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Abstract. The goal of dimensionality reduction or manifold learning for a given set of high-
dimensional data points is to find a low-dimensional parametrization for them. Usually it is easy
to carry out this parametrization process within a small region to produce a collection of local
coordinate systems. Alignment is the process to stitch those local systems together to produce a
global coordinate system and is done through the computation of a partial eigendecomposition of
a so-called alignment matrix. In this paper, we present an analysis of the alignment process giving
conditions under which the null space of the alignment matrix recovers the global coordinate system
up to an affine transformation. We also propose a post-processing step that can determine the global
coordinate system up to a rigid motion. This in turn shows that Local Tangent Space Alignment
method (LTSA) can recover locally isometric embedding up to a rigid motion.

1. Introduction. An important goal of exploratory data analysis and data
mining is to discover compact and informative descriptions and summaries of high-
dimensional data which can then be used for further processing such as data visualiza-
tion, classification, outlier detection and feature selection [7]. One way to summarize
the data is to group them into several clusters so that data objects within a cluster
are more similar than those across clusters, this leads to the so-called cluster analysis
[7, 8]. Another way to obtain a compact description of the data is through dimen-
sionality reduction which is the main motivation for the analysis presented in this
paper.

The problem of dimensionality reduction is concerned with determining a low-
dimensional parametrization for a given set of high-dimensional data points lying on
a manifold, which is also known as manifold learning, see [11, 12]. Mathematically,
consider a parameterized manifold of dimension d defined by a mapping f : Ω ⊂ R

d →
R

m, the m-dimensional real vector space, where d < m and Ω is open in R
d. Suppose

we have a set of points x1, · · · , xN sampled from the manifold, i.e.,

xi = f(τi), i = 1, . . . , N,(1.1)

for some τi ∈ Ω. We are interested in recovering the coordinate vectors τi’s and/or the
mapping f(·) from the xi’s [11, 12]. We typically need to impose additional constraints
on the mapping so that the parametrization is well determined and preserves certain
properties of the original data. For example, if f is restricted to be an isometric
mapping, then τi’s are uniquely determined up to a rigid motion and capture the
geometric structure of the data. With the dimension d generally being much smaller
than m, the parametric vectors τi offer a low-dimensional representation of xi and
could reveal underlying structure of the data points. In particular, the computed τi’s
can be further used for visualization and clustering [5, 7, 8].
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Traditionally, dimensionality reduction has been confined to the linear case, i.e.
when the data points xi lie on a linear manifold. With f being a linear map, the
coordinates τi can be recovered, up to a linear transformation, through a singular
value decomposition [7]. The nonlinear case, however, has attracted much attention
recently. We refer to the pioneering works of Tenenbaum, de Silva and Lanford
[12] and Roweis and Saul [11] for discussions of some algorithms and applications of
nonlinear dimensionality reduction.

For data points that lie on a nonlinear manifold, several numerical procedures have
been developed recently that are based on local first order linear approximations. One
approach is to regard a small neighborhood (i.e. a patch) of the manifold as a linear
one and construct a local coordinate system for a small neighborhood around each
sample point. The local coordinate systems generally overlap with each other and
can then be aligned (either implicitly or explicitly) into a global one. Examples of the
local approximation methods include LLE (Local Linear Embedding) [11], manifold
charting [2], Hessian LLE [4] and LTSA (Local Tangent Space Alignment) [14]. The
idea of global alignment was also discussed in [13].

A crucial step of these local approximation methods is the process of global align-
ment and this is carried out by computing eigenvectors of some matrices. In the LTSA
method, a matrix, which we call an alignment matrix, is constructed from the local
coordinates and then its eigenvectors corresponding to the second to the (d + 1)-st
smallest eigenvalues (with the smallest being 0 as determined by the structure of the
matrix) are used as the global coordinates, see [14] for the details. We note that these
numerical procedures are derived through first order local approximations and the co-
ordinates obtained should preserve local geometry of the data points. However, what
we obtain globally is not clear. Indeed, there is very little theoretical analysis on a
precise relation between the eigenvectors of the alignment matrix and the coordinate
systems to be recovered.

