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Abstract. The classical perceptron algorithm is an elementary algo-
rithm for solving a homogeneous linear inequality system Az > 0, with
many important applications in learning theory (e.g., [11,8]). A natu-
ral condition measure associated with this algorithm is the Euclidean
width 7 of the cone of feasible solutions, and the iteration complexity
of the perceptron algorithm is bounded by 1/72. Dunagan and Vempala
[5] have developed a re-scaled version of the perceptron algorithm with
an improved complexity of O(nln(1/7)) iterations (with high probabil-
ity), which is theoretically efficient in 7, and in particular is polynomial-
time in the bit-length model. We explore extensions of the concepts
of these perceptron methods to the general homogeneous conic system
Az € int K where K is a regular convex cone. We provide a conic ex-
tension of the re-scaled perceptron algorithm based on the notion of a
deep-separation oracle of a cone, which essentially computes a certifi-
cate of strong separation. We give a general condition under which the
re-scaled perceptron algorithm is theoretically efficient, i.e., polynomial-
time; this includes the cases when K is the cross-product of half-spaces,
second-order cones, and the positive semi-definite cone and more gener-
ally when we have suitable access to both K and its dual cone K*.

1 Introduction.

We consider the problem of computing a solution of the following conic system

Az € int K
{ reX 1

where X and Y are n- and m-dimensional Euclidean subspaces, respectively,
A: X — Y is a linear operator and K C Y is a regular closed convex cone. We
refer to this problem as the “conic inclusion” problem, we call K the inclusion
cone and we call F := {x € X : Az € K} the feasibility cone. The goal is to
compute an interior element of the feasibility cone F. Important special cases of
this format include feasibility problem instances for linear programming (LP),
second-order cone programming (SOCP) and positive semi-definite programming
(SDP). These problems are often encountered in learning theory, e.g., to learn
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threshold functions and in support vector machines, to mention two well-known
examples.

The ellipsoid method ([10]), the random walk method ([2]), and interior-
point methods (IPMs) ([9], [12]) are examples of methods which solve (1) in
polynomial-time. These methods differ substantially in their representation re-
quirement as well as in their practical performance. For example, a membership
oracle suffices for the ellipsoid method and the random walk method, while a
special barrier function for K is required to implement an IPM. The latter is
by far the most successful algorithm for conic programming in practice: for ex-
ample, applications of SDP range over several fields including optimal control,
eigenvalue optimization, combinatorial optimization and many others, see [18].

For the important special case of linear inequalities, when X = IR"™ and
K =R, an alternative method is the perceptron algorithm [17,13], developed
primarily in learning theory. It is well-known that this simple method termi-
nates after a finite number of iterations which can be bounded by the square
of the inverse of the width T of the feasibility cone F. Although attractive due
to its simplicity and its noise-tolerance [4,3], the perceptron algorithm is not
considered theoretically efficient since the width 7 can be exponentially small
in the size of the instance in the bit-length model. Dunagan and Vempala ([5])
combined the perceptron algorithm with a sequence of re-scalings constructed
from near-feasible solutions. These re-scalings gradually increase 7 on average
and the resulting re-scaled perceptron algorithm has complexity O(nln(1/7))
iterations (with high probability), which is theoretically efficient.

Here we extend the re-scaled perceptron algorithm proposed in [5] to the conic
setting of (1). Although the probabilistic analysis is similar, this is not the case
for the remainder of the analysis. In particular, we observe that the improvement
obtained in [5] arises from a clever use of a deep-separation oracle (see Def. 3),
which is stronger than the usual separation oracle used in the classical perceptron
algorithm. In the case of a system of linear inequalities studied in [5], there is no
difference between the implementation of both oracles. However, this difference
is quite significant for more general cones.

We investigate, in detail, ways to construct a deep-separation oracle for sev-
eral classes of cones, since it is the driving force of the re-scaled perceptron
algorithm. We establish important properties of the deep-separation oracle and
its implementation for several classes. Our main technical result is a general
scheme that yields a polynomial-time deep-separation oracle using only a deep-
separation oracle for the dual cone of K (which is readily available for many
cones of interest such as the cone of positive semi-definite matrices). This im-
plies that the re-scaled perceptron algorithm runs in polynomial time for any
conic program, provided we have a deep separation oracle for the dual cone of
K. This readily captures the important cases of linear programs, second-order
cone programs and semi-definite programs ! and thus conveys the benefits of the
perceptron algorithm to these problems.

