
Expanders via Random Spanning Trees

Navin Goyal∗ Luis Rademacher† Santosh Vempala‡

Abstract

Motivated by the problem of routing reliably and scalably in a graph, we introduce the notion
of a splicer, the union of spanning trees of a graph. We prove that for any bounded-degree n-
vertex graph, the union of two random spanning trees approximates the expansion of every cut
of the graph to within a factor of O(log n). For the random graph Gn,p, for p = Ω(log n/n), we
give a randomized algorithm for constructing two spanning trees whose union is an expander.
This is suggested by the case of the complete graph, where we prove that two random spanning
trees give an expander. The construction of the splicer is elementary; each spanning tree can
be produced independently using an algorithm by Aldous and Broder: A random walk in the
graph with edges leading to previously unvisited vertices included in the tree. Splicers also turn
out to have applications to graph cut-sparsification where the goal is to approximate every cut
using only a small subgraph of the original graph. For random graphs, splicers provide simple
algorithms for sparsifiers of size O(n) that approximate every cut to within a factor of O(log n).

1 Introduction

In this paper, we present a new method for obtaining sparse expanders from spanning trees. This
appears to have some interesting consequences. We begin with some motivation.

Recovery from failures is considered one of the most important problems with the internet today
and is at or near the top of wish-lists for a future internet. In his 2007 FCRC plenary lecture,
Shenker desires a network where “even right after failure, routing finds path to destination” [22].
How should routing proceed in the presence of link or node failures?

At a high-level, to recover from failures, the network should have many alternative paths,
a property sometimes called path diversity, which is measured by several parameters, including
robustness in the presence of failures and congestion. It is well-known that expander graphs have
low congestion and remain connected even after many (random) failures. Indeed, there is a large
literature on routing to minimize congestion and on finding disjoint paths that is closely related to
expansion (or more generally, conductance); e.g. [21, 12, 3].

However, in practice, efficient routing also needs to be compact and scalable; in particular, the
memory overhead as the network grows should be linear or sublinear in the number of vertices. This
requirement is satisfied by routing on trees, one tree per destination. In fact, the most commonly
used method in practice is shortest path routing which is effectively one tree per destination1. Since
the final destination determines the next edge to be used, this gives an O(n) bound on the size of
∗College of Computing, Georgia Tech
†College of Computing, Georgia Tech
‡College of Computing, Georgia Tech
1It is called Open Shortest Path First (OSPF) in networking terminology.

1

the routing table that needs to be stored at each vertex. If a constant-factor stretch is allowed, this
can be reduced. For example, with stretch 3, tables of size O(

√
n) suffice as shown by Abraham et

al [1].
The main problem with shortest-path routing or any tree-based scheme is the lack of path

diversity. Failing any edge disconnects some pairs of vertices. Recovery is usually achieved by
recomputing shortest path trees in the remaining network, an expensive procedure. Further, con-
gestion can be high in principle. This is despite the fact that the underlying graph might have high
expansion, implying that low congestion and high fault-tolerance are possible. There is some evi-
dence that AS-level internet topologies are expanders and some stochastic models for networks lead
to expanders [15]. However, known algorithms that achieve near-optimal congestion use arbitrary
paths in the network and therefore violate the scalability requirement. This raises the following
question: is it possible to have a routing scheme that is both scalable and achieves congestion and
fault-tolerance approaching that of the underlying graph?

Our work is inspired by Motiwala et al. [17, 16], who consider a conceptually simple extension
of tree-based routing, using multiple trees. With one tree there is a unique path between any two
points. With two trees, by allowing a path to switch between the trees multiple times, there could
be a large number of available paths. Motiwala et al. showed experimentally that a small number
of randomly perturbed shortest path trees for each destination leads to a highly reliable routing
method: the union of these trees has reliability approaching that of the underlying graph.

This raises the question whether the results of this experiment can be true in general. I.e., for
a given graph does there exist a small collection of spanning trees such that the reliability of the
union approaches that of the base graph? As a preliminary step, we study the question of whether
for a given graph the union of a few spanning trees captures the expansion of the original graph.
Here we propose a construction that uses only a small number of trees in total (as opposed to one
tree per destination) and works for graphs with bounded degree and for random graphs. The trees
are chosen independently from the uniform distribution over all spanning trees, a distribution that
can be sampled efficiently with simple algorithms. The simplest of these, due to Aldous [2] and
Broder [7], is to take a random walk in the graph, and include in the tree every edge that goes to a
previously unvisited vertex. Roughly speaking, our main result is that for bounded degree graphs
and for the complete graph a small number of such trees give a subgraph with expansion comparable
to the original graph for each cut. Splicers can thus be viewed as a new way to construct expanders
with O(n) edges.

Splicers turn out to be related to cut-sparsifiers where the goal is to approximate every cut using
only a small subgraph of the original graph. Cut sparsifiers were first defined by Benczur–Karger [6],
who gave an algorithm to construct cut-sparsifiers with O(n log n) edges. Spielman–Srivastava [23]
used a stronger definition requiring that the sparsifier should approximate the Laplacian quadratic
form of the original graph. They gave an algorithm that constructs O(n log n)-size sparsifiers.
Recently Batson et al. [5] gave an algorithm to construct O(n)-size sparsifiers. It is an important
problem to find simple and fast sparsifier algorithms. Splicers, constructed using random spanning
trees obtained by a simple random process called Process Bp, provide cut-sparsifiers of size O(n)
for random graphs in Gn,p: When the base graph is random, with high probability, the union of
two spanning trees approximates all cuts to within a factor of O(log n). We state this precisely in
the next section. This is a modest step towards a simple algorithm for graph sparsification.

