
1

Learning the Gain Values and Discount Factors
of Discounted Cumulative Gains

KE ZHOU, HONGYUAN ZHA, YI CHANG and GUI-RONG XUE

Abstract—Evaluation metric is an essential and integral part of a ranking system. In the past several evaluation metrics have been

proposed in information retrieval and Web search, among them Discounted Cumulative Gain (DCG) has emerged as one that is widely

adopted for evaluating the performance of ranking functions used in Web search. However, the two sets of parameters, the gain values

and discount factors, used in DCG are usually determined in a rather ad-hoc way, and their impacts have not been carefully analyzed.

In this paper we first show that DCG is generally not coherent, i.e., comparing the performance of ranking functions using DCG very

much depends on the particular gain values and discount factors used. We then propose a novel methodology that can learn the

gain values and discount factors from user preferences over rankings, modeled as a special case of learning linear utility functions.

We also discuss how to extend our methods to handle tied preference pairs and how to explore active learning to reduce preference

labeling. Numerical simulations illustrate the effectiveness of our proposed methods. Moreover, experiments are also conducted over

a side-by-side comparison data set from a commercial search engine to validate the proposed methods on real-world data.

Index Terms—Discounted cumulative gains, evaluation metric, utility function, user preference, machine learning

!

1 INTRODUCTION

Evaluation metric is an essential component of any information
retrieval system, because it directly influences the compar-
ison of competing retrieval methods and ranking functions.
Moreover, since evaluation metrics define what a desirable
ranking should be, they have also been employed as the
objective functions for directly optimizing ranking functions
in the context of learning to rank [2]–[5].

To set the stage for our discussions, let us imagine a
somewhat idealized use scenario of evaluation metrics: A
Web search engine company has developed a new ranking
function and would like to compare the performance of the
new ranking function with the existing one used in production
in order to make sure it indeed improves relevance of search
results. To this end, a set of queries is sampled and the search
results produced by both the new and old ranking functions
are collected. Human editors are asked to judge the degree of
relevance for each query-document pairs for the set of sampled
queries. Finally, the evaluation metrics are computed based
on the relevance judgments and the quality of the ranking
functions is assessed using the evaluation metrics, e.g., if the
new ranking function obtain higher scores according to the

This paper is an extended version of the workshop paper [1]. Here we provide
detailed derivations of the theory as well as the proposed algorithm. We
also consider the more practical case where the pair of rankings contain
overlapping but possibly non-identical documents. In addition, we develop
algorithms leveraging the idea of active learning for selecting ranking pairs
for comparison. Last but not least, we evaluate the proposed method in a new
data set from a commercial search engine, the results of which suggest the
effectiveness of the method in real-world applications.

• Ke Zhou and Hongyuan Zha are with the College of Computing, Georgia
Institute of Technology, Atlanta, E-mail: {kzhou@, zha@cc.}gatech.edu

• Yi Chang is with Yahoo! Labs, Sunnyvale, CA, USA; email:yichang@yahoo-
inc.com

• Gui-Rong Xue is with Alibaba Cloud Computing, Hangzhou, China

evaluation metrics than the old one, it can be the candidate
pushed for release for production. This process clearly shows
that evaluation metrics play a central role since they directly
impact the evaluation results and thus the development and
production decisions in Web search.

Several evaluation metrics are widely used in information
retrieval and Web search including precision and recall, mean
average precision (MAP) and discounted cumulative gains
(DCG) [6]. Among those metrics, DCG has become quite
popular for comparing the performance of ranking functions
especially for Web search [7], [8]. In this paper, we focus
on the critical issue of determining the gain and discount
factors used in the definition of DCG. To this end, we first
describe several technical notions related to DCG to facili-
tate our further discussions. We are interested in ranking N

documents X = {x1, . . . ,xN}. We assume that we have a finite
ordinal label (grade) set L = {!1, . . . ,!L} with !i preferred over
!i+1, i = 1, . . . ,L− 1.1 In Web search, for example, we may
have

L = {Perfect,Excellent,Good,Fair,Bad},

i.e., L = 5. A ranking of X is a permutation

π = (π(1), . . . ,π(N)),

of (1, . . . ,N), i.e., the rank of xπ(i) under the ranking π is i.
Furthermore, suppose that the label for the document xi is
labeled by the li-th label, where li ∈ {1, . . . ,L}. Then, lπ(i)
represents the label for the document at rank i under the
permutation π.

Each ordinal label is associated with a gain value gi ≡ g(!i),
and gi, i = 1, . . . ,L, constitute the set of gain values associated
with L . For example, the gain values for perfect, good and bad
documents can be set to 10, 3 and 0, respectively. Intuitively,

1. This means that a document with label !i is considered more relevant
than one with label !i+1 with respect to the query in question.



2

the users gain more from a perfect document than from a bad
document, and the gain values quantify the differences. In [7],
the DCG for a ranking π with the associated labels, evaluated
for its top K documents, is defined as

DCGg,K(π) =
K

∑
i=1

ciglπ(i) , K = 1, . . . ,N,

where glπ(i) indicates the gain value for the rank i document
xπ(i); The set of parameters c1 > c2 > · · · > cK > 0 are the
so-called discount factors. This reflects the fact that users
emphasize more the documents on the top of the rankings.

Two important properties of DCG contribute to its popular-
ity: 1) it can deal with multi-grade relevance judgments; and
2) it can also explicitly incorporate the position information
of the documents in the result sets through the use of discount
factors. Specifically, DCG as shown above is parametrized
by two sets of parameters, the gain values and discount

factors. Despite its widespread use in Web search and other
applications, the choice of the two sets of parameters in
DCG is mostly rather ad-hoc, and several different sets of
values have been employed in various systems and evaluation
experiments published in the literature — the parameters
gi = 2i −1 and ck =

1
log(k+1) , for example, are quite common

for Web search evaluations. Furthermore, it is unclear if those
selected parameters are in anyway consistent with the general
users’ preference of rankings. This is rather an unsatisfactory
situation considering the popularity and importance of DCG.
In this paper, we try to fill the gap by addressing the following
two important issues regarding the utilization of DCG as an
evaluation metric:

1) Does the parameter set matter? I.e., do different parame-
ter sets give rise to different preference over the rankings
of the search results?

2) If the answer to the above question is yes, is there a
principled way to select the set of the parameters?

It turns out that the answer to the first question is yes if
there are more than two levels of relevance grade used in
the evaluation.2 This is discussed in [9] through experimental
studies, but we will provide a more detailed analytic analysis.
Specifically, this result implies that a new ranking function can
appear to be better than an existing one when measured using
one set of DCG parameters while possibly worse with another.
It follows that in real applications, certain choices of the
parameters may result in selecting the wrong ranking function
for online service and thus may reduce the user experience in
search engines. Moreover, as we will discuss later, different
parameters may lead to very different evaluation results on
the rankings that are close to each other. Thus, it is extremely
important to use the right DCG parameters when validating
small incremental improvements of ranking functions. Consid-
ering the fact that ranking functions are usually developed in
a incremental and iterative way in commercial search engines,
detecting small improvements of ranking functions can be
quite a practical and vital task since the difference between

2. This is generally the case for Web search where multiple grades are used
to indicate the degree of relevance of documents with respect to a query.

the new and old ranking functions can be very small in this
situation.

