointing
actions and gestures happen in the three dimensional space
high above the desk’s surface, discrepancies between a user’s
precise pointing position and the system’s depiction of that
position is not obvious or distracting. Instead, it is much more
important to capture the trend of movement and allow for quick
correctional motions.

For the object tracking, however, this is not the case. Here,
the physical objects placed on the desk already provide strong
visual feedback, and any system response differing from this
feedback will be very distracting. This constraint is relatively
easy to satisfy, though, since the task of detecting the position
of an object on the desk’s surface is, by nature, more accurate
than finding the correct arm orientation in 3-D space.

4 Apparatus

The display environment for the Perceptive Workbench builds
on Fakespace’s immersive workbench [41]. It consists of a
wooden desk with a horizontal frosted-glass surface on which
an image can be projected from behind the workbench.

We placed a standard monochrome surveillance camera
under the projector to watch the desk’s surface from under-
neath (Fig. 1). A filter placed in front of the camera lens
makes it insensitive to visible light and to images projected
on the desk’s surface. Two infrared illuminators placed next
to the camera flood the desk’s surface with infrared light that
is reflected back toward the camera by objects placed on the
desk.

We mounted a ring of seven similar light sources on
the ceiling surrounding the desk (Fig. 1). Each computer-
controlled light casts distinct shadows on the desk’s surface
based on the objects on the table (Fig. 2a). A second infrared
camera and another infrared light source are placed next to
the desk to provide a side view of the user’s arms (Fig. 3a).
This side camera is used solely for recovering 3-D pointing
gestures.
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a b

Fig. 1. a Light and camera positions for the Perceptive Workbench. b The top view shows how shadows are cast and the 3D arm position is
tracked

Note that at any time during the system’s operation, either
the ceiling lights, or the lights below the table are active, but
not both at the same time. This constraint is necessary in order
to achieve reliable detection of shadows and reflections.

We decided to use near-infrared light, since it is invisible
to the human eye. Thus, illuminating the scene does not in-
terfere with the user’s interaction. The user does not perceive
the illumination from the infrared light sources underneath
the table, nor the shadows cast from the overhead lights. On
the other hand, most standard charge-coupled device (CCD)
cameras can still see infrared light, which provides an inex-
pensive method for observing the interaction. In addition, by
equipping the camera with an infrared filter, the camera image
can be analyzed regardless of changes in the (visible) scene
lighting.

We use this setup for three different kinds of interaction:
• Recognition and tracking of objects placed on the desk

surface based on their contour
• Tracking of hand and arm gestures
• Full 3-D reconstruction of object shapes from shadows

cast by the ceiling light-sources
For display on the PerceptiveWorkbench, we use OpenGL,

the OpenGL Utility Toolkit (GLUT), and a customized version
of a simple widget package called microUI (MUI). In addi-
tion, we use the workbench version of VGIS, a global terrain
visualization and navigation system [41] as an application for
interaction using hand and arm gestures.

5 Object tracking and recognition

As a basic precept for our interaction framework, we want to
let users manipulate the virtual environment by placing objects
on the desk surface. The system should recognize these objects
and track their positions and orientations as they move over the
table. Users should be free to pick any set of physical objects
they choose.

The motivation behind this is to use physical objects in a
“graspable” user interface [9]. Physical objects are often natu-
ral interactors as they provide physical handles to let users intu-
itively control a virtual application [12]. In addition, the use of

real objects allows the user to manipulate multiple objects si-
multaneously, increasing the communication bandwidth with
the computer [9,12].

To achieve this tracking goal, we use an improved version
of the technique described in Starner et al. [31]. Two near-
infrared light sources illuminate the desk’s underside (Fig. 1).
Objects close to the desk surface (including the user’s hands)
reflect this light, which the camera under the display surface
can see. Using a combination of intensity thresholding and
background subtraction, we extract interesting regions of the
camera image and analyze them. We classify the resulting
blobs as different object types, based on a 72-D feature vec-
tor reflecting the distances from the center of the blob to its
contour in different directions.

Note that the hardware arrangement causes several compli-
cations. The foremost problem is that our two light sources un-
der the table can only provide uneven lighting over the whole
desk surface. In addition, the light rays are not parallel, and the
reflection on the mirror surface further exacerbates this effect.
To compensate for this, we perform a dynamic-range adjust-
ment. In addition to a background image, we store a “white”
image that represents the maximum intensity that can be ex-
pected at any pixel. This image is obtained by passing a bright
white (thus, highly reflective) object over the table during a
one-time calibration step and then instructing the system to
record the intensity at each point. The dynamic-range adjust-
ment helps to normalize the image so that a single threshold
can be used over the whole table.An additional optimal thresh-
olding step is performed for every blob to reduce the effects of
unwanted reflections from users’ hands and arms while they
are moving objects. Since the blobs only represent a small
fraction of the image, the computational cost is low.

