
53

3. Designing Enabling Technologies: The MOOSE Language and
the MacMOOSE Client
3.1 The Need for a New Language
In March of 1994, I had the opportunity to visit the MariMUSE project in
Phoenix, Arizona. The previous summer, Billie Hughes and Jim Walters of
Phoenix College had led a summer program where children from Longview
Elementary School used a MUSE intensively, three hours a day for two three-
week sessions. Seven months later, the children were still excited about their
projects, and regretted not having as much time to use the MUSE as they had
in the summer. They had done some impressive creative writing and
building of rooms. One fifth-grade girl built a palatial mansion with flowers
in each room. In real life, she lives in a homeless shelter. A Native-
American boy whom teachers had considered at risk of dropping out of
school built an airplane hangar. To get more realistic detail, he had read
every book about planes in his school library, and asked the librarian to order
more (Walters and Hughes 1994).

The children had clearly had powerful learning experiences. But something
was missing. The planes didnÕt fly. The flowers couldnÕt be sniffed. None of
the objects had any behaviors. None of the children I met had done any
programming. One girl had made a horse with a ÒrideÓ program, but it didnÕt
work. I sat down to look at it with herÐwhy donÕt we try to fix it, I asked? She
replied that an adult had written the program for her, and she had no idea
how it was supposed to work.

ItÕs not a surprise that the children were having difficulties. The MUSE
language is awkward at best. Suppose that you have created an object called
Rover and you would like it to wag its tail when you pet it. In MUSE, you
would write:

@va Rover=$PET ROVER:@pemit You pet Rover.; @emit Rover wags his
tail.

The name of the object can not be abstracted, but is treated as a fixed string. If
you would like to be able to type Òpet dogÓ in addition to Òpet Rover,Ó you
would need to add a second command:

@vb Rover=$PET DOG:@pemit You pet Rover.; @emit Rover wags his tail.

In MUSE, each object has twenty-six lettered registers, va through vz, and a
set of special-purpose, functional registers. Not only must all programs be
stored on these registers, but also all data.

Now suppose you decide you want Rover to be female instead of male. To
change the ÒhisÓ to ÒherÓ you could retype the two lines above, or use the
@edit command:

54

@edit Rover/va=his,her
@edit Rover/vb=his,her

The syntax is obscure, and these substitutions are prone to error. In a more
complex text, itÕs easy to pick too short of a target string to substitute and end
up changing the wrong word (for example, changing ÒthisÓ to ÒtherÓ when
you meant to change ÒhisÓ to ÒherÓ later on in the line.) The interface to
working with the language is as much a barrier as the language itself.

Some of the children participating in MicroMUSE1 and MariMUSE have
indeed written programs. HereÕs a sample program written by an eleven-
year-old girl on MariMUSE using the character name ÒGinjiÓ (Walters and
Hughes 1994):

tardis You see a unusual looking stalagmite. Type 'enter tardis to be
able to use it! Owner: Ginji Credits: 1 Type: Thing Flags: haven
enter_ok visible quiet

Attribute definitions: scan return #13711.return:@fo #13711=@tel
#13035;@remit here=You see the Tardis disappear!

Va:$tower:@fo #13711={@tel #1722;@wait 15=@tr me/return}
Idesc:You are inside of the tardis.
Pennies:1 #13711.scan:$-scan:@pemit [v(n)]=> Scanning Location

[loc(me)];@pemit [v(n)]=>REPORT:;@pemit [v(n)]=[string(-
,77)];look;@pemit [v(n)]=[string(-,77)]

Listen:*
Vb:$stable:@fo #13711={@tel #12375;@wait 15=@tr me/return}
Vc:$recycle:@fo #13711={@tel#13073;wait 15=@tr me/return}
Lock:Ginji(#11059Pvn)
Contents: Avalon(#12Pevc)
Home:Gingi's Mystery Cave(#13035RHvJ)
Location: Gingi's Mystery Cave(#13035RHvJ)

Given this cryptic and obscure syntax, itÕs not a surprise that very few of the
participants wrote programs. Good software can serve as a scaffolding to
support childrenÕs learning experiences (Pea 1993; Guzdial 1994). Poorly-
designed software acts more like a road block.

In early 1995, Phoenix College and Xerox PARC jointly received a grant from
the Department of Defense Advanced Research Projects Agency (DARPA).
The MariMUSE project was renamed Pueblo, and the software was changed
from MUSE to MOO (Curtis 1993). MOO is significantly more user-friendly
than MUSE, and by far the best of the many currently available MUD
languagesÑusers who are not trained programmers have been able to

1MicroMUSE is the oldest and largest MUD for kids. It was founded by Stan Lim in 1990, and
leadership of the project was soon taken over by Barry Kort (Brown 1992). Its official charter
states that ÒMicroMUSE is chartered as an educational Multi-User Simulation Environment
(MUSE) and Virtual Community with preference toward educational content of a scientific and
cultural natureÓ (ftp://ftp.musenet.org/micromuse/Mission.Statement).

55

achieve more in MOO than in any other MUD language. A script to pet
Rover in MOO looks like this:

@verb Rover:pet this none none
@program Rover:pet
player:tell(“You pet Rover.”);
this.location:announce_all(“Rover wags his tail.”);
.

In MUSE, to be able to Òpet dogÓ as well as Òpet Rover,Ó we needed to
duplicate the program. In MOO, we can simply add ÒdogÓ as an alias for
Rover. The word ÒthisÓ in the verb declaration is an abstraction that the
parser will match to any valid name for the object.

MOO, unlike MUSE, is a full programming language in which itÕs possible to
undertake large, complex projects. Its object-oriented nature means children
can quickly create something satisfying by making a new object that inherits
from an existing parent object, and then customize it and add new
functionality. You can create a dog by making something that inherits from
generic dog, and then program it to do new tricks. Billie Hughes highlights
this as the main benefit she has observed in moving from MUSE to MOO:

Our children do not do lots and lots of programming though many do
create simple verbs. We actually found teaching verbs to be much
easier than we anticipated. One 6th grader took a "generic pet" and
modified the code to create a generic horse. She then set this fertile
and others could adopt horses.

What we have found particularly exciting about Pueblo is the
inheritance/parenting/child features of an object oriented language.
Hobbes [Kim Bobrow, a researcher working on the project] was able to
program cats, dogs, and cars that were especially popular. Kids also
loved food and clothing items. MOO let them easily create these type
of objects and change the messages on the object to personalize them
(Hughes 1996).

While MOO is a significant improvement over MUSE and other MUD
languages, it is still too complicated for most children. Its syntax resembles a
cross between C and Pascal, and any deviation from that rigidly prescribed
syntax triggers an often cryptic error message. Difficult concepts are required
to write even the simplest programs. Something more user-friendly is
needed if children are to master it.

The MOOSE language was designed to be forgiving. For example, itÕs possible
to forget the quotes in programs. This only causes problems if the unquoted
strings contain words used as operators in MOOSE (like ÒandÓ and ÒorÓ). In

56

that case, MOOSE is able to detect the problem and warn the user. Table 3.1
presents the same program in MUSE, MOO, and MOOSE.

MUSE
@va Rover=$PET ROVER:@pemit You pet Rover.; @emit Rover wags his

tail.
@vb Rover=$PET DOG:@pemit You pet Rover.; @emit Rover wags his tail.

M O O
@verb Rover:pet this none none
@program Rover:pet
player:tell("You pet Rover.");
this.location:announce_all("Rover wags his tail.");
.

MOOSE
on2 pet this
 tell player "You pet Rover."
 emote "wags his tail."
end

Table 3.1: Petting Rover in Three Languages

Jack (boy, age 12) is the only child to date to have significant MOO experience
before joining MOOSE Crossing. A transcript of a conversation in which I
asked him to compare the two appears in Table 3.2. (Jack was aware that he
was talking to the designer of MOOSE Crossing, and his comments must be
seen in that light.)

3.2 The Design of the MOOSE Language
Work on the MOOSE Crossing project began in September of 1992. It was
referred to as ÒThe MUD for kids IÕm working on,Ó until I came up with
name MOOSE in June 1993. The client implementation was begun in 1992,
and the server/language in November 1993. Children first used MOOSE in
October 1995, as part of the Media LabÕs 10th birthday celebration.