! There have been earlier attempts to extend the algorithm of [5], to SDPs in partic-
ular, but unfortunately these have turned out to be erroneous.



We start in Section 2 with properties of convex cones, oracles, and the defi-
nition of a deep-separation oracle. Section 3 generalizes the classical perceptron
algorithm to the conic setting, and Section 4 extends the re-scaled perceptron
algorithm of [5] to the conic setting. Section 5 contains the probabilistic and
complexity analysis of the re-scaled perceptron algorithm, which reviews some
material from [5] for completeness. Section 6 is devoted to methods for construct-
ing a deep-separation oracle for both specific and general cones. We conclude the
introduction with an informal discussion of the main ideas and technical diffi-
culties encountered in obtaining our results.

The perceptron algorithm is a greedy procedure that updates the current
proposed solution by using any violated inequality. The number of iterations
is finite but can be exponential. The modified perceptron algorithm (proposed
in [3], used in [5]) is a similar updating procedure that only uses inequalities
that are violated by at least some fixed threshold. Although this procedure is
not guaranteed to find a feasible solution, it finds a near-feasible solution with
the guarantee that no constraint is violated by more than the threshold and
the number of steps to convergence is proportional to the inverse square of the
threshold, independent of the conditioning of the initial system. The key idea
in [5] is that such a near-feasible solution can be used to improve the width of
the original system by a multiplicative factor. As we show in this paper, this
analysis extends naturally to the full generality of conic systems.

The main difficulty is in identifying a constraint that is violated by more
than a fixed threshold by the current proposed solution, precisely what we call
a deep-separation oracle. This is not an issue in the linear setting (one simply
checks each constraint). For conic systems, the deep-separation itself is a conic
feasibility problem! It has the form: find w € K*, the dual of the original inclusion
cone, such that w satisfies a single second-order conic constraint. Our idea is to
apply the re-scaled percepron algorithm to this system which is considerably
simpler than F. What we can prove is that provided K* has a deep-separation
oracle, the method is theoretically efficient. For many interesting inclusion cones,
including the cone of positive semi-definite matrices, such a deep-separation
oracle is readily available.

2 Preliminaries

Let X and Y denote Euclidean spaces with finite dimension n and m, respec-
tively. Denote by || - || their Euclidean norms, and (-,-) their Euclidean inner
products. For £ € X, B(z,r) will denote the ball centered at  with radius 7,
and analogously for Y. Let A : X — Y denote a linear operator,and A* : ¥ — X
denote the adjoint operator associated with A.

2.1 Convex Cones

Let C be a convex cone. The dual cone of C' is defined as

C*={d: {(x,d) >0, for all x € C} (2)



and extC denote the set of extreme rays of C. A cone is pointed if it contains
no lines. We say that C' is a regular cone if C is a pointed closed convex cone
with non-empty interior. It is elementary to show that C' is regular if and only
if C* is regular. Given a regular convex cone C, we use the following geometric
(condition) measure:

Definition 1. If C is a reqular cone in X, the width of C is given by

r
o= max{— : B(z,r) C C’} .
ar | [l
Furthermore the center of C' is any vector Z that attains the above mazimum,
normalized so that ||Z|| = 1.

We will be particularly interested in the following three classes of cones: the
non-negative orthant R'" := {x € R™ : x > 0}, the second order cone denoted
by Q" :={x € R" : ||(z1,22,...,Zn-1)|| < zn}, and the cone of positive semi-
definite matrices S5 := {X € S¥*F . (v, Xv) > 0 for all v € R*} where
Skxk .= {X € R™* . X = XT}. These three cones are self-dual and their
widths are 1/y/m, 1/v/2, and 1/Vk, respectively.

The following characterization will be used in our analysis.

Lemma 1. Let G = {x : Mx € C} and Let T = {M*X: A € C*}. Then G*
cl (T).

Proof. (C) Let A € C*. Then for every z satisfying Mz € C, (x, A*\) =
(Az, Ay > 0, since Mz € C and A € C*. Thus, cl (T) C G* since G* is closed.

