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Abstract

How will the behaviors of individuals in a
social network be influenced by their neigh-
bors, the authorities and the communities in
a quantitative way? Such critical and valu-
able knowledge is unfortunately not readily
accessible and we tend to only observe its
manifestation in the form of recurrent and
time-stamped events occurring at the indi-
viduals involved in the social network. It is
an important yet challenging problem to in-
fer the underlying network of social inference
based on the temporal patterns of those his-
torical events that we can observe.

In this paper, we propose a convex optimiza-
tion approach to discover the hidden network
of social influence by modeling the recur-
rent events at different individuals as multi-
dimensional Hawkes processes, emphasizing
the mutual-excitation nature of the dynam-
ics of event occurrence. Furthermore, our
estimation procedure, using nuclear and !1
norm regularization simultaneously on the
parameters, is able to take into account the
prior knowledge of the presence of neighbor
interaction, authority influence, and com-
munity coordination in the social network.
To efficiently solve the resulting optimization
problem, we also design an algorithm ADM4
which combines techniques of alternating di-
rection method of multipliers and majoriza-
tion minimization. We experimented with
both synthetic and real world data sets, and
showed that the proposed method can dis-
cover the hidden network more accurately
and produce a better predictive model than
several baselines.
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1 INTRODUCTION

In today’s explosively growing social networks such as
Facebook, millions of people interact with each other
in a real-time fashion. The decisions made by individ-
uals are largely influenced by their neighbors, the au-
thorities and various communities. For example, a rec-
ommendation from a close friend can be very decisive
for the purchasing of a product. Thus, the problem of
modeling the influences between people is a vital task
for studying social networks. Equally important, the
issue has also gained much attention in recent years
due to its wide-spread applications in e-commerce, on-
line advertisements and so on while the availability of
large scale historical social event datasets further fuels
its rapid development.

Despite its importance, the network of social influence
is usually hidden and not directly measurable. It is
different from the “physical” connections in a social
network which do not necessarily indicate direct influ-
ence — some “friends” in Facebook (“physical” con-
nection) never interact with each other (no influence).
However, the network of social influence does manifest
itself in the form of various time-stamped and recur-
rent events occurring at different individuals that are
readily observable, and the dynamics of these histori-
cal events carry much information about how individu-
als interact and influence each other. For instance, one
might decide to purchase a product the very next day
when she saw many people around her bought it today
while it may take the same person a prolonged period
to make the decision if none from her community has
adopted it. Consequently, we set the goal of the pa-
per to address the issue of inferring the network of
social influence from the dynamics of these historical
events observed on many individuals, and producing
a predictive model to answer quantitatively the ques-
tion: when will this individual take an action given
that some other individuals have already done that.

From a modeling perspective, we also want to take into
account several key features of social influence. First,
many social actions are recurrent in nature. For in-
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stance, an individual can participate in a discussion
forum and post her opinions multiple times. Second,
actions between interacting people are often self- and
mutually-exciting. The likelihood of an individual’s
future participation in an event is increased if she has
participated in it before and more so if many of her
neighbors also have participated in the event. Third,
the network of social influence have certain topologi-
cal structures. It is usually sparse, i.e. most individu-
als only influence a small number of neighbors, while
there are a small number of hubs with wide spread
influence on many others. Moreover, people tend to
form communities, with the likelihood of taking an ac-
tion increased under the influence of other members
of the same community (assortative, e.g., peer-to-peer
relation) or under the influence of members from an-
other specific community (dissortative, e.g., teacher-
to-student relation). These topological priors give rise
to the structures of the adjacency matrices correspond-
ing to the networks: they tend to have a small num-
ber of nonzero entries and they also have sophisticated
low-rank structures.

In this paper, we propose a regularized convex op-
timization approach to discovering the hidden net-
work of social influence based on a multi-dimensional
Hawkes process. The multi-dimensional Hawkes pro-
cess captures the mutually-exciting and recurrent na-
ture of individual behaviors, while the regularization
using nuclear norm and !1 norm simultaneously on the
infectivity matrix allows us to impose priors on the
network topology (sparsity and low-rank structure).
The advantage of our formulation is that the corre-
sponding network discovery problem can be solved ef-
ficiently by bringing a large collection of tools devel-
oped in the optimization communities. In particular,
we developed an algorithm, called ADM4, to solve the
problem efficiently by combining the idea of alternat-
ing direction method of multipliers [3] and majoriza-
tion minimization [8]. In our experiments on both syn-
thetic and real world datasets, the proposed method
performs significantly better than alternatives in term
of accurately discovering the hidden network and pre-
dicting the response time of an individual.