2

1.1 Our results

A k-splicer is the union of k spanning trees of a graph. By a random k-splicer we mean the union
of k uniformly randomly chosen spanning trees. We show that for any bounded degree graph, the
union of two random spanning trees of the graph approximates the expansion of every cut of the
graph. Using more trees gives a better approximation. In the following δG(A) stands for the set of
edges in graph G that have exactly one endpoint in A, a subset of vertices of G.

Theorem 1.1. For a d-regular graph G = (V,E), let UkG be a random k-splicer, obtained by the
union of k uniformly random spanning trees. Also let α > 0 be a constant and α(k − 1) ≥ 9d2.
Then with probability 1− o(1), for every A ⊂ V , we have

|δUkG(A)| ≥ 1
α log n

· |δG(A)|.

Our proof of this makes novel use of a known property of random spanning trees of a graph,
namely the events of an edge in the graph being included in the tree are negatively correlated.

Next we show that the factor 1/ log n is the best possible for k-splicers constructed from random
spanning trees for any constant k. Definitions of notions of expansion and expanders referred to
below can be found in Section 2.

Theorem 1.2. For every n, there is a bounded-degree edge expander G on n vertices such that
with probability 1− o(1) the edge expansion of a random k-splicer UkG is at most k2/C log n for any
k ≥ 1, and a constant C > 0 depending only on the maximum degree of G.

For the complete graph, one can do better, requiring only two trees to get a constant-factor
approximation.

Theorem 1.3. The union of two uniformly random spanning trees of the complete graph on n
vertices has constant vertex expansion with probability 1− o(1).

Since constant vertex expansion implies constant edge expansion, we get that the union of two
uniformly random spanning trees has constant edge expansion with high probability.

Next we turn to the random graph Gn,p. Our main result here is that w.h.p., Gn,p has two
spanning trees whose union has constant vertex expansion. We give a simple random process (called
Process Bp henceforth) to find these trees.

Theorem 1.4. There exists an absolute constant C, such that for p ≥ C log n/n, with probability
1 − o(1), the union of two random spanning trees obtained from Process Bp applied to a random
graph H drawn from Gn,p has constant vertex expansion.

The proof of this theorem is via a coupling lemma (Lemma 7.2) showing that a tree generated
by Process Bp applied to a random graph H is nearly uniform among spanning trees of the complete
graph.

Theorem 1.4 relates to the work of [6, 23] and leads to the first linear-size sparsifier with
nontrivial approximation guarantees for random graphs:

Theorem 1.5. There exists an absolute constant C > 0 such that for p ≥ C log n/n the following
holds: Let H be a Gn,p random graph, and let H ′ be the 2-splicer obtained from it via process Bp,
with a weight of pn on every edge. Then with probability 1− o(1), for every A ⊂ V we have

c1|δH(A)| ≤ w(δH′(A)) ≤ c2|δH(A)| log n,

for some absolute constants c1, c2 > 0.

3

Here w(·) denotes the sum of the weights.

1.2 Related work

The idea of using multiple routing trees and switching between them is inspired by the work of
[17] who proposed a multi-path extension to standard tree-based routing. The method, called Path
Splicing, computes multiple trees to each destination vertex, using simple methods to generate the
trees; in one variant, each tree is a shortest path tree computed on a randomly perturbed set of
edge weights. Path splicing appears to do extremely well in simulations, approaching the reliability
of the underlying graph using only a small number of trees2.

Sampling for approximating graph cuts was introduced by Karger, first for global min-cuts and
then extended to min s-t cuts and flows. The most recent version due to Benczur and Karger [6]
approximates the weight of every cut of the graph within factors of 1+ε and 1−ε using O(n log n/ε2)
samples; edges are sampled independently with probability inversely proportional to a connectivity
parameter and each chosen edge is weighted with the reciprocal of their probability. Recently,
Spielman and Srivastava [23], gave a similar method where edges are sampled independently with
probability proportional the graph resistance and weighted in a similar way, by the reciprocal of
the probability with which they are chosen. They show that every quadratic form of the Laplacian
of the original graph is approximated within factors 1 − ε and 1 + ε. The similarity in the two
methods extends to their analysis also — both parameters, edge strength and edge resistance share
a number of useful properties.

It has long been known that the union of three random perfect matchings in a complete graph
with even number of vertices (see, e.g., [10]) is an expander with high probability. Our result on
the union of random spanning trees of the complete graph can be considered as a result in a similar
vein, and our proof has a similar high-level outline. However, the proof for spanning trees seems
to require new ideas.

On the other hand, our result for the union of spanning trees of bounded degree graphs doesn’t
seem to have any analog for the union of matchings. Indeed, generating random perfect matchings
of graphs is a highly nontrivial problem — computing the permanent of 0–1 matrices being the
special case of bipartite graphs [11].