The core of the MOOSE language was designed in a series of weekly meetings
between myself and my advisor, Professor Mitchel Resnick. MIT
undergraduates Albert Lin, Trevor Stricker, and Austina Vainius helped
design many of the finer details in innumerable impromptu discussions at
my white board. Pavel Curtis, Randy Farmer, and Brian Silverman

2With the Epistemology and Learning GroupÕs strong roots in the Logo community, it was
tempting to start programs Òto tickleÓ rather than Òon tickleÓ. However, in general, in MUDs
an object holds scripts for things that can be done to it. A bearÕs tickle script enables people to
tickle the bear, not the bear to do the tickling! This is better conveyed by ÒonÓ rather than
LogoÕs traditional ÒtoÓ.

57

contributed design ideas on visits to the lab, and via email. Jon Callas and
Dean Tribble also contributed ideas via email.

Amy says 'so I wanted to ask you... now that you've been here a
while, what do you think of coding in MOOSE versus MOO?'

Jack says, 'moose is sooooo much simpler!'
Jack says, 'easier and a lot more fun'
Amy says 'in what ways is it simpler?'
Jack says, 'well, instead of this.location.announce_all it is just

'announce''
Amy nods
Jack says, 'and i can make my own scripts, not just copy lines of a

help file and changing them'
Amy says, 'cool!'
Amy says, 'did you notice the difference in how property references

work?'
Jack says, 'yes, I also like how the edit script buttons and help

buttons are seperate, easy windows'
Amy nods and listens
Amy says, 'anything you don't like?'
Jack says, 'I don't like when i crash every time i get red letters in

programing a script.'
Amy laughs. "Yeah, that was awful! But you know we fixed it,

right?"
Amy says, 'the new version of MacMOOSE doesn't do that'
Jack says, 'wow! I will have to convert!'
Amy says, 'definitely!'
Amy says, 'anything else you don't like?'
Amy says, 'or that you would change?'
Jack says, 'say where do i find the new version? hmm... somthig else

i dont like...'
Jack says, 'i can't think of anything else!'
Amy says, 'the new version is on my web page where you got the first

version'
Amy smiles
Amy says, 'http://asb.www.media.mit.edu/people/asb/'
Amy says, 'Does anything other than the software seem different to

you?'
Jack says, 'hmm, i have been to many many muds, and moos, the only

one that is close to comparing is mny old moo, du. But this is
diffrent then that because of the @ commands...'

Jack says, 'and the fact that is is for kids'
Jack says, 'is is = it is'
Amy nods
Amy says, ‘do the people seem any different?’
Jack says, 'more friendly, i seem to interact with them better...'

Table 3.2: JackÕs Opinion of MOOSE versus MOO

MOOSE is built on top of MOO, and many aspects of its design are reacting to
MOO, modifying it based on experience with the design of Logo and StarLogo
in particular. Several principles emerged in the process of designing the
language (See Table 3.3). IÕll discuss each in turn.

58

Design Principles:
¥ Have a gently-sloping learning curve.
¥ Prefer intuitive simplicity over formal elegance.
¥ Be forgiving.
¥ Leverage natural-language knowledge.
¥ Avoid non-alphanumeric characters wherever possible.
¥ Make essential information visible and easily changeable.
¥ ItÕs OK to have limited functionality.
¥ Hide nasty things under the bed.

Table 3.3: Design Principles for the MOOSE Language

Parts of this chapter critique the design of MOO in detail. It should be noted
that MOO is a production-quality, full programming language. MOOSE is
quirky and incomplete. It continues to be extended and modified based on
feedback from children. MOOSE is also roughly an order of magnitude
slower than MOO. My goal in this critique is to bring forward design issues of
broader interestÑnot to be critical of MOO.

3.2.1 A Gently-Sloping Learning Curve
For a programming language to be usable by young children, simple things
need to be simple. In the earliest design meetings about the MOOSE
language, we focused on how to make the learning curve as gentle as possible.
Our first design decision, and one from which many other design decisions
followed, was to make the programming language and the command line
language as similar as possible. That way, kids can try a command out and
put it in their program if it works. In MOO, the command line and
programming languages are quite different. For example, in both MOO and
MOOSE, to take an action (like smile or wink), you use ÒemoteÓ. If I type
Òemote laughsÓ everyone in the room sees ÒAmy laughsÓ. Emote is typically
one of the first commands that people on MUDs learn. In MOOSE, you can
use that same command-line command in your program. Objects as well as
people can emote. For example, Chester does this on his ÒcomputerÓ object.
Chester is seven years old, and one of the youngest children to use MOOSE
Crossing to date. When you type Òeat computerÓ it tells everyone in the
room Òcomputer gobbels up a disk happoly.Ó Here is the program:

on eat this
 emote " gobbels up a disk happoly."
end

In MOO, this same program would be:

59

this.location:announce_all(this.name + “ gobbels up a disk
happoly.”);

In MOOSE, children can learn commands to use in conversation and then
use those same commands in their programs. In MOO, an entirely new set of
commands with different syntax needs to be learned for even simple
programs.

Making the programming and command line languages the same helps more
advanced MOOSE programmers as well as novices. For example, a child
learning to use lists can try out list manipulation commands at the command
line first seeing exactly how they work before trying to make them function in
the context of a longer program.

The benefits of giving programmers immediate feedback can be traced back to
the first interactive programming language, JOSS (Baker 1981). JOSS is cited
as an influence by the developers of most early languages targeted at non-
experts, including Logo (Feurzeig 1996), Smalltalk (Kay 1996), and BASIC
(Kurtz 1981). There is no concept of a Òcommand line languageÓ distinct from
a Òprogramming languageÓ in most interactive languages. The distinction
was added in some MUD languages like MOO and LPC (the C-like language in
which LPMUDs are constructed) to make a distinction between
metaphorically acting in the virtual world and programming it.3 This allows
taking actions to be more natural-language-like, while programming looks
more like typical programming languages. However, it adds a significant
hurdle for people trying to learn to program, essentially removing the
benefits of having an interactive language.

The similarity between the command line and the programming language is
just one example of the many ways we tried to make the slope of the learning
curve gentle. This principle was central throughout the process of language
design.

3.2.2 Intuitive Simplicity Versus Formal Elegance
The second and perhaps most important design decision was to favor
intuitive simplicity over formal elegance. In ÒBoxer: A Reconstructable
Computational Medium,Ó Andy diSessa comments that to create a popular
medium, Òa computer scientistÕs or a mathematicianÕs measures of simplicity
are simply not an issue. A better criterion is accessibility to a seven-year-old
childÓ (diSessa and Abelson 1986).

3In the MUSE language, the command line and programming languages are identical. However,
the integration of support for their distinct requirements is awkward. For example, to give
something to someone in MUSE, you type Ògive person=object.Ó In MOO or MOOSE, you Ògive
object to person.Ó More sophisticated parsing in MOOSE makes a smoother integration of
command-line and programming language requirements possible. However, there is a trade-off:
MOOSEÕs pattern-matching algorithm makes it substantially slower than MUSE.

60

There are compelling arguments in favor of paying attention to formal
elegance. The idea is that through mastering some perhaps initially
problematic construct, students will gain access to a way of thinking that will
deepen their understanding in the long run. However, the problem arises:
what happens if children never master the construct? Furthermore, does that
transfer to broader concepts really occur, and are the broader concepts people
are striving for really the right ones to be concerned about? What is this
Òformal eleganceÓ? I agree with diSessa that the notion of elegance is a
byproduct of an adult aesthetic, and largely irrelevant to childrenÕs needs.

The design of a language is primarily about tradeoffs. Given a choice between
elegance and intuitiveness, we resolved to lean as far as possible towards
intuitiveness. If you can have both, thatÕs preferable; however, sometimes itÕs
necessary to chose. Consider the following difference between Logo and
StarLogo. Table 3.4 shows how you define a variable foo, set its value to 3,
and retrieve the value of that variable in Logo, StarLogo, and MOOSE.

