
Why Embedded SQL

• C : Logic Control, User interface

• SQL: Database access

• Embed SQL into C => Pro*C Language

• Compilation Procedure
– proc .pc => .c

– cc .c => .o

Using Oracle on acmex
• Only acmex!

• Login as your prism user (gtxxxxx)

• Shell to use -- sh, ksh, bash

• At login prompt, run:
– bash$. oraenv[ENTER]

– (Note the period followed by the space)

– It will prompt you:

– ORACLE_SID = [gte916j] ? publ[ENTER]

SQL*Plus
• Now you will be able to run SQL*Plus

– bash$ sqlplus /[ENTER]

• SQL*Plus is a command-line tool that
comes with Oracle to interact with the
database

• Refer to the web page for some simple
commands available with SQL*Plus.

Basic SQL*Plus commands

• SQL> quit

• SQL> SELECT user FROM dual;

• SQL> CREATE TABLE test (…);

• SQL> START script

• - where ‘script.sql’ is a file containing SQL
statements.

• SQL> HELP <command>;

Use Proc*C on acmex

• Sample Makefile:
– /db1/oracle/proc/demo/proc.mk

• Compilation:
– copy proc.mk into your working directory

– vi myfile.pc (and other source files if necessary)
– make -f proc.mk EXE=myfile OBJS=“myfile.o …”

• Sample Pro*C programs
– /db1/oracle/proc/demo/

Host Variables

• Two types of variables in Pro*C script
– Ordinary C variables : used by C only
– Host variables: communication between C and SQL

• Defining Host Variables:

SQL Data Type HV data type

gender CHAR char gender;

cname CHAR(30) char cname[31];

dob DATE char dob[10];

num1 NUMBER(6) char num1[6]; int num1;

num2 NUMBER(10) char num1[10]; long num2;

num3 DECIMAL(6,2) float num3;

synopsis VARCHAR(30) varchar synopsis[31];

Using Host Variables
EXEC SQL BEGIN DECLARE SECTION;

int cno;
char phone[31];

EXEC SQL END DECLARE SECTION;
…
scanf(“%d”, &cno);
EXEC SQL

SELECT phone
INTO :phone
FROM customers
WHERE cno = :cno ;

printf(“Selected phone number is %s\n”, phone);
…

varchar

• In Pro*C
– varchar address[61];

• After precompilation
struct {

 unsigned short len;

 unsigned char arr[61];

} address;

Using varchar
EXEC SQL BEGIN DECLARE SECTION;

int cno;
char phone[31];
varchar address[61];

EXEC SQL END DECLARE SECTION;

…
strncpy((char *) address.arr, ”323448 Gatech Station”, 60);
address.len = strlen((char *) address.arr);
strcpy(phone, “404-984-8733”);
cno = 1234;
EXEC SQL

INSERT INTO customers
VALUES(:cno, :phone, :address);

…

Indicator Variable

• Purpose: deal with null value

• Use: in pair with Host Variable

• Definition

EXEC SQL BEGIN DECLARE SECTION;
int cno;
char phone[31];
short phone_ind;

EXEC SQL END DECLARE SECTION;

Test NULL Value
scanf(“%d”, &cno);
EXEC SQL

SELECT phone
INTO :phone INDICATOR :phone_ind
FROM customers
WHERE cno = :cno;

if (phone_ind == -1)
printf(“The phone number is NULL”);

else /* phone_ind == 0 */
printf(“The phone number is not NULL”);

Set NULL value

cno = 1234;
phone_ind = -1;

EXEC SQL
UPDATE customers
SET phone = :phone INDICATOR :phone_ind
WHERE cno = :cno;

Connecting to Oracle
• SQL Command

– EXEC SQL CONNECT :uid IDENTIFIED BY :passwd;

• uid and passwd are varchar type HVs

• Take a look at sample.pc

• The uid and passwd are a problem on acmex

• Set uid and passwd to “” (the empty string)

• To disconnect from the database
– EXEC SQL COMMIT RELEASE;

Transaction

• Transaction:
– A sequence of database statements that must be

executed atomically -- either all statements
complete successfully or none of them

• Two Types of transactions in Oracle
– Read Only: Only query statements

– Read Write: Both query and update statements

Transaction Commands

• Set Transaction Type
– EXEC SQL SET TRANSACTION READ ONLY;

– Default is READ/WRITE.

• End Transaction
– EXEC SQL COMMIT WORK RELEASE;

• Commits changes and releases locks

– EXEC SQL ROLLBACK WORK RELEASE;

• Undoes changes and releases locks

SQLCA.sqlcode
• SQLCA

– A data structure that contains the status of the
execution of the last SQL statement.

– Refreshed by execution of every SQL statement

– EXEC SQL INCLUDE SQLCA;

• SQLCA.sqlcode
– Most commonly used field of SQLCA

=0 successfully executed

>0 Statement executed but with an exception

<0 Error occurred -- statement did not execute

Example 1

• Question : SQLCA.sqlcode = ?

EXEC SQL INCLUDE sqlca;
….

cno = 1234;
EXEC SQL

SELECT phone
INTO :phone
FROM customers
WHERE cno = :cno;

Example 1 (cont.)

• Answer
– case 1: Everything is OK

– case 2: There’s no table named “customers”

– case 3: There’s no customer with cno=1234

– case 4: Some other error occurred!

Example 2

• Purpose:
– transfer $100 from checking to saving

acctno = 1234;
trans_flag = 0;
EXEC SQL SET TRANSACTION READ WRITE;
EXEC SQL

Update checking
SET balance = balance - 100
WHERE acctno = :acctno;

if (sqlca.sqlcode!=0) trans_flag = 1;
EXEC SQL

Update saving
SET balance = balance + 100
WHERE acctno = :acctno;

if (sqlca.sqlcode!=0) trans_flag = 1;
if (trans_flag ==1) EXEC SQL ROLLACK;
else EXEC SQL COMMIT;

Cursors

• Limitation of “SELECT ... INTO…”
– Only one row can be returned

• When multiple rows are returned
– use cursor as pointer to span rows

• Two types of cursor
– For Read Only

– For Updates

EXEC SQL DECLARE customer_cur CURSOR FOR
SELECT * from customers
WHERE cno >= :cno

FOR READ ONLY;

cno = 1234;
EXEC SQL SET TRANSACTION READ ONLY;
EXEC SQL OPEN customer_cur;
EXEC SQL FETCH customer_cur INTO :cno, :phone;
while (sqlca.sqlcode==0) {

printf(“%d\t%s\n”, cno, phone);
EXEC SQL FETCH customer_cur INTO :cno, :phone;

}
EXEC SQL CLOSE customer_cur;
EXEC SQL COMMIT;

EXEC SQL DECLARE customer_cur CURSOR FOR
SELECT phone FROM customers
WHERE cno >= :cno

FOR UPDATE;
cno = 1234;
EXEC SQL SET TRANSACTION READ WRITE;
EXEC SQL OPEN customer_cur;
EXEC SQL FETCH customer_cur INTO :phone INDICATOR :phone_ind;
while (sqlca.sqlcode==0) {

if (phone_ind == -1)
EXEC SQL UPDATE customers

 SET phone = “N/A”
 WHERE CURRENT OF customer_cur;

EXEC SQL FETCH customer_cur
INTO :phone INDICATOR :phone_ind;

}
EXEC SQL CLOSE customer_cur;
EXEC SQL COMMIT;

More Topics

• Error handling

• Dynamic SQL