2 Preliminaries

Let G = (V,E) be an undirected graph. For v ∈ V , define Γ(v) := {u ∈ V : (u, v) ∈ E}, the
set of neighbors of v. For A ⊆ V , define Γ(A) := ∪v∈AΓ(v), and Γ′(A) := Γ(A) \ A. Finally, let
δG(A) := {(u, v) ∈ E : u ∈ A, v /∈ A}. The edge expansion of G is

min
A⊆V,1≤|A|≤|V |/2

|δG(A)|
|A|

.

The vertex expansion of G is

min
A⊆V,1≤|A|≤|V |/2

|Γ′(A)|
|A|

.

2It has several other features from a practical viewpoint, such as allowing end vertices to specify paths, that we
do not discuss in detail here.

4

We say that a family of graphs is an edge (resp., vertex) expander (family) if the edge (resp.,
vertex) expansion of the family is bounded below by a positive constant.

Let Kn denote the complete graph on n vertices.
For a ∈ R, let [a] := {i ∈ N : 1 ≤ i ≤ a}. On several occasions we will use the inequality(

n
k

)
≤ (nek)k.

3 Uniform random spanning trees

Uniformly random spanning trees of graphs are fairly well-studied objects; see, e.g., [14]. In this
section we describe properties of random spanning trees that will be useful for us. There are several
algorithms known for generating a uniformly random spanning tree of a graph, e.g., [2, 7, 20, 14].
The algorithm due to Aldous and Broder is very simple and will be useful in our analysis: Start a
uniform random walk at some arbitrary vertex of the graph, and when the walk visits a vertex for
the first time, include the edge used to reach that vertex in the tree. When all the vertices have
been visited we have a spanning tree which is uniformly random regardless of the initial vertex.

A well-known fact (e.g. [13]) about uniform random spanning trees is that the probability that
an edge e belongs to the uniform random spanning tree is equal to the effective resistance of
e. [There are several equivalent definitions of effective resistance. One of them is the following:
Thinking of the graph as an electrical network, let each edge have unit resistance, then the effective
resistance of e is the potential difference applied to the endpoints of e to induce a unit current.]
This fact shows a connection of our work with [23], who sample edges in a graph according to their
effective resistances to construct a sparsifier.

For a connected base graph G = (V,E), random variable TG denotes a uniformly random
spanning tree of G. UkG will denote the union of k such trees chosen independently. For edge e ∈ E,
abusing notation a little, we will refer to events e ∈ E(TG) and e ∈ E(UkG) as e ∈ TG and e ∈ UkG.

Negative correlation of edges. The events of various edges belonging to the random spanning
tree are negatively correlated: For any subset of edges e1, . . . , ek ∈ E we have

P[(e1 ∈ TG) ∧ (e2 ∈ TG) ∧ . . . ∧ (ek ∈ TG)] ≤ P[e1 ∈ TG] P[e2 ∈ TG] · · ·P[ek ∈ TG]. (1)

A similar property holds for the complementary events:

P[(e1 /∈ TG) ∧ . . . ∧ (ek /∈ TG)] ≤ P[e1 /∈ TG] P[e2 /∈ TG] · · ·P[ek /∈ TG]. (2)

These are easy corollaries of [14, Theorem 4.5], which in turn is based on the work of Feder and
Mihail [9] and a classical result that (1) holds for two edges.

We now briefly explain how to obtain (1), (2). We first need some definitions; we follow [14].
Think of a spanning tree as a subset of edges. We can then extend the uniform probability measure
P on spanning trees to the set 2E(G) of all subsets of E(G), where a set is assigned probability 0 if
it is not a spanning tree. An event A ⊆ 2E(G) is upwardly closed if for all A ∈ A and e ∈ E(G), we
have A ∪ {e} ∈ A. We say that an event A ignores an edge e if for all A ∈ A we have A ∪ {e} ∈ A
and A \ {e} ∈ A.

We can now state the theorem we need to prove (1), (2) (cf. [14, Theorem 4.5]).

Theorem 3.1. Let P be the uniform probability measure on the set of spanning trees extended to
all subsets of edges as defined above. If A is an upwardly closed event that ignores some edge e,
then P[A ∧ (e ∈ TG)] ≤ P[A] P[e ∈ TG].

5

To show (1), let A be the event “e1, . . . , ek−1 ∈ TG”. Then clearly A ignores ek and is upwardly
closed. Thus applying Theorem 3.1 to events A and (ek ∈ TG) we get

P[((e1 ∈ TG) ∧ . . . ∧ (ek−1 ∈ TG)) ∧ (ek ∈ TG)] ≤ P[(e1 ∈ TG) ∧ . . . ∧ (ek−1 ∈ TG)] P[ek ∈ TG].

Now (1) follows by induction.
To show (2), let B be the event that e1 /∈ TG, . . . , ek−1 /∈ TG. Then the complementary event B̄

is upwardly closed and ignores ek. Thus applying Theorem 3.1 to events B̄ and (ek ∈ TG) we have

P[B̄ ∧ (ek ∈ TG)] ≤ P[B̄] P[ek ∈ TG].