Language Set Variable Access Value
Logo make "foo 3 :foo

StarLogo set foo 3 foo

MOOSE set foo to 3 foo

Table 3.4: Variables in Three Languages

In Logo, the quote before the variable definition makes it clear that foo is a
symbol, to which we are assigning a value. The colon indicates that we are
accessing the value of the variable and not merely referring to the symbol.
The semantics are very clear, and highlight some underlying computer-
science concepts. However, in years of working with children with Logo,
Mitchel Resnick has found that the quote and colon are some of the most
common causes of difficulty and error for children. ItÕs not clear whether the
broader concepts about symbols and quoting are commonly learned, but it is
clear that these syntactic requirements slow down childrenÕs progress on their
Logo projects (Resnick 1993).

In the StarLogo implementation , these concepts are a bit blurred. The
technical explanation is that ÒsetÓ is a special form that doesnÕt require
quoting of its first argument. On declaring a new variable, an accessor
function by the same name is automatically created which returns the value
of that variable. This technical explanation is almost certainly lost on
children using the languageÑthey donÕt think about things like what a
symbol is because there is no need to. There is less special syntax to learn and
fewer things that can easily be gotten wrong (Resnick 1997).

61

The MOOSE version is almost identical to the StarLogo version. The added
preposition ÒtoÓ is consistent with MOOSEÕs natural-language-like style. This
has the advantage that it draws on childrenÕs existing natural-language
knowledge. It has the disadvantage that it may mislead them that more
English-like commands work than actually do.

Which of these styles is preferable? In theory, you can make a case for any of
them. However, working with children in practice, it seems clear that the
Logo style is idealistically naive. The StarLogo and MOOSE approaches let
children accomplish more. The children are better able to express their ideas,
and therefore create more complex final products.

A cynic might ask, ÒIf weÕre going to make things as simple as possible for the
children, how about giving them an expert system that would create the
entire project for them? IsnÕt the real educational value in doing the hard
work of understanding some not immediately intuitive concepts?Ó To this I
would reply, the educational benefit is not in the sophistication of the
product; it is in the ability to express and refine a complex idea. If the child
gets stalled early on by syntactic difficulties, the entire learning experience can
be stalled. If the child is able to express ideas fluently, the childÕs learning
experience will progress as the complexity of his or her project progresses.

These same issues emerged in the design of Microworlds Logo. In 1991, Logo
Computer Systems International designed a new version of the Logo
programming language called Microworlds Logo, and members of the Media
LabÕs Epistemology and Learning Group met several times to critique its
evolving design. A heated debate ensued at MIT and in the broader
community about the inclusion of paint tools. When most people think of
children programming in Logo, they think of children learning geometry
through drawing simple shapes. To make a square of size 100, youÕd need to
type: Òrepeat 4 [fd 100 rt 90]Ó. The childÕs desire to make a picture provides a
context that gives certain geometrical concepts new relevance. In
Microworlds Logo, the child can simply select a paint tool from the menubar
to draw a square or rectangle. Purists argued that this was robbing Logo of
powerful potential for learning. If Logo were to be transformed into a simple
paint program that would indeed be the case. Paint programs generally afford
artistic learning experiences but not mathematical ones.4 However,
Microworlds is not merely a paint programÑit is still the Logo programming
language, and compared to other versions of Logo adds a series of features
(buttons, fields, multiple turtles, multiple changing turtle shapes, etc.) that
afford whole new categories of projects: simple animation and video games.

4Noteable exceptions are Mike EisenbergÕs SchemePaint system (Eisenberg 1995) and David
ShafferÕs work with EscherÕs World (Shaffer 1996).

62

Paula Hooper worked with children at Paige Academy in Roxbury,
Massachusetts for six years. For the first two years, her students used
LogoWriter, a traditional version of Logo that works on Apple IIgs
computers. The school then got Macintosh computers. For just a few weeks,
the computers werenÕt equipped with Logo, but did have copies of Kidpix, a
drawing program made by Broderbund Software. The students became very
involved with making pictures in Kidpix. Soon after, the school received
copies of Microworlds Logo. At first, Hooper had difficulty getting the
children to stop drawing pictures in Kidpix and start working with
Microworlds. However, she reports that once they realized what they could
accomplish with Microworlds Logo, the children chose it over the paint
program. Hooper worked with the same children using Microworlds for the
following four years. The Paige Academy students are allowed to work on
projects of their own choosing. Most use Microworlds to tell animated
stories, and make their own video games. They have become enthusiastically
involved in making much more complex projects than they were ever able to
make in LogoWriter. This is of course partly because they are now older;
however, Hooper also believes the affordances of the tool made much more
exciting projects possible for them. They are learning less about geometry, but
more about computational ideas (like procedural abstraction), and most
importantly more about the process of designing and following through on a
large, complex project. In LogoWriter, Hooper notes that even the simplest
project was a substantial undertaking. The formalistic aesthetic that children
should be forced to make squares out of combinations of ninety-degree turns
is misguided. While some simple things (like making circles and squares) are
done automatically for you in Microworlds, this makes more complex
projects possible. The richest learning occurs through the process of
designing a complex project that the student finds personally compelling
(Hooper 1997a; Hooper 1997b).

An example of a trade off between formal elegance and intuitive simplicity in
MOOSE is the question of quoting strings. In a MUD, itÕs natural not to quote
most commands at the command line. You want to type:

say Hi there! How is your project coming?

Not:

say “Hi there! How is your project coming?”

However, we wanted to permit a more complicated syntax at the command
line than is normally allowed in MUDs:

say “Today’s secret word is ” + my secret_word

63

You wouldnÕt normally use property references like that in conversation, but
you might want to use them in programs. Therefore, you should be able to
try them out at the command line.

Prohibiting unquoted strings at the command line would enforce a neater
style, and help children to understand the notion of quoting. If we made that
decision, the concepts would be clear: words always go in quotes; commands
and variables donÕt. That would be the most elegant solution. But frankly,
itÕs a hassleÑno one really has spontaneous text-based conversations that
way. And do you really want to start giving kids error messages every time
they forget a quote?

The opposite extreme, never requiring quotes, causes implementation
problems. In particular, we chose to make certain English words behave as
operators in MOOSE, for example: is, are, and , or. How could you tell
whether someone wanted to test equivalence or just use the word ÒisÓ?

We arrived at a complex compromise. At the command line, commands can
be in one of two styles:

say In style one, the entire string is unquoted. Since the strings
around the operators are not quoted, the parser concludes that
this must be an unquoted string, and leaves it alone.

say “In style two, the strings are quoted, and ” + my adverb + “
combined together.”

In the first example at the command line, if you forget a plus or a quote, it is
no longer a well-formed compound expression, and the system will treat the
entire expression as an unquoted string.

In programs, you can get away with having unquoted strings, if they contain
no infix operators. If they do, you will get a warning message when you
compile them. An example appears in Figure 3.1. Feedback warning you
about the problem appears in red in the feedback pane of the script editor
window, immediately under your code. The systemÕs ability to warn the user
of potential problems helps avoid the problem of misunderstandings
common to Òdo what I meanÓ (DWIM) systems.

The details of this solution may sound complicated, but to the user it
amounts quite simply to: ItÕs better to use quotes, but you can often get away
without them.

In use to date with children, on the whole it is the younger children (nine
years old and younger) who tend not to use quotes in programs. The decision
to allow sloppy quoting has made MOOSE accessible to a wider range of ages
and ability levels. The fact that the older children (ages ten to thirteen) tend

64

to quote their strings supports the fact that this sloppiness has led to no
fundamental conceptual confusion.

Figure 3.1: Unquoted Strings in a MOOSE Program

After reading a draft of this chapter, Danny Bobrow suggested that it would be
desirable to have the system volunteer to correct the program. Instead of
simply allowing quoted strings, the client could prompt the user asking
whether they should be quoted. This might have significant pedagogical
advantages. Making this approach successful would require the suggestions
to have a high level of accuracy, and never to be repeated if rejected.
Otherwise, the systemÕs active interventions could be annoying. BobrowÕs
proposal merits further exploration in future systems.