In this paper, we shall present and theoretically analyze the global alignment pro-
cedure that produces a global coordinate system from the coordinate systems for some
local patches of the manifold. We shall consider isometric mappings for the theoretical
analysis, although the numerical procedures are applicable in a more general setting.
Our main result is that, if the coordinate system in each local patch is computed
exactly, then the null space of the alignment matrix recovers the global coordinate
τi’s up to an affine transformation, provided the local patches “overlap” sufficiently.
Furthermore, with most existing methods constructing a global coordinate system
directly from a basis of the null space (or eigenvectors) which is only determined up
to an affine transformation, we also propose a postprocessing step that reduces this
uncertainty to a rigid motion.

The paper is organized as follows. In Section 2, we present our analysis of the
alignment matrix. In particular, we derive conditions under which the global coordi-
nates can be recovered from those of the local patches. In Section 3, we describe the
alignment process with a postprocessing step and use a numerical example to illus-
trate its utility. As a by-product, we show that the LTSA proposed in [14] can recover
isometric embedding up to a rigid motion. We end the paper with some concluding
remarks in Section 4.

Notation. We use e to denote a column vector of all ones the dimension of
which should be clear from the context. null(·) is the null space of a matrix, and
span(·) denote the subspace spanned by all the columns of argument matrices. For
an index set I = [i1, . . . , ik], A(:, I) denotes the submatrix of A consisting of columns
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of A with indices in I. AT denotes the transpose of matrix A.

2. Null Space of the Alignment Matrix. The setting of our discussion is
the following: we are interested in computing a set of parameter vectors τi’s given
a set of data points xi’s. We assume that the data set is partitioned into several
subsets called ”local” patch1 of the manifold. On each of the patches, we compute
a local coordinate system from which we construct an alignment matrix and recover
the global coordinates [13, 14]. We first introduce the alignment matrix in a more
special context.

Consider S = {τ1, . . . , τN} ⊂ R
d and let {Si, 1 ≤ i ≤ s} be a collection of subsets

of S. Write

Si = {τi1 , . . . , τiki
}, i1 < i2 < . . . < iki

,(2.1)

and set

T = [τ1, . . . , τN ] ∈ R
d×N , Ti = [τi1 , . . . , τiki

].

We say Ti is a section of T . Let

Ei = [ei1 , . . . , eiki
] ∈ R

N×ki

where ei ∈ R
N is the i-th column of IN , the N ×N identity matrix. Then TEi = Ti.

Let Pi be the orthogonal projection onto the orthogonal complement of span(
[
e, T T

i

]
),

i.e.,

null(Pi) = span(
[
e, T T

i

]
).(2.2)

Embed Pi into an N -by-N matrix Φi such that, the (ip, iq)th element of Φi is the
(p, q)th element of Pi, i.e.,

Φi = EiPiE
T
i .(2.3)

Define

Φ =

s∑

i=1

Φi.(2.4)

We call Φ the alignment matrix for the collection {Si}.
We note that Pi can be constructed from span(

[
e, ΘT

i

]
) for any ΘT

i that spans the
same subspace as T T

i . For example, if for each Ti, we have Θi satisfying Θi = ViTi

for some invertible matrix Vi, then Pi and hence Φ can be obtained from such Θi

without knowing Ti, see Theorem 2.7 later for details. Our goal is to recover T from
Φ, which can be constructed from Θi rather than T , and we achieve this by proving
span(

[
e, T T

]
) = null(Φ). We first present several definitions and some preliminary

results.