But now we can make use of the general and easy fact that for two events A,B over any
probability space, if we have P[ĀB̄] ≤ P[Ā] P[B̄] then we also have P[AB] ≤ P[A] P[B]. We get

P[B ∧ (ek /∈ TG)] ≤ P[B] P[ek /∈ TG],

in other words,

P[((e1 /∈ TG) ∧ . . . ∧ (ek−1 /∈ TG)) ∧ (ek /∈ TG)] ≤ P[(e1 /∈ TG) ∧ . . . ∧ (ek−1 /∈ TG)] P[ek /∈ TG].

Now (2) follows by induction.

Negatively correlated random variables and tail bounds. For e ∈ E, define indicator
random variables Xe to be 1 if e ∈ T , and 0 otherwise. Then we can rewrite (1) as follows.

For any subset of edges e1, . . . , ek ∈ E we have

E[Xe1 · · ·Xek] ≤ E[Xe1] · · ·E[Xek]. (3)

For random variables {Xe} satisfying (3) we say that {Xe} are negatively correlated. Several
closely related notions exist; see Dubhashi and Ranjan [8], and Pemantle [19]. [8] gave a property
of negative correlation that will be useful for us: It essentially says that Chernoff’s bound for the
tail probability for sums of independent random variables applies unaltered to negatively correlated
random variables. More precisely, we will use the following version of Chernoff’s bound.

Theorem 3.2. Let {Xi}ni=1 be a family of 0–1 negatively correlated random variables such that
{1−Xi}ni=1 are also negatively correlated. Let pi be the probability that Xi = 1. Let p := 1

n

∑
i∈[n] pi.

Then for λ > 0
P[
∑
i∈[n]

Xi < pn− λ] ≤ e−λ2/(2pn).

Proof. The proof splits into two steps: In the first step we prove that for arbitrary λ we have

E[exp(λ
n∑
i=1

Xi)] ≤
n∏
i=1

E[exp(λXi)]. (4)

The second step is a standard Chernoff bound argument as in the proof of Theorem A.1.13 in [4].
Since the first step is not well-known and is not hard, we provide a proof here. In this, we basically
follow Dubhashi and Ranjan [8].

The case λ = 0 is trivially true. We now prove (4) for λ > 0. Since Xi’s take 0–1 values, for
any integers a1, . . . , an > 0, we have Xa1

1 Xa2
2 · · ·Xan

n = X1X2 · · ·Xn. Now, writing exp(λ
∑n

i=1Xi)
using the Taylor series for ex, and expanding each summand, we get a sum over various mono-
mials over the Xi’s. For each monomial we have by the definition of negative correlation that
E[X1 · · ·Xn] ≤

∏n
i=1 E[Xi]. This gives (4) for λ > 0.

For λ < 0, a similar argument using 1−Xi in the role of Xi gives (4).

6

4 Expansion when base graph is a complete graph

Our proof here has the same high-level outline as the proof for showing that the union of three
random perfect matchings in a complete graph with even number of vertices is a vertex-expander
(see, e.g., [10]): One shows that for any given vertex set A of size ≤ n/2, the probability is very
small for the event that |Γ′(A)| is small in the union of the matchings. A union bound argument
then shows that the probability is small for the existence of any set A with |Γ′(A)| small. However,
new ideas are needed in our case because spanning trees are generated by the random walk process,
which appears to be more complex to analyze than random matchings in complete graphs.

Proof (of Theorem 1.3). For a random spanning tree T in Kn and given A ⊆ V , |A| = a, we will
give an upper bound on the probability that |Γ′T (A)| ≤ ca, for a given expansion constant c (recall
that Γ′T (A) denotes the set of vertices in V \ A that are neighbors of vertices in A in the graph
T). To this end, we will fix a set A′ ⊆ V \ A of size bcac and we will bound the probability that
Γ′T (A) ⊆ A′, and, to conclude, use a union bound over all possible choices of A and A′. Without loss
of generality the vertices are labeled V = {1, . . . , n}, A = [a] = {1, . . . , a} and A′ = {a+1, a+bcac}.
More precisely, the union bound is the following: the probability that there exists a set A ⊆ V such
that |A| ≤ n/2 and |Γ′T (A)| ≤ ca in the union of t random independent spanning trees is at most

bn/2c∑
a=1

(
n

a

)(
n

bcac

)
P(ΓT (A) ⊆ [a+ ca])t. (5)

We will bound different parts of this sum in two ways: First, for a ≤ n/12, we use the random
walk construction of a random spanning tree which, as we will see, can be interpreted as every
vertex in A picking a random neighbor (but not in a completely independent way). Second, for
a ∈ (n/12, n/2], we look at all the edges of the cut as if they were independent by means of negative
correlation.

So, for the first part of the sum in (5), a ≤ n/12, consider a random walk on V starting outside
of A, that defines a random spanning tree (as in the random walk algorithm). Let X1, X2, . . .
denote the states of this random walk. Let τi be the first time that the walk has visited i different
vertices of A. The reason for considering these variables τi is that P(ΓT (A) ⊆ [a+ ca]) (from (5))
is easier to upper bound after conditioning on all τi, because this conditioning makes the family
(X(τi)−1)i independent for i such that τi − τi−1 > 1. But conditioning over all choices of (τi)i∈[a] is
too cumbersome, so we condition instead on the number of adjacent first visits, the random variable
Z defined formally below, and then we upper bound P(ΓT (A) ⊆ [a + ca] | Z = z) by the worst
choice of (τi)i for a given z. The computation below shows that the choice that makes the upper
bound weakest is when the z adjacent first visits happen at the beginning, that is, τi+1− τi = 1 for
i ∈ {1, . . . , z} (This explains Equation (7) below, using (6)).