In order to handle the remaining uncertainty in the recog-
nition process, two final steps are performed: detecting the
stability of a reflection and using tracking information to ad-
just and improve recognition results. When an object is placed
on the table, there will be a certain interval when it reflects
enough infrared light to be tracked but is not close enough to
the desk’s surface to create a recognizable reflection. To de-
tect this situation, we measure the change in size and average
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Fig. 2. a Arm shadow from overhead IR lights; b resulting contour with recovered arm direction

intensity for each reflection over time. When both settle to a
relatively constant value, we know that an object has reached
a steady state and can now be recognized. To further improve
classification accuracy, we make the assumption that objects
will not move very far between frames. Thus, the closer a blob
is to an object’s position in the last frame, the more probable it
is that this blob corresponds to the object, and the less reliable
the recognition result has to be before it is accepted. In addi-
tion, the system remembers and collects feature vectors that
caused some uncertainty (for example, an unfamiliar orienta-
tion that caused the feature vector to change) and adds them to
the internal description of the object, thus refining the model.

In this work, we use the object-recognition and tracking
capability mainly for cursor or place-holder objects. We focus
on fast and accurate position tracking, but the system may be
trained on a different set of objects to serve as navigational
tools or physical icons [35]. A future project will explore dif-
ferent modes of interaction based on this technology.

6 Deictic gesture tracking

Following Quek’s taxonomy [22], hand gestures can be
roughly classified into symbols (referential and modalizing
gestures) and acts (mimetic and deictic gestures). Deictic ges-
tures depend strongly on location and orientation of the per-
forming hand. Their meaning is determined by the location a
finger is pointing toward or by the angle of rotation of some
part of the hand. This information acts not only as a symbol
for the gesture’s interpretation but also as a measure of the
extent to which the corresponding action should be executed
or to which object it should be applied.

For navigation and object manipulation in a virtual en-
vironment, many gestures will have a deictic component. It
is usually not enough to recognize that an object should be
rotated; we will also need to know the desired amount of ro-
tation. For object selection or translation, we want to specify
the object or location of our choice just by pointing at it. For
these cases, gesture-recognition methods that only take the
hand shape and trajectory into account will not suffice. We

need to recover 3-D information about the users’ hands and
arms in relation to their bodies.

In the past, this information has largely been obtained by
using wired gloves or suits, or magnetic trackers [3,1]. Such
methods provide sufficiently accurate results but rely on wires
tethered to the user’s body or to specific interaction devices,
with all the aforementioned problems. We aim to develop a
purely vision-based architecture that facilitates unencumbered
3-D interaction.

With vision-based 3-D tracking techniques, the first is-
sue is to determine what information in the camera image is
relevant, that is, which regions represent the user’s hand or
arm. What makes this difficult is the variation in user clothing
and background activity. Previous approaches to vision-based
gesture recognition used marked gloves [8], infrared cameras
[26], or a combination of multiple-feature channels, such as
color and stereo [14], to deal with this problem; or they just
restricted their system to a uniform background [37]. By ana-
lyzing a shadow image, this task can be greatly simplified.

Most directly related to our approach, Segen and Kumar
[28] derive 3-D position and orientation information of two
fingers from the appearance of the user’s hand and its shadow
colocated in the same image. However, since their approach re-
lies on visible light, it requires a stationary background. Thus,
it cannot operate on a highly dynamic back-projection surface
like the one on our workbench. By using infrared light for
casting the shadow, we can overcome this restriction.

At the same time, the use of shadows solves another prob-
lem with vision-based architectures: where to put the cam-
eras. In a virtual-workbench environment, there are only a
few places from which we can get reliable hand-position in-
formation. One camera can be set up next to the table without
overly restricting the available space for users. In many sys-
tems, in order to recover 3-D information, a second camera is
deployed. However, the placement of this second camera re-
stricts the usable area around the workbench. Using shadows,
the infrared camera under the projector replaces the second
camera. One of the infrared light sources mounted on the ceil-
ing above the user shines on the desk’s surface where it can
be seen by the camera underneath (Fig. 4). When users move
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Fig. 3. a Image from side camera (without infrared filter). b Arm contour from similar image with recovered arm direction

Fig. 4. Principle of pointing-direction recovery

an arm over the desk, it casts a shadow on the desk surface
(Fig. 2a). From this shadow, and from the known light-source
position, we can calculate a plane in which the user’s arm must
lie.