Definition 2.1. Let Sx = {x1, . . . , xm} and Sy = {y1, . . . , yn} be two subsets of

R
d. Denote by Sz = Sx

⋂
Sy = {z1, . . . , zk} the set of column vectors that are in the

intersection of Sx and Sy. We say the two sets Sx and Sy are fully overlapped if

span(z1 − z̄, z2 − z̄, . . . , zk − z̄) = R
d,(2.5)

1The points in the subset need not be local in space but in practical uses, they are typically
taken from a small neighborhood.
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where z̄ =
(∑k

i=1 zi

)
/k.

Let Z = [z1, . . . , zk]. Condition (2.5) is equivalent to

[z1 − z̄, z2 − z̄, . . . , zk − z̄] = Z − z̄eT ≡ Z

(
I −

1

k
eeT

)
having full row rank,

We shall use later the fact that this is also equivalent to

[
e, ZT

]
having full column rank.(2.6)

This is because orthogonalizing the columns of ZT against e gives ZT − ez̄T = (Z −
z̄eT )T and therefore

rank(
[
e, ZT

]
) = 1 + rank(Z − z̄eT ).

Definition 2.2. This definition is recursive. Let Si, 1 ≤ i ≤ s, be s subsets of

R
d. The collection {Si, 1 ≤ i ≤ s} is fully overlapped if it can be partitioned into two

nonempty disjoint collections, say, {Si, i = 1, . . . , p} and {Si, i = p + 1, . . . , s}, each

of which is a fully overlapped collection, and if the union sets of the two collections

Ŝ1 ≡
⋃p

i=1 Si and Ŝ2 ≡
⋃s

i=p+1 Si are fully overlapped.

This definition of full overlapping is rather general. Practically, the situation that
the graph2 of {Si, 1 ≤ i ≤ s} is connected is perhaps more common. That the graph
of {Si, 1 ≤ i ≤ s} is connected implies full overlapping.

Definition 2.3. The collection {Si, 1 ≤ i ≤ s} is a covering of S if
⋃s

i=1 Si =
S, and a fully overlapped covering if the collection is a covering and fully overlapped.

We now proceed to prove our main theorem, i.e. span{
[
e, T T

]
} = null{Φ}. We

do that by showing two way inclusions.

Lemma 2.4. Let {Si, 1 ≤ i ≤ s} be a covering of S, and let Φi and Φ be defined

as in (2.3) and (2.4), respectively. Then

null(Φi) = { x |ET
i x ∈ span(

[
e, T T

i

]
)}, null(Φ) =

s⋂

i=1

null(Φi),(2.7)

and

span{
[
e, T T

]
} ⊂ null{Φ}.(2.8)

Proof. It can be readily verified that { x |ET
i x ∈ span(

[
e, T T

i

]
)} ⊆ null(Φi). Now,

for any x ∈ null(Φi), EiPiE
T
i x = 0 which implies xT EiPiE

T
i x = 0, and thus PiE

T
i x =

0, where we note that Pi is positive semi-definite. So ET
i x ∈ null(Pi) = span(

[
e, T T

i

]
)

by (2.2). This proves the first equality in (2.7).
Clearly

⋂s

i=1 null(Φi) ⊂ null(Φ). If x ∈ null(Φ),
∑s

i=1 xT Φix = xT Φx = 0. Since
Pi and hence Φi are positive semi-definite, Φix = 0 or x ∈ null(Φi) for i = 1, . . . , s.
This proves the second equality in (2.7).

2By the graph of {Si, 1 ≤ i ≤ s} we mean the graph whose nodes represent the s subsets
Si and there is an edge between node Si and node Sj if they are fully overlapped, according to
Definition 2.1.
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Finally, noting Φi

[
e, T T

]
= EiPiE

T
i

[
e, T T

]
= EiPi

[
e, T T

i

]
= 0, we arrive at

(2.8).

We next show the reverse inclusion first for a collection of two subsets and then
generally.