For i = 1, . . . , a− 1, let Yi = τi+1 − τi (the gap between first visits i and i+ 1). We have that
the random variables Yi are independent. Let Zi be the indicator of “Yi = 1”, and let Z =

∑a−1
i=1 Zi

be the number of adjacent first visits. We have

P(Zi = 1) = P(Yi = 1) =
a− i
n− 1

.

We now give an upper bound to the probability that the predecessor to the first visit of vertex i in
[a] is in [a+ ca], given that this predecessor is not a first visit itself (in this case, the edge coming

7

into i is within [a+ ca]). That is, for 2 ≤ i ≤ a,

P(X(τi)−1 ∈ [a+ ca] | Zi−1 = 0) =
bcac+ i− 1
n− a+ i− 1

≤ ca+ i− 1
n− a+ i− 1

P(X(τ1)−1 ∈ [a+ ca]) =
bcac
n− a

≤ ca

n− a
.

(6)

Thus, using edges added when the walk goes from V \ A to A and ignoring edges in the other
direction:

P(ΓT (A) ⊆ [a+ ca]) =
a−1∑
z=0

P(ΓT (A) ⊆ [a+ ca] | Z = z) P(Z = z)

≤
a−1∑
z=0

a−z∏
j=1

a+ ca− j
n− j

(a− 1
z

)(z∏
i=1

a− i
n− 1

)
(7)

≤
a−1∑
z=0

(
a− 1
z

)(
a+ ca

n

)a−z (a
n

)z
=
a+ ca

n

(
a+ ca

n
+
a

n

)a−1

≤
(

2(1 + c)a
n

)a
.

We now use this in (5), for a ≤ n/12. Let K = 2(1 + c).

bn/12c∑
a=1

(
n

a

)(
n

bcac

)
P(ΓT (A) ⊆ [a+ ca])t

≤
bn/12c∑
a=1

(en
a

)a (en
ca

)ca(aK
n

)at

=
bn/12c∑
a=1

αaKat
(a
n

)a(t−1−c)
(where α =

e1+c

cc
)

≤
b√nc∑
a=1

αaKat

(
1√
n

)a(t−1−c)
+

bn/12c∑
a=b√nc+1

αaKat

(
1
12

)a(t−1−c)

≤

[
αKtn−(t−1−c)/2 +

(
αKt

12t−1−c

)b√nc+1
]

1
1− αKt12−(t−1−c)

which goes to 0 as n → ∞ when αKt/12t−1−c < 1, and this happens for t = 2 and a sufficiently
small constant c.

For the rest of the sum in (5), a ∈ (n/12, n/2], we use negative correlation of the edges of a
random spanning tree T (Section 3) to estimate the probability that ΓT (A) ⊆ [a+ ca]. Any fixed
edge from Kn appears in T with probability 2/n. We have that ΓT (A) ⊆ [a+ca] iff no edge between

8

A and V \ [a+ca] is present in T , and negative correlation (Equation (2)) implies that this happens
with probability at most (1− 2/n)a(n−(a+ca)). Thus,

bn/2c∑
a=bn/12c+1

(
n

a

)(
n

bcac

)
P(ΓT (A) ⊆ [a+ ca])t

≤
bn/2c∑

a=bn/12c+1

(en
a

)a (en
ca

)ca(
1− 2

n

)ta(n−(a+ca))

≤ n sup
γ∈[1/12,1/2]

(
e

γ

)γn(e

cγ

)cγn(
1− 2

n

)tγn(n−(1+c)γn))

≤ n sup
γ∈[1/12,1/2]

(
(e/γ)1+c

cc

)γn
e−2tγn(1−(1+c)γ)

= n sup
γ∈[1/12,1/2]

(
(e/γ)1+c

cce2t(1−(1+c)γ)

)γn
For any fixed c > 0, the function

f(γ) =
(e/γ)1+c

cce2t(1−(1+c)γ)

is convex for γ > 0 and hence the sup is attained at one of the boundary points 1/12 and 1/2,
and the function is strictly less than 1 at these boundary points for t = 2 and a sufficiently small
constant c. This implies that this sum goes to 0 as n→∞.

5 Expansion when base graph is a bounded-degree graph: positive
result

In this section we consider graphs with bounded degrees. To simplify the presentation we restrict
ourselves to regular graphs; it is easy to drop this restriction at the cost of extra notation. We
show that for constant degree graphs the edge expansion is captured fairly well by the union of a
small number of random spanning trees.

Proof (of Theorem 1.1). It follows by the random walk construction of random spanning trees that
for any edge (u, v) ∈ E we have P[(u, v) ∈ T] ≥ 1/d(u). To see this, note that if we start the
random walk at vertex u then with probability 1/d(u) the first traversed edge is (u, v), which then
gets included in T . Thus for A ⊂ V , we have that

E[|δTG(A)|] ≥ 1
d
· |δG(A)|.

We would now like to use the above expectation result to prove our theorem. Recall the
definition of random variables Xe from Section 3: For edge e ∈ E, Xe is the indicator random
variable taking value 1 if e ∈ T , and value 0 otherwise. Thus we have |δT (A)| =

∑
e∈δG(A)Xe.