Simultaneously, the second camera to the right of the table
(Figs. 3a and 4) records a side view of the desk surface and the
user’s arm. It detects where the arm enters the image and the
position of the fingertip. From this information, the computer
extrapolates two lines in 3-D space on which the observed
real-world points must lie. By intersecting these lines with the
shadow plane, we get the coordinates of two 3-D points (one on
the upper arm and one on the fingertip). This gives us the user’s
hand position and the direction in which the user is pointing.
We can use this information to project an icon representing the
hand position and a selection ray on the workbench display.

Obviously, the success of the gesture-tracking capability
relies heavily on how fast the image processing can be done.
Fortunately, we can make some simplifying assumptions about
the image content. Our algorithm exploits intensity threshold-
ing and background subtraction to discover regions of change
in the image. We must first recover arm direction and fingertip

position from both the camera and the shadow image. Since
the user stands in front of the desk and the user’s arm is con-
nected to the user’s body, the arm’s shadow should always
touch the image border. Thus, our algorithm only searches for
areas in which these regions touch the front border of the desk
surface (which corresponds to the shadow image’s top border
or the camera image’s left border). The algorithm then takes
the middle of the touching area as an approximation for the
origin of the arm (Figs. 2b and 3b). Similar to Fukumoto’s ap-
proach [11], we trace the shadow’s contour and take the point
farthest away from the shoulder as the fingertip. The line from
the shoulder to the fingertip reveals the arm’s 2-D direction.

In our experiments, the point thus obtained was coinci-
dent with the pointing fingertip in all but a few extreme cases
(such as the fingertip pointing straight down at a right angle to
the arm). The method does not depend on a pointing gesture,
but also works for most other hand shapes, including a hand
held horizontally, vertically, or in a fist. These shapes may be
distinguished by analyzing a small section of the side-camera
image and may be used to trigger specific gesture modes in
the future.

The computed arm direction is correct as long as the user’s
arm is not overly bent (Fig. 3). In such cases, the algorithm
still connects the shoulder and fingertip, resulting in a direc-
tion somewhere between the direction of the arm and the one
given by the hand. Although the absolute resulting pointing
position does not match the position towards which the fin-
ger is pointing, it still captures the trend of movement very
well. Surprisingly, the technique is sensitive enough so that
users can stand at the desk with their arm extended over the
surface and direct the pointer simply by moving their index
finger without any arm movement.

6.1 Limitations and improvements

Figure 3b shows a case where segmentation, based on color-
background subtraction in an older implementation, detected
both the hand and the change in the display on the workbench.
Our new version replaces the side color camera with an in-
frared spotlight and a monochrome camera equipped with an



64 T. Starner et al.: The perceptive workbench

Fig. 5. Real object inserted into the virtual world. Figure 7 shows a
reconstruction of the doll in the foreground

infrared-pass filter. When we adjust the angle of the light to
avoid the desk’s surface, the user’s arm is illuminated and made
distinct from the background. Changes in the workbench’s dis-
play do not affect the tracking.

One remaining problem results from the side camera’s ac-
tual location. If a user extends both arms over the desk surface,
or if two or more users try to interact with the environment
simultaneously, the images of these multiple limbs can over-
lap and merge into a single blob. Consequently, our approach
will fail to detect the hand positions and orientations in these
cases. A more sophisticated approach using previous-position
and movement information could yield more reliable results,
but at this stage we chose to accept this restriction and concen-
trate on high frame-rate support for one-handed interaction. In
addition, this may not be a serious limitation for a single user
for certain tasks. A recent study shows that for a task normally
requiring two hands in a real environment, users have no pref-
erence for one versus two hands in a virtual environment that
does not model such effects as gravity and inertia [27].

7 3-D reconstruction

To complement the capabilities of the Perceptive Workbench,
we want to be able to insert real objects into the virtual
world and share them with other users at different locations
(Fig. 5). An example application for this could be a telepres-
ence or computer-supported collaborative-work (CSCW) sys-
tem. This requires designing a reconstruction mechanism that
does not interrupt the interaction. Our focus is on providing a
nearly instantaneous visual cue for the object, not necessarily
on creating a highly accurate model.

