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Visually Controlled Graphics
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Abstract— This correspondence discusses interactive graph-
ics systems driven by visual input. The paper describes the
underlying computer vision techniques and presents a theo-
retical formulation which addresses issues of accuracy, com-
putational efficiency, and compensation for display latency.
Experimental results quantitatively compare the accuracy
of the visual technique with traditional sensing. An exten-
sion to the basic technique to include structure recovery is
discussed.

Keywords— Egomotion, head tracking, Kalman filter, struc-
ture from motion, teleconferencing, virtual holography.

I. INTRODUCTION

Most interactive computer applications require harness-
ing the user with wires. This detracts both from the user’s
enjoyment and from the practicality of the system for day-
to-day use. In this paper, we describe how a passive visual
system can directly provide “real-time” estimates of posi-
tion and orientation, similar to the measurements provided
by the Polhemus sensor, but without the intrusion of wires.

Our system requires a single CCD camera input and uses
an extended Kalman filter formulation to recover the six
rigid-body motion parameters of an object from a small
set of tracked visual feature points. The formulation is effi-
cient, is competitive in accuracy with the Polhemus sensor,
and can provide predictive estimates to reduce display lags.
The system can track any rigid object, but our discussion
focuses on the example of tracking a person’s head because
of its relevance to interactive graphics applications.

We have demonstrated our system for visual head track-
ing in two graphics applications: virtual holography and
teleconferencing. In virtual holography, the user’s head
position controls a stereoscopic display so that the user per-
ceives virtual solid objects before him. By moving “around”
the displayed objects, the user can see the objects from var-
ious viewing positions. In teleconferencing, the user’s head
position controls the display of the 3-D model of the head
to other teleconference participants.

The head-tracking system has three parts: a 2-D image
feature finder, described in Section II; an extended Kalman
filter that converts the 2-D feature positions into optimal
estimates of position and orientation, presented in Section
ITT; and a stereoscopic display that is controlled by the
Kalman filter’s estimates of head position and orientation,
discussed in Section TV.
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Fig. 1. System Overview. Visual head-tracking can be used to control
the user’s display (e.g. virtual holography) or to control a remote display
for another user (e.g. teleconferencing).

II. IMAGES TO FEATURES

The 2-D processing includes capture of video images,
selection of new features, and tracking of features.

Our system consists of a Sun 4/330 and a Cognex 4400im-
age processing board, which allows video images from a
CCD camera to be digitized and buffered in RAM at 30
frames per second.

Selection of distinct features for tracking is based on im-
age characteristics only; we use points where the image
intensity surface I(z,y) has a large Hessian, i.e.
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for some threshold €. Such points are peaks, saddle points,

and pits in the image intensity surface, and correspond to
features which can be localized in 2-D without “aperture”
problems [10]. On heads, these features often (but not
always) correspond to the corners of eyes, pupils, nostrils,
ete.

For each frame, a set of features satisfying the Hessian
criterion are selected for tracking. Since there are 6 motion
parameters at each frame and since each tracked feature
provides two measurements at each frame (its 2-D coordi-
nates) only 3 points are theoretically required to recover
motion. However, many more (at least 10-20) are typically
used to overdetermine the solution and reject noise.

Tracking of features is performed using normalized cor-
relation. Correlation templates are extracted for each fea-
ture from the original image and from subsequent images
in which a substantially novel viewpoint occurs. Viewpoint
changes are detected explicitly by using the 3-D motion es-
timates from the Kalman filter and implicitly by monitor-



ing degradation of the correlation indices of the features.

III. FEATURES TO MOTION PARAMETERS

The extended Kalman filter (EKF) converts the 2-D fea-
ture position measurements into 3-D estimates of the posi-
tion and orientation of the head [3;4;7;1]. A Kalman filter
formulation is used because it provides the optimal linear
estimate for dynamic systems, because 1t is recursive and
therefore computationally efficient, and because 1t is based
on physical dynamics, which allows for predictive estima-
tion [6].

The EKF requires a physical dynamic model of the mo-
tion and a measurement model relating image feature lo-
cations to motion parameters. Additionally, some repre-
sentation of the object (user’s head) is required. These are
discussed below.