3.2.3 Be Forgiving
MOOSEÕs tolerance of unquoted strings illustrates another important design
principle: be forgiving. ItÕs very often possible to anticipate certain common
user errors and adopt a Òdo what they meant, not what they saidÓ attitude.
Being forgiving about quoting has made MOOSE accessible to younger
children than would otherwise have been possible. In work with kids using
MOOSE to date, weÕve found that they often begin by not quoting strings, but
learn to do so as time goes on. Allowing unquoted strings in programs helps
them complete their initial projects more easily. Success in those initial
projects helps to deepen their long-term involvement.

65

The disadvantage of this approach is that it sometimes makes it difficult to
give the programmer helpful error messages. For example, consider this
program:

set result to 3
say resilt

This MOOSE program will say the word ÒresiltÓ (note the typo) instead of
saying 3, the value of the variable ÒresultÓ. In a language that doesnÕt allow
unquoted strings, the second line could generate an error message because
ÒresiltÓ is undefined. MOOSE assumes ÒresiltÓ is an unquoted string.
However, MOOSE is able to give somewhat better feedback to this error:

set result to 3
say “The answer is ” + resilt

Compiling this program gives this feedback:

LOOK OUT!: Trying to apply operator '+' to unquoted string 'resilt'?
LOOK OUT!: In line: <3> say "The answer is " + resilt
LOOK OUT!: Strings in scripts should be quoted.
 : For example, use: "hi there" NOT: hi there
Script 'typo_example' programmed.
Done: 1 script compiled.

An unquoted string on its own is undetectable; however, applying an
operator to an unquoted string generates a warning message. The error
message is not ideal, but at least it alerts the user to the correct location of the
problem. The Òdo what they meantÓ design philosophy allows us to give
good feedback most but not all of the time.

3.2.4 Leveraging Natural-Language Knowledge
One potentially dangerous decision we made was to leverage off of childrenÕs
natural language knowledge. For example, in MOO, property references are
of the form <object reference>.<property name> . MOOSE property
references use an English-like possessive notation. The possessive notation is
natural and children pick it up without having it explained to them. Their
natural language knowledge makes the use of property references easy.

66

MOO: <object reference>.<property name>
Examples: #99.age

#99.owner.name

MOOSE: <my/objectÕs/objectsÕ> <property name>
Examples: my name

ElloÕs name
ElloÕs ownerÕs description
SnugglesÕ description

Table 3.5: Property References in MOO and MOOSE

The first language to use English-like syntax in order to be more accessible to
non-professionals was COBOL. Jean Sammet, one of the designers of COBOL,
writes:

Although from the very beginning COBOL was concerned with
Òbusiness data processing,Ó there was never any real definition of that
phrase. It was certainly intended (and expected) that the language
could be used by novice programmers and read by management. We
felt the readability by management could and would be achieved
because of the intended use of English, which was a fundamental
conclusion from the May 1959 Pentagon meeting. Surprisingly,
although we wanted the language to be easy to use, particularly for
nonprofessional programmers, we did not really give much thought to
ensuring that the language would be easy to learn; most of our
concentration was on making it Òeasy to readÓ although we never
provided any criteria or tests for readability. (Sammet 1981)

In the design of MOOSE, we put as much emphasis on ÒlearnabilityÓ and
ÒwriteabilityÓ as in Òreadability.Ó

More than twenty-five years after the design of COBOL, the designers of
Hypertalk had similar goals and strategies. When asked about the language
ancestors of Hypertalk, designer Bill Atkinson replied ÒThe first one is
English. I really tried to make it English-likeÓ (Goodman 1988). Ted Kaehler,
another member of the Hypertalk design team, comments that ÒOne principle
was Ôreads as English, but does not write as English.Õ Like an ordinary
programming language, it depends on exactly the right syntax and termsÓ
(Kaehler 1996).

In designing MOOSEÕs natural-language-like syntax, we drew most heavily on
MOOÕs command-line language (Curtis 1993), but also borrowed directly from
Hypertalk. For example, MOOSE borrows Hyper TalkÕs use of the variable ÒitÓ
to refer to the last value returned.

67

The risk of making a computer language like a natural language is that people
will assume more natural language constructs work than really do. On the
whole, this has not proved to be a problem. MOOSE commands have a
consistent syntax: each command begins with a verb. The arguments a
command takes are readily viewable with system commands like Òexamine,Ó
Òwhich,Ó and Òshow.Ó

The slippery slope of natural language has proved to be a problem in only one
area: conditionals. While the syntax of most commands roughly follows a
simple Òverb direct-object preposition indirect-objectÓ pattern, the syntax of
the Boolean clauses of if, elseif, and while statements is much more
complicated. Most of the conditionals the kids have written so far have been
simple enough to pose few problems. But consider these lines (from a script
by me, the ÒteachÓ script on Generic Teachable Object):

if prop member_of my teach_locked and player is not my owner and not
player's admin

 tell player "Permission denied."
 return
endif

This does indeed have a specific syntax: clauses are separated by the
conjunctions ÒandÓ and ÒorÓ; individual clauses are usually of the form
<argument> <operator> <argument>, or simply <argument>. However, this
syntax is more complex than other MOOSE constructs; consequently, itÕs
easier to start assuming arbitrary English statements will work.

The most common mistake we observed was for kids to put a ÒnotÓ in the
wrong place. For example, they might write ÒA is not BÓ. This leads to some
potential confusion as to whether the negative applies to the element B or to
the clause. To clear this up, I made the compiler always assume a negative
applies to the clauseÑthey presumably meant Ònot (A is B)Ó. Negating an
individual element is an advanced concept that I saw no advantage in
introducing. (ItÕs still possible to do soÑyou just need to use parentheses: ÒA
is (not B)Ó.) The second most common mistake was to add an extra Òis.Ó For
example, they might write Òitem is member of listÓ instead of Òitem member
of list.Ó The words ÒisÓ and ÒmemberÓ are separate operators, and their
composition is nonsensicalÑthe programmer clearly meant just to use the
ÒmemberÓ operator. The easy fix for this is simply to eliminate any instances
of ÒisÓ before another operator. This was easy to do in the compiler. Another
simple fix was to allow certain operators like Òmember_ofÓ be written as
either one or two words. These technical improvements have greatly
reduced the number of errors kids encounter. However, it still remains
somewhat difficult to debug bad conditional expressions. This is an area in
which the language could be improved.

68

Over all, the similarity of MOOSE to natural language has proved to be a good
design decision. Kids often look at other kidsÕ programs and understand
them without having them explained. They are immediately readable. One
of the most common learning techniques IÕve observed kids using is to start
with a simple variation on another childÕs program. Later they progress to
making increasingly original creations. This immediate understanding of
programs is a result of the languageÕs natural-language-like structure.

3.2.5 Avoid Non-Alphanumeric Characters
One of the easiest design decisions we made was to avoid non-alphanumeric
characters wherever possible. Kids arenÕt familiar with them, and identifying
them and typing them pose problems. In particular, many commands in
MOO are preceded by the character @. The logic behind the @ command in
MOO is this: commands to the programming environment use @s;
commands that simulate taking actions in the virtual world do not. In
practice this rapidly breaks down. Many commands are user-defined, and not
every programmer understands or respects the convention. Furthermore,
whether a command is equivalent to taking action in the virtual world is not
always clear. For example, if youÕre reading a political ballot on LambdaMOO
but the ballot object is not in the room but is defined system-wide, are you
reading it or @reading it? What about if youÕre reading your MOO mail? The
former is ÒreadÓ and the latter is Ò@readÓ. ItÕs hard to keep them straight.
MUSE also uses @s, but with a different rationale. In MUSE, commands that
have a side effect to change something in the database are preceded by an @.
This also is somewhat ambiguous. For example, walking around the virtual
world does not require an @, yet that does change something in the
databaseÑyour location. Teleporting on the other hand does require an @ in
MUSE. The very fact that the convention for when to use an @ varies
between languages also significantly contributes to the confusion. People
frequently use multiple environments, and may not realize that the
convention differs. We resolved this in MOOSE by eliminating @s
altogether.