Several methods reconstruct objects from silhouettes [30,
34] or dynamic shadows [5] using either a moving camera or
light source on a known trajectory or a turntable for the object
[34]. Several systems have been developed for reconstructing
relatively simple objects, including some commercial systems.

However, the necessity of moving either the camera or
the object imposes severe constraints on the working environ-
ment. Reconstructing an object with these methods usually
requires interrupting the user’s interaction with it, taking it

Fig. 6. Principle of the 3-D reconstruction

out of the user’s environment, and placing it into a specialized
setting. Other approaches use multiple cameras from differ-
ent viewpoints to avoid this problem at the expense of more
computational power required to process and communicate
the results.

In this project, using only one camera and multiple infrared
light sources, we analyze the shadows cast by the object from
multiple directions (Fig. 6). Since the process is based on in-
frared light, it can be applied independently of the lighting
conditions and with minimal interference with the user’s nat-
ural interaction with the desk.

To obtain the different views, we use a ring of seven in-
frared light sources in the ceiling, each independently switched
by computer control. The system detects when a user places
a new object on the desk surface, and renders a virtual but-
ton. The user can then initiate reconstruction by touching this
virtual button. The camera detects this action, and in approx-
imately one second the system can capture all of the required
shadow images. After another second, reconstruction is com-
plete, and the newly reconstructed object becomes part of the
virtual world.

Figure 7 shows a series of contour shadows and a visual-
ization of the reconstruction process. By approximating each
shadow as a polygon (not necessarily convex) [25], we cre-
ate a set of polyhedral “view cones” extending from the light
source to the polygons. The intersection of these cones creates
a polyhedron that roughly contains the object.

Intersecting nonconvex polyhedral objects is a complex
problem, further complicated by numerous special cases. For-
tunately, this problem has already been extensively researched,
and solutions are available. For the intersection calculations
in our application, we use Purdue University’s TWIN Solid
Modeling Library [7]. Recently, a highly optimized algorithm
has been proposed by Matusik et al. [21] that can perform
these intersection calculations directly as part of the rendering
process. Their algorithm provides a significant improvement
on the intersection code we are currently using, and we are
considering it for a future version of our system.

Figure 8c shows a reconstructed model of a watering can
placed on the desk’s surface. We chose the colors to highlight
the different model faces by interpreting the face normal as a
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Fig. 7. Steps of the 3-D reconstruction of the doll from Fig. 5,
including the extraction of contour shapes from shadows and the
intersection of multiple view cones (bottom)

vector in RGB color space. In the original version of our soft-
ware, we did not handle holes in the contours. This feature has
since been added by constructing light cones for both the ob-
ject contours and for those representing holes. By inspecting
the pixels adjacent to the outside of the contour, we can dis-
tinguish between the two types of borders. Then, rather than
intersecting the light cone with the rest of the object, we per-
form a boolean differencing operation with the cones formed
from the hole borders.

7.1 Limitations

An obvious limitation to our approach is that we are confined
to a fixed number of different views from which to recon-
struct the object. The turntable approach permits the system
to take an arbitrary number of images from different view-
points. In addition, not every nonconvex object can be exactly
reconstructed from its silhouettes or shadows. The closest ap-
proximation that can be obtained with volume intersection is
its visual hull, that is, the volume enveloped by all the possible
circumscribed view cones. Even for objects with a polyhedral
visual hull, an unbounded number of silhouettes may be nec-
essary for an exact reconstruction [18]. However, Sullivan’s
work [34] and our experience have shown that usually seven

to nine different views suffice to get a reasonable 3-D model
of the object.

Exceptions to this heuristic are spherical or cylindrical ob-
jects. The quality of reconstruction for these objects depends
largely on the number of available views. With only seven light
sources, the resulting model will appear faceted. This prob-
lem can be solved either by adding more light sources, or by
improving the model with the help of splines.

In addition, the accuracy with which objects can be recon-
structed is bounded by another limitation of our architecture.
Since we mounted our light sources on the ceiling, the sys-
tem can not provide full information about the object’s shape.
There is a pyramidal blind spot above all flat, horizontal sur-
faces that the reconstruction can not eliminate. The slope of
these pyramids depends on the angle between the desk sur-
face and the rays from the light sources. Only structures with
a greater slope will be reconstructed entirely without error. We
expect that we can greatly reduce the effects of this error by
using the image from the side camera and extracting an ad-
ditional silhouette of the object. This will help keep the error
angle well below 10◦.