2 RELATED WORK

We will start by summarizing related work. Estimat-
ing the hidden social influence from historical events is
attracting increasing attention recently. For instance,
[13] proposes a hidden Markov based model to model
the influence between people which treats time as dis-
crete index and hence does not lead to models predic-
tive of the response time. The approach in [6] models
the probability of a user influenced by its neighbors
by sub-modular functions, but it is not easy to in-

corporate recurrent events and topological priors in a
principled way. In [12, 15], continuous-time models are
proposed to recover sparse influence network but the
models can not handle recurrent events and they do
not take into account the low-rank network structure.

Self-exciting point processes are frequently used to
model continuous-time events where the occurrence
of one event increases the possibility of future events.
Hawkes process [7], an important type of self-exciting
process, has been investigated for a wide range of ap-
plications such as market modeling [19], earth quake
prediction [11], crime modeling [18]. The maximum
likelihood estimation of one-dimensional Hawkes pro-
cess is studied in [10] under the EM framework. Addi-
tionally, [16] models cascades of events using marked
Poisson processes with marks representing the types
of events while [2] propose a model based on Hawkes
process that models events between pairs of nodes.
The novelty of our paper is the application of multi-
dimensional Hawkes process [1, 7] to the problem of
discovering hidden influence network, and leverage its
connections to convex low-rank matrix factorization
techniques.

Low-rank matrix factorizations are applied to a num-
ber of real-world problems including collaborative fil-
tering and image processing. Nuclear norm [17] has
been shown to be an effective formulation for the esti-
mation of low-rank matrices. On the other hand, !-1
regularization has also been applied to estimate sparse
matrices [9]. Furthermore, [14] shows that the accu-
racy of matrix completion can be improved with both
sparsity and low-rank regularizations. One contribu-
tion of our paper is to apply these matrix completion
results to social influence estimation problem and we
also develop a new algorithm ADM4 for solving the
corresponding optimization problem efficiently.

3 MULTI-DIMENSIONAL HAWKES
PROCESSES WITH LOW-RANK
AND SPARSE STRUCTURES

3.1 One-dimensional Hawkes Processes

Before introducing multi-dimensional Hawkes pro-
cesses, we first describe one-dimensional Hawkes pro-
cess briefly. In its most basic form, a one-dimensional
Hawkes process is a point process Nt with its condi-
tional intensity expressed as follows [7]

λ(t) = µ+ a

∫ t

−∞
g(t− s)dNs = µ+ a

∑

i:ti<t

g(t− ti),

where µ > 0 is the base intensity, ti are the time of
events in the point process before time t, and g(t) is
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the decay kernel. We focus on the case of exponential
kernel g(t) = we−wt as a concrete examples in this
paper, but the framework discussed in this paper can
be easily adapted to other positive kernels. In the
above conditional intensity function, the sum over i
with ti < t captures the self-exciting nature of the
point process: the occurrence of events in the past has
a positive contribution of the event intensity in the
future. Given a sequence of events {ti}ni=1 observed
in the time interval [0, T ] that is generated from the
above conditional intensity, the log-likelihood function
can be expressed as follows

L = log

∏n
i=1 λ(ti)

exp(
∫ T
0 λ(t)dt)

=
n
∑

i=1

log λ(ti)−

∫ T

0
λ(t)dt.

3.2 Multi-dimensional Hawkes Processes

In order to model social influence, one-dimensional
Hawkes process discussed above needs to be extended
to the multi-dimensional case. Specifically, we have
U Hawkes processes that are coupled with each other:
each of the Hawkes processes corresponds to an in-
dividual and the influence between individuals are
explicitly modeled. Formally, the multi-dimensional
Hawkes process is defined by a U -dimensional point
process Nu

t , u = 1, . . . , U , with the conditional inten-
sity for the u-th dimension expressed as follows:

λu(t) = µu +
∑

i:ti<t

auui
g(t− ti),

where µu ≥ 0 is the base intensity for the u-th
Hawkes process. The coefficient auu′ ≥ 0 captures
the mutually-exciting property between the u-th and
u′-th dimension. Intuitively, it captures the degree of
influence of events occurred in the u′-th dimension to
the u-th dimension. Larger value of auu′ indicates that
events in u′-th dimension are more likely to trigger a
event in the u-th dimension in the future. We collect
the parameters into matrix-vector forms, µ = (µu) for
the base intensity, and A = (auu′) for the mutually-
exciting coefficients, called infectivity matrix. We use
A ≥ 0 and µ ≥ 0 to indicate that we require both
matrices to be entry-wise nonnegative.