One common problem for novice programmers is the tendency to confuse
using an equals sign for assignment and for equivalence. In MOOSE we
avoided this problem by using ÒsetÓ for assignment (i.e. Òset my age to 30Ó),
and English words for equivalence: is, are, isnÕt, and arenÕt. Other operators
are also converted to words. MOOÕs operator Ò&&Ó becomes ÒandÓ; Ò||Ó
becomes ÒorÓ.

In addition to being unfamiliar and hard to type, non-alphanumeric
characters look Òhigh tech.Ó Much of MOOSE is learned by looking at sample
programs. Letters are familiar to children, and less threatening. Programs
filled with special characters may tend to scare off new users by making
coding look hard.

69

In a visit to a classroom of ÒTitle IÓ students (students who are more than two
years behind in their reading level) using MOOSE Crossing, I noticed that
those students had particular difficulty typing unfamiliar characters.
Characters that require the use of the shift key appeared to be particularly
problematic. While I eliminated most special characters from MOOSE, a few
are still used occasionally, particularly underscores. Observing the Title I
students, it was clear that this was a mistake. They will be removed in the
future. While they appeared to be struggling with simple reading and
writing, the special characters seemed to be an even bigger hurdle.

English words have every-day-use meanings that often make it easier for
them to understand and remember the computer meanings of those words.
Special characters usually donÕt have those ordinary meaning, so their
computer meanings are more easily confusable. This became abundantly
clear with one special character we did include in MOOSE, single-quote (').
The two most commonly used commands in MUDs are ÒsayÓ and Òemote.Ó
They are used so often that itÕs common in most MUDs to allow them to be
abbreviated as double-quote (") and colon (:) respectively. In MOOSE, we
wanted to avoid confusion between the abbreviation for say and quoted
strings, so we made the abbreviation be single-quote ('). One common point
of confusion for people new to MUDs is the distinction between saying
something and doing it. Contrast the following three commands:

A.
--> say down
You say 'down'

B.
--> 'down
You say, 'down'

C.
--> down
You climb down the rope to the platform.

Saying the word "down" is not the same thing as trying to actually go down,
changing your location in the virtual world. It's easy to see the different
between A and C above. It's harder to see the difference between B and C.
Here's an edited excerpt from a confusing afternoon when a class of twenty
students connected to MOOSE Crossing for the first time. Experienced users
Miranda (girl, age 10-11) , Rufus (boy, age 12), and Newton (teacher, male, age
41) came by to help the new users. Austina and I were also there. Not long
after all twenty students connected for the first time, this conversation
ensued:

Amy says, 'wow, quite a crowd!'
jj says, 'Who is Pumpernickle''
cj says, 'cj here'

70

Bill says, 'pumpernickel''
Miranda says, 'A dog'
Tim says, 'hi Tag'
Amy [to jj]: Pumpernickel is my dog. Try this: pet pump
Newton floats above the crowd, nervous and shy.
Rufus says, 'You guys can have dogs too.'
jj says, 'Can we pet him/her''
Miranda says, ''Yeah.'
Rufus says, 'It's up to Amy...'
Amy says, 'you can tickle her too'
Bill says, 'BeeBee''
jj says, 'pet Beebee''
Tag says, 'pet beebee'
isaac says, 'hi pet beebee''
Tim says, 'pet BeeBee''
Amy [to jj]: don't say it, do it. Don't put the ' in front
Bill says, 'pet BeeBee'''

BeeBee is their teacherÕs virtual pet dog. Presumably, the studentsÕ teacher is
suggesting they pet BeeBee. This doesnÕt succeed for two reasons. First, they
are saying the words instead of taking the action by accidentally prefacing
their commands with a single quote. Second, BeeBee isnÕt in the same room
in the virtual world as the students.

Rufus says, 'If anyone wants to see something cool, type 'enter
Sparky'.'

jj says, 'pet BeeBee''
[Rufus types: enter Sparky
[From Sparky III] Duggan wags his tail at Rufus.
Bill says, 'Sparky''
isaac says, 'sparky''
Miranda pets Pumpernickel.
Pumpernickel wags her tail and licks Miranda's hand.
Jermaine says, 'Hi Lara''
Tim says, 'enter Sparkey'
Amy says, 'don't put a 'say' or a quote in front of the word pet'
Alana sniffs Rufus curiously.
cj says, 'Bill what class are you in''
jj says, 'enter Sparky''
Miranda pets Pumpernickel.
Pumpernickel wags her tail and licks Miranda's hand.
Lara says, 'pet beebee'
Rufus says, 'type 'enter Sparky''
Miranda says, 'This is too confusing!'
Bill says, 'enter Sparky''
jj says, 'enter Sparky''
isaac says, 'sparky''
Austina goes home.
Alana follows after Austina.
Amy [to Bill]: don't put the ' or say in front of it. Type it just

like this: enter sparky
Rufus says, 'No! Type it on the keyboard!'
isaac says, 'look''
jj says, 'look''
Tag says, 'look''
Lara says, 'look''
Tim says, 'By austina''

71

Rufus says, 'Thank you Amy!'
Jermaine says, 'look''
[At this point, Bill gets it right and enters Sparky]
[From Sparky III] Duggan sniffs Bill curiously.
Bill You climb onto the main deck. 5

A number of things contributed to making this encounter confusing. The
sheer number of students was a significant factor. Their teacher had only
tried MOOSE Crossing a couple times herself. In fact, she was giving the class
incorrect instructions out loud, telling them to type commands both starting
with and ending with single quotes. (This led to the extra single quote at the
end of most things the new members said.) She told them to do this for all
commands, not just things they wanted to say. Once this misconception was
created, it was hard to correct, particularly since single quotes are used to
delimit ordinary conversation. When you give someone instructions on
what to do, single quotes wrap what you are saying. It therefore is difficult to
talk about when to use single quotes. The confusion persisted for some of the
students even when they returned for a second session the following week.
Perhaps the most important contributor to the confusion was the design
decision to allow the use of single-quote as a shortcut for the ÒsayÓ command.
The teacher was giving the students explicit wrong directions; however, the
teacher herself might not have been confused if the command had been
clearer. Furthermore, even if the teacher had given them incorrect
instructions, the students would have been more likely to figure out what
was wrong if they had been using the English word ÒsayÓ instead of an
ambiguous punctuation mark. All the students were using single quote, not
Òsay,Ó in this conversation. It's easy to understand how they came to type
these incorrect commands:

‘pet BeeBee’
‘look’
‘enter Sparky’

ItÕs harder to imagine them making the equivalent mistakes if they knew
only the ÒsayÓ form:

say pet BeeBee
say look
say enter Sparky

New MOOSE Crossing members usually learn to use ÒsayÓ first, and only
learn the single quote shortcut later. This significantly reduces the potential
for confusion. This level of confusion is not typical. However, it still
reinforces the broader point: non-alphanumeric characters are best avoided if
possible.

5Several lines were edited out of this transcript for clarity and conciseness.

72

3.2.6 Make Essential Info Visible and Easily Changeable
In some programming languages, for example C and MOO, information
about a function is stored separately from the code for the function itself.
This separation is confusing. While trying to fix a problem, users often find
that the information needed to fix the problem is not in front of them.
Remembering to check the information about the function (or property) as
well as its contents is a debugging strategy that most new programmers are
slow to master. ItÕs advantageous to keep essential information with the code
itself.

In particular, both MOO verbs and MOOSE scripts have arguments. In MOO,
these must be declared when the verb is declared:

--> @verb me:jump this on any
Verb added (8).

--> @verb me:jump this none this
Warning: Verb `jump' already defined on that object.
Verb added (9).

--> @verbs me
;verbs(#75) => {"enlist", "random_player", "hack", "words", "jump",

"jump"}

MOO argument specifications must be three items long (direct object,
preposition, indirect object), and the preposition choices are drawn from a
fixed set of alternatives (Curtis 1993). The special argument specifier Òthis
none thisÓ is defined as meaning that the verb is not intended to be called
from the command line, but only from other verbs. Working with multiple
verbs of the same name is extremely difficult, because the interface has few
affordances for indicating which verb of a given name you mean. Listing the
code for a verb, you do not see its arguments. To see its arguments, you must
use a special command like Ò@showÓ or Ò@displayÓ. To change the
arguments, you must use another special function: Ò@argsÓ; you canÕt use the
same mechanisms you use to change the code.