Given that the selection of DCG parameter has a great
impact on the evaluation of search ranking functions, it is
imperative that we select the parameters of DCG very carefully
when evaluating information retrieval systems, since devel-
opment and production decisions can very much depend on
them. It is then quite natural to ask the second question: is
there a principled way to select the DCG parameters? To
address this question, we propose to learn the DCG parameters
in a data-driven way rather than relying on ad-hoc manual
selections. One advantage of this data-driven approach is that
the parameters are directly determined by and will generally
be consistent with the preferences of users, and it also allows
for adaption to specific user sub-populations and system usage
scenarios.

We will show that the DCG parameters can be viewed as
the weights of a linear utility function and those associated
weights can be estimated provided paired preferences over
different rankings are available — Learning the weights can
be then cast as an optimization problem that can be solved
using convex quadratic programming very much like what is
done in support vector machines for classification.

Experimentally, we carried out several numerical simula-
tions that illustrate the feasibility and effectiveness of the
proposed methodology. Additionally, a set of evaluation exper-
iments are also conducted over a data set from a commercial
search engine. The results of the experimental studies show
that the proposed learning framework can estimate the param-
eters of DCG vectors accurately utilizing paired preferences
over rankings. Moreover, the experiments also show that the
proposed learning framework can significantly improve the
accuracy of the comparisons when the quality of rankings
are quite close to each other. To improve the effectiveness
of the learning methods, we also address the problem of how
to handle tied preference pairs and how to select ranking pairs
for comparison through active learning.

The rest of the paper is organized as follows: In Section
2, we briefly discuss some related studies. Then, we show
that DCG is not coherent in a very precise sense in Section
3. In Section 4, we present the proposed learning framework
for estimating the parameters of DCG. The experiments over
simulation data sets and a data set from a commercial search
engine is presented in Section 5.4 where the issue of active
learning is also addressed. We conclude our paper and discuss
several future directions in Section 6.

2 RELATED WORK

DCG as an evaluation metric was proposed in [7]. The results
in [10] compare the sensitivity and reliability of several
cumulative gain based metrics including DCG. In [11], several
evaluation metrics are compared through their confidences in
evaluations. All these studies focus on comparing the prop-
erties of different evaluation metrics. Despite the popularity
of the cumulative gain based metrics, little research has been
focused on analyzing the coherence of those metrics except the
study of [9] which shows that different gain values of DCG can



3

give different judgements on the relevance of rankings. After
the publication of [1], the problem of selecting gain values
and discount factors is discussed in [12], but the focus of their
work is to analyze the efficiency and stability introduced by
sampling queries. A few recent work have studied whether
evaluation metrics are consistent with the user preferences
[13], [14]. Specifically, [14] suggests that the nDCG is the
most effective evaluation metric among several other metrics.
However, it is also shown in [14] that all evaluation metrics
disagree with user preference to some extents, which implies
that it is still important and useful to investigate methods that
improve the evaluation metric in order to better capture user
preferences. Recent development of evaluation metrics aims to
capture more sophisticated requirement of users [15], [16]. For
example, the work of [15] considers the diversity and novelty
of the metric in addition to relevance. Similar to the case of
DCG, the results of these evaluation metrics also largely rely
on some parameters, which are usually set in a rather ad-
hoc way. The learning framework proposed in this paper can
be naturally applied to determine these parameters as well
through learning different parameters for different types of
queries or user intentions.

In parallel to the development of evaluation metrics, the
learning to rank methodology has also attracted a lot of
research interests in recent years. Several methods have been
developed to learn the ranking functions through directly
optimizing some performance metrics (or their approximate
versions) such as MAP and DCG [2]–[4]. Our work can be
considered as a natural component of the learning to rank
framework in the following sense: 1) Learning to rank focuses
on constructing a good ranking function with respect to some
given performance metrics, while the goal of this paper is
to analyze the coherence of DCG and propose a learning
method to determine the parameters of DCG which will result
in a more accurate metric for optimization for learning to
rank. 2) Our proposed DCG parameter learning framework
can be viewed as ranking different rank lists according to user
preferences, and as such it is also an interesting application of
the general learning to rank framework.

As will be seen in Section 4, DCG can be viewed as
a linear utility function. Therefore, the problem of learning
in DCG is closely related to the problem of learning utility
functions which has been studied under the name of conjoint
analysis in the marketing science community [17], [18]. The
goal of conjoint analysis is to model the users’ preferences
over products and infers the features that satisfy the demands
of users [19], [20].

3 INCOHERENCY OF DCG

We now focus on analyzing the properties of the gain values.
Assume there are two rankers A and B using DCG with gain
vectors gA and gB, respectively. We want to investigate how
coherent A and B are in evaluating different rankings.

It can be observed from the definition that DCG takes
both the relevance and position of the results into account.
Specifically, the relevance of a result is captured by its
gain value and the position is captured by the corresponding

discount factor ci. The gain vector g = [g1, . . . ,gL] is said to
be compatible if g1 > g2 > · · ·> gL, reflecting the preferences
over the given set of labels. If two gain vectors gA and gB

are both compatible, then we say they are compatible with
each other. In this case, there is a transformation φ such that
φ(gA

i ) = gB
i , i = 1, . . . ,L, and the transformation φ is order

preserving, i.e., φ(gi)> φ(g j), if gi > g j.

3.1 Coherency of DCG with Binary Labels

In this section, we show that compatibility of the gain vec-
tors implies coherency for a specific class of DCG metrics.
Specifically, we show that DCG metrics with compatible gain
vectors agree with each other when binary relevance labels are
used, i.e., L = 2.

First we show that if A and B are compatible, then A and
B agree on the set of rankings that are optimal, i.e., the set of
rankings having the highest DCG. We first state the following
well-known result.

Proposition 1: Let a1 ≥ · · ·≥ aN and b1 ≥ · · ·≥ bN . Then

N

∑
i=1

aibi = max
π

N

∑
i=1

aibπ(i).

It follows from the above result that any ranking π with
glπ(1) ≥ glπ(2) ≥ · · · ≥ glπ(K)

achieves the highest DCGg,K , as
long as the gain vector g is compatible. Therefore, any two
rankers A and B using compatible gain vectors gA and gB,
will score the above rankings with higher DCG values than
any other rankings.

What about those rankings with smaller DCGs, i.e., non-
optimal DCG values? We say two compatible rankers A and
B are coherent, if they score any two rankings coherently, i.e.,
for rankings π1 and π2,

DCGgA,K(π1)≥ DCGgA,K(π2)

if and only if

DCGgB,K(π1)≥ DCGgB,K(π2),

i.e., ranker A considers π1 is better than π2 if and only if
ranker B considers π1 is better than π2. In order to address
the problem whether different DCG parameter sets give rise
to different preference over the rankings, it is natural to ask
if compatibility implies coherency? I.e., if rankers A and B

have the same order of preferences for the labels, do they also
agree on the preference of any pair of non-optimal rankings?
We have the following result.

Theorem 1: If L = 2, then compatibility implies coherency.

Proof: Fix K > 1, and let c = ∑K
i=1 ci. When there are

only two labels, let the corresponding gains be g1,g2. For a
ranking π, define

c1(π) = ∑
lπ(i)=1

ci, c2(π) = c− c1(π).

