in Industrial Practice *

Luciano Baresi, Alessandro Orso, and Mauro Pezze
Dipartimento di Elettronica e Informazione
Politecnico di Milano
Piazza Leonardo da Vinci, 32
20133 Milano, Italia
+39 2 2399 3400
baresi|orso|pezze@elet.polimi.it

ABSTRACT

Formal specification methods are not often applied in in-
dustrial projects, despite their advantages and the ma-
turity of theories and tools. The scarce familiarity of
practitioners with formal notations and the difficulties
of their use are main causes of the limited success of
formal specification methods.

Approaches based on the use of popular front-end nota-
tions formally defined with mappings on formal models
can solve practical problems. However the absence of
flexibility of the mappings proposed so far limits the ap-
plicability of such approaches to the few environments
that match exactly these solutions.

This paper presents an original solution based on for-
malisms to define mappings from front-end notations to
formal models. The proposed framework works with dif-
ferent front-end notations and formal models and sup-
ports mappings of analysis results obtained on the for-
mal model to the front-end notation chosen by the prac-
titioners.

The approach described in this paper has been validated
in industrial environments using pilot applications. The
paper presents some of the industrial results obtained so
far and ongoing experimentations.

Keywords
Specification notations, Formal methods, CASE tools.

INTRODUCTION

Presently, most software is developed using informal
specification methods. Ambiguities, inconsistencies,
and limited analysis capabilities of such methods badly
affect the final products, that often do not correspond
to the initial specifications and present unexpected fail-

*This work has been partially sponsored by the ESPRIT
project EP8593 IDERS.

ures. Formal specification methods can solve many
problems, guaranteeing non ambiguity and support-
ing powerful analysis capabilities. Formal specifica-
tion methods have been successfully applied to peculiar
projects [12, 18], but their impact on industrial practice
is still limited.

Formal methods succeed when they do not require addi-
tional specific skills [33], or when software development
involves experts of formal methods [9]. In the first case,
formal methods are easily accessible to the experts of
the application domains, and they can be applied with-
out a specific background. Most analysis capabilities of
programming languages, such as type checking or data
flow analysis, are examples of successful formal methods
applicable without specific skills. In the second case, the
application of formal methods can imply big changes in
the development teams and in the costs of the projects.
Theorem provers, such as PVS [28], are examples of
formal methods that are not easily accessible to experts
of the application domains, but require experts of for-
mal methods, and thus are seldom applied in industrial
practice.

Recently, many researchers investigated solutions based
on dual language approaches, that conjugate informal,
widely used front-end notations with rigorous, formal
models. These works propose mappings from specifi-
cations given in terms of front-end notations to formal
models [11, 10, 35]. In this way, the experts of the ap-
plication domains can benefit from the use of formal
methods interacting with familiar notations. All solu-
tions propose a fixed mapping from front-end notations
to formal kernel models, that determine fixed interpreta-
tions of ambiguities. Unfortunately, the same notation
is often used with different interpretations in different
organizations and sometimes even within the same or-
ganization or development team. Fixed, rigorous inter-
pretations can meet the needs of a specific application
domain, but they fail to provide more general solutions.

This paper proposes an original technique that intro-
duces a flexible dual language approach, based on a for-
malism for defining mappings from popular front-end
specification notations to formal models. Different in-

terpretations of the same front-end notation or different
front-end notations can be supported by simply chang-
ing rules in the proposed formalism. The flexibility
of the approach allows different interpretations of the
same notation to coexist. Customization rules are vali-
dated by checking the correctness of executions of test
specifications. The underlying formalism guarantees the
consistency of the generated formal model. The same
framework can be used in different organizations and
teams without forcing a unique interpretation, but sim-
ply by adding or by modifying suitable rules. Thus, a
tool supporting the approach would promote the use of
formal methods even in those application domains that
do not have a market wide enough to support the de-
velopment of ad-hoc tools. The flexibility achieved with
the solution proposed in this paper solves many prob-
lems that still limit the industrial application of dual
language approaches.

The next section briefly recalls the related works, dis-
cussing the relation with the results presented in this
paper. The following sections present the theoretical
foundation of the approach based on graph grammar
theory, illustrate the main issues related to the design
of a supporting tool, and outline the main results ob-
tained by the application of a prototype to pilot indus-
trial projects. The conclusions recall the main results
achieved so far.

RELATED WORK

The work presented in this paper cuts across several
research areas: method integration, multi-views sys-
tems, meta-environments, application generators, and
visual languages. The variety and the broadness of the
works in these areas make a detailed analysis difficult
and space consuming. Here, we only summarize the key
points with respect to our work.

Method integration that attempts at making graphical
informal notations benefit from formal models has been
the starting point of our work. Many approaches com-
bine features of two or more methodologies. As illus-
trated in the introduction, these approaches lack flexi-
bility. They all refer to a fix semantics of the graphi-
cal informal notation, that hardly meets the many in-
terpretations that can be found in different application
domains. Some of them do not define a complete au-
tomatic translation, but present a set of guidelines to
manually derive a formal model from an informal one.
Not all of them define a reverse mapping to show the
results of executing and analyzing the formal model in
terms of the graphical notation, thus limiting the ad-
vantages of a dual language approach.

Multi-views systems overcome the limitation of environ-
ments based on specific single notations. PRISMA [24]
allows users to employ different formalisms to capture

multiple views of a system, and it maintains a coherent
and integrated description of the models. In [39, 26],
multi-paradigm specifications are obtained by compos-
ing partial specifications in different languages. Users
do not have to tailor their specifications to the language,
but the language is chosen according to the specific as-
pects to model. CDIF [7] proposes a common format for
integrating heterogeneous information: a meta-meta-
model, similar to an Entity-Relation-Attribute model,
to describe the unified underlying data model. These
and other works emphasize the need for different nota-
tions to specify large complex systems. They go beyond
the approach we are proposing in this paper by mak-
ing the underlying representation integrating multiple,
and possibly overlapping, representations of a system.
However, these proposals concentrate on the static view
of a system, but not on its dynamics. Simulation and
animation of produced models are not addressed, and
analysis capabilities are limited to static checks.