In MOOSE, argument specifications can be of any length, and any word may
be used as a constant. A scriptÕs argument declaration is simply the first line
of the program. ItÕs clearly visible as you edit the program, and can be
changed by the same mechanism you use to edit the program. Multiple
scripts with the same name can simply be placed one after the other in the
script body, with no confusion between them. For example, hereÕs the ÒfeedÓ
script on Generic Penguin by Rachael (girl, age 12-14):

73

on feed this
 tell context "You feed " + my name + " fish."
 announce_all_but context context's name + " feeds " + my name + "."
 set my ishungry to 1
 emote "glups the fish down hungrily."
 set my last_feed_time to time
end

on feed this string
 tell context "You feed " + my name + " a " + string + "."
 announce_all_but context context's name + " feeds " + my name + " a

" + string + "."
 set my ishungry to 1
 announce_all my name + " glups the " + string + " down hungrily."
 set my last_feed_time to time
end

on feed this herring
 tell context "You feed " + my name + " pickled herring."
 announce_all_but context context's name + " feeds " + my name + "

pickled herring."
 emote "puckers up and spits the herring out."
 emote "blahs!"
end

on feed this shrimp
 if my diet is 1
 tell context "You can't feed " + my name + " shrimp today because

" + my name + " is on a diet."
 announce_all_but context context's name + " tries to feed shrimp

to " + my name + " but " + my name " is on a strict diet!"
 else
 set my ishungry to 1
 tell context "You feed " + my name + " a ton of shrimp!"
 announce_all_but context context's name + " feeds " + my name + "

a load of shrimp."
 emote "gobbles the shrimp down in seconds."
 set my last_feed_time to time
 endif
end

74

on feed this eggs on toast
 set my ishungry to 1
 tell context "You feed " + my name + " a soft boiled egg on toast."
 announce_all_but context context's name + " feeds " + my name + " a

soft boiled egg on buttered toast."
 emote "polietly picks up the toast with " + my name + "'s left

flipper and nibbles the end like so."
 announce_all_but context "After chewing, " + my name + " thanks " +

context's name + "."
 tell context my name + " says, 'Thank you ever so much in offering

me this delightful meal. I would be ever so obliged if you would
be so kind as to give me a cup of tea to wash it down.'"

 set my last_feed_time to time
 set my askfortea to 1
 fork 10
 if my askfortea is 1
 tell context my name + " says, 'Thanks alot!'. (You didn't give

" + my name + " any tea!)"
 set my askfortea to 0
 endif
 endfork
end

on feed this tea
 if my askfortea is 1
 tell context "You give " + my name + " a cup of tea."
 set my askfortea to 0
 announce_all_but context context's name + " gives " + my name + "

a cup of tea."
 emote " picks up the cup from the saucer, and takes a sip."
 tell context my name + " says, 'Thank you ever so much for the

tea. I feel honored that you decided to honor my request for
tea.'"

 else
 tell context "You give " + my name + " a cup of tea."
 announce_all_but context context's name + " gives " + my name + "

a cup of tea."
 emote "slurps up the tea."
 emote "nods in thanks."
 endif
end

Andy diSessa argues that programming languages should be Òtuned toward
small tasksÑthe ability to implement simple ideas easily is much more
important than the ability to do complex tasks efficientlyÓ(diSessa and
Abelson 1986). The ability to have lots of short scripts of the same name helps
break tasks into parts more clearly.

3.2.7 ItÕs OK to have Limited Functionality
In our first serious discussion of the design of MOOSE, Pavel Curtis looked at
me squarely and said: ÒIf you can do everything in MOOSE that you can in
MOO, IÕll be disappointed in you.Ó The designers of Logo pride themselves
on the fact that Logo is a full programming language that you could use for
professional software design if you wanted. The ideal is that a tool should

75

have no initial barrier and no ceilingÑno limits on what a kid can achieve.
While this is an inspiring vision, the truth is that few kids actually reach
those higher levels. If advanced functionality comes at no cost, itÕs certainly
desirable. However, in the design of MOOSE when we encountered a trade-
off between supporting advanced features and making common features
simple, we always tried to give priority to simplicity. MOOSE is tuned to
make the set of things that are natural to do in a MUDÑlike bears that you
can tickleÑas easy as possible.

3.2.8 Hide Nasty Things Under the Bed
Perhaps one of the most-discussed issues in programming language design is
how much detail to hide from the user. Maximum efficiency dictates that the
user take direct control of as many functions as possible. For example, C
requires users to allocate and deallocate memory manually. Usability usually
dictates that the system do as much as possible of the unpleasant and error-
prone parts of the task. For example, Lisp and MOO do automatic garbage
collection. It should come as no surprise that for MOOSE, we chose the
second approach, hiding difficult concepts where possible. In particular, we
succeeded in hiding issues of permissions, atomicity and multitasking.

Permissions
Security for multi-user environments are an important topic of current
computer science research. Over time, through intensive use and frequent
attacks, the LambdaMOO server and LambdaCore6 database have been made
robustly secure. The permissions system that has evolved, however, is the
most difficult part of MOO to master.

One particularly thorny issue concerns ownership of properties. Objects have
owners, and individual properties also have owners. Properties have
permission bits r (readable), w (writeable, which is almost never used), and c
(change owner on inheritance). Suppose that Ginny owns Generic Dog, and
Amy has a child of Generic Dog named Pumpernickel. Generic Dog has a
bark_msg property. Now suppose Generic Dog has a ÒguardÓ script that
changes the dogÕs bark_msg from a polite yip to a deep growl. If the bark_msg
property is set +c (i.e. with the c bit set), then Amy will own PumpernickelÕs
bark_msg property, and can change it directly. However, the ÒguardÓ script
runs with GinnyÕs permissions, so now it canÕt change the dogÕs bark_msg. If
the property is !c (i.e. with the c bit unset), then the ÒguardÓ script can change
the dogÕs bark, but Amy canÕt. The solution is to make it !c, and have Ginny
write a change_bark accessor script allowing dog owners to change their dogsÕ

6To start a MOO, you need both the server and an initial database. ItÕs possible to start with a
minimal database that adds little or no functionality. However, most MOOs use a database
extracted from LambdaMOO (the first and still most popular MOO) called LambdaCore.
Among the features included in LambdaCore is the line editor discussed here.

76

barks. If youÕre confused, thatÕs the pointÑpermissions are difficult to
understand.

In MOOSE, I found a way around this problem. I added a trust_parents
property to all objects. If an object trusts its parents, then any code on an
objectÕs parents may modify any of its properties. All MOOSE properties are
+cÑif you own the object, you own the property. The concept of the c bit is
eliminated. Generic_DogÕs growl script can modify PumpernickelÕs bark_msg
because Pumpernickel trusts her parents. (This does not mean that other
code by Ginny can modify anything about PumpernickelÑjust code on the
parent object.) This involves assuming some trust between the owner of a
generic and the owner of the child objects. However, that trust already exists.
The generic owner can already add any property or script he or she likes to the
parent, which will be inherited by all child objects. The generic owner would
also be able to modify properties in the common MOO solution to this
problem described above. MOOSE lets you do the things that it seems natural
to doÑhave both Generic Dog and PumpernickelÕs owner be able to modify
PumpernickelÕs bark_msg. ItÕs not necessary for the kids to think about
property permissions at all.

The w (writeable) bit is not supported either. There is no good reason in
MOOSE or MOO to make anything world-writeable. The r (readable) bit for
properties is a more difficult issue. ItÕs beneficial to the community if scripts
and properties can be used as examples by others in the community. On the
other hand, making things unreadable is useful for applications like secret
passwords, which children often are interested in writing. I was initially
hesitant to introduce the notion of a property permission at all. However,
after some discussion between Austina Vainius and myself and the
independent suggestion of the same idea by Pavel Curtis, we finally
compromised on adding the notion of a ÒhiddenÓ property. We called them
ÒhiddenÓ rather than ÒsecretÓ to make them sound less exciting. ItÕs desirable
to minimize their use, so that people can learn from one anotherÕs projects as
much as possible.