Suppose we have m samples, {c1, . . . , cm}, from the
multi-dimensional Hawkes process. Each sample c is
a sequence of events observed during a time period
of [0, Tc], which is in the form of {(tci , u

c
i )}

nc

i=1. Each
pair (tci , u

c
i ) represents an event occurring at the uc

i -th
dimension at time tci . Thus, the log-likelihood of model

parameters Θ = {A,µ} can be expressed as follows

L(A,µ) =
∑

c

(

nc
∑

i=1

log λuc
i
(tci )−

U
∑

u=1

∫ Tc

0
λu(t)dt

)

=
∑

c





nc
∑

i=1

log
(

µuc
i
+
∑

tcj<t

auc
iu

c
j
g(tci − tcj)

)

−Tc

U
∑

u=1

µu −
U
∑

u=1

nc
∑

j=1

auuc
j
G(Tc − tcj)



 ,

where G(t) =
∫ t
0 g(s)ds. In general, the parameters

A and µ can be estimated by maximizing the log-
likelihood, i.e., minA≥0,µ≥0 −L(A,µ).

3.3 Sparse and Low-Rank Regularization

As we mentioned earlier, we would like to take into
account the structure of the social influence in the pro-
posed model. We focus on two important properties of
the social influences: sparsity and low-rank. The spar-
sity of social influences implies that most individuals
only influence a small fraction of users in the network
while there can be a few hubs with wide-spread in-
fluence. This can be reflected in the sparsity pattern
of A. Furthermore, the communities structure in the
influence network implies low-rank structures, which
can also be reflected in matrix A. Thus, we consider
incorporating this prior knowledge by imposing both
low-rank and sparse regularization on A. That is we
regularize our maximum likelihood estimator with

min
A≥0,µ≥0

−L(A,µ) + λ1‖A‖∗ + λ2‖A‖1, (1)

where ‖A‖∗ is the nuclear norm of matrix A, which is

defined to be the sum of its singular value
∑rankA

i=1 σi.
The nuclear norm has been used to estimate low-
rank matrices effectively [17]. Moreover, ‖A‖1 =
∑

u,u′ |auu′ | is the #1 norm of the matrix A, which
is used to enforce the sparsity of the matrix A. The
parameter λ1 and λ2 control the strength of the two
regularization terms.

4 EFFICIENT OPTIMIZATION

It can be observed that the objective function in Equa-
tion (1) is non-differentiable and thus difficult to opti-
mize in general. We apply the idea of alternating di-
rection method of multipliers (ADMM) [5] to convert
the optimization problem to several sub-problems that
are easier to solve. The ADMM has been shown to be
a special case of the more general Douglas-Rachford
splitting method, which has good convergence proper-
ties under some fairly mild conditions [4].
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Specifically, we first rewrite the optimization problem
in Equation (1) to an equivalent form by introducing
two auxiliary variables Z1 and Z1

min
A≥0,µ≥0,Z1,Z2

− L(A,µ) + λ1‖Z1‖∗ + λ2‖Z2‖1, (2)

s.t. A = Z1, A = Z2.

In ADMM, we optimize the argumented Lagrangian of
the above problem that can be expressed as follows:

Lρ =− L(µ,A) + λ1‖Z1‖∗ + λ2‖Z2‖1

+ ρtrace(UT
1 (A− Z1)) + ρtrace(UT

2 (A− Z2))

+
ρ

2
(‖A− Z1‖

2 + ‖A− Z2‖
2),

where ρ > 0 is called the penalty parameter and ‖ · ‖
denotes the Frobenius norm. The matrices U1 and U2

are the dual variable associated with the constraints
A = Z1 and A = Z2, respectively.