We want to show that
∑

e∈δG(A)Xe is not much smaller than its expectation with high probability.

9

Random variables Xe are not independent. Fortunately, they are negatively correlated as we saw
in Section 3, which allows us to use Theorem 3.2:

P

 ∑
e∈δG(A)

Xe < p|δG(A)| − λ

 < e−λ
2/(2p|δG(A)|) ≤ e−λ2/(2|δG(A)|), (8)

where p is the average of P[Xe = 1] for e ∈ δG(A). Since P[Xe = 1] ≥ 1/d for all edges e, we have
p ≥ 1/d, and for λ = (p− 1/(2d))|δG(A)| we have

P[|δTG(A)| < 1
2d
|δG(A)|] < e−

|δG(A)|
8d2 .

Which gives

P[|δUkG(A)| < 1
2d
|δG(A)|] < e−

k|δG(A)|
8d2 . (9)

Now we estimate the probability that there is a bad cut, namely a cut A such that |δUkG(A)| = a

and |δG(A)| ≥ αa lnn. To do this we first look at cuts of size a in the first random tree, which have
size at least αa lnn in G (This step is necessary: the modified Chernoff bound that we use is only
as strong as the independent case, and when edges are chosen independently one is likely to get
isolated vertices; looking at the first tree ensures that this does not happen). In order to be bad,
these cuts have to have small size in all the remaining trees. The probability of that happening is
given by (9). The number of cuts in the first tree of size a is clearly no more than

(
n−1
a

)
<
(
n
a

)
, as

there are
(
n−1
a

)
ways of picking a edges out of n − 1, although not all of these may correspond to

valid cuts. Then, the probability that a bad cut exists is at most

n/ lnn∑
a=1

(
n

a

)
e−

(k−1)αa lnn

8d2 ≤
n/ lnn∑
a=1

(en
a

)a
e−

(k−1)αa lnn

8d2

=
n/ lnn∑
a=1

exp
((

ln(en/a)− (k − 1)α lnn
8d2

)
a

)

=
n/ lnn∑
a=1

exp
((

ln(e/a) +
(

1− (k − 1)α
8d2

)
lnn

)
a

)
.

Choosing (k − 1)α > 9d2 makes the above sum o(1).

6 Expansion when base graph is a bounded-degree graph: nega-
tive result

Here we show that Theorem 1.1 is best possible up to a constant factor for expansion:

Proof (of Theorem 1.2). We begin with a d-regular edge expander G′ on n vertices with a Hamil-
tonian cycle, where d > 4 is a fixed integer. [It is easy to construct such expanders by starting with
a (d− 2)-regular expander and adding edges of a Hamiltonian cycle to it, so that the graph can be
completed to a d-regular graph. We omit the easy details.] Let 0 < ` < log n be an integer to be

10

chosen later, and let H be a Hamiltonian path in G′. Subdivide H into subpaths P1, . . . , Pn/` each
of length ` (to keep the formulas simple we suppress the integrality issues here which are easily
taken care of).

For two subpaths Pi and Pj , we say that they interact if (Pi ∪Γ′(Pi))∩ (Pj ∪Γ′(Pj)) 6= ∅. Since
G′ is d-regular, |Γ′(Pi)| ≤ d`. So, any subpath can interact with at most d2` other subpaths (this
bound is slightly loose). Thus we can find a set I of 1

d2`
· n/` paths among P1, . . . , Pn/`, so that no

two paths in I interact.
We now describe the construction of G, which will be obtained by adding edges to G′. For each

path P ∈ I, we do the following. Add an edge between the two end-points of Pi, if such an edge
did not already exist in G′. If the subgraph G[Γ′(Pi)] induced by the neighborhood of path Pi does
not have a Hamiltonian cycle, then we add edges to it so that it becomes Hamiltonian. Clearly, in
doing so we only need to increase the degree of each vertex by at most 2. The final graph that we
are left with is our G. For each path P ∈ I we fix a Hamiltonian cycle in G[Γ′(P)], and we also
have the cycle of which P is a part. We denote these two cycles by C1(P) and C2(P).

We will generate a random spanning tree T of G by the random walk algorithm starting the
random walk at some vertex outside of all paths in I. For P ∈ I, we say that event EP (over the
choice of a random spanning tree T of G) occurs if the random walk, on first visit to C1(P)∪C2(P),
first goes around C1(P) without going out or visiting any vertex twice, and then it goes on to
traverse C2(P), again without going out or visiting any vertex twice until it has visited all vertices
in C2(P). For all P ∈ I we have

P[EP] ≥ 1/(d+ 2)|C1(P)|+|C2(P)|−1 ≥ 1/(d+ 2)(d+1)`−1. (10)

If event EP happens then in the resulting tree T we have |δT (V (P))| = 1. Thus our goal will be to
show that with substantial probability there is a P ∈ I such that EP happens. Since no two paths
in I interact with each other, events EP are mutually independent. If we are choosing k random
spanning trees, then define EkP to be the event that EP occurs for all k spanning trees. Clearly,
P[EkP] = P[EP]k. Then the probability that EkP doesn’t occur for any P ∈ I is at most(

1− 1
(d+ 2)k(d+1)`−k

)|I|
=
(

1− 1
(d+ 2)k(d+1)`−k

) n
d2`2

≤ exp
(
− n

(d+ 2)k(d+1)`−k+2`2

)
.