Lemma 2.5. Let Φi and Φ be defined as in (2.3) and (2.4), respectively. If

{S1, S2} is a fully overlapped covering of S, then null{Φ} = span{
[
e, T T

]
}.

Proof. Let Q be a basis of null(Φ). By (2.7),

span(Q) ⊂ { x |ET
i x ∈ span(

[
e, T T

i

]
)}

which implies that ET
i Q ∈ span(

[
e, T T

i

]
), or equivalently, there is a Wi ∈ R

(d+1)×m,

where m = dimnull(Φ), such that ET
i Q =

[
e, T T

i

]
Wi, i.e.,

Q(Ii, :) =
[
e, T (:, Ii)

T
]
Wi.

Let I1,2 = I1

⋂
I2. Then

[
e, T (:, I1,2)

T
]
(W1 − W2) = 0.(2.9)

But S1 and S2 are fully overlapped; so
[
e, T (:, I1,2)

T
]

has full column rank by
Definition 2.1 and its equivalent condition (2.6). Thus, W1 = W2 by (2.9). Let
W ≡ W1 = W2. We then have ET

i Q =
[
e, T T

i

]
W = ET

i

[
e, T T

]
W for i = 1, 2.

Therefore Q =
[
e, T T

]
W because {Si, 1 ≤ i ≤ 2} is a covering of S.

Theorem 2.6. Let Φi and Φ be defined as in (2.3) and (2.4), respectively, and

let {Si, i = 1, . . . , s} be a covering of S. If it is fully overlapped, then null(Φ) =
span(

[
e, T T

]
).

Proof. We prove the theorem by induction in s. The case s = 2 has been already
dealt with in Lemma 2.5. So, suppose the theorem is true for any collection with at
most s − 1 subsets. We now prove it for a collection with s subsets.

Since {Si, i = 1, . . . , s} is fully overlapped, let {Si, i = 1, . . . , p} and {Si, i =
p+1, . . . , s} be the partition such that both {Si, i = 1, . . . , p} and {Si, i = p+1, . . . , s}

are fully overlapped and the two sets Ŝ1 ≡
⋃p

i=1 Si and Ŝ2 ≡
⋃s

i=p+1 Si are fully

overlapped. Denote accordingly the matrices consisting of the columns of Ŝ1 and
Ŝ2 by T̂1 and T̂2, respectively. For the collection {Ŝ1, Ŝ2}, let P̂i, Φ̂i and Φ̂ be the
matrices defined according to (2.3) and (2.4). By Theorem 2.5,

null(Φ̂) = null(Φ̂1)
⋂

null(Φ̂2) = span(
[
e, T T

]
).

Now, {Si, i = 1, . . . , p} is a covering collection of Ŝ1. From this, we can construct
P̃i, Φ̃i and Φ̃ according to (2.3) and (2.4). Since {Si, i = 1, . . . , p} is fully overlapped,

by the induction assumption, we have null(Φ̃) = span(
[
e, T̂ T

1

]
). Clearly, P̃i = Pi.

Since Φ̃i is the embedding of P̃i into R
k (k is the number of columns in T̂1 while

Φi is the embedding of Pi into R
N ), the embedding of Φ̃i into R

N is Φi. Indeed,
if E ∈ R

N×k is the selection matrix corresponding to the index set of T̂1 such that
TE = T̂1, then

Φi = EΦ̃iE
T .(2.10)
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Fig. 2.1. Two possible layouts for the global coordinates.

Noting that null(Φ̃) = span(
[
e, T̂ T

1

]
) and null(P̂1) = span(

[
e, T̂ T

1

]
), we see

null(EΦ̃ET ) = null(EP̂1E
T ).

Thus,

null(Φ1 + · · · + Φp) = null(E(Φ̃1 + · · · + Φ̃p)E
T )

= null(EΦ̃ET )

= null(EP̂1E
T )

= null(Φ̂1).

Similarly,

null(Φp+1 + · · · + Φs) = null(Φ̂2).