Then DCGg,K(π) = c1(π)g1 + c2(π)g2. For any two rankings
π1 and π2,

DCGgA,K(π1)≥ DCGgA,K(π2)



4

implies that

c1(π1)g
A
1 + c2(π1)g

A
2 > c1(π2)g

A
1 + c2(π2)g

A
2

which gives

(c1(π1)− c1(π2))(g
A
1 −gA

2 )> 0.

Since A and B are compatible, the above implies that

(c1(π1)− c1(π2))(g
B
1 −gB

2 )> 0.

Therefore DCGgB,K(π1) ≥ DCGgB,K(π2). The proof is com-
pleted by exchange A and B in the above arguments.

3.2 Incoherency of DCG when L > 2

Not too surprisingly, compatibility does not imply coherency
when L > 2, which is illustrated in the following example.

Example 1: Let X = {x1,x2,x3}, i.e., N = 3. We con-
sider DCGg,K with K = 2. Assume the labels of x1,x2,x3

are !2,!1,!3, and for ranker A, the corresponding gains are
2,3,1/2. The optimal ranking is (2,1,3). Consider the fol-
lowing two rankings, π1 = (1,3,2), and π2 = (3,2,1). None
of them is optimal. Let the discount factors be

c1 = 1+ ε, c2 = 1− ε, 1/4 < ε < 1.

It is easy to check that

DCGgA,2(π1) = 2c1 +(1/2)c2

> (1/2)c1 +3c2 = DCGgA,2(π2).

Now let gB = φ(gA), where φ(t) = tk, and φ is certainly order
preserving, i.e., A and B are compatible. However, it is easy
to see that for k large enough, we have

2kc1 +(1/2)kc2 < (1/2)kc1 +3kc2

which is the same as DCGgB,2(π1)< DCGgB,2(π2). Therefore,
A thinks π1 is better than π2 while B thinks π2 is better than
π1 even though A and B are compatible. This implies A and
B are not coherent.

REMARKS. When we have more than two labels, which
is generally the case for Web search, using DCGK with
K > 1 to compare the DCGs of various ranking functions will
very much depend on the gain vectors used. Different gain
vectors can lead to completely different conclusions about the
performance of the ranking functions. Similar conclusions can
be drawn for the discount factors. Moreover, for variations for
DCG such as NDCG, the similar analysis can be conducted to
show that they are not coherent in general, which implies that
the incoherency of DCG can be viewed as the core problem
of these metrics.

We now further illustrate this result by investigating the
possible DCG values generated with two different sets of
parameters: We generate several rankings by randomly per-
muting the ranking list of ten documents with the following
relevance labels

[5,5,4,4,3,3,2,2,1,1].

For each pair of the generated rankings, we compute the DCGs
using two different sets of gain values that are widely used in

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

F
ra

ct
io

n
 o

f 
C

o
n

si
st

e
n

t 
P

a
ir
s

DCG Difference

Fig. 1. The fraction of pairs that are consistent under
two different set of DCG parameters. The x-axis shows
the DCG differences under gain value gl = 2l − 1. The
y-axis represents the fraction of ranking pairs judged
consistently by two metrics.

the evaluation of search engines: gl = 2l −1 and g′l = l while
we use the same discount factors ci = 1/ log(i+1). Our goal
is to investigate the fraction of pairs that are agreed by the two
different DCG metrics. In Figure 1, we show the fraction of
agreed pairs with respect to the DCG differences under gain
values gl . Specifically, we use gl and ci as DCG parameters
to compute the DCG values for each rankings and measure
the different between each pair of rankings. We can see in
Figure 1 that different gain values do not agree with each
other in general. We can see that the fraction of agreed pairs
are very small if the DCG difference using gain values g is
small. However, even when the DCG difference using gain
values g is 1, there are still only about 80% pairs agreed by
both metrics — This indicates that DCG with gain values gl

and g′l contradicts with each other on a substantial fraction
of pairs even when their DCG differences considered by the
ranker using gain values g are quite large. This is to say that for
a substantial fraction of ranking pairs, ranker with gain values
g says one ranking is better than the other in the pair with high
confidence, but the ranker with gain values g′ says the opposite
is true. Therefore, we conclude that different parameters of
DCG can impact comparison of rankings to a great extent and
thus should be selected in a more principled approach rather
than heuristically.

4 LEARNING GAIN VALUES AND DISCOUNT

FACTORS

The conclusion of the incoherency of DCG in Section 3
implies that the values of the parameters used in DCG can
have a great impact on the evaluation of information retrieval
systems. This is also supported by the experimental studies
in [9]. Thus, these parameters should be determined in a
principled and systematic approach that could capture the
users’ preferences over search results. In this section, we
propose a learning framework to determine the parameters of
DCG based on paired preferences over rankings. The main
idea of our approach is to consider DCG as a simple form of
a linear utility function. In this section, we make this statement



5

more precise and discuss a method to learn the gain values and
discount factors of DCG that constitute this utility function.

4.1 Utility Functions

From the perspective of economics, search engines satisfies the
information need of users described by queries through pro-
viding ranked search results to them. Therefore, the quality of
a ranking list should be measured by the degree of satisfaction
of users. Here, we employ the concept of utility functions to
quantify the satisfaction of users.

Specifically, every evaluation metric can be viewed as a
utility function u : Π →R that assigns a real number u(π) for
each ranking list π of a given query. Larger values of u(π)
implies that higher degree of relevance, i.e., u(π1)> u(π2) if
the ranking list π1 is preferred to π2 for a given query.

4.2 A Binary Representation

Before describing our learning framework, we first introduce
a binary representation format for a given ranking list, which
leads to more convenient and simple formulation of the utility
function. We consider a fixed K, and we use a binary vector
s(π) of dimension KL, i.e., the product of K and L, to represent
a ranking π considered for DCGg,K . Here L is the number of
levels of the labels. Particularly, the first L components of s

correspond to the first position of the K-position ranking in
question, and the second L components the second position,
and so on. Within each L components, the i-th component
is 1 if and only if the document in position one has label
!i, i = 1, . . . ,L.

Example 2: In the Web search case with L = 5 labels,
suppose we consider DCGg,3, and for a particular ranking π
the labels of the first three documents are

Perfect, Bad, Good.

Then the corresponding 15-dimensional binary vector

s(π) = [1,0,0,0,0, 0,0,0,0,1, 0,0,1,0,0].

With the above binary representation of rankings, we postu-
late a utility function u(π) = wT s(π) which is a linear function
of s(π), and w is the weight vector, to measure the quality of
s(π). We write

w = [w1,1, . . . ,w1,L, w2,1, . . . ,w2,L, . . . ,wk,1, . . . ,wK,L].

We often use the simplified notation u(s) = wT s where the
binary vector s uniquely determines the ranking for the input
of the utility function. We now distinguish two cases.

CASE 1. The gain values are position independent. This
corresponds to the case

wi, j = cig j, i = 1, . . . ,K, j = 1, . . . ,L.

This is to say that ci, i = 1, . . . ,K are the discount factors, and
g j, j = 1, . . . ,L are the gain values. It is easy to see that

wT s(π) = DCGg,K(π).