(D) Assume that there exists y € G*\cl (T'). Thus there exists h # 0 satis-
fying (h,y) < 0 and (h,w) > 0 for all w € cl (T). Notice that (h, M*A) > 0 for
all A € C*, which implies that Mh € C and so h € G. On the other hand, since
y € G*, it follows that (h,y) > 0, contradicting (h,y) < 0.

The question of sets of the form 7" being closed has been recently studied by
Pataki [14]. Necessary and sufficient conditions for T to be a closed set are given
in [14] when C* belongs to a class called “nice cones,” a class which includes
polyhedra and self-scaled cones. Nonetheless, the set T" may fail to be closed
even in simple cases.

The following property of convex cones is well-known.

Lemma 2. B(z,r) C C if and only if (d,z) > r||d|| for all d € C*.

2.2  Oracles
In our algorithms and analysis we will distinguish two different types of oracles.

Definition 2. An interior separation oracle for a convexr set S C R" is a sub-
routine that given a point x € R", identifies if x € int S or returns a vector
deR", ||d|| =1, such that

(d,z) < (d,y) forallye S .



Definition 3. For a fized positive scalar t, a deep-separation oracle for a cone
C C IR" is a subroutine that given a mon-zero point x € R"™, either

d
(I) correctly identifies that % > —t for all d € extC* or
o (d, x)
(II) returns a vector d € C*, ||d|| = 1 satisfying izl < —t.
x

Definition 2 is standard in the literature, whereas Definition 3 is new as far
as we know. Our motivation for this definition arises from a relaxation of the
orthogonality characterization of a convex cone. For d, z # 0 let cos(d, z) denote

the cosine of the angle between d and z, i.e., cos(d,z) = %. Notice that
x € C if and only if cos(d,z) > 0 for all d € C* if and only if cos(d, z) > 0 for all
(d,x)

d € extC*. The latter characterization states that TdlTaT >0 for all d € extC*.
Condition (I) of the deep-separation oracle relaxes the cosine condition from
0 to —t. The following example illustrates that the perceptron improvement
algorithm described in [5] corresponds to a deep-separation oracle for a linear
inequality system.

Ezample 1. Let C = {x € R" : Mz > 0} where M is an m X n matrix none
of whose rows are zero. Notice that C* = {M*X : A > 0} is the conic hull
of the rows of M, and the extreme rays of C* are a subset of the rows of M.
Therefore a deep-separation oracle for C' can be constructed by identifying for

a given x # 0 if there is an index ¢ € {1,...,m} for which % < —t and

returning M, /|| M;|| in such a case. Notice that we do not need to know which
vectors M; are extreme rays of C*; if m is not excessively large it is sufficient to

simply check the aforementioned inequality for every row index i.

3 Perceptron Algorithm for a Conic System

The classical perception algorithm was proposed to solve a homogeneous system
of linear inequalities (1) with K = IR’". It is well-known that the algorithm has
finite termination in at most |1/7%| iterations, see Rosenblatt 1962 [17]. This
complexity bound can be exponential in the bit-model.

Our starting point herein is to show that the classical perceptron algorithm
can be easily extended to the case of a conic system of the form (1).

Perceptron Algorithm for a Conic System

(a) Let x be the origin in X. Repeat:

(b) If Az € int K, Stop. Otherwise, call interior separation oracle for F
at x, returning d € F*, ||d|| = 1, such that (d,z) <0, and set x «— z +d.

This algorithm presupposes the availability of a separation oracle for the
feasibility cone F. In the typical case when the inclusion cone K has an interior
separation oracle, this oracle can be used to construct an interior separation



oracle for F: if x ¢ int F, then Az ¢ int K and there exists A € K* satisfying
(N, Az) <0, whereby d = A*\/||A*\|| satisfies (d,z) <0, d € F*, and ||d|| = 1.

Exactly as in the case of linear inequalities, we have the following guarantee.
It’s proof is identical, via the potential function 7(z) = (z, z) /||z||.

Lemma 3. The perceptron algorithm for a conic system will compute a solution
of (1) in at most |1/7%| iterations.