Finally,

null(Φ) = null(Φ1 + · · · + Φp)
⋂

null(Φp+1 + · · · + Φs)

= null(Φ̂1)
⋂

null(Φ̂2)

= span{[e, T T ]},

as was to be shown.

Remark 2.1. We first give an example with d = 1 to illustrate that the fully

overlapped assumption is really needed. Let u, v, w, x be four different real numbers,
and S = {u, v, w, x}. Assume that we have two subsets S1 = {u, v, w} and S2 =
{w, x} that share a single point w. It is easy to verify that

[
e, T T

1

]
and

[
e, T T

2

]
have

full (column) rank. We have P1 = ppT with p orthogonal to e and T T
1 , and P2 = 0.

So Φ = E1P1E
T
1 . It can be verified that

a basis for null(Φ) is: e, [T1, 0]
T

, [0, 0, 0, 1]T ,

while dim span(
[
e, T T

]
) = 2, and thus null(Φ) ⊃ span(

[
e, T T

]
) is strict.

This has also an interesting geometric interpretation. The basis vectors for
null(Φ), as illustrated above, can be chosen as [1, 1, 1, 1]T , [η, η + a, η + b, η + c]T

with a = θ1, b = θ1 + θ2, c = θ1 + θ2 + θ3 and η an arbitrary real number and
[η, η + a, η + b, η + c]T with a = θ1, b = θ1 + θ2, c = θ1 + θ2 − θ3 and η an arbitrary
real number. Geometrically, the second vector corresponds to the coordinates of the
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four points in the left panel of Figure 2.1 and the third vector corresponds to the
coordinates of the four points in the right panel of Figure 2.1. While S1 fixes the first
three points η, η + a, η + b, the fourth point as fixed by S2 can either be extended or
folded back from η + b, because S1 and S2 are not fully overlapped. Thus, S can not
be uniquely determined from S1 and S2 if S1 and S2 are not fully overlapped.

The theorem shows that T can be reconstructed from the alignment matrix Φ.
However, the alignment matrix as defined above assumes that we have τi for each
subsets. In practice, we do not have τi available but we may construct for each subset
(local patch) a local coordinate system that is an isometric transformation (or an
affine transformation) of τi’s. Fortunately, with such local coordinate systems, the
same alignment matrix is constructed and hence T recovered. We show this fact in
the following theorem but will discuss more details on the use of these results in the
next section.

Theorem 2.7. Let {Si, i = 1, . . . , s}, given by (2.1), be a covering of S, and let

{θ
(i)
1 , . . . , θ

(i)
ki
} ⊂ R

d which is isometric in the Euclidean distance to {τi1 , . . . , τiki
}.

Set

Θi =
[
θ
(i)
1 , . . . , θ

(i)
ki

]
.(2.11)

and define Qi to be the orthogonal projection onto the orthogonal complement of

span{
[
e, ΘT

i

]
}, and

Ψi = EiQiE
T
i , Ψ =

s∑

i=1

Ψi.(2.12)

Then

Ψ = Φ.

In particular, span{
[
e, T T

]
} ⊂ null(Ψ) and, if {Si, i = 1, . . . , s} is fully overlapped,

then null{Ψ} = span{
[
e, T T

]
}.

Proof. Since {θ
(i)
1 , . . . , θ

(i)
ki
} is isometric to {τi1 , . . . , τiki

}, {θ
(i)
1 − θ̄i, . . . , θ

(i)
ki

− θ̄i}
is also isometric to {τi1 − τ̄i, . . . , τiki

− τ̄i}, where

θ̄i =
1

ki

ki∑

j=1

θ
(i)
j , τ̄i =

1

ki

ki∑

j=1

τij
.