Atomicity and Multitasking
In any time-sharing computing system, you need a system for deciding how
to share processor time. MOO uses single-threaded, non-preemptive
multitasking. Each task has a limit on the number of ticks and seconds it can
use. If it runs out, the task stops with an out-of-ticks or out-of-seconds error.
Before a task runs out of time, the programmer can voluntarily give up
control using the ÒsuspendÓ command. When the task returns to the top of
the queue, it has refreshed tick and seconds counts (half as many as it
originally started with).

I wasnÕt particularly in the mood to teach children about tick limits and
suspending. Furthermore, MOOSE adds sufficient overhead to the server

77

that even simple tasks often must suspend at least once before completing. I
decided to make MOOSE automatically suspend when needed.

This model has drawbacks. If you are petting a dog, you can no longer assume
that a dog that was in the room at line 1 is still there at line 10! There is no
way to guarantee that any task completes atomically. In practice, this has not
yet caused significant problems. A few kids have noticed that messages
generated by objects entering a room sometimes arrive in an odd order. For
example, my dog Pumpernickel wags her tail when she enters a room
containing someone who has pet her in the past. The message that she wags
her tail often precedes the message notifying you that she has arrived in the
room. Each command in an individual program is guaranteed to be executed
in the correct order; however, the arrival message and the tail wagging are
generated by different programs on different objects. The order of turn-taking
between programs running on different objects is not guaranteed. While this
simple example can be passed off as an oddity, the problems are likely to
become more severe as the system grows in complexity.

As Mitchel ResnickÕs research on StarLogo has shown, most people are not
generally comfortable thinking about complex, parallel systems. StarLogo
seeks to make that complexity understandable and interesting in itself
(Resnick 1994). I chose not to make understanding these issues a pedagogical
goal for MOOSE. Instead, I decided to hide them from the user as much as
possible. This works for limited applications, and has helped make the
system accessible to novice programmers. However, this simplistic solution
has limits. More research is needed to devise a gracefully scaleable solution to
meet the needs of both novices and experts, and to enable the construction of
more complex systems.

3.2.9 A Design Philosophy
There are few ÒrightÓ answers in programming language designÑprimarily,
there are trade-offs. Furthermore, itÕs not particularly meaningful to talk
about one language being ÒbetterÓ than another. However, it is meaningful
to talk about the advantages of a language for a particular group of people
with a particular set of goals. And languages do have affordancesÑthings
they make easy to express, and things they make hard to express. Larry Wall,
inventor of the Perl language, compares different programming languages to
different styles of musicÑC is reductive and rigid like the Modernism of John
Cage; ÒC++ is like movie music, of titanic proportions, yet still culturally
derivativeÓ(Wall 1996). Wall argues that programmers are like artists, and
different languages are like different types of materialsÑthey are expressive
in different ways, and suited to people with different goals and personalities.

 Our goal in designing the MOOSE language was to give children a new
expressive medium. Towards this end, we tried to make it as easy as possible
for children to write the sort of programs one tends to want to write in a

78

MUD. Our general approach was deliberately a bit mischievous, exploring a
design aesthetic that is counter-intuitive for most computer scientists: put
simplicity and immediate intuitiveness first, and ignore as much as possible
many of the concerns that adult computer scientists tend to value. We tried
to ground the design in experience working with real children with Logo, and
revised the design based on feedback from initial users. Detailed analysis of
what children have been able to accomplish with MOOSE forms the subject of
much of the rest of this thesis.

3.3 The Need for a New Programming Environment
While existing MUD languages present a barrier to children learning to
program, available programming environments are an even bigger problem.
In MUSE, every command is one-line long, so no editor is necessary.
Programming in MOO requires the use of an editor. The Ò@programÓ
command used to enter programs is built into the server software. To modify
your program using just that command, you would need to type the entire
thing again. A very nice Emacs-based editor, mud.el, is available. Mud.el
gives you an excellent interface to edit both MOO verbs and properties.
However, not everyone has access to Emacs, and itÕs certainly not appropriate
for children. An alternative, currently used by the Pueblo project, is the
LambdaCore line editor.

Here is the help for editor commands:

Verb Editor
Commands:

say <text> w*hat
emote <text> e*dit <obj>:<verb>
lis*t [<range>] [nonum] com*pile [as <obj>:<verb>]
ins*ert [<ins>] ["<text>] abort
n*ext,p*rev [n] ["<text>] q*uit,done,pause
enter
del*ete [<range>]
f*ind /<str>[/[c][<range>]]
s*ubst /<str1>/<str2>[/[g][c][<range>]]
m*ove,c*opy [<range>] to <ins>
join*l [<range>]
fill [<range>] [@<col>]

---- Do `help <cmdname>' for help with a given command. ----

<ins> ::= $ (the end) | [^]n (above line n) | _n (below line n) |
.(current)

<range> ::= <lin> | <lin>-<lin> | from <lin> | to <lin> | from <lin>
to <lin>

<lin> ::= n | [n]$ (n from the end) | [n]_ (n before .) | [n]^ (n
after .)

`help insert' and `help ranges' describe these in detail

79

HereÕs how the program to pet Rover (discussed in Section 3.1) would be
created and entered using the LambdaCore line editor:

>@verb rover:pet this none none
Verb added (0).
>@edit rover:pet
Verb Editor
Do a 'look' to get the list of commands, or 'help' for assistance.

Now editing #2156:pet.
>enter
[Type lines of input; use `.' to end or `@abort' to abort the

command.]
>player:tell("You pet Rover.");
>this.location:announce_all("Rover wags his tail.");
>.
Lines 1-2 added.
>compile
#2156:pet successfully compiled.
>q
Amy's Office
Amy's office is a jumble of books and papers.

Being able to break code up into multiple lines instead of cramming lines
together as they are in MUSE is a significant improvement, but it comes at the
price of adding this elaborate editor. To change ÒhisÓ to ÒherÓ in MOO
without a client, we would need to do this:

>@edit rover:pet
Verb Editor

Do a 'look' to get the list of commands, or 'help' for assistance.

Now editing #2156:pet.
>list
 1: player:tell("You pet Rover.");
__2_ this.location:announce_all("Rover wags his tail.");
^^^^
>s / his/ her/2 7

__2_ this.location:announce_all("Rover wags her tail.");
>compile
#2156:pet successfully compiled.
>q
Amy's Office
Amy's office is a jumble of books and papers.

Perhaps the worst feature of the editor is that it actually moves you to a
separate room to do your coding. The rationale for this design decision was to
allow reuse of the ÒsayÓ command for inserting text, and give you access to a
simple set of editing commands. Moving you to a separate room was the

7Note the spaces before ÒhisÓ and Òher.Ó The first time I typed this while writing this
chapter, I actually forgot the space and ended up changing ÒthisÓ to Òther.Ó Even for an
experienced user, this kind of editing is frustrating.

80

simplest way of achieving a form of modal interface (Curtis 1996). The
downside of this design decision is clear. One of the great strengths of MUDs
is their collaborative nature. Using the LambdaCore line editor, you are sent
off to a room all alone whenever you try to work! (The collaborative nature
of learning in MUDs will be discussed in more detail in Chapters 4 and 5.)

3.4 The Design of the MacMOOSE Client
There were few if any research issues involved in designing the MacMOOSE
client programÑjust attention to detail, interface design work, and an
iterative design process incorporating feedback from children. While I
implemented the MOOSE language, code for the MacMOOSE client was
written by several MIT undergraduates, participating in the project through
MITÕs Undergraduate Research Opportunities Program (UROP). The interface
design was done by myself and the students jointly. The students who
worked on the project are listed in Table 3.6.

Greg Hudson September 1992ÑMay 1993
Adam Skwersky June 1993ÑMay 1994
Steven Tamm February 1994ÑMay 1995, and

September 1995ÑMay 1996
Jon Heiner February 1995ÑMay 1996
Drew Samnick January 1996ÑMay 1997
Steven Shapiro (Java version) September 1996Ñpresent

Table 3.6: The MacMOOSE Development Team

MacMOOSE allows you to:
¥ Edit properties and code, and send MOOmail in Macintosh (WYSIWYG)

style,
¥ Open an Òobject browserÓ to see all the scripts, verbs, and properties on an

object, and
¥ View help in a separate window.