The algorithm for solving the above augmented La-
grangian problem involves the following key iterative
steps (also see the details in the Appendix):

Ak+1
,µ

k+1 = argmin
A≥0,µ≥0

Lρ(A,µ,Zk
1 ,Z

k
2 ,U

k
1 ,U

k
2), (3)

Zk+1
1 = argmin

Z1

Lρ(A
k+1

,µ
k+1

,Z1,Z
k
2 ,U

k
1 ,U

k
2), (4)

Zk+1
2 = argmin

Z2

Lρ(A
k+1

,µ
k+1

,Zk+1
1 ,Z2,U

k
1 ,U

k
2), (5)

Uk+1
1 = Uk

1 + (Ak+1 − Zk+1
1 ),

Uk+1
2 = Uk

2 + (Ak+1 − Zk+1
2 ).

The advantage of sequential update is that we separate
multiple variables and thus can optimize them one at
a time. We first consider the optimization problem for
Z1 and Z2 and then describe the algorithm used to
optimize with respect to A and µ.

4.1 Solving for Z1 and Z2.

When solving for Z1 in Equation (4), the relevant
terms from Lρ are

λ1‖Z1‖∗+ρtrace((Uk
1 )

T (Ak+1−Z1))+
ρ

2
‖Ak+1−Z1‖

2,

which can be simplified to an equivalent problem,

Zk+1
1 = argmin

Z1

λ1‖Z1‖∗ +
ρ

2
‖Ak+1 − Z1 +Uk

1‖
2.

The above problem has a closed form solution

Zk+1
1 = Sλ1/ρ(A

k+1 +Uk
1), (6)

where Sα(X) is a soft-thresholding function defined as
Sα(X) = Udiag((σi − α)+)VT for all matrix X with
singular value decomposition X = Udiag(σi)VT .

Similarly, the optimization for Z2 can be simplified
into the following equivalent form

Zk+1
2 = argmin

Z2

λ2‖Z2‖1 +
ρ

2
‖Ak+1 − Z2 +Uk

2‖
2,

which again has the closed form solution. In this case,
depending on the magnitude of the ij-th entry of the
matrix (Ak+1 + Uk

2), the corresponding (Zk+1
2 )ij is

updated as











(Ak+1 +Uk
2)ij −

λ2

ρ , (Ak+1 +Uk
2)ij ≥

λ2

ρ ,

(Ak+1 +Uk
2)ij +

λ2

ρ , (Ak+1 +Uk
2)ij ≤ −λ2

ρ ,

0, |(Ak+1 +Uk
2)ij | <

λ2

ρ .

(7)

4.2 Solving for A and µ

The optimization problem for A and µ defined in
Equation (3) can be equivalently written as

Ak+1,µk+1 = argmin
A≥0,µ≥0

f(A,µ)

where f(A,µ) = −L(A,µ) + ρ
2 (‖A − Zk

1 + Uk
1‖

2 +
‖A−Zk

2+Uk
2‖

2). We propose to solve the above prob-
lem by a majorization-minimization algorithm which
is a generalization of the EM algorithm. Since the op-
timization is convex, we still obtain global optimum
for this subproblem. Specifically, given any estimation
A(m) and µ(m) of A and µ, we minimize a surrogate
function Q(A,µ;A(m),µ(m)) which is a tight upper
bound of f(A,µ). Indeed, Q(A,µ;A(m),µ(m)) can
be defined as follows:

Q(A,µ;A(m),µ(m))

=−
∑

c





nc

∑

i=1



pcii log
µuc

i

pcii
+

i−1
∑

j=1

pcij log
auc

iu
c
j
g(tci − tj)

pcij





−



Tc

∑

u

µu +
U
∑

u=1

nc

∑

j=1

auuc
j
G(T − tcj)









+
ρ

2
(‖A− Zk

1 +Uk
1‖

2 + ‖A− Zk
2 +Uk

2‖
2), (8)

where

pcii =
µ(m)
uc
i

µ(m)
uc
i

+
∑i−1

j=1 a
(m)
uc
iu

c
j
g(tci − tcj)

,

pcij =
a(m)
uc
iu

c
j
g(tci − tcj)

µ(m)
uc
i

+
∑i−1

j=1 a
(m)
uc
iu

c
j
g(tci − tcj)

.

Intuitively, pcij can be interpreted as the probability
that the i-th event is influenced by a previous event j
in the network and pcii is the probability that i-th event
is sampled from the base intensity. Thus, the first
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Algorithm 1 ADMM-MM (ADM4) for estimating A
and µ

Input: Observed samples {c1, . . . , cm}.
Output: A and µ.
Initialize µ and A randomly; Set U1 = 0, U2 = 0.
while k = 1, 2, . . . , do

Update Ak+1 and µk+1 by optimizing Q defined
in (8) as follows:
while not converge do
Update A, µ using (10) and (9) respectively.

end while
Update Zk+1

1 using (6); Update Zk+1
2 using (7).