Meta-environments are emerging as means for con-
structing software production environments, that bet-
ter cope with user needs and expectations. The tax-
onomy proposed in [20] identifies customizable environ-
ments, that offer a core set of functionalities with ca-
pabilities for augmenting/tailoring them according to
the specific requests. Customizable text editors are in-
troduced in [25, 31]. These editors are customized by
defining the grammars of the languages which they edit
and the semantic checks. Flexible environments that
support definitions of objects to be manipulated are
described in [5, 38, 37]. Users can define objects and
tools to operate on them, or the type of information
which will be used during the predefined development
process. Customizable editors for manipulating graph-
based software specifications are introduced in [29, 36].
They support multiple-layout of graphic information
and they allow the specifications of functionalities of
user interfaces through languages for describing the syn-
tax of icons and their static semantics. None of them
is designed to check the dynamic semantics of the pro-
duced models.

Application generators propose an original way to cope
with multiple user needs, by letting users build their
own environment. Application generators translate
specifications of applications into implementations, act-
ing as application compilers. These techniques have
been successfully applied to data processing, and pars-
ing [15], but they are less successful in systems program-
ming.

Multi-level representations associated with declarative
mappings between levels have been used to support the
editing of visual languages. [22] describes a general
framework for translating pictorial data into an abstract
representation and vice-versa. The mapping rules, ex-

pressed in Prolog, define element translations, but they
do not provide means to check the correctness of pro-
duced representations. [1] and [34] introduce graph-
oriented solutions very similar to our approach. In [1], a
visual programming language is represented on four lev-
els: physical layout, pictorial structure, abstract struc-
ture, and representation of the meaning. It shows how
graph grammars can be employed to maintain the repre-
sentations up-to-date with each other. More attention is
paid to higher levels; the representation of the seman-
tics is solved by associating textual meaning to each
production. The graph grammar presented throughout
the paper merges the different levels into a single very
complex graph. An alternative way to express the cor-
respondences between two graphs, keeping the graphs
separated, is presented in [34]. The work illustrates,
under a theoretical viewpoint, the use of three graph
grammars to describe both the languages of the two
graphs and the relations between them.

THE APPROACH

This section introduces a flexible framework for defin-
ing the syntax of graphical front-end notations, for ex-
pressing their operational semantics with a formal (ker-
nel) model, and for presenting the results on the formal
model in terms of the graphical front-end notation. The
approach addresses operational graphical specification
notations, e.g., data flow diagrams, control diagrams,
Statecharts. The semantics can be given in terms of
operational formal “graphical” models, e.g., Petri nets,
communicating finite state machines, task interaction
graphs. We focus on the definition of abstract syntax,
semantics, and visualization of results. Concrete syn-
tax and internal representations of models are inher-
ited from current CASE technology, which is not sub-
stituted, but enforced by our approach.

The definition of abstract syntax and semantics of
graphical notations requires the ability of designing
rules for graphical languages. The framework proposed
in this paper refers to the well known theory of graph
grammars ([23]). A brief summary of the few concepts
of graph grammar theory required to understand this
paper is given in Appendix.

Two graph grammars, called Abstract Syntax Graph
Grammar (ASGG) and Semantic Graph Grammar
(SGG), define the abstract syntax and the semantics
of a graphical front-end notation. Each ASGG produc-
tion corresponds to a SGG production. User modifica-
tions of the front-end notation are captured by means
of ASGG productions; the associated SGG productions
describe how to automatically update the formal kernel
model. This approach is shortly illustrated in Figure 1,
that presents a subset of the graph grammars that give
semantics to data flow diagrams (DFDs) in terms of
high-level timed Petri nets (HLTPNs [13]).

Production addTransformation adds a functional
transformation (node 2) to the DFD model, identified
by the marker (node 1). The SGG production de-
fines the subnet corresponding to a functional trans-
formation. A transformation is modeled by two tran-
sitions (nodes 4 and 6) to start and to end the exe-
cution connected through a place (node 2), that indi-
cates the status of the transformation. All the new
elements are linked to the diagram maker by b-edges
indicating that they belong to the diagram. Notice
that arcs of both the graph and the Petri net corre-
spond to nodes of the GG production, linked to the
source and destination nodes by GG edges. Produc-
tion addStore adds a store (node 2), whose HLTPN
representation is a marked place (node 2) The two re-
maining rules show how to connect a transformation to
a store or to another transformation. ASGG produc-
tions simply add a flow between the two elements. The
SGG production of rule connectStoreTransformation
connects the place corresponding to the store (node 3)
to the start transition of the transformation (node 2)
and adds a new place (node 4). The added place stores
the value acquired from the data store during the execu-
tion of the transformation. The SGG production of rule
connectTransformationTransformation connects the
end transition of the first transformation (node 1) to the
start transition of the second one (node 2) by adding a
new place (node 4) and connects the start and the end
transition of the target transformation (nodes 2 and 3)
by a new place (node 5). This added place stores the
input value from the added DFD flow (node 3) during
the execution of the transformation.