8 Performance analysis

8.1 Object and gesture tracking

Both object and gesture tracking currently perform at an av-
erage of 14–20 fps. Frame rate depends on both the number
of objects on the table and the size of their reflections. Both
techniques follow fast motions and complicated trajectories.
Each video stream was processed by one of two SGI R5000
O2s, and the graphics were rendered by an SGI Onyx with In-
finite Reality Engine. The infrared spotlights were controlled
through a serial to parallel convertor attached to one of the
computer vision O2s.

To test latency, we measured the runtime of our vision
code. In our current implementation, with an image size of
320 × 240 pixels, the object-tracking code took around 43 ms
to run with a single object on the desk surface and scaled up
to 60 ms with five objects. By switching from TCP to UDP,
we were able to reduce the network latency from a previous
100 ms to approximately 8 ms. Thus, our theoretical system
latency is 101–118 ms. Experimental results confirmed these
values.

For the gesture tracking, the results are in the same range,
since the code used is nearly identical. Measuring the exact
performance, however, is more difficult because two cameras
are involved.

Even though the system responsiveness (system latency
plus display lag) exceeds the envisioned threshold of 75–
100 ms, it still seems adequate for most (navigational) point-
ing gestures in our current applications. Since users receive
continuous feedback about their hand and pointing positions,
and most navigation controls are relative rather than absolute,
users adapt their behavior readily to the system. With object
tracking, the physical object itself provides users with ade-
quate tactile feedback. In general, since users move objects
across a very large desk, the lag is rarely troublesome in the
current applications.

Nonetheless, we are confident that some improvements in
the vision code can further reduce latency. In addition, Kalman
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Table 1. Reconstruction errors averaged over three runs (in meters
and percentage of object diameter)

Cone Pyramid

Maximal Error 0.0215 (7.26%) 0.0228 (6.90%)

Mean Error 0.0056 (1.87%) 0.0043 (1.30%)

Mean Square Error 0.0084 (2.61%) 0.0065 (1.95%)

filters may compensate for render lag and will also add to the
tracking system’s stability.

8.2 3-D reconstruction

Calculating the error from the 3-D reconstruction process re-
quires choosing known 3-D models, performing the recon-
struction process, aligning the reconstructed model and the
ideal model, and calculating an error measure. For simplicity,
we chose a cone and a pyramid. We set the centers of mass of
the ideal and reconstructed models to the same point in space,
and aligned their principal axes.

To measure error, we used the Metro tool developed by
Cignoni, Rocchini, and Scopigno [4]. It approximates the real
distance between the two surfaces by choosing a set of 100,000
to 200,000 points on the reconstructed surface, then calculat-
ing the two-sided distance (Hausdorff distance) between each
of these points and the ideal surface. This distance is defined
as max(E(S1, S2), E(S2, S1)) with E(S1, S2) denoting the
one-sided distance between the surfaces S1 and S2:

E(S1, S2) = max
p∈S1

(dist(p, S2)) = max
p∈S1

( min
p′∈S2

(dist(p, p′)))

(2)
The Hausdorff distance corresponds directly to the recon-

struction error. In addition to the maximum distance, we also
calculated the mean and mean-square distances. Table 1 shows
the results. In these examples, the relatively large maximal er-
ror was caused by the difficulty in accurately reconstructing
the tip of the cone and the pyramid.

Improvements may be made by precisely calibrating the
camera and lighting system, adding more light sources, and
obtaining a silhouette from the side camera to eliminate ambi-
guity about the top of the surface. However, the system meets
its goal of providing virtual presences for physical objects in
a timely manner that encourages spontaneous interactions.

8.3 User experience

To evaluate the current usability of the system, we performed
a small user study with the goal of determining the relative
efficiency and accuracy of the object-tracking capability. We
designed a task that required users to drag virtual balls of
various sizes to specified locations on the table’s surface with
the help of physical “cursor” objects. The system recorded the
time required to complete the task of correctly moving four
such balls.

Although the number of participants was too small to yield
significant quantitative results, we discovered several common
problems users had with the interface. The main difficulties

arose from selecting smaller balls, both because of an impre-
cise “hot spot” for physical interactors, and because the phys-
ical object occluded its virtual representation. By designing
a context-sensitive “crosshair” cursor that extended beyond
the dimensions of the physical object, we were able to signif-
icantly increase performance in those cases. In the future, we
plan to conduct a more thorough user study (with more partic-
ipants) that also measures the usability of the gesture tracking
subsystem.