Then the distance matrix of {θ
(i)
1 − θ̄i, . . . , θ

(i)
ki

− θ̄i} and that of {τi1 − τ̄i, . . . , τiki
− τ̄i}

are the same, implying Θ̂T
i Θ̂i = T̂ T

i T̂i, where

Θ̂i =
[
θ
(i)
1 − θ̄i, . . . , θ

(i)
ki

− θ̄i

]
, T̂i =

[
τi1 − τ̄i, . . . , τiki

− τ̄i

]
.

Therefore, Θ̂i and T̂i have the same singular values and the same right singular vectors.
Form the singular value decompositions of Θ̂i and T̂i, we deduce that there is an
orthogonal matrix Vi such that

Θ̂i = ViT̂i.(2.13)

Thus,

span(
[
e, ΘT

i

]
) = span(

[
e, T T

i

]
)(2.14)

and hence Qi = Pi defined earlier. Therefore, Ψ = Φ. Now the theorem follows from
Theorem 2.5.
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3. Reconstruction of Global Coordinates. Theorem 2.7 implies that if the
underlying manifold is locally isometric to a parametric space and for each local set Si

(or patch), an isometric coordinate system can be computed, then a global isometric
coordinate is recovered by calculating null(Ψ). Suppose

g : Ω ⊂ R
d → M ⊂ R

n

be an isometry mapping, and let X = {x1, · · · , xN} ⊂ M consisting of sample points
on M, where xi = g(τi) (1 ≤ i ≤ N). Consider a covering {Xi, i = 1, . . . , s}
of X, where Xi = {xi1 , . . . , xiki

}. Set accordingly Si = {τi1 , . . . , τiki
} and S =

{τ1, . . . , τN}. We say {Xi, i = 1, . . . , s} is a fully overlapped covering of X if {Si, i =
1, . . . , s} is a fully overlapped covering of S.

Suppose that all points in each subset Xi are “sufficiently local” such that

d(τip
, τiq

) = dM(xip
, xiq

), for 1 ≤ p, q ≤ ki,

where d( · , · ) is the Euclidean distance and dM( · , · ) is the geodesic distance along

M. Let θ
(i)
1 , . . . , θ

(i)
ki

∈ R
d be some locally isometric coordinates constructed for the

corresponding points in Xi, i.e.,

d(θ(i)
p , θ(i)

q ) = dM(xip
, xiq

), for 1 ≤ p, q ≤ ki.

Now, construct Ψ by (2.12) from the θ
(i)
j ’s and Theorem 2.7 applies. From null{Ψ} =

span{
[
e, T T

]
}, the global coordinates can be reconstructed with a post normalization

step. We propose the following general procedure for a given input of data.

Algorithm 3.1. Reconstruction of Global Coordinates:

Given X = {x1, · · · , xN} ⊂ R
n.

1. Construct a fully overlapped covering {X i, i = 1, . . . , s} with X i = {xi1 , . . . , xiki
}.

2. For each X i, construct centered local coordinates θ
(i)
1 , . . . , θ

(i)
ki

⊂ R
d. This can

be done by the projection into the tangent space as in LTSA [14] if the points in
X i are confined to a small neighborhood or by the ISOMAP algorithm [12] for a
more general X i. Also, determine a patch Xp such that its local coordinates are
constructed with least errors.

3. Construct Ψ from Θi = [θ
(i)
1 , . . . , θ

(i)
ki

] as in (2.12) and compute an orthonormal basis

[e/
√

N, ZT ] for the eigenspace of Ψ corresponding to the d + 1 smallest eigenvalue
(or the d + 1 smallest eigenvectors) where ZT ∈ R

N×d.

4. T = WZ is the global coordinate, where W = ΘpẐ
+
p and Ẑp = ZEi(I − 1

kp
eeT ).

We give some remarks to explain each of the steps in the algorithm.