Therefore, the widely used DCG can be viewed as a special
case of the linear utility function.

CASE 2. In this framework, we can consider the more
general case that the gain values are position dependent. Then
w1,1, . . . ,w1,L are just the products of the discount factor c1

and the position dependent gain values for position one, two,
and so on. In this case, there is no need to separate the gain
values and the discount factors. The weights in the weight
vector w are what we need.

4.3 Learning the Weight Vector w

Assume that we have available a partial set of preferences over
the set of all rankings. For example, we can present a pair of
rankings π1 and π2 to a user, and the user prefers π1 over π2,
denoted by π1 ' π2, which translates into wT s(π1)≥ wT s(π2)
in terms of the utility function u(π). Let the set of available
preferences be

πi ' π j, (i, j) ∈ S.

Our goal is to construct a utility function u(π) that is as
consistent as possible with the given set of preferences.

Let us first discuss the second case described above, we can
formulate the learning problem as estimating the weight vector
w subject to a set of preference constraints. The formulation
can be considered as a variation of RankSVM [21] with
additional constraints that are specific for the utility function
learning problem.

min
w, ξi j

wT w+C ∑
(i, j)∈S

ξ2
i j (1)

subject to

wT (s(πi)− s(π j))≥ 1−ξi j, ξi j ≥ 0, (i, j) ∈ S. (2)

wkl ≥ wk,l+1, k = 1, . . . ,K, l = 1, . . . ,L−1. (3)

Here ξi j are the so-called slack variables to account for
possible errors in preference data. The coefficient C of the
second term is a regularization parameter that controls the
trade off between fitting the preference data and model com-
plexity. Usually, the value of C can be determined by cross

validation. As an alternative, several algorithms are proposed
for calculating the regularization path for SVM models which
can also be used to determine C [22].

The constrains in Equation (2) are used to enforce the
requirement that the weight vector w is consistent with the
known preference pairs, which is similar to the set of con-
straints used in RankSVM. Additionally, the constrains in
Equation 3 encode the fact that replace a document with a
more relevant one will increase the value of utility function.

The above optimization problem is convex and thus can be
solved by a lot of solvers. In our implementation, we make use
of the CVX3 which is an off-the-shelf convex programming
solver. The time complexity of the solving the problem is
polynomial and depends on the specific optimization tools
used by CVX. In general, the solver runs very fast in all our
data sets (less than 5 minutes for the largest data we consider).

For the first case discussed above, we can compute w as
in Case 2, and then find ci and g j to fit w.4 Particularly, we

3. http://cvxr.com/

4. It is also possible to carry out hypothesis testing to see if the gain values
are position dependent or not.



6

can reconstruct the gain vector and the discount factors from
the estimated ŵ. To this end, we rewrite ŵ as a matrix W

of size L×K. Assume that singular value decomposition of
the matrix W can be expressed as W = Udiag(σ1, . . . ,σn)V T

where σ1 ≥ · · ·≥ σn. Then, the rank-1 approximation of W is
Ŵ = σ1u1vT

1 . In this case, the first left singular vector u1 is
the estimation of the gain vector and the first right singular
vector v1 is the estimation of the discount factors.

5 EXPERIMENTS

In this section, we present several experiments to evaluate
the proposed learning framework for DCG parameters. The
experimental studies are conducted over both simulation data
sets and a real-world data set from a commercial search engine.

5.1 Evaluation Measures

Given the estimated ŵ and the ground-truth w, we apply two
measures to evaluate the quality of the estimated ŵ. 1) The
first measure is the precision on a test set. A number of pairs
of rankings are sampled from the set of all rankings as the
test set. We apply ŵ to predict the preference over the test
set. Then the precision of ŵ is calculated as the proportion of
correctly predicted preference (based on the true w) in the test
set. 2) The second measure is the similarity of w and ŵ. Given
the true value of w and the estimation ŵ defined by the above
optimization problem, a straightforward similarity measure is
the cosine similarity between them. However, cosine similarity
can be influenced by adding constant offsets to the weight
vectors. Specifically, the cosine similarity between w1+a and
w2 +a can be very high even if w1 and w2 are quite different
when the constant vector a is quite large. In order to get around
this, we define the transformation T (w) as follows:

T (w) =(w11 −w1L, , . . . ,w1L −w1L,

. . . ,wK1 −wKL, . . . ,wKL −wKL) (4)

We can observe that the transformation T rules out the effect of
the constant offset of w which does not impact the comparison
two rankings and thus it preserves the orders between rankings,
i.e., T (w)T s(π1)> T (w)T s(π2) iff wT s(π1)> wT s(π2). Then,
we measure the similarity between w and ŵ by sim(w, ŵ) =

T (w)T T (ŵ)
‖T (w)‖‖T (ŵ)‖ , which represents the cosine similarity between

the two transformed weight vectors.

5.2 Simulation Studies

In this section, we report the results of numerical simulations
to show the feasibility and effectiveness of the method pro-
posed in Equation (1). We call this method DCGLearn for
the sake of convenience.

5.2.1 Experimental Settings

We use a ground-truth w to obtain a set of paired preferences of
rankings. Our goal is to investigate whether we can reconstruct
the unknown w via learning from the given set of paired
preferences. The ground-truth w is generated as

wkl = gl/ log(k+1) (5)

For a comprehensive comparison, we distinguish two settings
of gl , l = 1, . . . ,L where L = 5. Specifically, we set gl = l in
the first setting (Data 1), and gl = 2l −1 in the second setting
(Data 2). These two set of parameters are widely used for
evaluating information retrieval systems.

The rankings are obtained by randomly permuting a ground-
truth ranking list. For example, the rankings can be generated
by randomly permuting the list of length 10 (K=10)

[5,5,4,4,3,3,2,2,1,1].

We generate a collection of pairs of rankings and use the
ground-truth w to judge which ranking is preferred. Specifi-
cally, if wT s(π1)>wT s(π2), we have a preference pair π1 ' π2.
Otherwise we have a preference pair π2 ' π1.

5.2.2 General Performance

We randomly sample a number of rankings and generate
preference pairs according to a ground-truth w. The number
of preference pairs in training set varies from 20 to 800. We
plot the prediction accuracy on test set of the estimated ŵ with
respect to the number of training pairs in Figure 2 and Figure
3, respectively.

It can be observed from Figure 2 and 3 that the performance
of DCGLearn generally improves with the increasing of
training pairs, indicating that the preferences over rankings
can be utilized to enhance the estimation of the unity function
w. Another observation is when about 800 preference pairs
are included in training set, the precisions in test sets become
close to 98% under both settings, which is quite close to the
ground-truth utility function. This observation suggests that
we can estimate w very accurately from the preferences of
rankings.

We also show a baseline Other that use the ground-truth
utility function from the wrong data set, i.e., we use the
ground-truth measure of Data 2 to predict the preference
pairs of Data 1 and vice visa. The prediction accuracy of this
baseline is less than 90%, which indicates that the two different
ground-truth utility function disagrees with each other on more
than 10% of the pairs. This can be a quite large fraction of
pairs in the evaluation of information retrieval systems, which
may lead to completely different conclusions on performance
comparisons of systems. In order to investigate this point
more closely, we show the prediction accuracy with respect to
the DCG difference in Figure 4 and Figure 5. From those
figures, we can observe that DCGLearn outperforms the
baseline with a large margin when DCG differences of pairs
are relatively small. This is because the pairs of rankings
that are relatively similar to each other are more difficult to
tell apart, and thus are more sensitive to parameters in the
DCG metrics used. This has important implications in practice,
because the quality of ranking functions used in real world
information retrieval systems are usually quite close to each
other with overall average DCGs differ by a few percentage
points. Consequently, it is important to use the right parameters
for DCG when comparing their performance.