9 Putting it to use: spontaneous-gesture interfaces

All the components of the Perceptive Workbench, that is,
deictic-gesture tracking, object recognition, tracking, and re-
construction, can be seamlessly integrated into a single consis-
tent framework. The Perceptive Workbench interface detects
how users want to interact with it and automatically switches
to the desired mode.

When users move a hand above the display surface, the
system tracks the hand and arm as described in Sect. 6. A
cursor appears at the projected hand position on the display
surface, and a ray emanates along the projected arm axis.These
can be used in selection or manipulation, as in Fig. 8a. When
users place an object on the surface, the cameras recognize
this and identify and track the object. A virtual button also
appears on the display (indicated by the arrow in Fig. 8b). By
tracking the reflections of objects near the table surface, the
system determines when the hand overlaps the button, thus
selecting it. This action causes the system to capture the 3-D
object shape, as described in Sect. 7.

Since shadows from the user’s arms always touch the im-
age border, it is easy to decide whether an object lies on the
desk surface. If the system detects a shadow that does not
touch any border, it can be sure that an object on the desk
surface was the cause. As a result, the system will switch to
object-recognition and tracking mode. Similarly, the absence
of such shadows, for a certain period, indicates that the ob-
ject has been taken away, and the system can safely switch
back to gesture-tracking mode. Note that once the system is in
object-recognition mode, it turns off the ceiling lights, and ac-
tivates the light sources underneath the table. Therefore users
can safely grab and move objects on the desk surface, since
their arms will not cast any shadows that could disturb the
perceived object contours.

These interaction modes provide the elements of a percep-
tual interface that operates without wires and without restric-
tions on the objects. For example, we constructed a simple
application where the system detects objects placed on the
desk, reconstructs them, and then places them in a template
set where they are displayed as slowly rotating objects on the
left border of the workbench display. Users can grab these
objects, which can act as new icons that the user can attach
to selection or manipulation modes or use as primitives in a
model-building application.

9.1 An augmented billiards game

We have developed a collaborative interface that combines
the Perceptive Workbench with a physical game of pool in
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a
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Fig. 8. a Pointing gesture with hand icon and selection ray. b Virtual
button rendered on the screen when object is detected on the surface.
c Reconstruction of this watering can

a two-player telepresence game. The objective of the game
is for the player at the billiards table to sink all of the balls
while avoiding a virtual obstacle controlled by the other player
at the workbench. A previous system [13] concentrated on
suggesting shots for the player using a head-up display and
camera, as opposed to the projected display used here.

The billiard table is augmented with a setup resembling
the Perceptive Workbench apparatus (Fig. 9a). A camera posi-
tioned above the table tracks the type and position of the pool
balls, while a projector in a similar location can create visual
feedback directly on the playing surface. The current state of
the billiard table is transmitted to the workbench client and
rendered as a 3-D model. As the game progresses, the work-
bench updates this model continuously, using streaming data
from the billiards client.

During the workbench player’s turn, the user places a phys-
ical object on the surface of the workbench (Fig. 9b). The
workbench derives a 2-D representation from the outline of
the object and transmits the shape to the billiards client. The
outline is projected onto the surface of the billiards table and
acts as a virtual obstacle (Fig. 9c). If any of the balls pass
through the obstacle while the billiards player tries to make a
shot, the workbench player is awarded a point. If the player can
successfully sink a ball without this happening, the point goes

a

b

c

Fig. 9. a TheAugmented Billiards Table. bWorkbench player placing
an obstacle. c Virtual obstacle overlaid on the real pool table

to the billiards player.The workbench player is completely free
to choose any object as an obstacle, as long as it fits certain
size constraints. Thus, the Perceptive Workbench’s ability to
use previously unknown physical objects enhances the users’
possibilities for gameplay. In addition, this “tangible” inter-
face is apparent to a novice user, as it involves manipulating
a physical object as a representation of the virtual obstruction
on a display similar in size to the billiards table itself.