Often graphical notations are textually annotated. Tex-
tual annotations must be suitably translated into the
operational formal model. In the example of Figure 1,
functional transformations are annotated with textual
specifications that describe the functions performed on
the connected flows, and data stores are annotated with
their initial values. GG attributes convert textual an-
notations into predicates and actions associated with
transitions and into values associated with tokens. The
rules defined in Figure 1 set all the textual attributes
needed to build a complete formal model. When the
right side of an assignment is left unspecified, it means
that the value is not computed, but it has to be provided
from the outside. In the example of Figure 1 attribute
id of new elements of the DFD is given by the front-end
CASE tool, name and the other specific attributes (spec
and value) are given by users. Only attribute type is
set directly by the rule. SGG productions can refer to
attributes of the nodes of the corresponding ASGG pro-
duction by enclosing the expression between two “@”.
For example, attribute name of nodes 2, 4, and 6 of
the SGG production of rule addTransformation are de-
rived from the value of attribute name of node 2 of the

addTransformation
ASGG

2.id= 2.name=@2.name@Exe
2.name= 2.type="transformation"
2.type="transformation" 4.name=@2.name@Start
2.spec= 4.type="startTransformation"

4.predicate="TRUE"
6.name=@2.name@End
6.type="endTransformation”
6.predicate="TRUE"
6.action=convert(@2.spec@)

connectStoreTransformation

ASGG

3id= 2.action=4.name "=" 3.name";"

3.name= 2.&ction

3.type="flow" 4.name=@3.name@"V"
4.type="currva"

addStore
ASGG

O

S
b
155

2.id= 2.name=@2.name@
2.name= 2.type="store"
2.type="store" 3.vaue=@2.value@
2vaue=

connectTransformationTransformation

ASGG

3.id= 2.action=5.name "=" 4.name";"

3.name= 2.action

3.type="flow" 4.name=@3.name@
4.type="flow"
5.name=@3.name@"V"
5.type="currval"

Figure 1: ASGG and SGG productions for data flow diagrams.

corresponding ASGG production.

Figure 2 illustrates by an example how the graph gram-
mar productions of Figure 1 are applied to build a
complete semantic model. The excerpt of the concrete
model is annotated with the initial value 28, for the
data store and with the pseudo-code defining the func-
tion performed by the transformation. The internal
abstract representation of the model is built by ap-
plying rules addStore and addTransformation in any
order and then rule connectStoreTransformation.
Automatically, the corresponding HLTPN is defined.
The token of place S1 gets the value from store S1.
The predicate of transition TiStart is set by rule
addTransformation, while its action is set by rule
connectStoreTransformation. Place names are used
within actions as variables referring to a token in the
place. Similarly, both the predicate and the action of
transition T1End! are set by rule addTransformation.

Kernel formal models can be analyzed using several
techniques, e.g., execution, reachability analysis, model
checking. Users of front-end notations may ignore the

1Function convert adds suffix V to the names of the input flows
in the specification associated with a transformation.

f2=(f1/10) * 10
if ((f1 mod 10) > 4)
f2=f2+10;

if (f1V mod 10) > 4)
f2=12+10;

Figure 2: The construction of the HLTPN semantics of
an annotated data flow diagram obtained by applying
the ASGG and SGG productions of Figure 1.

details of the kernel model, thus analysis results must be
suitably presented in terms of the chosen front-end nota-
tion. In this paper, we focus on visualizing model execu-
tions. The problem of visualizing analysis results is dis-
cussed in [2]. Executions are characterized by sequences
of events, e.g., transition firings, that can be shown to
the experts of the application domains by animating
their models through sequences of graphical events. To

if (getType(tranld) == "startTransformation") then

beginAE
foreach placeS (getType(placeS) == "store") in preset
begin

beginE
entityld = getAbsId(placeS);
eventType = "readStore";

endE

foreach elmF (getType(elmF) == "flow")

in outputs(getAbsId(placeS))
if (target(elmF) == getAbsId(tranId))

beginE
entityld = elmF;
eventType = "crossFlow";
eventPars = [("value", compute(placeS))];
endE
end
foreach placeF (getType(placeF) == "flow") in preset
beginE
entityld = getAbsId(placeF);
eventType = "readFlow";
eventPars = [("value", compute(placeF))];
endE
beginE

entityld = getAbsId(tranld);

eventType = "startTransformation";
eventPars = [("status", "executing")];
endE
endAE

Figure 3: The animation rule for the kernel event
corresponding to the firing of a transition of type
startTransformation for the data flow diagram of Fig-
ure 1.

define the animation mechanism, we need few basic con-
cepts: kernel, abstract and concrete events?. A kernel
event is generated in the formal model, e.g., a transi-
tion firing. Each kernel event is associated with a type
that identify the kind of the action, an identifier that
identifies the subject of the action on the formal model,
and one or more elements, that describe the changes
on the status. An abstract event is an animation event
at an abstract level. It is composed of a set of single
events, one for each front-end notation element that is
affected by the animation. An abstract event comprises
an object identifier, an event type, and, if needed, one
or more parameters. An abstract event acts as a con-
tainer to relate all the front-end notation animations
which spring from a kernel event. A concrete event is a
graphical action shown at the front-end notation level.

Animation is defined as a translation of kernel events
into concrete events, through abstract events. The in-
termediate abstract layer supports adaptability and al-
lows easy reuse of animation rules.

The relation between abstract and kernel events is de-
fined by means of animation rules, that are formally de-

2A similar hierarchy is required also to visualize analysis re-
sults: kernel, abstract and concrete visualizations [2].

fined by a textual grammar, whose BNF is reported in
Appendix. Each type of kernel event is associated with
an animation rule, that describes the triggered abstract
event.

As an example, Figure 3 shows the animation rule for
the kernel event represented by the firing of a transition
of type startTransformation for the data flow diagram
of Figure 1.