We also measure the similarity between the learned weight
vector and the ground-truth as defined in Section 5.1. The
similarity with respect to the number of training pairs is shown



7

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100  200  300  400  500  600  700  800

A
cc

u
ra

cy

Number of Training Pairs

Learning
Other

Fig. 2. Prediction accuracy over the test set with respect
to the number of training pairs on Data 1

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100  200  300  400  500  600  700  800

A
cc

u
ra

cy

Number of Training Pairs

Learning
Other

Fig. 3. Prediction accuracy over the test set with respect
to the number of training pairs on Data 2

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

A
cc

u
ra

cy

DCG Difference

DCGLearn
Other

Fig. 4. Prediction accuracy over different subsets of the
test set of Data 1

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

A
cc

u
ra

cy

DCG Difference

DCGLearn
Other

Fig. 5. Prediction accuracy over different subsets of the
test set of Data 2

in Figure 6. We notice that the similarity and precision some-
times give different conclusions of the relative performance
over Data 1 and Data 2. We think it is because the similarity
measure is sensitive to the choice of the offset constant. For
example, large offset constants will give similarity very close
to 1. Currently, we use w1L, . . . ,wKL of the offset constant as
in Equation (4). Generally, we prefer the prediction accuracy
as a more meaningful evaluation measure and report similarity
as a complementary measure.

5.2.3 Noisy Settings

In real-world scenarios, the preference pairs of rankings can
be noisy. Therefore, it is interesting to investigate the effect
of the errors in the preference pairs to the performance of
the learned DCG metrics. To this end, we fix the number of
training pairs to be 800 and create the noisy pairs by randomly
reverse the preference of several pairs in the training set. In our
experiments, the number of noisy pairs ranges from 5 to 200.
Since the trade off value C is important to the performance in
the noisy setting, we select the value of C that shows the best
performance on an independent validation set. We report the
prediction accuracy with respect to the number of noisy pairs
in Figure 7. We can observe that the performance decreases
gracefully when the number of noisy pairs grows. However,

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100  200  300  400  500  600  700  800

S
im

ila
ri
ty

Number of Training Pairs

Data 1
Data 2

Fig. 6. Similarity between w and ŵ with respect to the
number of training pairs on Data 1 and Data 2

the degradation in performance is graceful, and with about
25% noisy pairs, the prediction accuracy is still about 85%.

In addition to the experiments using noisy preference pairs,
we also consider errors in the relevance grades of documents.
In this case, we modify the grades of a number of documents
to be a random grade between 1 and 5 and thus introduce



8

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  50  100  150  200

P
re

ci
si

o
n

Number of Noisy Pairs

Data 1
Data 2

Fig. 7. Precision over the test set with respect to the
number of noisy pairs in noisy settings

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

P
re

ci
si

o
n

Fraction of Noise Documents

Data 1
Data 2

Fig. 8. Precision over the test set with respect to the
number of noisy grades in noisy settings

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20  40  60  80  100  120  140  160  180  200

P
e

rf
o

rm
a

n
ce

Number of Training Pairs

Optimal Rankings
Random Rankings

Fig. 9. Performance when training pairs are generated
by permuting the same optimal rankings

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 50  100  150  200  250  300  350  400

P
e

rf
o

rm
a

n
ce

Number of Training Pairs

Optimal Rankings
Random Rankings

Fig. 10. Performance when training pairs are generated
from different lists

noise in the training set. The estimated ŵ is used to predict
the preferences on a test set. The precision with respect to
the number of noisy documents is shown in Figure 8. It can
be observed that the performance decreases when the number
of noisy documents increases, but again the degradation in
performance is graceful, similar to the case of errors in
preferences.

5.2.4 An Experiment on Using Optimal Rankings

In Proposition 1 of Section 3, we prove that all the DCG pa-
rameters agrees on the optimal rankings. We further investigate
the impact on optimal rankings empirically.

First, in order to verify Proposition 1 empirically, we
restrict the preference pairs by involving the optimal rank-
ing in each pair of training data. For example, we set one
ranking of the preference pair to be the optimal ranking
[5,5,4,4,3,3,2,2,1,1] and the other ranking is obtained by
permuting the optimal ranking randomly. In this case, if the
other ranking is generated by permuting the same list, it is
implied by Proposition 1 that any compatible gain vectors will
agree on the fact that the optimal ranking is preferred to other
rankings. The preference pairs do not carry any constraints to
the utility function w. Therefore, the constraints corresponding
to these preference pairs are not effective in determining the

utility function w. This conclusion is verified empirically as
shown in Figure 9 that the performance does not increase when
the number of training pair grows.

Now we can consider another setting: As in the first
setting, we set one ranking of the preference pair to be the
optimal ranking [5,5,4,4,3,3,2,2,1,1]. However, the other
ranking is obtained by permuting a different set of grades,
e.g., [5,5,5,4,4,4,3,3,2,1]. Thus, a fraction of the constraints
induced from the pairs can be effective to determine the utility
function. In Figure 10, we show the performance measured
by accuracy on test set with respect to the number of training
pairs. We also show the results for random rankings as we
did in Section 5.2.2 (labeled by Random Rankings). We can
observe that when the type of preferences is restricted, the
learning algorithm requires more pairs to obtain a comparable
performance. We conclude from this observation that some
pairs are more effective than others to determine w. Thus, if we
can design algorithms to select these more effective preference
pairs, the number of pairs required for training can be greatly
reduced. We will continue this line of ideas in Section 5.5.



9

5.3 Simulations Based on Microsoft Learning to
Rank Data

In Section 5.2, we assume that the rankings are generated
from the permutations of [5,5,4,4,3,3,2,2,1,1]. One draw-
back of this assumption is that it ignores the fact that the
grade distributions for different search result sets can be quite
different in practice. For example, for navigational queries,
there is usually a single results with grade 5 and the grades
for all the other results are much lower. While informational
queries may have quite different grade distribution with several
documents labeled as 4 or 5. In this section, we consider real-
world search result sets by exploring the Microsoft Learning
to Rank Data5, which are generated from a commercial search
engine. There are two data sets Web10K and Web30K
with 10,000 and 30,000 queries, respectively. The five-level
relevance judgments are provided to measure the degree of
relevance for each query-document pair in the data sets.

As in Section 5.2, we use the following utility function as
the ground-truth to generate the preferences between rankings,

wkl =
2l −1

log(k+1)
.

For each query, we generate random rankings by permuting
all its corresponding documents and take the first ten docu-
ments in the resulting ranking list. For each pair of rankings
corresponds to the same query, the ground-truth measure is
used to determine which ranking list is preferred.