4 Re-scaled Conic Perceptron Algorithm

In this section we construct a version of the perceptron algorithm whose com-
plexity depends only logarithmically on 1/7#. To accomplish this we will sys-
tematically re-scale the system (1) using a linear transformation related to a
suitably constructed random vector that approximates the center z of F. The
linear transformation we use was first proposed in [5] for the case of linear in-
equality systems (i.e., K = IR""). Here we extend these ideas to the conic setting.
Table 1 contains a description of our algorithm, which is a structural extension
of the algorithm in [5].

Note that the perceptron improvement phase requires a deep-separation or-
acle for F instead of the interior separation oracle for F as required by the
perceptron algorithm. For the remainder of this section we presuppose that a
deep-separation for F is indeed available. In Section 6 we will show that for most
standard cones K a deep-separation oracle for F can be efficiently constructed.

We begin the analysis with the following lemma that quantifies the impact
of the re-scaling (Step 6) on the width of the feasibility cone F.

Lemma 4. Let z denote the center of the feasibility cone F, normalized so that
|zl = 1. Let A, A denote the linear operators and Tx, Tz denote the widths of

the feasibility cones F, F of two consecutive iterations of the re-scaled perception
algorithm. Then
(1-0)

TE 2 —————TF

T T V143024
where Z = Z + % (7‘_7: - <ﬁ,2>) ﬁ, and x s the output of the perceptron
improvement phase.

Proof. At the end of the perception improvement phase, we have a vector x
satisfying
d
{d,z). > —o for all d € extF*.
[d]lf|]
Let T = a/||z|. Then (d,z) > —o||d|| for all d € extF*. From Lemma 2, it
holds that
(dz) _(d2z)
Idlllizll 4l

ie. (d,z) > 77|d| for all d € F*.

> 715 forallde Fr,



Re-scaled Perceptron Algorithm for a Conic System
Step 1 Initialization. Set B =TI and o = 1/(32n).

Step 2 Perceptron Algorithm for a Conic System.
(a) Let @ be the origin in X. Repeat at most |(1/0?)| times:
(b) If Az € int K, Stop. Otherwise, call interior separation oracle for F at z,
returning d € F*, ||d|| = 1, such that (d,z) <0, and set  «— = + d.

Step 3 Stopping Criteria. If Az € int K then output Bz and Stop.

Step 4 Perceptron Improvement Phase.
(a) Let = be a random unit vector in X. Repeat at most |(1/0”)In(n)]| times:
(b) Call deep-separation oracle for F at z with ¢t = o.
If (d,z) > —ol|d||||z|| for all d € extF* (condition I), End Step 4.
Otherwise, oracle returns d € F*, ||d|| = 1, such that (d, z) < —o||d]|||z|
(condition II), and set x «— x — (d, x) d.

If z = 0 restart at (a).

(c) Call deep-separation oracle for F at z with ¢t = 0.

If oracle returns condition (II), restart at (a).

Step 5 Stopping Criteria. If Az € int K then output Bz and Stop.

T T
Step 6 Re-scaling. A — Ao (I + i , B—Bol|I+ i ,
(2, ) (z, )
and Goto Step 2.

Table 1. One iteration of the re-scaled perceptron algorithm is one pass of Steps 2-6.

From Lemma 1 it therefore holds that

(N AZ) = (A*\,5) > 7| A" for all A€ K*.

Note that £ = z+ (77 — (%, 2))Z, and let 7 := \}%T]—‘. We want to show that
(v,2) > 7ljv|| for all v € extF". (3)

If (3) is true, then by convexity of the function f(v) = 7||v| — (v, 2) it will also
be true that (v, £) > 7[jv[| for any v € F*. Then from Lemma 2 it would follow
that B(2,7) C F, whereby 7 > T s desired.

Let v be an extreme ray of F*. Using Lemma 1, there exist a sequence
{N}is1, A € K*, A*X' — v as i — oo. Since (3) is trivially true for v = 0, we



can assume that v # 0 and hence A*\? # 0 for i large enough. Next note that
JA*XI |2 = |A*N||2 + 2 (AN, 2)° + (2, 7) (A*N 3)
. 2
A2 (A*X\'.7)

and

(A2) = (a2 @ (axim) .