The application was designed to make it as easy as possible to learn to
program, and to do creative writing. Features that were suggested by users or
members of the development team that were excluded as not contributing to
this goal include for example: automatic mapping, a separate window
displaying who is currently connected, and a separate window showing what
you are holding. Suggested features that were not implemented due to lack of
time but which would advance the projectÕs primary goals include: flashing
matching parentheses, automatically coloring keywords in code, search and
replace, support for alternate character sets (for students using MacMOOSE in
language classes), and hypertext help (allowing you to double-click on a word
in order to get help on that topic). Much of the time spent in design meetings

81

was devoted to fighting Òfeaturitis,Ó in order both to keep the interface easy to
use and to keep the development time manageable.

We chose to develop MacMOOSE in Symantec C, because that was the best
available development platform in September 1992. Between MacMOOSE
version 1.0b1 and version 2.0a1 we moved to Symantec C++, which enabled
more code reuse and better design of class abstractions. There was no
adequate platform-independent development environment available at the
time the project was started. A significant disadvantage of using the
MacMOOSE client program is that it requires a Macintosh with a direct
Internet connection. Had Java existed when we began its development, we
would have written it in Java to reach a broader variety of platforms. A Java
version of MacMOOSE is currently under development. While Java runs on
multiple platforms, those platforms all require direct Internet connections as
well. The LambdaCore line editor will run on anythingÑeven a dumb
terminal connecting over a phone line. The greater functionality of
MacMOOSE is achieved at the cost of platform dependence.

3.4.1 A Tour of MacMOOSE
Connecting to MacMOOSE, you first select a server from a list (Figure 3.2).
You can have multiple connections open at once. Each connection is
identified by a number, and you can switch between them using command
keys. Windows associated with a particular connection are grouped together
on the windows menu. (These features are more necessary for adult MOO
programmers than for children using MOOSE. As well as supporting
children programming on MOOSE Crossing, MacMOOSE also works as a
general-purpose MOO client. As of June 1996, more than 950 people had
registered copies.)

82

Figure 3.2: The MacMOOSE Server List

A password dialog lets you enter your password privately (Figure 3.3). With
most other MUD clients, your password echoes in clear text. We worried this
might lead to some children pulling pranks after they had seen each otherÕs
passwords.

Once connected, your main connection window is divided into two panes:
input and output (Figure 3.4). In a raw telnet connection, incoming text can
make it difficult to read the line youÕre in the middle of typing. The most
common reason people use MUD clients is to solve this interface problem.

83

Figure 3.3: The MacMOOSE Password Dialog

Figure 3.4: The MacMOOSE Main Connection Window

What is more unusual about MacMOOSE compared to other MUD clients is
its emphasis on supporting programming. Consider the program we
discussed before: petting Rover. HereÕs how you would write the same
program using the MacMOOSE client program. First, youÕd click on the
pencil icon (or select ÒEdit...Ó from the MOOSE menu) to indicate that you
want to edit something.

Next, youÕd enter the name of the object and the script you want to edit in the
dialog box that appears (Figure 3.5).

84

Figure 3.5: The MacMOOSE Edit Code Dialog Box

MacMOOSE asks if you want to add that script. Instead of having to
remember a special command to declare a new script, the client does it for
you. When you click OK, you get an editor, in which you can simply type
your program (Figure 3.6).

In the script editor, you can change text in Macintosh WYSIWYG (What You
See Is What You Get) style. If you wanted to change ÒhisÓ to Òher,Ó youÕd just
click after Òhis,Ó hit delete twice, and then type Òer.Ó Children are able to
figure this out with little or no help. In version 1.0a1, feedback from
compiling a script or verb appeared in the main window. This was awkward
because you are not looking at the main window when you compile code. In
version 1.0b1, we added a feedback area at the bottom of the editor windows,
so your feedback is closely associated with your code. Screen real estate
proved to be tightÑyou need adequate space to see the feedback but also
adequate space left to edit code. The MOOSE compiler runs on a remote
machine; the client runs on a local machine. We tried to minimize that gap
by integrating compiler feedback with the client interface.

85

Figure 3.6: The MacMOOSE Script Editor

Unfortunately, we found that children often did not look at the feedback.
Version 2.0 made positive feedback green and negative feedback red (Figure
3.7). Your most recent feedback is colored; feedback from previous compiles is
turned black. While the children still may not always read the feedback, they
know that red means something is wrong, and they notice the red text
appearing. Additionally, the MOOSE icon8 at the top of the window is turned
red while the transaction is in progress and green again when it has
completed. This gives users a good indication of when their compile is done.
(Compiling a short script is immediate, but long ones can take several
seconds.)

To edit an object, you can open up a browser on that object (Figure 3.8).

8The moose icon was designed by Michael Maier for MacMOOSE.

86

Figure 3.7: Feedback for a Compile Error

The central pop-up menu lets you climb the inheritance hierarchy to edit the
objectÕs parents. All of the objectÕs scripts are shown on the left, and
properties on the right. Double-clicking on a script or property opens an
editor for that script or property. You may notice that fewer scripts are listed
than properties. Script and property inheritance are handled slightly
differently. If a parent object has a property, all of its children can have their
own values for that property. If a parent object has a script, all of its child
objects may use that script as it exists on the parent, but they canÕt have their
own version of the script. For this reason, the only scripts listed are those
declared on that object; properties listed include those declared on that object
and on all of its parents. Adam Skwersky and I struggled with this interface
design issue for over a month. The final solution significantly helps users
work with these subtle differences in inheritance easily.

87

Figure 3.8: The MacMOOSE Object Browser

If you need help, you can get that help in a separate window (Figure 3.9).
Multiple help messages can go in the same Ôhelp browserÕ. This prevents help
messages from scrolling away as you try to do what they recommend.

Finally, we added an interface to allow users to send MOOmail (mail internal
to the virtual world) with WYSIWYG editing (Figure 3.10). The interface
allows for sending mail, but not more advanced features like replying to a
message including part of the previous message in the body.9

9The MacMOOSE documentation quips Òno, we are not writing MOOdora.Ó

88

Figure 3.9: The MacMOOSE Help Browser

3.4.2 Equal Access for Few Versus Unequal Access for Many
MacMOOSE has proved to make learning to program significantly easier for
children (and adults). While it is possible to access MOOSE Crossing without
MacMOOSE, those doing so are at a significant disadvantage. Not wanting to
create a class of haves and have-nots, I chose to restrict access to MOOSE
Crossing to those who have access to Macintoshes on the Internet and can use
MacMOOSE. This has unfortunately significantly limited the number of kids
who have been able to use MOOSE Crossing. The number of children with
access to Macintoshes is a small proportion of the total. Giving all
participants equal access has made access available to a much more restricted
group of children. That group is unfortunately disproportionately wealthy.
We have been actively working with organizations such as CTCNet and
PluggedIn who provide computing facilities to less advantaged children to try
to broaden the demographic of children who have access to MOOSE Crossing.
We hope to begin work on a Java version of MacMOOSE in the near future,
which should make MOOSE Crossing accessible to a larger number of
children.

89

Figure 3.10: The MacMOOSE Mail Interface

3.5 Designing Empowering Technologies
Technology increasingly surrounds our everyday livesÑthe World Wide
Web was only invented in the early 1990s, but by 1995 there were already
URLs on bus ads. To what extent will the general public have meaningful
control over those technologies? The answer is not clear. I believe that if you
give people quality tools and social support for the use of those tools, they
will surprise you with their intelligence and creativity. Part of taking users
seriously involves including them in all stages of the design process:
grounding design decisions in observations of real users rather than the
formal concerns of professionals, and revising designs based on feedback
from initial users. Users rise (or fall) to designersÕ expectations. We began the
design of the MOOSE language and the MacMOOSE client with the
assumption that kids are capable of great things. Our design agenda was also a
political agendaÑtechnology can and should empower people. I believe
designing for nonprofessional users is a central issue for the future of
computer science.

90