We perform five-fold cross-validation and report the average
accuracy over the five folds. In Figure 11, we show the average
accuracy with respect to the number of the training pairs. It can
be observed that the performance increases when the number
of training pairs grows. The overall performance is almost
the same as the simulations we performed in the previous
section, which indicates that the proposed framework works
quite well when the search results come from real-world search
engines. Similarly, we include the baseline Other as described
in previous section, which uses a different set of parameters
of DCG wkl =

l
log(k+1) . We can see that this baseline achieves

90% accuracy, which is similar to the results for simulations
in Section 5.2. Again, by splitting the test set according to
the DCG difference of the ranking pairs, we can see that
DCGLearn works much better than the baseline when the
DCGs of the ranking pairs are close to each other; this again
parallels our observations made in Figure 4 and Figure 5.
Thus, we can conclude that DCGLearn can capture the subtle
differences in the quality of rankings, which can be important
when comparing ranking functions that perform close to each
other.

We also perform experiments to evaluate the proposed
framework when there are noises in the relevance judgements.
In real-world scenarios, relevance judgements for query-
document pairs are usually made by human editors. Their
understandings of query intentions may be different with
search engine users. In order to evaluate our method on the
case of noisy relevance judgements, we sample a fraction
of documents for each query and modify their relevance

5. http://research.microsoft.com/en-us/projects/mslr/

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0  100  200  300  400  500  600  700  800  900  1000

A
cc

u
ra

cy

No of Training Pairs

Web10K
Web30K

Fig. 11. Prediction accuracy with respect to the number
of training pairs on Web10K and Web30K data set

TABLE 1
The description of side-by-side judgements from editors

Label Description Number in data set
1 Set one much better 13
2 Set one better 108
3 Both sets the same 473
4 Set two better 148
5 Set two much better 24

judgement by choosing a grade between 1 and 5 randomly. The
performance with respect to the fraction of noisy judgements
are presented in Figure 14 and 15 for Web10K and Web30K
data set, respectively. It can be observed that the prediction
accuracy decreases when the fraction of noisy judgement
increases. The degradation in performance is again graceful.
Also, We report the performance with 200, 600, 1000 training
pairs for each dataset. We can see that more training pairs
improves the performance in general as in the noiseless case.

5.4 Experiments on News Search Data

In order to evaluate the proposed learning methodology using
more realistic settings, we also conduct experiments on a
preference data set from a commercial news search engine.
We collect the top five results of two different rankers for 766
queries randomly sampled from the search logs. Human editors
are asked to label the search results with four-level of grades
according to their relevance to the queries. In particular, these
labels are used to evaluate the relevance of ranking functions
in the search engine, but with a set of parameters that are
set heuristically. The preference data of rankings are labeled
by human editors in a side-by-side setting. Specifically, we
present the rankings produced by two rankers to the human
editors with random order and ask them to choose grades
from 1-5 which represents her degree of preference on the two
rankings. The meaning of the grades is described in Table 1
in detail.

From Table 1, we observe that the results produced by the
two rankings are of the same degree of relevance (labeled
by 3) for a large fraction of queries. We remove these pairs
from the data set and use all the remained pairs for evaluating



10

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10  12  14  16

A
cc

u
ra

cy

DCG Difference

DCGLearn
Other

Fig. 12. Prediction accuracy over different subsets of the
test set of Web10K

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10  12  14  16  18

A
cc

u
ra

cy

DCG Difference

DCGLearn
Other

Fig. 13. Prediction accuracy over different subsets of the
test set of Web30K

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
cc

u
ra

cy

Fraction of Noisy Relevance Judgements

No. Training = 200
No. Training = 600

No. Training = 1000

Fig. 14. Prediction accuracy with respect to the fraction
of noisy pairs in training set on Web10K data set. The
plot shows performance with 200, 600, 1000 training
pairs.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

A
cc

u
ra

cy

Fraction of Noisy Relevance Judgements

No. Training = 200
No. Training = 600

No. Training = 1000

Fig. 15. Prediction accuracy with respect to the fraction
of noisy pairs in training set on Web30K data set. The
plot shows performance with 200, 600, 1000 training
pairs.

our method. Ideally, a good DCG metric should be consistent
with the side-by-side judgements of the rankings. Thus, we can
use the prediction accuracy to measure the effectiveness the
learned DCG parameters. In order to evaluate the proposed
learning framework on the news data set. We perform 5-
fold cross validation on the data set. For each fold, we use
80% data to learn the utility function with DCGLearn and
report the prediction accuracy on the rest 20% data. Moreover,
the differences between rankings labeled by 1 or 5 are more
significant than those labeled by 2 or 4 as we can observed
from Table 1. For the sake of convenience, we denote the set
of pairs in test set labeled by 1 or 5 by Set1 and the set
of pairs labeled by 2 or 4 by Set2. We report the prediction
accuracy on the whole test set as well as on Set1 and Set2 on
Figure 16. As baselines, we consider two sets of gain values
and discount factors that are commonly used to compare the
performance of ranking functions:

• Baseline 1.

gl = 2l −1, ck =
1

log(k+1)

• Baseline 2.

gl = l, ck =
1

log(k+1)

We also include a naive baseline Random that predicts the
preference on the rankings randomly.

From Figure 16, all Baseline1, Baseline2 and DCGLearn
substantially outperform Random. Thus, both the heuristi-
cally selected and learned DCG parameters can captures the
preferences on rankings to some extent. More importantly,
we observe that the parameters obtained by DCGLearn can
predict the preferences more accurately than both Baseline1
and Baseline2 on both Set1 and Set2. Thus, the parameters
obtained by DCGLearn is more effective than the two sets of
heuristic DCG parameters. Moreover, the prediction accuracy
for Set1 is higher than that of Set2. This is expected since
Set1 contains the pairs labeled by 1 or 5 which indicates the
one ranking is much better than the other. Thus, editors have
clear preference on one ranking over the alternative in Set1.
We note that DCGLearn can improve the performance on
Set1, which indicates that: 1) There is relatively significant
differences between the preferences of the human editors



11

 0.5

 0.6

 0.7

 0.8

 0.9

 1

All Set1 Set2

A
cc

u
ra

cy

Random
Baseline1
Baseline2

SVMLearn

Fig. 16. Prediction accuracy of Random, Baseline1,
Baseline2 and the parameters learnt from training data
on the whole test set, Set1 and Set2

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 40  60  80  100  120  140  160  180

P
re

d
ic

tio
n

 A
cc

u
ra

cy

Number of training pairs

All Test
Set1
Set2

Fig. 17. Prediction accuracy with respect to the number
of training pairs on the whole test set, Set1 and Set2

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

P
re

d
ic

tio
n

 D
iff

e
re

n
ce

Label 1
Label 2
Label 4
Label 5

Fig. 18. Prediction differences for different labels

and those captured by the commonly used DCG parameters,
implying that DCG with heuristic parameters is generally
not an accurate measure to evaluate relevance of rankings.
2) DCGLearn can be used to reduce the gap between the
preference of humans and the commonly used DCG parame-
ters. Thus, DCGLearn can be used to find DCG parameters
more consistent with user preferences. On the other hand, the
prediction accuracy on Set2 is generally much lower since
the difference in relevance for pairs in Set2 can be quite
subtle even to human editors. The performance improvement
on Set2 shows that DCGLearn can better capture these
subtle differences of relevance for rankings. Moreover, we also
plot the averaged absolute differences for pairs with different
judgements in Figure 18. We can see that the prediction
difference is significantly larger for pairs that are labeled by 1
or 5 than those are labeled by 2 or 4. This observation suggests
that the learnt weight vector can not only predict the right order
for pairs but also indicate the degree of their differences.