9.2 An augmented reality game

We created a more elaborate collaborative interface using the
Perceptive Workbench in an augmented reality game. Two or
more game masters can communicate with a person in a sep-
arate space wearing an augmented reality headset (Fig. 10a).
The workbench display surface acts as a top-down view of
the player’s space. The game masters place different objects,
which appear to the player as distinct monsters at different ver-
tical levels in the game space. While the game masters move
the objects around the display surface, this motion is repli-
cated by monsters in the player’s view, which move in their
individual planes. The player’s goal is to dispel these monsters
by performing Kung Fu gestures before they can get too close
to the player. Since it is difficult for the game master to keep
pace with the player, two or more game masters may partic-
ipate (Fig. 10a). The Perceptive Workbench’s object tracker
scales naturally to handle multiple, simultaneous users. For a
more detailed description of this application, see Starner et al.
[31,20].
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Fig. 10a–c. Applications: a Two game masters controlling virtual
monsters. b Terrain navigation using deictic gestures. c A virtual
instantiation of the workbench

9.3 3-D terrain navigation

In another application, we use the Perceptive Workbench’s
deictic-gesture tracking capability to interface with VGIS, a
global terrain navigation system that allows continuous flight
from outer space to terrain at 1 ft, or better, resolution. The
main interactions include zooming, panning, and rotating the
map. Previously, interaction took place by using button sticks
with 6-DOF electromagnetic trackers attached.

We employed deictic gesture tracking to remove this con-
straint. Users choose the direction of navigation by pointing
and can change the direction continuously (Fig. 10b). Moving
the hand toward the display increases the speed toward the
earth, and moving it away increases the speed away from the
earth. Panning and rotating can be accomplished by making
lateral gestures in the direction to be panned or by making
a rotational arm gesture. Currently, users choose these three
modes by using a keyboard attached to the workbench, while
the extent of the action is determined by deictic tracking. In
the future, this selection could be made by analyzing the user’s
hand shape, or by reacting to spoken commands. In a recent
paper, Krum et al. [17] proposed such a navigation interface
that implements a combination of speech and user-centered
gestures that are recognized by a small camera module worn
on the user’s chest.

9.4 Telepresence and CSCW

To demonstrate the potential of the Perceptive Workbench
for CSCW, we built a simple telepresence system. Using the
sample-interaction framework described at the beginning of
this section, users can point to any location on the desk, re-
construct objects, and move them across the desk surface. All
of their actions are immediately applied to a VR model of
the workbench mirroring the current state of the real desk
(Fig. 10c). Thus, when performing deictic gestures, the current
hand and pointing position appear on the model workbench
as a red selection ray. Similarly, the reconstructed shapes of
objects on the desk surface are displayed at the corresponding
positions in the model. This makes it possible for coworkers
at a distant location to follow the user’s actions in real-time,
while having complete freedom to choose a favorable view-
point.

10 Integration and interface design issues

The Perceptive Workbench was designed with application in-
tegration in mind. Applications implement a simple interface
protocol and can take advantage of those parts of the work-
bench functionality they need. However, for successful appli-
cation integration, several issues have to be addressed.

From an interface design standpoint, limitations are im-
posed by both the physical attributes, the hardware restric-
tions, and the software capabilities of the workbench. While
the workbench size permits the display of a life-size model of,
for example, the billiards table, the user’s comfortable reach-
ing range limits the useful model size. In addition, interface
design is restricted, in that one side of the workbench is in-
accessible due to the placement of the projector and camera.
If gesture tracking is to be used, the available range is further
limited to just one side of the workbench.

The sensing hardware places restrictions on the potential
use of tracking information for a user interface. Precise po-
sitioning of objects and pointing gestures is limited by the
camera resolution. If the application requires watching the
whole workbench surface, our current camera resolution of
320 × 240 pixels limits single-pixel accuracy to about 5 mm.
However, by interpolating the contours with polygons and thus
averaging over several samples, we can arrive at a much higher
precision. In a related issue, the contour of a moving object on
the workbench is not necessarily stable over time, especially
when the motion is so fast that the camera image is blurred.
To deal with this, the billiard system detects when an object
first comes to rest, determines the object’s contour, and simply
translates it instead of trying to recompute it. In both cases, the
error can be reduced by increasing the resolution or switching
to a more expensive progressive-scan camera.

On the software side, the question is how to use the infor-
mation the Perceptive Workbench provides to create a com-
pelling user interface. For example, there are two conceivable
types of gestural interactions. The first uses deictic gestures
for relative control, for example, for directing a cursor or for
adjusting the speed of movement. The other detects gestures
that cause a discrete event, such as pushing a virtual button to
start the reconstructing process, or assuming a specific hand
shape to switch between interaction modes. Which of these
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interaction types is appropriate, and which hand shapes make
sense, depends largely on the application.

Another question is how much information to transmit
from the workbench to its clients. If too much information
about static objects is transmitted to the display client, the
time needed to read out and process the corresponding net-
work messages can reduce the effective display-frame rate. In
our applications, we found it useful to only transmit updates
on objects whose positions had changed.