(AN 2) + (17 — (3,2)) (A"N, ) + (T, 2) (AN, 7)

TF ||A*)\l||+7}-<A*)\Z,;E> (4)
(AN, Z)
[[ A=\

>

=7F (1 + AN

<A*)‘l A> 1 t: *yi =
Therefore ~——%- > 71 1t where t; = %. Note that ¢; < 1 and

——— 2 TF

[|A* X || V14362

(v,T) > —o||v| since v € extF*, and so <ﬁ’ﬁ> > —o. By continuity, for any
v

e > 0 it holds that ¢; > —o — ¢ for ¢ sufficiently large. Thus, t; € [-0 — &, 1] for
i large enough.

For ¢ € [0,1], Y\;_et have \/11+3t2 > \/1};2:;# 1, and for ¢t € [—0 — ¢,0], the
g—¢&

VIE3t2 = /143(0+e)?

function g(t) =

since

dg(t) _ o 1-3 >0
dt (1+3t2)3/2 —

for t € [-o —¢€,0], that is, g(t) is increasing on [—o — &, 0]. Therefore, for i large

enough we have
</Al)\i, 2> (1—0—¢)
> T

S > TF .
|- A* A 14 3(c+¢)?
Passing to the limit as A\* — v obtain
(v,2) (1—0—2)
2 TF
[[v]] 1+3(c+¢)?
whereby
(v, 2) 1l-0) _.
> Tr—Y——=1.
[[o]] V1+302

5 Probabilistic Analysis.

As mentioned before, the probabilistic analysis of our conic framework is similar
to the analysis with linear inequalities in [5]. We state the main lemmas of the



analysis without proof. Our exposition intentionally separates the probabilistic
analysis from the remaining sections.

The first lemma of this section was established in [3] for the case of linear
inequalities, and here is generalized to the conic framework. Roughly speaking, it
shows that the perceptron improvement phase generates near-feasible solutions
if started at a good initial point, which happens with at least a fixed probability
p=1/8.

Lemma 5. Let z be a feasible solution of (1) of unit norm. With probability at
least %, the perception improvement phase returns a vector x satisfying:

(i) (d,z) > —o||z| for every d € extF*, ||d|| =1, and
(it) {z,2/|z]) > 7.

Lemma 5 establishes that points obtained after the perceptron improvement
phase are near-feasible for the current conic system. The next lemma clarifies
the implications of using these near-feasible points to re-scale the conic system.

Lemma 6. Suppose that n > 2, 77,0 < 1/32n and A is the linear operator of
the current iteration. Let A be the linear operator obtained after one iteration
of the perceptron improvement phase. Let Tz denote the width of the cone of

feasible solutions F of the updated conic system associated with A. Then

1 1
) rp> (1— o — ——— ) 7ps
(¥ Tf( 32n 512n2)7f :

1
.o . .- 1
(ii) With probability at least g, Tz > (1 + m) TE.

Finally, the following theorem bounds the number of overall iterations and
the number of oracle calls made by the algorithm.

Theorem 1. Suppose that n > 2. If (1) has a solution, the re-scaled perceptron
algorithm will compute a solution in at most

1 1 1 1
T = max {4096 In (S) ,139n1n (32717}-) } =0 <n1n <;> +In <5>)

iterations, with probability at least 1 —§. Moreover, the algorithm makes at most
O(T n? In(n)) calls of a deep-separation oracle for F and at most O(T n?) calls
of a separation oracle for F with probability at least 1 — 9.

It will useful to amend Definition 3 of the deep-separation oracle as follows:

Definition 4. For a fized positive scalar o, a half-deep-separation oracle for a
cone C C R" is a subroutine that given a non-zero point x € R", either

(I) correctly identifies that {dyz) > —o for all d € extC* or

il — ;
(I1) returns a vector d € C*, ||d|| = 1 satisfying % < —0/2.
T



Remark 1. Definition 4 only differs from Definition 3 in the inequality in condi-
tion (IT), where now o/2 is used instead of . This minor change only affects the
iteration bound in Step 4 of the re-scaled perceptron algorithm, which needs to
be changed to [(4/02)In(n)] ; all other analysis in this Section remains valid.

6 Deep-separation Oracles

The re-scaled perceptron algorithm needs a deep-separation oracle for the feasi-
bility cone F. Herein we show that such a deep-separation oracle is fairly easy
to construct when (1) has the format:

Apz € int RY
Az eint Q™ i=1,...,q (5)
s € int S’f_Xk ,

where z is composed as the cartesian product x = (x5, zp). Note that (5) is an
instance of (1) for K = IR x Q™ x---x Q™ x S’f_Xk and the only special structure
on A is that the semi-definite inclusion is of the simple format “Izg € S f_Xk.” In
Section 6.4 we show how to construct a deep-separation oracle for more general
problems that also include the semi-definite inclusion “Agsx € SﬁXk ;7 but this
construction takes more work.