We plot the prediction accuracy with respect to the number
of training pairs in Figure 17. As mentioned before, we plot
both the performance on Set1, Set2 and all test set. We
observe that the performance increases as the number of
training pairs grows in general.

Our training set contains two types of pairs: 1) pairs labeled
by 1 or 5, which indicate that the relevance difference are
quite large and 2) pairs labeled by 2 or 4, representing

relatively small difference in relevance. In order to investigate
the potential different degree of impacts of those two types
of ranking pairs, we perform experiments based on training
data including one type of pairs only. The results are shown in
Figure 19. As in previous experiments, we report the prediction
accuracy on Set1, Set2 and all the test set.

We observe the prediction accuracy on all test pairs reduces
when using only subset of the training data. This is because
that the learnt model is not accurate when the training data is
not sufficient. An interesting observation is that the parameters
learned from ranking pairs labeled by 1 and 5 performs better
on Set1 although its performance on the other two test set is
not very good. This can be explained by the fact the ranking
pairs labeled by 1 or 5 have a different distribution with those
labeled by 2 or 4. On the other hand, we observe that making
use of all training data archives the best performance in all
cases, indicating that the amount of training data is important
to learn better DCG parameters.

5.4.1 Modeling Tied Pairs

In Table 1, we can observe that there is substantial amount
of tied ranking pairs in real-world preference data, i.e., pairs
that are of the same degree of relevance judged by the human
editors (labeled by 3). We note that those tied pairs also cap-
tures important information about the relevance of the ranking
lists. In real application, we should not only identify ranking
functions that improves the relevance of search results, but
prevent modifications that do not improve the user satisfactory
as well. Therefore, it is also desirable to take in account the
tied pairs in the learning process of the DCG parameters.

To this end, assume that in addition to the preference over
ranking list {πi ' π j,(i, j) ∈ S}, we also have a set of tied
pairs over ranking lists:

{πi = π j, (i, j) ∈ T}.

In this case, we seek a weight vector that is consistent with
both types of pairs. Thus, we have the following optimization



12

 0.5

 0.6

 0.7

 0.8

 0.9

 1

All Set1 Set2

A
cc

u
ra

cy
Pairs 1 and 5
Pairs 2 and 4

All Train

Fig. 19. The impact of different subsets of training pairs.
We show the prediction accuracy on the whole test set,
Set1 and Set2

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  0.2  0.4  0.6  0.8  1

Ct

Diff
Accuracy

Fig. 20. Modeling tied pairs: The performance measured
by accuracy on the test set and the averaged score
differences

problem:

min
w, ξi j

wT w+Cs ∑
(i, j)∈S

ξ2
i j +Ct ∑

(i, j)∈T

ξ2
i j

subject to

wT (s(πi)− s(π j))≥ 1−ξi j, ξi j ≥ 0, (i, j) ∈ S. (6)

|wT (s(πi)− s(π j)) |≤ 1+ξi j, ξi j ≥ 0, (i, j) ∈ T. (7)

wkl ≥ wk,l+1, k = 1, . . . ,K, l = 1, . . . ,L−1. (8)

The new constraints Equation (7) enforce the learned weight
vector w should give similar grades to pairs with the same
degree of relevance. The parameter Ct controls the contribution
of tied pairs in the learning process. The optimization problem
is still a convex quadratic programming and thus can be solved
efficiently with off-the-shelf solvers.

We measure the performance over tied pairs by the averaged
difference assigned by the learned weight vector:

diff =
1

|T | ∑
(i, j)∈T

|wT (s(πi)− s(π j)) |.

We change the value of Ct from 0 to 1 and show the
performance measured by both prediction accuracy on test set
and the average score difference defined above in Figure 20.
It can be observed that when the value of Ct grows, the
averaged score difference reduce significantly. Therefore, the
tied pairs are better captured by the learned metric. Moreover,
the accuracy on test set slightly improves, which implies that
introducing tied pairs can help us to improve the modeling the
preference of users.

5.5 Active Learning

We have shown that the selection of the ranking pairs used
for training has a significant impact on the performance of
DCGLearn. A natural question is how we can select ranking
pairs that are more effective for the parameter learning process.
To this end, we investigate how to explore active learning
methods to select more effective ranking pairs. In particular,
we apply the SimpleMargin method for active learning for

SVM proposed in [23]. Intuitively, the SimpleMargin method
chooses the ranking pairs with lowest confident under the
current estimation. In our formulation, assume that we have
a pool P = {(πi,π j)} of unlabeled ranking pairs, i.e., pairs
without preference label. At each iteration, we choose the pair
(πi,π j) of rankings from the pool such that

(πi,π j) = argmin
(πi,π j)∈P

|wT (s(πi)− s(π j))|.

Then, we obtain the preference label the selected pair, add
it into the training data and update the model. We report
the performance on simulation data sets Data 1 and Data
2 with respect to the number of labeled pairs in Figure 21
and Figure 22, respectively. We observe from the figures that
active learning method obtains better prediction accuracy with
less labeled training data compared with training sets with
randomly selected training ranking pairs. Thus, we conclude
that active learning can be used to select ranking pairs that are
more effective to the learning process and thus can be used
to improve the prediction accuracy and reduce the effort of
human labeling of preference data.

We also apply the SimpleMargin algorithm to Web10K
and Web30K data set. In Figure 23(a) and Figure 23(b), we
report the prediction accuracy with respect to the number of
labeled training pairs. We can see that the SimpleMargin
algorithm outperforms the supervised learning method in most
cases, indicating that active learning can select effective pairs
and improve the accuracy. We also notice that in Figure 23(a),
when the number of labeled training examples is very small,
active learning is not as good as random selection. We suspect
that this is because in active learning the training examples are
selected according to current model estimation. However, in
our case, the model may not be very accurate as a result of
the small number of existing training pairs, which makes it
difficult to select effective pairs.

In Figure 23(c), we observe similar results on the News
data set. The active learning method needs much less training
data to learning a good evaluation metric. In this case, we can
also observe that the learning curve is not quite smooth. We
suspect that this is caused by the noise in the training data.



13

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100  200  300  400  500  600  700  800

A
cc

u
ra

cy

No of Training Pairs

Supervised Learning
Active Learning

Fig. 21. Prediction accuracy of active learning vs. super-
vised learning with respect to the number of training pairs
on Data 1

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100  200  300  400  500  600  700  800

A
cc

u
ra

cy

No of Training Pairs

Supervised Learning
Active Learning

Fig. 22. Prediction accuracy of active learning vs. super-
vised learning with respect to the number of training pairs
on Data 2

6 CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the important issue of coherency
of DCG as an evaluation metric for Web search. Our analytic
and empirical analyses show that the DCG is incoherent
in general, i.e., different gain vectors can lead to different
conclusions about the performance of a ranking function in
the context of multi-grade relevance judgments. Therefore, it
is very important to select the right parameters for DCG in
order to obtain meaningful comparisons of ranking functions.
To address this problem, we propose to learn the DCG gain
values and discount factors from users’ preference judgements
of rank lists. In particular, we develop a model to learn the
parameters of DCG as a linear utility function and formulate
the problem as a convex quadratic programming problem.
Results on simulations as well as real-world data suggest the
effectiveness of the proposed methods.