It follows readily that there is a constant C (that depends on d) such that for `k ≤ C log n
the above probability is o(1). Hence, with probability 1 − o(1) there is a path P ∈ I such that
|δUkG(V (P))| ≤ k. The edge expansion of P therefore is k/` = k2/(C log n) for ` = C(log n)/k.

7 Splicers of random graphs

We will show a random process on random graphs that generates random spanning trees with a
distribution that is very close to the uniform distribution on the complete graph. The process first
directs edges to mimic the distribution of a directed random graph.

Given an undirected graph H and a parameter 0 < p ≤ 1, construct a random directed graph
denoted Dp(H) with vertex set V (H) and independently for every edge (u, v) of H:

• edges (u, v) and (v, u) with probability −p−2
√

1−p+2
p ,

11

• only edge (u, v) with probability p+
√

1−p−1
p , and

• only edge (v, u) with probability p+
√

1−p−1
p .

If H is random according to Gn,p, then Dp(H) is random with each edge picked with probability
q = 1−

√
1− p. Note that p/2 ≤ q ≤ p.

Let T be the uniform distribution on spanning trees of Kn. We now describe Process Bp, which
is a random process that given an undirected graph H and a parameter 0 < p ≤ 1 generates a
spanning tree with a distribution that we denote Tp,H Consider the following random process that
generates a walk in Dp(H) or stops with no output:

1. Start at a vertex v0 of Dp(H).

2. At a vertex v, an edge is traversed as follows. Suppose d1(v) out of d(v) outgoing edges at
v are previously traversed. Then, the probability of picking a previously traversed edge is
1/(n− 1) while the probability for each new edge is

1− d1(v)
n−1

d(v)− d1(v)
.

3. If all vertices have been visited, output the walk and stop. If this has not happened and at
the current vertex v one has d1(v) = d(v), stop with no output.

As in the random walk algorithm, the spanning tree given by Process Bp (if it succeeds in visiting
all the vertices) is the set of edges that are used on first visits to each vertex, but the random
sequence of edges is different here.

A covering walk of a graph is a walk passing through all vertices. Let D be the distribution on
covering walks of the (undirected) complete graph starting at a vertex v0 where a walk is generated
by a random walk that starts at v0 and walks until it has visited all the vertices. Let Dp be the
distribution on covering walks of the complete graph given by first choosing H according to Gn,p
and running Process Bp starting from v0.

Lemma 7.1. There exists an absolute constant c such that for p > c log n/n the total variation
distance between the distributions D and Dp is o(1).

Proof. We will couple D and Dp so that the walk in D picks the same edges as the walk in Dp,
but if Dp fails, then D continues its random walk. Then these covering walks coincide whenever
Dp succeeds, and thus the probability of success is an upper bound to the total variation distance
between D and Dp. Now, Dp does not fail if every vertex in Hd has out-degree at least c1 log n and
Process Bp does not visit any vertex more than c2 log n times, for c1 > c2. A Chernoff bound gives c
(from the statement of the lemma) and c1 such that the first part happens with probability 1−o(1).
For the second part, we observe that if there is no failure then Process Bp behaves exactly like a
random walk in the complete graph, and therefore it visits all vertices in at most c3n log n steps
with probability 1 − o(1) for some constant c3 (this is essentially the coupon collector’s problem
with n−1 coupons, see [18, Section 3.6 and Chapter 6]) and a walk of that length does not visit any
vertex more than c2 log n times with probability 1−o(1) for some constant c2 (by a straightforward
variation of the occupancy problem in [18, Section 3.1]).

12

Let Tp be the distribution on trees obtained by first choosing H from Gn,p and then generating
a random spanning tree according to Process Bp.

Lemma 7.2. There exists an absolute constant c such that for p > c log n/n the total variation
distance between the distributions T and Tp is o(1).

Proof. This is immediate from Lemma 7.1, as random trees from T or Tp are just functions of walks
from D or Dp, respectively.

Proof (of Theorem 1.4). In the random graph H, we generate two random trees by using one long
sequence of edges, with a breakpoint whenever we complete the generation of a spanning tree. In
the complete graph also, we generate two trees from such a sequence obtained from the uniform
random walk. Using the same coupling as in Lemma 7.2 we see that these distributions on these
sequences have variation distance o(1). Therefore the spanning trees of H obtained by the first
process have total variation distance o(1) to random spanning trees of the complete graph. By
Theorem 1.3, the union of these trees has constant expansion with probability 1− o(1) overall.

With this results we are ready to prove our theorem about sparsifiers of random graphs:

Proof (of Theorem 1.5). We need the fact that for sufficiently large constant C, with probability
1− o(1), all cuts δH(A) in random graph H satisfy

c3p|A|(n− |A|) ≤ |δH(A)| ≤ c4p|A|(n− |A|).

This is well-known and follows immediately from appropriate Chernoff-type bounds.
We only need to prove the theorem for |A| ≤ n/2. We now prove the first inequality in

the statement of the theorem. By Theorem 1.3, with probability 1 − o(1), for any A ⊂ V such
that |A| ≤ n/2, we have |δH′(A)| ≥ c5|A| for some c5 > 0, and so w(δH′(A)) ≥ c5|A|pn ≥
c5p|A|(n− |A|) ≥ c5

c4
|δH(A)|.