The starting point of our analysis is a simple observation about intersections
of feasibility cones. Suppose we have available deep-separation oracles for each
of the feasibility cones F; and F» of instances:

reX reX (6)

and consider the problem of finding a point that simultaneously satisfies both
conic inclusions:

{Alx € int K, and {Agx € int Ko

Az € int Ky
Asx € int Ko (7)
zeX.

Let F ={z: Ajxz € K1,Asx € Ko} ={z: Az € K} where K = Ky x K3 and
A is defined analogously. Then F = Fy N Fy where F; = {z : A;xz € K;} for
i = 1,2. It follows from the calculus of convex cones that F* = F} + F5, and
therefore

extF* C (extF; UextFy) . (8)

This observation leads to an easy construction of a deep-separation oracle for
JF1 N Fy if one has available deep-separation oracles for F; and Fa:

Deep-separation Oracle for F; N Fs

Given: scalar t > 0 and x # 0, call deep-separation oracles for F; and F3 at x.
If both oracles report Condition I, return Condition I.
Otherwise at least one oracle reports Condition II and provides
de FF C F*, ||d|| =1, such that (d,z) < —t||d]|||z|); return d and Stop.




Remark 2. If deep-separation oracles for F; are available and their efficiency is
O(T;) operations for ¢ = 1,2, then the deep-separation oracle for F; N Fa given
above is valid and its efficiency is O(T; + T») operations.

Utilizing Remark 2, in order to construct a deep-separation oracle for the
feasibility cone of (5) it will suffice to construct deep-separation oracles for each
of the conic inclusions therein, which is what we now examine.

6.1 Deep-separation Oracle for F when K = IR"_f

We consider F = {z : Az € R'}. Example 1 has already described a deep-
separation oracle for F when the inclusion cone is IR'". It is easy to see that this
oracle can be implemented in O(mn) operations.

6.2 Deep-separation Oracle for F when K = QF

For convenience we amend our notation so that F = {x : [|[Mz|| < gTz} for a
given real (k— 1) x n matrix M and a real n-vector g, so that F = {x : Az € QF}

gz
We will construct an efficient half-deep-separation oracle (Definition 4) by
considering the following optimization problem:

where the linear operator A is specified by Az := Pﬁm] .

t* = mingdTz

st d| =1 9)
de F .

If x € F, then t* > 0 and clearly condition I of Definition 4 is satisfied.
If ¢ F, then t* < 0 and we can replace the equality constraint in (9) with
an inequality constraint. We obtain the following primal/dual pair of convex
problems with common optimal objective function value t*:

t* := ming 27d = maxy, —||y — ||
st dl] <1 st.yeF (10)
de F*

Now consider the following half-deep-separation oracle for F when K = Q*.

Half-Deep-Separation Oracle for F
when K = QF, for = # 0 and relaxation parameter o > 0
If |Mz|| < g"z, return Condition I, and Stop.
Solve (10) for feasible primal and dual solutions d,§ with duality gap g
satisfying g/||z| < o/2
If #7d/|z|| > —o /2, report Condition (I), and Stop.

If #7d/|z|| < —0/2, then return d = d, report Condition (II), and Stop.




To see the validity of this method, note that if || Mz|| < "z, then z € F and
clearly Condition (I) of Definition 4 is satisfied. Next, suppose that 27 d/||z|| >
0/2 then t* > —|lg—z| =2Td—g > —||z||c/2 — ||z|0/2 = —||z||o. Therefore
||w||||dH —o for all d € F*, and it follows that Condition (I) of Definition 4 is
satisfied. Finally, if 7d/||z|| < —o/2, then IIdHH TS —0/2 and d € F*, whereby

Condition (II) of Definition 4 is satisfied using d.