The rule looks for all the places of type store in the
preset of the fired transition (tranId). These places
correspond to the data stores entering the transforma-
tion that is about to execute. An event readStore is
defined for each identified store. Among all the flows
leaving each store, the rule defines an event crossFlow
for the one whose target is the transformation linked
to tranId. This event requires as parameter the value
the animation will display on the flow. All the places of
type flow in the preset of tranId identify all the flows
connecting other transformations with the transforma-
tion corresponding to the fired transition. For each flow,
there is an event readFlow whose parameter is the read
value. Finally, we define a startTransformation event
for the transformation which is about to execute.

e Ja o
S1
entityld =Sl
eventType = "readStore" @ f1
L

TiSat[]

TlExe iy ‘
S1
entityld =f1
= even¥Type = "crossHow"
eventPars [("value', 28)] e f1
* =
il
entityld =T1
TiSat[] eva?t,Type = "startTransformation” 7:
eventPars = [("salus’, "executing’)] @
RCLCh

Figure 4: The animation of the excerpt of Figure 2 using
the animation rule of Figure 3.

Figure 4 illustrates the application of the animation
rule of Figure 3 on the DFD of Figure 2. The fir-
ing of transition T1Start triggers the abstract event
startTransformation, that removes the datum from
the input data store S1 (readStore event), “moves”
the datum on flow £f1 (crossFlow event), and blacken
the functional transformation T1 to indicate that it is
executing (startTransformation event).

TOOL SUPPORT
A toolset based on the approach introduced in this pa-
per copes with different representation levels and map-

pings among them. Figure 5 illustrates the three main
layers, that correspond to the three main sets of func-
tionalities illustrated in the previous section: kernel, ab-
stract, and concrete layers. The concrete layer supports
interactions with users and deals with the concrete syn-
tax of the chosen front-end notation. The abstract layer
checks the abstract syntax of user specifications; it pro-
duces the formal models corresponding to user specifica-
tions according to SGG productions, and it transforms
execution and analysis results into the syntax chosen by
users. The kernel layer executes and analyzes automat-
ically defined formal models.

In this section, we functionally decompose each layer.

Concrete Layer
The concrete layer comprises an end user interface mod-
ule (Front End Notation Editor) and a C/A Converter.

Front End Notation Editor The front end notation
editor deals with concrete syntax aspects: it creates
and stores specifications in the chosen graphical lan-
guage, animates them and it shows the results of execu-
tion and analysis of the corresponding formal models.
A CASE tool can be used as front end notation editor
if it provides animation and visualization capabilities,
e.g., it must be possible to flash or blink elements. Ad-
ditionally, it must allow interactions with external com-
ponents, e.g., through shared files. Most commercial
CASE tools provide such functionalities. As illustrated
in the next section, we successfully experimented with
Software through Pictures [19] (hereafter StP) and Ob-

jectMaker [21].
Front End
%ﬁ Notation Editor

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Gn covere
Abstract Layer

Customization

Editor
777777777777777777777777777777777777777777 A/K Converter |-
Kernel Layer

Kernel

Concrete Layer

Customization

Sitory Rules
Repo Interpreter

Figure 5: The overall structure of an environment sup-
porting a customizable dual language approach.

C/A Converter The C/A converter governs data ex-
change between the chosen user interface and the Cus-
tomization Rule Interpreter (CRI). Exchange of mes-
sages is bidirectional. Messages from the concrete to the
abstract layer are invocations of ASGG productions. In
this case, the C/A converter translates a specification

into calls to ASGG productions. To make this transfor-
mation the C/A converter must be aware of both the
format of the used CASE tool and of the policy chosen
to invoke ASGG productions. A first, and straightfor-
ward, way of selecting ASGG productions consists in
capturing and translating each single user’s action. This
approach precludes the reuse of existing specifications
and requires an ASGG production for almost all the
actions that users can do. Parsing user specification di-
agrams overcomes the drawbacks of the “event-driven”
approach, but it can result in being very expensive (the
membership problem is known to be NP-complete [32]).
An alternative solution consists in imposing a (partial)
order over the set of productions to guide the genera-
tion process. The C/A converter applies productions
according to the order defined so far. Since the under-
lying representation of all the diagrams, we are able to
deal with, is a graph, a “reasonable” sequence firstly
creates the nodes, and then connects them. If textual
annotations are required, they can be added either while
creating the abstract syntax object they refer to or by
specific productions to be applied after the creation of
the objects. This way of applying ASGG productions
does not penalize performances and limits the number of
necessary productions. A single production can trans-
late a group of user actions. Moreover productions for
deleting elements are not strictly necessary. They are
mandatory following the “event-driven” approach. Ac-
cording to the “generative” approach, deleting produc-
tions are not used for translating a model from scratch,
while they are required to incrementally translate the
changes performed on a previously defined model.

Messages from the CRI to the front-end notation ed-
itor correspond to invocation of the animation (visu-
alization) capabilities of the user interface. Sequences
of messages describe animations of user specifications
corresponding to executions of the formal model or vi-
sualizations of analysis results.

Abstract Layer

The abstract layer comprises a Customization Rules In-
terpreter (CRI), a Repository, and a Customization Ed-
itor. The abstract layer represents the core of the sys-
tem, that compounds existing CASE tools used at the
concrete level, with existing formal tools used at the
kernel level. The abstract layer supervises the transla-
tion of user specifications from the concrete to the ker-
nel model and of kernel events and results into abstract
events and visualizations respectively.

Customization Rules Interpreter Roughly speak-
ing, the customization rules interpreter is a two-way
translator: it transforms user specifications into for-
mal models, sequences of kernel events into sequences
of abstract events, and analysis results into abstract
visualizations. To perform the former translation the



customization rules interpreter acts as an interpreter of
graph grammars. It executes ASGG productions and
the corresponding SGG productions according to the
application sequences defined by the concrete layer. In
the latter translations, events and results from the ker-
nel are transformed into abstract events and visualiza-
tions, respectively, by interpreting proper textual rules.