A. Dynamic Model

The dynamic model is a discrete-time Newtonian physi-
cal model of rigid body motion. The model has the form

x(t+ At) = B(At)x(t) + (1)

where ¢ is time, x is the state vector, ® is the state transi-
tion matriz, and £ 1s an error term, modeled as Gaussian
white noise. The 18D state vector and noise vector contain
six variables for the translation and rotation of the head,
six for velocities, and six for accelerations, i.e.
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where p is 3-D translation, v and a are velocity and accel-
eration (translational); p is three small Euler angles and
9 and a are rotational velocity and acceleration. Large
global rotations are handled externally using unit quater-
nions (see [4;1;2]).

From Newtonian physics,
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B. Measurement Model

The measurement model relates the state vector x to
the 2-D image location, y;, of each image feature point,
pi. The transformation and projection equations

pi:c(t) == P(t) + R(t)ch

' . 4 pi:cl(t)
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are combined to produce the nonlinear measurement rela-
tion (for a single feature point):

yi(t) = hi(x(1)),

where p;.p is the (constant) 3-D location of the feature
point in the reference frame of the object (head), f is the fo-
cal distance (finite for central projection, infinite for ortho-
graphic), and the rotation matrix R comes from the global
quaternion [4;1;2]. The set of constants {p;n},i=1... N,
where N is the number of features, describe the structure
of the tracked object (user’s head) and can be modeled «a
priort or estimated on line, as discussed below.

The measurement vector contains all the measurements
in order, y(t) = (y1(¢),y2(t), ...yN(t))T and thus has 2N
elements. The full measurement model can be written as

y(t) = h(x(?)) + (1)

where the structure parameters {p;.; } are expressed as part
of h() and 7 is an error reflecting uncertainty in the mea-
surement relation and the structural model, modeled as
Gaussian white noise.

C. 3-D Object Modeling

For the head-tracking example, the structure parameters
Pi.n are initialized for each point when 1t is first selected.
The initialization is based on a simple ellipsoidal model of
the head, where the center of the ellipsoid is the origin of
the head reference frame.

Each feature point can be represented in the camera ref-
erence frame as

Yi1 yi:l/f
Pic = Yi2 + a; yi:E/f
0 1

where the scalar «; is the unknown depth and f is the
focal length (f € (0,00] and (f = o0) <= (orthographic
projection)). Each point can be transformed into the head
frame using the motion parameters p(t) and R(?):

pin = R7' (1) (pi:e — P(1)).

Thus, each feature point can be represented in the head
frame with one unknown parameter, «;, which describes
the location of the feature along a ray prescribed by the
motion parameters. This parameter «; is computed by
intersecting the ray with the ellipsoid. In this way, struc-
ture parameters {p;.; } are computed for the measurement
model whenever new features are selected for tracking.

It is worthy to note that although simple structural mod-
els give sufficient accuracy for many applications, includ-
ing head-tracking, we have shown in related work [2] that
the basic motion-tracking technique can be extended to
directly recover the structural parameters simultaneously
with the motion parameters, eliminating the requirement
for a priort models and improving accuracy. In this ex-
tended formulation, one structure parameter is estimated
for each feature point along with the six motion parame-
ters. When N points are tracked, there are 6 + N motion



plus structure parameters and 2N measurements at each
frame. Thus, both structure and motion are overdeter-
mined at each frame by tracking 6 or more points through
a sequence. This result, that simultaneous structure and
motion recovery is in fact an overdetermined problem, is
described in detail in [2]. Tt is sufficient here to note the
implications, which are that the accuracy of head-tracking
can be significantly increased by refining the structural pa-
rameters on-line, and that tracking of more complicated
unmodeled objects is possible as well.