The computational efficiency of this deep-separation oracle depends on the
ability to efficiently solve (10) for feasible primal/dual solutions with duality
gap § < ol|x||/2. For the case when K = QF, it is shown in [1] that (10)
can be solved very efficiently to this desired duality gap, namely in O(n® +
ninln(1/0) + nlnln(l/ min{7xz, £+ })) operations in practice, using a combina-
tion of Newton’s method and binary search. Using o = 1/(32n) this is O(n® +
ninln(1/ min{7r, 7£-})) operations for the relaxation parameter ¢ needed by
the re-scaled perceptron algorithm.

6.3 Deep-separation Oracle for Ska

Let C' = S¥** and for convenience we alter our notation herein so that X € S¥**
is a point under consideration. A deep-separation oracle for C' at X # 0 for the
scalar ¢t > 0 is constructed by simply checking the condition “X +¢|| X || = 0.” If
X +t|| X||I = 0, then condition I of the deep-separation oracle is satisfied. This
is true because the extreme rays of C are the collection of rank-1 matrices vvT,

and
(vT, X) v Xv —t|| X ||vTv

XM X o™= X oo™

for any v # 0. On the other hand, if X + ¢/ X||I # 0, then compute any nonzero
v satisfying vT Xv + t|| X ||vTv < 0, and return D = voT /vTv, which will satisfy

(D, X) v Xv

- < —t
Xl X =

thus satisfying condition II. Notice that the work per oracle call is simply to check
the eigenvalue condition X > —¢||X||I and possibly to compute an appropriate
vector v, which is typically O(k®) operations in practice.

6.4 Methodology for a Deep-separation Oracle for F when K* has
a Deep-Separation Oracle

In this subsection we present a general result on how to construct a deep-
separation oracle for any feasibility cone F = {z € R" : Az € K} whose
dual inclusion cone K* has an efficiently-computable deep-separation oracle. We
therefore formally define our working premise for this subsection as follows:
Premise: K* has an efficiently-computable deep-separation oracle. Further-
more, T and Tx+ are known.



Remark 3. The results herein specify to the case when K = SﬁXk. We know
from the results in Section 6.3 and the self-duality of S5*F ((Sh*k)* = ghxF)
that K* has an efficiently computable deep-separation oracle when K = SiXk.
Furthermore, we have 7 = 7x~ = 1/\/E

The complexity analysis that we develop in this subsection uses the data-
perturbation condition measure model of Renegar [15], which we now briefly
review. Considering (1) as a system with fixed cone K and fixed spaces X and
Y, let M denote those operators A : X — Y for which (1) has a solution. For
A e M, let p(A) denote the “distance to infeasibility” for (1), namely:

p(A) = rggl{HAAH A+ AAE MY

Then p(A) denotes the smallest perturbation of our given operator A which
would render the system (1) infeasible. Next let C(A) denote the condition mea-
sure of (1), namely C(A) = ||A||/p(A), which is a scale-invariant reciprocal of
the distance to infeasibility. In(C(A)) is tied to the complexity of interior-point
methods and the ellipsoid method for computing a solution of (1), see [16] and
[6].

Given a regular inclusion cone K, the feasibility cone for (1) is F = {z :
Az € K}. Given the relaxation parameter ¢ > 0 and a non-zero vector x € R",
consider the following conic feasibility system in the variable d:

x,d
it < —t
(Ste) (11)
de F*

It follows from Definition 3 that if d is feasible for (S ), then Condition II of
Definition 3 is satisfied; however, if (S ;) has no solution, then Condition I is
satisfied. Utilizing Lemma 1 and rearranging terms yields the equivalent system
in variables w:

tlz|l[[A*w|| + (w, Az) <0
(St,z) . (12)
w € intK*

Note that if @ solves (12), then d = A*w solves (11) from Lemma 1. This leads
to the following approach to constructing a deep-separation oracle for F:

given x # 0 and t := o, compute a solution @ of (12) or certify that no
solution exists. If (12) has no solution, report Condition I and Stop; oth-
erwise (12) has a solution W, return d := A*w/||A*w||, report Condition
II, and Stop.

In order to implement this deep-separation oracle we need to be able to compute
a solution @ of (12) if such a solution exists, or be able to provide a certificate of
infeasibility of (12) if no solution exists. Now notice that (12) is a homogeneous



conic feasibility problem of the form (5), as it is comprised of a single second-
order cone inclusion constraint ( (t||z||A*w, (w, —Axz)) € Q™ ) plus a constraint
that the variable w must lie in K*. Therefore, using Remark 2 and the premise
that K* has an efficiently-computable deep-separation oracle, it follows that (12)
itself can be efficiently solved by the re-scaled perceptron algorithm, under the
proviso that it has a solution.