Repository The repository stores the customization
rules. It deals with different sets of rules, according to
the front end notations supported at the concrete level
and according to the semantics they are given.

Customization Editor The customization editor sup-
ports the definition of new customization rules. We suc-
cessfully experimented with both an emacs-based tex-
tual customization editor and an xfig-based graphical
customization editor.

Kernel Layer
The kernel layer comprises a Kernel and a A/K Con-
verter.

Kernel The kernel performs execution and analysis of
formal models. It can be based on existing tools. As
illustrated in the next section, we successfully experi-
mented with different kernels based on high-level timed
Petri nets (HLTPNs). The choice of Petri nets is due to
the background of the authors and to the availability of
supporting tools.

A/K Converter The A/K converter translates messages
from kernel format to CRI format and viceversa. Mes-
sages from CRI to the kernel are invocations of kernel
functionalities to add the elements defined by applying
SGG productions to the formal model. Messages from
kernel to CRI propagate events and visualizations (anal-
ysis results) of the formal model.

VALIDATION

The validation of the approach proposed in this paper
followed three orthogonal directions: validation of the
theoretical approach, by defining mappings between dif-
ferent end-user notations and formal languages; devel-
opment of a prototype of the customization rules in-
terpreter, that works with different front-end notations,
CASE tools, and kernels; industrial validation by using
the customization rules interpreter in pilot industrial
projects with independent users.

Validation of the Theoretical Approach

So far, the approach has been used to give HLTPN se-
mantics to the following front-end notations: FIFO Nets
(an extension to Petri nets with places of type FIFO),
Statecharts [16], Hatley & Pirbhai requirements defi-
nition notation [17], a design notation for SA/RT [3],
and LEMMA (Language for an Easy Medical Models
Analysis) [6], an ad-hoc notation for the modeling of
medical diagnostic processes. User models have been

| Notation | # Rules |
FIFO Nets 20
LEMMA 30
Statecharts 40

Design Notation 50
Hatley&Pirbhai 60

Table 1: Complexity of defined notations.

annotated using C++ and VDM-SL. The number of GG
rules needed for the definition of each notation in terms
of HLTPNs is summarized in Table 1. The number of
rules reflects the complexity of the front-end notation
in terms of elements and their connectivity. Hereafter
we will refer to the customization rules interpreter cus-
tomized for a specific notation X as CRI(X).

Development of a Prototype

A prototype of the customization rules interpreter has
been developed and has been integrated in different
environments. For the sake of the shortness, in the
following only the most relevant environments will be
shown. The CRI(HatleyéPirbhai) has been integrated
with two commercial editors (StP and ObjectMaker)
and with two different HLTPN based kernels (Caber-
net [30]) and IDERS [8]). StP and ObjectMaker have
been customized using the built-in customization ca-
pabilities provided by these two tools: the QRL lan-
guage [19] and the ObjectMaker Extl language respec-
tively. The customization allows us to catch all rele-
vant end-user actions performed within the editor (cre-
ation/deletion of objects, hierarchical decomposition,
setting of values and so on). Alternatively, the trans-
lation can be performed off-line, by analyzing the user
model stored in the repository, flattening it, and gener-
ating all the necessary syntactical directives to build the
abstract and then the kernel model from scratch. The
integration with the two kernels has been performed by
building two middlewares (one for each kernel) that use
the APIs provided by the two kernels and interfacing
the mapping rules interpreter to such middlewares.

The CRI(SA/RT Design Notation) has been integrated
with the IDERS Kernel by means of the already built
middleware, using StP customized accordingly as front-
end notation editor. Again, it is possible to perform
both on-line and off-line translation.

The CRI(LEMMA ) has been integrated with the Caber-
net Kernel by means of the already built middleware,
using an ad-hoc editor written in Tcl/Tk [27] as front-
end notation editor.

Table 2 summarizes the different configurations of the
prototype experimented so far.



Notation Kernel | Annotations
Front-End Editor
Hatley&Pirbhai | Cabernet | C++
ObjectMaker
Hatley&Pirbhai | IDERS | VDM-SL
StP
Design Notation | IDERS | VDM-SL
StP
LEMMA Cabernet | None
Ad-Hoc

Table 2: Configurations of the prototype.

Industrial Validation

The CRI(HatleyéPirbhai) has been used by Alenia® as
part of the ESPRIT project IDERS. The application
chosen for validating the approach is the RPCM (Reply
Processor and Channel Management), a safety critical
real-time system being part of a secondary radar man-
agement apparatus, in charge of controlling air traffic
in a wide range. RPCM has been developed by a team
of experts of Alenia using structured analysis as sup-
ported by StP, and it has been validated on HLTPNs
automatically produced by the prototype. The RPCM
data model is composed of 49 nodes on 4 hierarchical
levels, and of 13 process specifications, while the RPCM
control model comprises 12 states on 5 State Transition
diagrams. The corresponding Petri Net comprises 93
places, 564 arcs and 88 transitions. The use of “formal”
structured analysis made Alenia pay greater attention
to many project details, otherwise neglected, while the
off-line validation allowed them to discover uncatched
errors and inaccuraces.

The CRI(LEMMA) has been validated at Policlinico
Umberto I (IV Clinica Semeiotica) in Rome by mod-
eling a protocol to diagnose the colo-rectal cancer.