D. FEzxtended Kalman Filter

An extended Kalman filter (EKF)} is used to recursively
estimate the state vector at each frame using the feature
measurement vector y(#) and a state prediction x(¢[t — 1)
and the state prediction error covariance P(¢[t — 1). A
detailed explanation of the EKF and the notation can be
found in [5;1;2] and others. The relevant equations for state
estimation at frame ¢ are:

H(t) = (a}al;(:) ) X=X (t]t—1)
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State predictions are obtained using
x(t + At|t) =

Q(t) = E[£(1)¢7 (1)]
P(t+ 1[t) = ®()P(t[t) @7 (¢)
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Note that in addition to the necessary prediction required
for each step of the EKF, this mechanism can be used to
predict over larger time intervals to compensate for graph-
ics display lag, discussed below.

IV. GraPHICS DISPLAY

The head tracking system uses the ThingWorld modeling
system [11] to control a Tektronics stereoscopic display. As
with most graphics systems, there can be a significant delay
between the time ThingWorld receives object information
and the time that it can render the new view. Such lags in
updating the user’s view can cause anything from a feeling
of system sluggishness to actual motion sickness.

This problem can be alleviated by inserting a process
between the head tracker and ThingWorld which predicts
the position of the head one frame in advance, giving the
ThingWorld renderer enough time to maintain synchro-
nization with head position [8]. The optimal linear tech-
nique for such prediction is the Kalman filter. Since the
head tracker is based on the Kalman filter, we can simply
use its predictions of head position and velocity to maintain
display synchronization.

Fig. 2. The head tracking system in virtual holography mode, note camera
at top of monitor.

V. EXPERIMENTAL RESULTS

The system described above is implemented on a Sun
4/330 with a Cognex 4400 subsystem, which digitizes in-
coming video and tracks feature templates. The frame rate
has reached 10 frames per second (fps) with our implemen-
tation. The state estimates of head position and orienta-
tion are propagated ahead, using the prediction mechanism
of the EKF, and then transmitted to a second workstation
running the ThingWorld modeling environment. The state
predictions control display of 3-D models for virtual holog-
raphy or teleconferencing. Display latency is reduced when
predictions are used.

Figure 2 illustrates the system operating in the virtual
holography mode. In this mode the head position is tracked
and used to control a stereographic display in front of the
user, thus simulating the experience of viewing a real ob-
ject. The camera on top of the computer monitor is the
sole input to the system.

Figure 3 compares the accuracy of the Polhemus sen-
sor and our Kalman filter for tracking head position. A
person’s head was tracked using the Polhemus sensor and
the vision system simultaneously. The state estimates were
aligned to each other using techniques similar to those used
in absolute orientation [9]. Scale and bias were removed by
performing a linear regression of the Polhemus data to the
vision estimate.

As illustrated in the figure, the vision estimates and Pol-
hemus estimates are similar. The RMS difference between
vision and Polhemus estimates is 1.67 cm and 2.4 degrees.
These statistics are comparable to the observed Polhemus
accuracy, indicating that the vision estimate 1s as least as
accurate as the Polhemus. Other tests of the vision esti-
mator’s accuracy show that it is substantially better than
these figures indicate [2].



X Translation

Pitch

Y Translation

Z Translation

Vision

Polhemus

Fig. 3. Polhemus and Vision estimates of head position.

VI. SUMMARY

We have described a passive technique for tracking 3-D
position and orientation of rigid objects. Using this tech-
nique, we have developed a head-tracking system which
has been demonstrated in two interactive graphics appli-
cations: virtual holography and teleconferencing. The im-
plementation (Sun 4/330 plus Cognex 4400) demonstrates
that a 10 fps rate can be reached in a workstation environ-
ment; this can easily be increased to 30 fps or faster with
special-purpose hardware.

We have presented experimental results of the basic tech-
nique that show the accuracy of the visual system is at least
as good as the industry standard Polhemus magnetic sen-
sor system. We also described an extension to the basic
technique that recovers structure parameters in addition
to motion. This extension is useful when prior models are
not available and promises greater accuracy due to better
structural information.

Finally, we have described how our formulation of the
tracking system facilitates prediction of motion parame-
ters. This prediction can compensate for the display la-
tency that results from the computation of head position
estimates and computation of rendered graphics.

Further research continues on 3-D pointwise structure
recovery [2], recovery of more highly detailed 3-D models,
and feedback of 3-D estimates to enhance 2-D tracking ro-
bustness.
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