However, in the case when (12) has no solution, it will be necessary to develop
a means to certify this infeasibility. To do so, we first analyze its feasibility cone,
denoted as F; 5 := {w : t||z||[| A*w]| + (w, Az) <0, w e K*}. We have:

Proposition 1. For a given o € (0,1/2) and x # 0, suppose that S, ) has a
solution and let t € (0,0). Then

TR~ (0 —t)
= > —
"Fom = T 3C(A)

Proof. For simplicity we assume with no loss of generality that ||z|| = 1 and
|A|l = 1. Since S, ) has a solution, let @ satisfy o|A*w|| + (w, Az) < 0,
w € K*, and ||| = 1. It follows directly from Theorem 2 of [7] that ||A*w| >
p(A). Let w® be the center of K*, whereby B(w®,7x~) C K*. Consider the
vector w + Sw® + ad where ||d|| < 1 and 8 > 0 will be specified shortly. Then
W+ Pw® + ad € K* so long as a < Brg+. Also,

A" (@ + Buw® + ad)|| + (b + fu® + ad, Az) < t|AD| + Bt + at + (b, Az) + B +
<(t-o))A"D|+Bt+at+ B+

(t—o)p(A)+Pt+at+8+a

0

IAIN

so long as a < & := % — 3. Therefore

min { =060 — g, grie. b min {000 g gy )

- > >
Few = [+ Bue] - 155
Let 8 := % and substituting in this last expression yields
_ (0~ pA)ie- (o~ Dp(A)ric _ (o~ t)rc-
Faor = 242t 4 (0 — t)p(A) ~ 3 3C(A)

since p(A) < ||[Al=1and 0 <t <o <1/2.

Now consider the following half-deep-separation oracle for F (recall Defini-
tion 4) which takes as input an estimate L of C(A):



Probabilistic Half-deep-separation Oracle for F, for = # 0,
relaxation parameter o, failure probability §, and estimate L
Set t := 0 /2, and run the re-scaled perceptron algorithm to compute a solu-

tion @ of (12) for at most 7" := max {4096 In($),139nIn (%)} iterations.
If a solution @ of (12) is computed, return d := A*w/||A*w||,
report Condition II, and Stop.

If no solution is computed within T iterations, report
“either Condition I is satisfied, or L < C(A4),” and Stop.

The following states the correctness of the above oracle:

Theorem 2. Using the iteration count T above, with probability at least 1 — §
the output of the probabilistic oracle is correct.

Proof. If the oracle computes a solution w of (12), then it is trivial to show that
d = A*w/||A*w| satisfies d € F* and % < —t = —0/2, thus satisfying
condition IT of Definition 4. Suppose instead that the oracle does not compute
a solution within 7" iterations. If (12) has a solution it follows from Theorem
1 that with probability at least 1 — § the re-scaled perceptron algorithm would
compute a solution of (12) in at most

T := max < 4096 In E ,139n 1n _
1) 3217,7'_7}“ -

iterations. However, if L > C(A) and .7:'(0,1) = (), then it follows from Proposition
1 that
1 3C(A) 6L
< <

32n7g, T 32nTk- (0/2) = T+’

whereby T < 7. Therefore, it follows that that either L < C(A) or .7:'(0@) =0,
the latter then implying Condition I of Definition 4.

We note that the above-outlined method for constructing a deep-separation
oracle is inelegant in many respects. Nevertheless, it is theoretically efficient, i.e.,
it is polynomial-time in n, In(1/7x+), In(L), and In(1/4). It is an interesting and
open question whether, in the case of K = § +Xk, a more straightforward and
more efficient deep-separation oracle for F can be constructed.

Finally, it follows from Theorem 7 of [7] that the width of F can be lower-
bounded by Renegar’s condition measure:

TK
>
gy

This can be used in combination with binary search (for bounding C(A))
and the half-deep-separation oracle above to produce a complexity bound for
computing a solution of (1) in time polynomial in n, In(C(A)), In(1/§), In(1/7x),
and In(1/7x~).

(13)
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