CONCLUSIONS

This paper presented a technique to give formal seman-
tics to graphical specification notations by defining a
mapping on a formal operational model. Unlike pre-
vious works, that give fixed semantics, the technique
proposed in this paper is fully customizable, thus allow-
ing semantics to be adapted to the specific needs of the
application domains. New notations can be formally
defined by simply giving different sets of rules. The
well understood theory of graph grammars that pro-
vides the basis for the proposed technique guarantees
the generality of the approach that has been validated
by means of a significant set of specification notations.
Environments based on the proposed technique can eas-
ily relay on different CASE tools and formal kernels,

3Alenia is a Company of Finmeccanica, Italy major interna-
tional high-tech manufacturing group, active in the aerospace,
defense, energy, transportation, and automation markets.

thus allowing the reuse of existing technology and reduc-
ing the impact of its introduction in industrial practice.
The technique has been successfully validated on real
projects using a prototype which is currently used by
an independent industrial team for full validation. Qur
experience with industrial partners shows that the flexi-
bility and the user-friendliness of the proposed approach
can make formal techniques easily accessible in environ-
ments with little background in formal methods, but
large experience in specific application domains. Other-
wise these experts would hardly be able to access formal
specification techniques.

Our short-term research plans include the assessment
of the technology by defining formal semantics for new
notations, and by experimenting with new formal (ker-
nel) methods. We are looking with particular interest at
object oriented specification notations to be customized
by means of Petri nets and other formal models, e.g.,
finite state machines or process algebras. Our mid-term
research plans include the study of modularization of
graph grammars to allow automatic reuse of subsets of
rules across family of notations, and the investigation of
new animation and verification techniques based on the
feedback of the users. In the long-term, we are looking
at merging discrete execution capabilities with continu-
ous animation features to address the emerging area of
hybrid systems.

REFERENCES

[1] M. Andries, G. Engels, and J. Rekers. How to Repre-
sent a Visual Program? In Proceedings of International
Workshop on Theory of Visual Languages, June 1996.

[2] L. Baresi. Formal Customization of Graphical Nota-
tions. PhD thesis, Dipartimento di Elettronica e Infor-
mazione — Politecnico di Milano, 1997. in Italian.

[3] L. Baresi, V. Braberman, M. Felder, M. Pezz¢, and
F. Pieniazek. A Practical Approach to Formal Design
of Real-Time Systems. In Proceedings of the 1996 IEEE
International Conference on Systems, Man and Cyber-
netics, pages 1014-1019, October 1996.

[4] H. Bunke. Programmed Graph Grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Graph-Grammars
and Their Application to Computer Science and Biol-
ogy, volume 73 of Lecture Notes in Computer Science,
pages 155-166. Springer-Verlag, 1979.

[5] S.C. Choi and W. Scacchi. SOFTMAN: An Environ-
ment for Forward and Reverse Computer-Aided Soft-
ware Engineering. Information and Software Technol-
ogy, 33(9):664-674, Nov. 1991.

[6] F. Denna and A. Re. Specifica e Verifica Formale di
Processi Clinici. Master’s thesis, Politecnico di Milano,
Milano (Italy), June 1996. (in italian).

[7] EIA/CDIF. CDIF Family of Standards, 1994.

[8] M. Felder, C. Ghezzi, and M. Pezze. High-Level Timed
Petri Nets as a Kernel for Executable Specifications.
Journal of Real-Time Systems, 5(2/3):249-272, May
1993.



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

25]

K. Finney. Mathematical Notation in Formal Specifica-
tion: Too Difficult for the Masses? IEEE Transactions
on Software Engineering, 9(6):733-744, 1996.

J. Fischer and E. Dimitrov. Verification of SDL Proto-
col Specifications Using Extended Petri Nets. In Pro-
ceedings of the Workshop on Petri Nets and Protocols of
the 16th International Conference on Application and
Theory of Petri Nets, pages 1-12, 1995.

R.B. France. Semantically Extended Data Flow Dia-
grams: A Formal Specification Tool. IEEE Transac-
tions on Software Engineering, 18(4):329-346, 1992.

S. Gerhart, D. Craigen, and T. Ralston. Experience
with Formal Methods in Critical Systems. IEEE Soft-
ware, 11(1):21-28, Jan. 1994.

C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzé. A
Unified High-Level Petri Net Model For Time-Critical
Systems. IEEE Transactions on Software Engineering,
17(2):160-172, Feb. 1991.

H. Gottler. Attribute Graph Grammars for Graph-
ics. In H. Ehrig, M. Nagl, and G. Rozenberg, editors,
Graph Grammars and Their Application to Computer
Science, volume 153 of Lecture Notes in Computer Sci-
ence, pages 130-142. Springer-Verlag, 1983.

R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, and
W.M. Waite. Eli: A Complete, Flexible Compiler
Construction System. Communications of the ACM,
35:121-131, Feb. 1992.

D. Harel. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming, (8), 1987.
D.J. Hatley and I.A. Pirbhai. Strategies for Real-Time
System Specification. Dorset House, New York, 1987.
M. Hinchey and J. Bowen. Applications of Formal
Methods. Pretice-Hall International Series in Computer
Science. Prentice-Hall, 1995.

Interactive Development Environments. Structure En-
vironment: Using the StP/SE Editors, Feb. 1994. Re-
lease 5.

A.S. Karrer and W. Scacchi. Meta-Environments for
Software Production. Technical report, University of
Southern California, Atrium Laboratory, Dec. 1994.
Mark V Systems. ObjectMaker User’s Guide, 1994. ver-
sion 3.

S. Matsuoka, S. Takahashi, T. Kanada, and
A. Yonezawa. A General Framework for Bidirectional
Translation between Abstract and Pictorial Data. ACM
Transactions on Information Systems, 10(4):408-437,
1992.