A covering {Xi, i = 1, . . . , s} is constructed through partitioning of X, typically
into local patches. That {Xi, i = 1, . . . , s} is fully overlapped at Step 1 is not verifiable
in general because the dimension d in Definition 2.1 may not be known, but in practice,
the condition (2.5) can generally be assumed to be true as long as there is a sufficient
number (i.e. greater than d) of intersection points. We also note that d is often a
parameter that we choose as the dimension of the coordinate systems for representing
the given data.

Step 2 has been discussed earlier [11, 12, 14]. Briefly, if local patches Xi con-
sists of points in a small neighborhood as in LTSA [14], a local coordinate system
can be constructed from an orthonormal basis of a d-dimensional subspace that best
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approximates span{xi1 − x̄i, · · · , xiki
− x̄i} where x̄i = 1

ki

∑ki

j=1 xij
. This is com-

puted from the singular value decomposition of [xi1 − x̄i, · · · , xiki
− x̄i]. Then up to

an error bounded by the (d + 1)-st singular value σd+1, the constructed coordinates

{θ
(i)
1 , . . . , θ

(i)
ki
} are approximately isometric to {xi1 , · · · , xiki

} in Euclidean distance.
Using σd+1/σ1 as a measure of this approximation error, we can identify the patch
Xp that is best represented by the local coordinates computed. Xp is used in step 4
for post normalization.

We further note that, using the first-order Taylor expansion, we have

g(τ̃ ) = g(τ) + Jg(τ) · (τ̃ − τ) + O(‖τ̃ − τ‖2)

where Jg(τ) ∈ R
m×d is the Jacobi matrix. Since we assume that g(·) is a local isom-

etry, then Jg(τ) has orthonormal columns for each τ . Applying this to the points in
Xi and ignoring the second order terms, we have that {τi1 , . . . , τiki

} is approximately
isometric to {xi1 , · · · , xiki

} in Euclidean distance and hence approximately isometric

to the computed local coordinates {θ
(i)
1 , . . . , θ

(i)
ki
}.

For step 3, an approximate null space of Ψ is obtained from the d + 1-smallest
eigenvectors, which can be computed by the Lanczos or block Lanczos algorithm
combined with shift-and-invert [1], its implicitly restarted version [9], or if the inverse
is difficult, by the inverse-free preconditioned Krylov subspace method [10]. The
known eigenvector e should be used as an initial vector. The sparse matrix Ψ can be
assembled from its local elements, see [14].

We now discuss the recovery of T at step 4 through a post normalization. As-
sume that T is centered, i.e., Te = 0. By Theorem 2.7, null(Ψ) = span

[
e, T T

]
and

therefore span
[
e, ZT

]
= span

[
e, T T

]
. However, we do not necessarily have Z = T .

Nevertheless, there is some nonsingular U ∈ R
d×d such that T T = ZT UT . To de-

termine U , we consider one section Ti = TEi =
[
τi1 , . . . , τiki

]
of T and realign the

corresponding section of Z with Ti through the computed local coordinates Θi. Let

T̂i = Ti

(
I − 1

ki
eeT

)
be the centered Ti. If {θ

(i)
j } are exactly isometric to {τij

}, then

their centered coordinates are related by an orthogonal transformation, i.e. there
exists an orthogonal matrix Vi such that ViT̂i = Θi, see (2.13). Let W = ViU . We
have

Θi = ViT̂i = ViUZEi

(
I −

1

ki

eeT

)
= ViUZi

(
I −

1

ki

eeT

)
= WẐi.(3.1)

where Zi = ZEi is the section of Z corresponding to Ti as a section of T and Ẑi =

Zi

(
I − 1

ki
eeT

)
is the column-centered Zi. Hence, using (3.1), we can determine W

from the computed local coordinates Θi and a corresponding section of Z. From W ,
we have WZ = ViUZ = ViT . With Vi being an orthogonal matrix, WZ determines
T modulo a rigid motion. Therefore, we recover T by WZ.