Update Uk+1
1 = Uk

1+(Ak+1−Zk+1
1 ) and Uk+1

2 =
Uk

2 + (Ak+1 − Zk+1
2 ).

end while
return A and µ.

two terms of Q(A,µ;A(m),µ(m)) can be viewed as the
joint probability of the unknown infectivity structures
and the observed events.

As is further shown in the Appendix, optimizing
Q(A,µ;A(m),µ(m)) ensures that f(A,µ) is decreas-
ing monotonically. Moreover, the advantage of opti-
mizing Q(A,µ) is that all parameters A and µ can
be solved independently with each other with closed
forms solutions, and the nonnegativity constraints are
automatically taken care of. That is

µ(m+1)
u =

∑

c

∑

i:i≤nc,uc
i=u p

c
ii

∑

c Tc
(9)

a(m+1)
uu′ =

−B +
√

B2 + 8ρC

4ρ
, (10)

where

B =
∑

c

∑

j:uc
j=u′

(G(T − tcj))

+ ρ(−z1,uu′ + u1,uu′ − z2,uu′ + u2,uu′),

C =
∑

c

nc

∑

i=1,uc
i=u

∑

j<i,uc
j=u′

pcij .

The overall optimization algorithm is summarized in
Algorithm 1.

5 EXPERIMENTS

In this section, we conducted experiments on both syn-
thetic and real-world datasets to evaluate the perfor-
mance of the proposed method.

5.1 Synthetic Data

Data Generation. The goal is to show that our
proposed algorithm can reconstruct the underlying

parameters from observed recurrent events. To this
end, we consider a U -dimensional Hawkes process with
U = 1000 and generate the true parameters µ from a
uniform distribution on [0, 0.001]. In particular, the
infectivity matrix A is generated by A = UVT . We
consider two different types of influences in our exper-
iments: assortative mixing and disassortative mixing:

• In the assortative mixing case, U and V are both
1000 × 9 matrices with entries in [100(i − 1) +
1 : 100(i + 1), i], i = 1, . . . , 9 sampled randomly
from [0, 0.1] and all other entries are set to zero.
Assortative mixing examples capture the scenario
that influence are mostly coming from members
of the same group.

• In the disassortative mixing case, U is generated
in the same way as the assortative mixing case,
while the V has non-zero entries in [100(i−1)+1 :
100(i+1), 10−i], i = 1, . . . , 9. Disassortative mix-
ing examples capture the scenario that influence
can come outside of the group, possibly from a
few influential hubs.

We scale A so that the spectral radius of A is 0.8 to
ensure the point process is well-defined, i.e., with finite
intensity1. Then, 50000 samples are sampled from the
multi-dimensional Hawkes process specified by A and
µ. The proposed algorithms are applied to the samples
to obtain estimations Â and µ̂.

Evaluation Metric. We use three evaluation met-
rics to measure the performance:

• RelErr is defined as the averaged relative error be-
tween the estimated parameters and the true pa-
rameters, i.e. |aij−âij |

|aij |
for aij #= 0 and |aij − âij |

for aij = 0.
• PredLik is defined as the log-likelihood of the esti-

mated model on a separate held-out test set con-
taining 50,000 samples.

• RankCorr is defined as the averaged Kendall’s rank
correlation coefficient between each row of A and
Â. It measures whether the relative order of the
estimated social influences is correctly recovered.

Results. We included 5 methods in the comparisons:

• TimeWindow. This method, we first discretize
time into time windows with equal length and
then represent each node by a vector where each
dimension is to the number of events occurred
within the corresponding time window at the

1In our case, the point process is well-defined iff the
specitral radius of A is less than 1
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Figure 1: Assortative mixing networks: performance measured by RelErr, PredLik and RankCorr with respect to
the number of training samples.
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Figure 2: Disassortative mixing networks: Performance measured by RelErr, PredLik and RankCorr with respect
to the number of training samples.

node. The cosine similarity are used to estimate
the infectivity matrix.

• NetRate. This method is proposed in [15] for mod-
eling information diffusion in networks. It can not
model the recurrent events, so we only keep the
first occurrences at each node in the training data.

• Full. The infectivity matrix A is estimated as a
general U × U matrix without any structure.