M. Nagl. A Tutorial and Bibliographical Survey
on Graph Grammars. In V. Claus, H. Ehrig, and
G. Rozenberg, editors, Graph Grammars and their Ap-
plication to Computer Science and Biology, volume 73
of Lecture Notes in Computer Science, pages 70-126.
Springer-Verlag, 1979.

C. Niskier, T. Maibaum, and D. Schwabe. A Look
Through PRISMA: Towards Pluralistic Knowledge-
Based Environments. In Proceedings of the fifth Inter-
national Workshop on Software Specification and De-
sign, May 1989.

D. Notkin. The GANDALF Project. Journal of Sys-
tems and Software, 5(5):91-105, May 1985.

[26]

27]

28]

[29]

(30]

31]

32]

[33]

34]

[35]

[36]

37]

[38]

(39]

B. Nuseibeh, J. Kramer, and A. Finkelstein. A Frame-
work for Expressing the Relationships Between Multi-
ple Views in Requirements Specification. IEEE Trans-
actions on Software Engineering, Oct. 1994.

J.K. Ousterhout. TCL and the TK Toolkit. Professional
Computing Series. Addison Wesley, 1993.

S. Owre, J. Rushby, N. Shankar, and F. Von Henke.
Formal Verification for Fault-Tolerant Architectures:
Prolegomena to the Design of PVS. IEEFE Transactions
on Software Engineering, 21(2), Feb. 1995.

F.N. Paulish and W. Tichy. EDGE: An Extenible
Graph Editor.  Software Practice and FEzperience,
20(S1), June 1991.

M. Pezzeé. Cabernet:A Customizable Environment for
the Specification and Analysis of Real-Time Systems.
Technical report, Dipartimento di Elettronica e Infor-
mazione, Politecnico di Milano, Italy, May 1994.

T. Reps and T. Teitelbaum. The Synthesizer Genera-
tor. In ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development En-
vironments, Apr. 1984.

G. Rozenberg and E. Welzl. Boundary NLC Graph
Grammars — Basic Definitions, Normal Forms, and
Complexity. Information and Control, 69:136-167,
1986.

H. Saiedian. An Invitation to Formal Methods. IEEE
Computer, pages 16-30, Apr. 1996.

A. Schiirr. Specification of Graph Translators with
Triple Graph Grammars. In Proceedings of the 20th
International Workshop on Graph-Theoretic Concepts
in Computer Science, volume 904 of Lecture Notes
in Computer Science, pages 151-163. Springer-Verlag,
1994,

L. Shi and P. Nixon. An Improved Translation of
SA/RT Specification Model to High-Level Timed Petri
Nets. In Proceedings of Formal Methods Europe 96, vol-
ume 1051 of Lecture Notes in Computer Science, pages
518-537. Spriger-Verlag, Mar. 1996.

K. Smolander, P. Marttiin, K. Lyytinen, and V.P. Tah-
vanainen. MetaEdit - A Flexible Graphical Environ-
ment for Methodology Modelling. Advanced Informa-
tion Systems Engineering, pages 168-193, 1991.

A. van Lamsweerde, B. Delcourt, E. Delor, M.C.
Schayes, and R. Champagne. Generic Lifecycle Sup-
port in the ALMA Environment. IEEE Transactions
on Software Engineering, 14(6):720-741, June 1988.
Y. Yamamoto. An Approach to the Generation of Soft-
ware Life-Cycle Support Systems. PhD thesis, Univer-
sity of Michigan, 1981.

P. Zave and M. Jackson. Where Do Operations
Come From? A Multiparadigm Specification Tech-
nique. IEEE Transactions on Software Engineering,
22(7):508-528, 1996.

GRAPH GRAMMARS

A detailed and complete overview of all the graph gram-
mar models proposed in more than 25 years of theoret-
ical research would be out of the scope of this section.
This appendix only briefly introduces the few concepts
required to understand the paper.



A graph grammar (GG) is a set of productions. A GG
production consists of three parts: a graph which is to
be substituted, a graph which is to be inserted, and a
set of embedding rules, that define how the graph to
be inserted has to be connected to the graph on which
the production is applied (host graph). A GG produc-
tion can be given a graphical representation, as shown
in Figure 6. The Y [14] identifies the three components
of a production: graphs (1) and (2) correspond to the
graphs to be substituted and inserted, respectively, and
graph (3) together with the connections of graph (3)
with graphs (1) and (2) represent the embedding rules.
Nodes and edges of GG productions are labeled. In the
example of Figure 6, labels are A, B, C, D, and E for
nodes, and f, g, and h for edges. Embedding rules are
identified by chains. A chain is a un-directed path con-
necting exactly one node of graph (1), to one or more
nodes of graph (3), and to exactly one node of graph (2).
In the GG production of Figure 6, we can identify two

chains: AL EL Band AL EX A In the example

of Figure 6, the first chain (A4 L el B) states that
there will be an f-edge from the newly created B-node
to all the E-nodes that were connected to the A-node
of the replaced graph by an incoming h-edge. The sec-

ond chain (A LES A) indicates that all the E-nodes
linked to the A-node of the removed graph by a h-edge
must be connected to the newly created A-node by a
h-edge. In this case the two chains identify the same
set of E-nodes.

@ 2
Figure 6: The Y notation

A GG production is applied to a host graph by matching
graph (1) against a subgraph of the host graph, the so
called redex, by replacing the redex with a copy of graph
(2), and by connecting the added subgraph to the host
graph according to the embedding rules (chains). If
there are more occurrences of the left-hand side graph in
the host graph, then one is chosen non-deterministically.
Figure 7 illustrates an application of the GG production
of Figure 6.

In this paper we use an extended formalism to improve
performances and modeling power. The basic model
has been extended by adding explicit context, textual

Figure 7: A sample application of the GG production
of Figure 6.

attributes, and programmability ([4]).