On the client side, sensor integration needs to be addressed.
For gesture tracking, information from two cameras is inte-
grated. If the application requires lower latencies than those
currently provided, Kalman filtering may be used [10]. Since
the cameras are not explicitly synchronized, asynchronous fil-
ters, like the single-constraint-at-a-time method by Welch and
Bishop [43], may also prove useful.

11 Maintenance of perceptual interfaces

One detriment to perceptual interfaces is that the underlying
sensor platform needs to be maintained.Video cameras may be
bumped, lights may burn out, or the entire structure may need
to be moved. The Perceptual Workbench has served as a exper-
imental platform for several years and has undergone several
major revisions. In addition, the underlying Fakespace hard-
ware is often used for virtual-environment demonstrations.
Such heavy use stresses an experimental system. Thus, the
system must be self-calibrating wherever possible.

Object identification and tracking on the surface of the
desk is one of the most valued services for the Perceptive
Workbench. Fortunately, it is also the easiest to maintain. This
service requires only one camera and the infrared lights under
the desk. This system is easy to install and realign when neces-
sary. In addition, the computer-vision software automatically
adjusts to the lighting levels available each time the system
is initialized, making the system relatively robust to changes
that occur on a day-to-day basis.

The Perceptive Workbench’s gesture-tracking software is
also used extensively. While the infrared light above the table
is relatively protected in everyday use, the side-view camera
is not. If a user bumps the side camera out of position, its cali-
bration procedure must be redone. Fortunately, this procedure
is not difficult. Embedding the camera into a wall near the side
of the workbench may reduce this problem.

Three-dimensional reconstruction on the PerceptiveWork-
bench requires the positions of the overhead lights to be known
to within centimeters. The position of each light constrains the
positions of the other lights due to the limited surface of the
desk on which a reconstruction subject can be placed and still
cast a shadow that does not intersect the desk’s edge. In ad-
dition, reconstruction requires the most pieces of apparatus
and the most careful alignment. Thus, reconstruction proves
to be the biggest challenge to physically moving the Percep-
tive Workbench. Fortunately, the Perceptive Workbench stays
in one place for extended time periods, and the overhead lights
are out of the way of most experiments and other apparatus.
However, the overhead lights do burn out with time and must
be replaced.

12 Future work

ManyVR systems use head-tracked shutter glasses and stereo-
scopic images to get a more immersive effect. In order to
make these systems fully wireless, we need to apply vision-
based methods to also track the user’s head. At present, we
are researching inexpensive and robust ways to do this and
still meet the performance criteria. Results from Ware and
Balakrishnan [40] suggest that, in contrast to fully immersive
systems where users wear a head-mounted display and rela-
tively small head rotations can cause large viewpoint shifts,
semi-immersive systems do not impose such high restrictions
on head-movement latency. For example, on a workbench the
image is constrained to the surface of the desk, and the user is
forced to look in the direction of the desk to see the image. This
constraint results in relatively small variation in head orienta-
tion compared to immersive systems. However, the workbench
may still re-render the 3D scene based on the user’s head po-
sition to add the important cue of motion parallax. Since the
user’s head position changes more slowly than head rotation
due to the larger physical movements involved, the user may
tolerate higher latency in the re-rendering of the scene.

In addition, we will work on improving the latency of
the gesture-rendering loop through code refinement and the
application of Kalman filters. For the recognition of objects
on the desk’s surface, we will explore the use of statistical
methods that can give us better ways of handling uncertainties
and distinguishing new objects. We will also employ hidden
Markov models to recognize symbolic hand gestures [32] for
controlling the interface. Finally, as suggested by the multiple
game masters in the gaming application, several users may be
supported through careful, active allocation of resources.

13 Conclusion

The Perceptive Workbench uses a vision-based system to en-
able a rich set of interactions, including hand and arm gestures,
object recognition and tracking, and 3-D reconstruction of ob-
jects placed on its surface. Latency measurements show that
the Perceptive Workbench’s tracking capabilities are suitable
for real-time interaction.

All elements combine seamlessly into the same interface
and can be used in various applications. In addition, the sens-
ing system is relatively inexpensive, using standard cameras
and lighting equipment plus a computer with one or two video
digitizers, depending on the functions desired. As seen from
the multiplayer-gaming, terrain-navigation, and telepresence
applications, the Perceptive Workbench encourages an unteth-
ered and spontaneous interface that encourages the inclusion
of physical objects in the virtual environment.
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