• LowRank. Only the nuclear norm is used to obtain
a low-rank estimation of A.

• Sparse. Only the !1 norm is used to obtain a
sparse estimation of A.

• LowRankSparse. This is the proposed method Al-

gorithm 1. Both nuclear norm and !1 norm are
used to estimate A.

For each method, the parameters are selected on a
validation set that are disjoint from both training and
test set. We run each experiment for five times with
different samples and report the averaged performance
metrics over all the five runs.

Figure 1 plots the results on assortative mixing net-
works measured by RelErr, PredLik and RankCorr with
respect to the number of training data. It can be ob-
served from Figure 1 that when the number of training
samples increase, the RelErr decreases and both Pred-

Lik and RankCorr increase, indicating that all methods
can improve accuracy of estimation with more training
samples. Moreover, LowRank and Sparse outperforms
Full in all cases. Therefore, we conclude that utilizing
the structure of the matrix can improve the estima-
tion very significantly. LowRankSparse outperforms all
other baselines since it fully utilizes prior information
about the infectivity matrix. It is interesting to ob-
serve that when the number of training samples are
small, the improvements of LowRankSparse over other
baselines are very large. We think this is because when
the number of training samples are not sufficiently
large to get a good estimation, the prior knowledge
from the structure of the infectivity matrix becomes
more important and useful. TimeWindow is not as
good as other methods since it can not capture the
time pattern very accurately. Similarly in Figure 2, the
proposed method LowRankSparse outperforms other
methods in disassortative mixing networks. These two
sets of experiments indicate that LowRankSparse can
handle well different network topologies.

In Figure 3 and Figure 4, we plot the performance with
respect to the values of the two parameters λ1 and λ2

in LowRankSparse. It can be observed that the per-
formance first increases and then decreases when the
value λ1 grows. Note that when λ1 = 0, we obtain
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number of inner/outer iterations.

a sparse solution that is not low-rank, which is un-
derperformed by solutions that are both low-rank and
sparse. Similar observations can be made for λ2. In
general, we use λ2 = 0.6,λ1 = 0.02 for those Figure 3
and Figure 4, respectively.

In order to investigate the convergence of the proposed
algorithm, in Figure 5, we present the performance
measured by PredLik with respect to the number of
outer iterations K in Algorithm 1. We can observe
that the performance measured by PredLik grows with
the number of outer iterations and converges within
about 50 iterations. We also illustrate the impact of
the number of inner iterations in Figure 5. It can be
observed that larger number of inner iterations leads
to better convergence speed and slightly better perfor-
mance.

5.2 Real-world Data

We also evaluate the proposed method on a real world
data set. To this end, we use the MemeTracker data
set2. The data set contains the information flows cap-
tured by hyper-links between different sites with times-
tamps. In particular, we first extract the top 500 pop-
ular sites and the links between them. The events are
in the form that a site created a hyper-link to another
site at a particular time. We use 50% data as training
data and 50% as test data.

In Figure 6, we show that negative log-likelihood of
Full, Sparse, LowRank and LowRankSparse on the test
set. We can see that LowRankSparse outperforms the
baselines. Therefore, we conclude that LowRankSparse
can better model the influences in social networks.

We also study whether the proposed model can dis-
cover the influence network between users from the re-
current events. To this end, we present the RankCorr
of Full, Sparse, LowRank and LowRankSparse in Fig-
ure 7. We also include NetRate as a baseline. It can be
observed that the LowRankSparse obtains better rank

2http://memetracker.org

correlation than other models, which indicates that it
can capture the influence network better than other
models. In Figure 8, we visualize the influence net-
work estimated from the MemeTracker data. We can
observe that there is a quite dense region near the
bottom right in the infectivity matrix. This region
represents that the corresponding sites are the centric
of the infectivity networks. Example sites in this re-
gion include news.cnet.com, blogs.zdnet.com and
blogs.abcnews.com. The first two are both famous
IT news portal and the third one is a blog site that
belongs to a general news portal. It is clear that all
of these sites are popular sites that can quickly detect
trending events and propagate them to a lot of other
sites.