However, (3.1) is based on the assumption that the local coordinates {θ
(i)
j } con-

structed are exactly isometric to global coordinates {τij
}. In practice, the local coor-

dinates constructed are only approximately isometric to {τij
} (see discussions about

Step 2 above). To obtain best realignment, we therefore need to use a patch Xp, for
which the local approximation error is the least and then find some W by solving

min
W

‖Θp − WẐp‖F(3.2)
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Fig. 3.1. (Left) Plot of the original 2D coordinates; (middle) plot of the coordinates recovered
by LTSA; (right) plot of the coordinates recovered by LTSA with normalization.

which gives W = ΘpẐ
+
p , where Ẑ+

p is the Moore-Penrose pseudo inverse of Ẑp.

In [14], Z with orthonormal rows are directly used to approximately recover T
but it is only approximately a linear transformation of T . In light of the discussion
above, however, Z need to be normalized by the matrix W to recover a coordinate
system that is an orthogonal transformation of the original one. The effectiveness of
this will be illustrated in the following numerical example. As a by-product, we have
shown that LTSA with the post normalization step 4 can recover locally isometric
embedding up to a rigid motion.

We present two numerical examples of local isometric maps to demonstrate ben-
efits of the post-normalization. In both examples, local patches are constructed from
the k-nearest neighborhood of each point. In constructing local coordinates by SVD,
we use σd+1/σ1 to determine the patch that has the least local errors, which is used
for post normalization.

Example 1. We consider 2000 random sample points on a 2-d parametric surface
in R

3 defined by

xi = [cos(si), ti, sin(si)]
T

where si and ti are uniformly distributed random numbers between 0 and 0.01. We
use LTSA and LTSA with the normalization (step 4) to determine a parametrization
of these points. We have tested with several values of k in the range 7 ≤ k ≤ 30
and the results are similar. We present the one with k = 15 in Figure 3.1. On the
left panel is the original coordinates (si, ti), in the middle is the coordinates found
by LTSA, and on the right is the coordinates found by LTSA with the normalization.
Clearly, without the normalization, LTSA obtains only an affine transformation of the
original coordinates but with normalization, it recovers the square (with a rotation)
as well as the original scale.

Example 2. We consider 2000 random sample points on a 2-d parametric surface
in R

4 defined by

xi = [cos(si) sin(ti), sin(si) sin(ti), sin(si) cos(ti), cos(si) cos(ti)]
T

where (si, ti) are random points on the unit half disk generated by

(si, ti) = ri(cos(θiπ), sin(θiπ))
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Fig. 3.2. (Left) Plot of the original 2D coordinates; (middle) plot of the coordinates recovered
by LTSA; (right) plot of the coordinates recovered by LTSA with normalization.

with ri and θi uniformly distributed random numbers between 0 and 1. We use LTSA
and LTSA with the post normalization (step 4) to determine a parametrization of
these points. We have tested with several values of k in the range 7 ≤ k ≤ 30 and
the results are similar. We present the one with k = 15 in Figure 3.2. On the left
panel is the original coordinates (si, ti), in the middle is the coordinates found by
LTSA, and on the right is the coordinates found by LTSA with the normalization.
Again, without the normalization, LTSA obtains only an elongated half disk (an affine
transformation) and with normalization, we recover the half disk (with a rotation) as
well as the original scale.

4. Concluding Remarks. To better understand the performance of manifold
learning algorithms such as LTSA, it is important to gain deeper insights into the
alignment process. In this paper we have analyzed the alignment process through
characterizing the null space structure of the alignment matrix and its relationship
with the geometric properties of the set of sample points. Several topics will be
investigated in future research including (1) a quantitative characterization of the
spectral properties of the alignment matrix; and (2) an analysis of the reconstruction
error with respect to the error in the construction of local coordinates as well as in the
data itself (i.e. noisy data). Matrix analysis techniques such as matrix perturbation
theory will certainly play important role in the understanding of the performance of
manifold learning algorithms which are at the current forefront of machine learning
research.
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