For the second inequality in the statement of the theorem, we use the fact that the maximum
degree of a vertex in a random spanning tree in the complete graph is O(log n) with probability
1 − o(1). Thus, by Lemma 7.2 the same holds for random spanning trees generated by process
Bp. We then have |δH′(A)| ≤ c6|A| log n for some c6 > 0, and so w(δH′(A)) ≤ c6pn|A| log n ≤
2c6pn|A|(n− |A|) log n ≤ (2c6/c3)|δH(A)| log n.

8 Discussion

The problem of scalable routing in the presence of failures has motivated a novel construction of
sparse expanders. The use of trees is particularly natural for routing. Our results suggest using
a constant number of trees in total for routing, as opposed to the norm of one or more trees per
destination. Further, the manner in which the trees are obtained is simple to implement and can
lead to faster recovery since (a) paths exist after several failures and (b) fewer trees need to be
recomputed in any case.

One aspect of splicers that we have not explored is the stretch of the metric induced by them.
For the case of the complete graph, it is not hard to see that the diameter is O(log n) and hence so
is the expected stretch for a pair of random vertices. This continues to hold for Gn,p, in fact giving
better bounds for small p (expected stretch of O(log log n) for p = poly(log n)/n). It remains to

13

study the stretch of splicers for arbitrary graphs or bounded-degree graphs. This seems to be an
interesting question since on the complete graph, the expected stretch on one tree is Θ(

√
n) while

that of two trees is O(log n).
One future direction of research is to understand the trade-off between fault-tolerance and

stretch achievable by splicers (not necessarily union of uniformly random spanning trees, but more
carefully chosen spanning trees).

Finally, Process Bp appears interesting to study on its own.

References

[1] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-independent
routing with minimum stretch. In SPAA ’04: Proceedings of the sixteenth annual ACM sympo-
sium on Parallelism in algorithms and architectures, pages 20–24, New York, NY, USA, 2004.
ACM.

[2] D. Aldous. The random walk construction of uniform spanning trees and uniform labelled
trees. SIAM J. Discrete Math., 3(4):450–465, 1990.

[3] N. Alon and M. R. Capalbo. Finding disjoint paths in expanders deterministically and online.
In FOCS, pages 518–524, 2007.

[4] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York, second
edition, 2000.

[5] J. Batson, D. A. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers. arXiv:0808.0163v1,
2008.

[6] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In STOC,
pages 47–55, 1996.

[7] A. Z. Broder. Generating random spanning trees. In FOCS, pages 442–447, 1989.

[8] D. P. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence. Random
Struct. Algorithms, 13(2):99–124, 1998.

[9] T. Feder and M. Mihail. Balanced matroids. In STOC ’92: Proceedings of the twenty-fourth
annual ACM symposium on theory of computing, pages 26–38, New York, NY, USA, 1992.
ACM.

[10] O. Goldreich. Randomized Methods in Computation, Lecture 2. Lecture Notes, available at:
http://www.wisdom.weizmann.ac.il/~oded/rnd.html, 2001.

[11] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, 2004.

[12] F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

14

http://www.wisdom.weizmann.ac.il/~oded/rnd.html

[13] L. Lovász. Random walks on graphs: A survey. In Combinatorics, Paul Erdős is Eighty, Vol.
2 (ed. D. Miklós, V. T. Sós, T. Szőnyi), János Bolyai Mathematical Society, Budapest, pages
353–398, 1996.

[14] R. Lyons and Y. Peres. Probability on Trees and Networks. Book in progress, available at:
http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html, 2005.

[15] M. Mihail, C. Papadimitriou, and A. Saberi. On certain connectivity properties of the internet
topology. Journal of Computer and System Sciences, 72(2):239–251, 2006.

[16] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicing. In ACM SIGCOMM,
Seattle, WA, August 2008.

[17] M. Motiwala, N. Feamster, and S. Vempala. Path splicing: Reliable connectivity with rapid
recovery. In 6th ACM SIGCOMM HotNets Workshop, Atlanta, GA, November 2007.

[18] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[19] R. Pemantle. Toward a theory of negative dependence. J. Math. Phys., 41:1371–1390, 2000.

[20] J. Propp and D. Wilson. How to get a perfectly random sample from a generic markov chain
and generate a random spanning tree of a directed graph. J. Algorithms, 27:170–217, 1998.

[21] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

[22] S. Shenker. We dream of geni: Exploring radical network designs. Plenary talk at FCRC,
2007. http://lazowska.cs.washington.edu/fcrc/Shenker.FCRC.pdf.

[23] D. Spielman and N. Srivastava. Graph sparsification by effective resistances. In STOC, 2008.

15

http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html
http://lazowska.cs.washington.edu/fcrc/Shenker.FCRC.pdf

	Introduction
	Our results
	Related work

	Preliminaries
	Uniform random spanning trees
	Expansion when base graph is a complete graph
	Expansion when base graph is a bounded-degree graph: positive result
	Expansion when base graph is a bounded-degree graph: negative result
	Splicers of random graphs
	Discussion