6 CONCLUSIONS
In this paper, we propose to infer the network social
influence from the observed recurrent events indicating
users’ activities in the social networks. The proposed
model utilizes the mutually-exciting multi-dimensional
Hawkes model to capture the temporal patterns of user
behaviors. Moreover, we estimate the infectivity ma-
trix for the network that is both low-rank and sparse
by optimizing nuclear norm and "1 norm simultane-
ously. The resulting optimization problem is solved
through combining the ideas of alternating direction
method of multipliers and majorization-minimization.
The experimental results on both simulation and real-
world datasets suggest that the proposed model can
estimate the social influence between users accurately.

There are several interesting directions for future stud-
ies: First, we plan to investigate the adaptation of
the proposed model to the problem of collaborative
filtering. In particular, we plan to model the social
influences to capture both short-term and long-term
preferences of users. Moreover, we can also investigate
the problem of estimating the decay kernel together
with other parameters in the model.
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Figure 8: Influence structure es-
timated from the MemeTracker
data set.

Appendix

Derivation of ADMM. In ADMM, we consider the
argumented Lagrangian of the above constrained opti-
mization problem by writing it as follows:

min− L(µ,A) + λ1‖Z1‖∗ + λ2‖Z2‖1

+
ρ

2
(‖A− Z1‖

2 + ‖A− Z2‖
2) (11)

subject to A = Z1,A = Z2. Clearly, for all ρ the
optimization problem defined above is equivalent to
Equation (2) and thus equivalent to the problem de-
fined in Equation (1). The argumented Lagrangian of
Equation (2) is the (standard) Lagrangian of Equation
(11), which can be expressed as follows:

Lρ =− L(µ,A) + λ1‖Z1‖∗ + λ2‖Z2‖1

+ trace(YT
1 (A− Z1)) + trace(YT

2 (A− Z2))

+
ρ

2
(‖A− Z1‖

2 + ‖A− Z2‖
2)

Thus, we can solve the optimization problem defined
in Equation (2) applying the gradient ascent algorithm
to the dual variables Y1 and Y2. It can be shown that
the update of Y1 and Y2 has the following form at the
k-th iteration:

Yk+1
1 = Yk

1 + ρ(Ak+1 − Zk+1
1 )

Yk+1
2 = Yk

2 + ρ(Ak+1 − Zk+1
2 ),

where Ak+1, Zk+1
1 and Zk+1

2 are obtained by optimiz-
ing Lρ with Y1 = Yk

1 and Y2 = Yk
2 fixed:

argmin
A,µ,Z1,Z2

Lρ(A,µ,Z1,Z2,Y
k
1 ,Y

k
2 )

In ADMM, the above problem is solved by updating
A, µ, Z1 and Z2 sequentially as follows:

Ak+1,µk+1 = argmin
A,µ,

Lρ(A,µ,Zk
1 ,Z

k
2 ,Y

k
1 ,Y

k
2 ),

Zk+1
1 = argmin

Z1

Lρ(A
k+1,µk+1,Z1,Z

k
2 ,Y

k
1 ,Y

k
2 ),

Zk+1
2 = argmin

Z2

Lρ(A
k+1,µk+1,Zk+1

1 ,Z2,Y
k
1 ,Y

k
2 ).

It is usually more convenient to consider the scaled
form of ADMM. Let Uk

1 = Yk
1/ρ and Uk

2 = Yk
2/ρ, we

obtain the algorithm described in Section 4.

Majorization Minmization. First, we claim that
the following properties hold for Q(A,µ;A(m),µ(m); )
defined in Equation (8) :
1. For all A, µ,

Q(A,µ;A(m),µ(m)) ≥ f(A,µ)

2.

Q(A(m),µ(m);A(m),µ(m)) = f(A(m),µ(m))

Proof. The first claim can be shown by utilizing the
Jensen’s inequality: For all c and i, we have

log(µuc
i
+

i−1
∑

j=1

auc
iu

c
j
g(tci − tcj)) ≥ pcii log

uc
i

pcii

+
i−1
∑

j=1

pcij
auc

iu
c
j
g(tci − tcj))

pcij

Summing up over c and i proves the claim.

The second claim can be checked by setting A = A(m)

and µ = µ(m).

The above two properties imply that if
(A(m+1),µ(m+1)) = argminA,µ Q(A,µ;A(m),µ(m)),
we have

f(A(m),µ(m)) = Q(A(m),µ(m);A(m),µ(m))

≥ Q(A(m+1),µ(m+1);A(m),µ(m))

≥ f(A(m+1),µ(m+1)).

Thus, optimizing Q with respect to A and µ ensures
that the value of f(A,µ) decrease monotonically.
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