For future research, we plan to explore the learning frame-
work according to different query types and possibly pref-
erences at much finer granularity of personal preference of

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  100  200  300  400  500  600  700  800  900  1000

A
cc

u
ra

cy

No of Training Pairs

Supervised Learning
Active Learning

(a) Web10K

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  100  200  300  400  500  600  700  800  900  1000

A
cc

u
ra

cy

No of Training Pairs

Supervised Learning
Active Learning

(b) Web30K

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 20  40  60  80  100  120  140  160  180

A
cc

u
ra

cy

Number of Training Pairs

Supervised Learning
Active Learning

(c) News Search

Fig. 23. Prediction accuracy of active learning vs. su-
pervised learning on Web10K, Web30K and news search
data sets

users; we also plan to investigate how to use user feedback
data to generate paired preferences for training, and how
to generalize DCG to nonlinear utility functions to model
more sophisticated requirements of evaluation metrics, such
as diversity and recency. Moreover, learning the parameters
for other evaluation metrics such as NDCG is an important



14

direction to investigate.

ACKNOWLEDGEMENTS

Part of the work is supported by NSF IIS-1116886, NSF
IIS-1049694 and Yahoo! Faculty Research and Engagement
award. Gui-Rong Xue is supported by National 863 Project
(No. 2011AA01A202).

REFERENCES

[1] K. Zhou, H. Zha, G.-R. Xue, and Y. Yu, “Learning the gain values and
discount factors of dcg,” in Proceedings of Beyond Binary Relevance
Workshop, SIGIR2008, 2008.

[2] J. Xu and H. Li, “Adarank: a boosting algorithm for information
retrieval,” in Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, 2007,
pp. 391–398.

[3] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector
method for optimizing average precision,” in Proceedings of the 30th
annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, 2007, pp. 271–278.

[4] T. Joachims, “A support vector method for multivariate performance
measures,” in Proceedings of the 22nd international conference on
Machine learning, 2005, pp. 377–384.

[5] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya, “Struc-
tured learning for non-smooth ranking losses,” in Proceeding of the 14th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2008, pp. 88–96.

[6] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[7] K. Järvelin and J. Kekäläinen, “IR evaluation methods for retrieving
highly relevant documents,” in Proceedings of the 23rd annual in-
ternational ACM SIGIR conference on Research and development in
information retrieval. ACM, 2000, pp. 41–48.

[8] J. Kekäläinen, “Binary and graded relevance in IR evaluations - Com-
parison of the effects on ranking of IR systems,” Information Processing
and Management, vol. 41, pp. 1019–1033, 2005.

[9] E. M. Voorhees, “Evaluation by highly relevant documents,” in Pro-
ceedings of the 24th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 2001, pp.
74–82.

[10] T. Sakai, “On the reliability of information retrieval metrics based on
graded relevance,” Information Processing and Management, vol. 43,
no. 2, pp. 531–548, 2007.

[11] C. Buckley and E. M. Voorhees, “Evaluating evaluation measure sta-
bility,” in Proceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information retrieval, 2000,
pp. 33–40.

[12] E. Kanoulas and J. A. Aslam, “Empirical justification of the gain and
discount function for ndcg,” in Proceedings of the 18th ACM Conference
on Information and Knowledge Management (CIKM). New York, NY,
USA: ACM, November 2009, pp. 611–620.

[13] F. Radlinski and N. Craswell, “Comparing the sensitivity of information
retrieval metrics,” in Proceeding of the 33rd international ACM SIGIR
conference on Research and development in information retrieval -
SIGIR ’10. New York, New York, USA: ACM Press, 2010, p. 667.

[14] M. Sanderson, M. L. Paramita, P. Clough, and E. Kanoulas, “Do user
preferences and evaluation measures line up?” in Proceeding of the 33rd
international ACM SIGIR conference on Research and development in
information retrieval - SIGIR ’10, ser. SIGIR ’10. New York, New
York, USA: ACM Press, 2010, p. 555.

[15] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan,
S. Büttcher, and I. MacKinnon, “Novelty and diversity in information
retrieval evaluation,” in Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2008, pp. 659–666.

[16] T. Sakai and R. Song, “Evaluating diversified search results using per-
intent graded relevance,” in Proceedings of the 34th international ACM
SIGIR conference on Research and development in Information - SIGIR
’11. New York, New York, USA: ACM Press, 2011, p. 1043.

[17] J. J. Louviere, D. A. Hensher, and J. D. Swait, Stated choice methods:
analysis and application. Cambridge University Press, 2000.

[18] J. D. Carroll and P. E. Green, “Psychometric methods in marketing
research: Part II, Multidimensional scaling,” Journal of Marketing
Research, vol. 34, 1997.

[19] O. Chapelle and Z. Harchaoui, “A machine learning approach to conjoint
analysis,” in Advances in Neural Information Processing Systems, Y. W.
Saul, L.K. and L. Bottou, Eds., vol. 17. MIT Press, 2005, pp. 257–264.

[20] T. Evgeniou, C. Boussios, and G. Zacharia, “Generalized robust conjoint
estimation,” Marketing Science, vol. 24, no. 3, pp. 415–429, 2005.

[21] T. Joachims, “Optimizing search engines using clickthrough data,” in
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2002, pp. 133–142.

[22] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire
regularization path for the support vector machine,” J. Mach. Learn.
Res., vol. 5, pp. 1391–1415, December 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1005332.1044706

[23] S. Tong and D. Koller, “Support vector machine active learning with
applications to text classification,” JMLR, vol. 2, pp. 45–66, March 2002.
[Online]. Available: http://dx.doi.org/10.1162/153244302760185243

Ke Zhou received MS degree in computer sci-
ence and engineering from Shanghai Jiao-Tong
University in 2010. He is pursuing his Ph.D. de-
gree at College of Computing, Georgia Institute
of Technology. His research interests include
information retrieval, machine learning and web
image mining.

Hongyuan Zha received the B.S. degree in
mathematics from Fudan University in Shang-
hai in 1984, and the Ph.D. degree in scientific
computing from Stanford University in 1993. He
was a faculty member of the Department of
Computer Science and Engineering at Pennsyl-
vania State University from 1992 to 2006, and
he worked from 1999 to 2001 at Inktomi Cor-
poration. His current research interests include
computational mathematics, machine learning
applications and information retrieval.

Yi Chang joined Yahoo! in 2006. He is leading
the ranking science team to work on multiple ver-
tical search and relevance ranking projects. His
research interest includes Information Retrieval,
Social Computing, Machine Learning, Data Min-
ing and Natural Language Processing.

Gui-Rong Xue received his PhD degree from
Shanghai Jiaotong University in 2006. He is
a senior director at Alibaba Cloud Computing.
He was a faculty member of Department of
Computer Science and Engineering at Shanghai
Jiao-Tong University. His research interests are
machine learning, data mining and information
retrieval.