In Figure 6, the A-node belongs to both graphs (1) and
(2). This node, removed by the application of the pro-

duction is re-inserted. The chain (A4 LES A) is
necessary to re-establish part of the lost connections
(h-edges). Unchanged nodes, like the A-node in the
example, define the context of the production. In the
extended model used in this paper the context is iden-
tified by associating nodes with an identifier; the nodes
with the same identifier in graphs (1) and (2) define
the context. When a GG production is applied, these
nodes and their connectivity remain untouched. The
nodes that belong to graph (1) only are deleted, while
the nodes that are in graph (2) only are added to the
host graph. In this paper node identifiers are natural
numbers, as shown in Figure 8.

The model presented so far well describes the graphi-
cal structure of an application, but it is not suited to
represent textual information. Textual information are
attached to the elements of a production by means of
attributes [14]. Productions are augmented with a set
of rules to specify how these attributes are set or mod-
ified when the production is applied. Figure 8 shows
a simple example of a production with attributes. The
rules listed at the bottom of the production state that
the newly created C-node (identified by the number 3)
is associated with three attributes: mame, cordx, and
cordy. The first attribute is assigned a constant value,
while the other two are determined starting from the
values of the attributes of node 1.

GG productions are applied atomically. Splitting pro-
ductions may alter the consistency of the host graph.
This constraint forces users to specify huge graph mod-
ifications within a single production, compromising the
readability of the production itself. Moreover, within
a single production users cannot address a dynamically
defined number of objects. The graphs to be replaced
and introduced statically determine nodes and arcs that
are created and deleted by applying a production. These
problems are solve by using programmed graph gram-
mars [4], that allow sets of productions to be applied in



Q) 2
3name ="C";
3.coordx = 1.coordx + 10;
3.coordy = 1.coordy;

Figure 8: An extended GG production.

a given order.

ANIMATION RULES

This appendix presents the BNF defining the anima-
tion rules instantiated for a HLTPN kernel. Each tran-
sition in the kernel model is assigned a “type”. Types
code played in giving semantics to front-end notation
elements. A rule defines how to build an abstract event
from any kernel event of a given type. At run-time, the
mapping rules interpreter uses these rules to create an
abstract event for each transition firing.

Animation rules are defined according to the follow-
ing grammar. The grammar comprises both notation-
independent and notation-dependent productions. The
first group defines the format of the rules*:

1. abstractEventRule = ‘if (’condT ‘) then’
‘beginAE’ (statement)® ‘endAE’

2. condl’ = ‘getType(’tranld‘) ==’ Ktype

3. statement = eventRule|
‘if (’condT’P‘) then’
statementList
[‘else’ statementList
‘foreach’ entity [ ‘(’condP*)’] ‘in’ set
statementList
4. statementList = statement|
‘begin’
statement
(statement)t
‘end’
5. eventRule = ‘beginE’
‘entityIld =’ Aentity;’
eventType
[eventPars]
‘endE’
6. condT P = Aentity ‘==’ Aentity|
‘eval(’ Kentity‘)’
7. eventl'ype = ‘eventType =’ EventName‘;’
8. eventPars = ‘eventPars = [’attributeList‘];’

9. attributeList = (‘ (’attributeName*,’
attributeValue*)’)t

4the conventions used in drawing the grammar are: | select
one of; [1 optional; ()7 iteration from 1 to n).

10. attributeValue = constValue|computedV alue
11. computedValue = ‘compute(’ Kentity‘);’
12. entity = Kentity|Aentity
13. condP = ‘getType(’ Kentity‘) ==’ Ktype|
‘getType(’ Aentity‘) ==’ elementType

14. set = Kset|Aset
15. Kset = ‘preset’|‘postset’
16. Aset = ‘inputs(’Aentity‘)’|‘outputs(’ Aentity*)’
17. Kentity = intVar
18. Aentity = ‘getAbsId(’ Kentity‘)’|

‘target (’ Aentity )’ |

‘source(’ Aentity*)’|

ntVar

Variable tranId represents the identifier of the fired
transition returned by the kernel. The term intVar rep-
resents an integer variable. Predefined functions have
the following meaning: getType(entity) returns the
type associated with an entity. getAbsId(Kentity) re-
turns the identifier of the abstract object corresponding
to Kentity. preset/postset return the preset/postset
of the fired transition. source/target(Aentity) re-
turn the single element connected to Aentity by an in-
coming/outgoing flow. inputs/outputs(Aentity) re-
turn the set of elements connected to Aentity by in-
coming/outgoing flows. compute(Kentity) returns a
value computed on Kentity. eval (Kentity) returns a
boolean evaluated on Kentity. The last two functions
are “virtual” functions. For each place type in the kernel
model, users have to provide the actual implementation.

The second set of productions specifies the actual sym-
bols on which the rules will work. For instance, the
notation sketched in Figure 1 requires the following def-
initions:

19. Ktype = "startTransformation" | "endTransformation" |
"transformation" | "store"
"flow" | "currVal"
20. attributeName = "status" | "value"
21. eventName = "startTransformation" | "readTerminator"
“endTransformation" | "writeTerminator" |
"readStore" | "writeStore" |
"readFlow" | "writeFlow" | "crossFlow"

22. elementType = "transformation" |
"store" | "flow"

23. constValue = "idle" | "executing"

The last step in customizing animation requires each
abstract eventName to be linked to a concrete action.
These actions are defined according to the CASE tool
used as front-end notation editor. They must take into
account both CASE tool capabilities and users’ needs.

This decoupling lets the same grammar define different
concrete animation. The abstract definitions remain un-
touched, while users are free to change the associated
concrete actions.



