
Georgia Tech / Mobile Intelligence 1

Multi-Level Learning in Hybrid 
Deliberative/Reactive Mobile Robot 

Architectural Software Systems

DARPA MARS Review Meeting - May 2000

approved for public release: distribution unlimited



Georgia Tech / Mobile Intelligence 2

■ Georgia Tech 
– College of 

Computing
✜ Prof. Ron Arkin

✜ Prof. Chris Atkeson

✜ Prof. Sven Koenig

– Georgia Tech 
Research Institute

✜ Dr. Tom Collins

■ Mobile Intelligence Inc.
✜ Dr. Doug MacKenzie

■ Students
– Amin Atrash

– Bhaskar Dutt

– Brian Ellenberger

– Mel Eriksen
– Max Likachev

– Brian Lee

– Sapan Mehta

Participants



Georgia Tech / Mobile Intelligence 3

■ Case-based Reasoning for:
– deliberative guidance 

(“wizardry”)
– reactive situation-dependent 

behavioral configuration

■ Reinforcement Learning for:
– run-time behavior 

adjustment
– behavioral assemblage 

selection

■ Probabilistic Behavioral 
Transitions for:
– gentler context switching

– experience-based planning 
guidance

Available Robots and MissionLab Console

Adaptation and Learning 
Methods
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1. Learning Momentum

■ Reactive learning via dynamic gain alteration 
(parametric adjustment)

■ Continuous adaptation based on recent 
experience

■ Situational analyses required
■ In a nutshell: If it works, keep doing it a bit 

harder; if it doesn’t, try something different
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Learning momentum (LM) is a process by 
which a robot, at runtime, changes values that 
dictate how it reacts to the environment.  Values 
include weights given to vectors pointing 
towards the goal, away from obstacles, and in 
random directions.  Also included are the 
robot’s wander persistence and sphere of 
influence (the maximum distance an obstacle 
must be from a robot before the obstacle is 
ignored).  A short running history is kept to see 
if the robot is making progress or is stuck. If the 
robot determines that it is stuck (the distance 
it’s moving is below a certain threshold), it will 
take action.  For example, it will increase the 
weight of its random vector and decrease the 
weight of its goal vector.

Altered Values
•Move to Goal Vector Weight
•Avoid Obstacles Vector Weight
•Wander Vector Weight
•Wander Persistence
•Obstacle Sphere of Influence

Goals
•Improved Completion Rate
•Improved Completion Time

Overview
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LM
present

Wander
Gain

Max Wander
Persistence

Navigation
Strategy

Series 1 No .3 10 NA
Series 2 No .5 10 NA
Series 3 Yes NA 15 Ballooning
Series 4 Yes NA 10 Ballooning
Series 5 Yes NA 15 Squeezing

Four sets of tests were run.  Each set 
consisted of five series of just over one 
hundred runs each.  The robot 
differences for each series are 
summarized in table 1.  Each set of tests 
were run on a different environment.  
The first two sets were run on 
environments with a 15% obstacle 
density, and the last two sets were run 
on environments with a 20% obstacle 
density.  Results for each run in a series 
were averaged to represent the overall 
results for the series.  Two specific 
strategies, ballooning and squeezing, 
were tested.

Table 1

Strategies:
Ballooning - The sphere of influence is 
increased when the robot comes into contact 
with obstacles to push the robot around 
clusters of obstacles and out of box canyon 
situations.

Squeezing - The sphere of influence is 
decreased when the robot comes into contact 
with obstacles so the robot can squeeze 
between tightly spaced obstacles.

Experiments
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The percentage of trials completed 
increased to 100% when learning 
momentum was added to all environments.  
The success rate of robots without learning 
momentum decreased as the obstacle 
density increased.  The first two series in 
each set in the chart above did not utilize 
learning momentum.

Robots using learning momentum were usually 
much slower than successful robots not using it.  
Only results from successful runs were used.  
The squeezing strategy (series 5) produced 
better results than the ballooning strategy (series 
3 and 4) in the tested environments. In 
continuous obstacle fields, ballooning around 
one cluster of objects simply pushes the robot 
into another cluster.
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The top figure shows a sample run 
of a robot using the squeezing 
strategy.  The bottom figure shows 
another robot traversing the same 
environment using the ballooning 
strategy.  Even though both 
approaches are successful, the 
squeezing strategy is much more 
direct.  It seems that, in 
environments such as this, learning 
momentum provides increased 
success, but there is a cost of time 
and distance traveled.

Screen Shots
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2. Case-Based Reasoning for 
Behavioral Selection

■ Another form of reactive learning
■ Previous systems include: ACBARR and SINS

■ Discontinuous behavioral switching
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• Redesigned the CBR module for the robust feature identification, case selection, and 
adaptation  process:

• Features are extracted into two vectors:
• Spatial characteristics that represent the density function discreditized
around the robot with configurable resolution
• Temporal characteristics that represent the short and long term movement 
of the robot

• Two-stage selection mechanism: 
• spatial characteristics vector biased matching at a first stage
• temporal characteristics vector biased matching at a second stage

• Case switching decision tree to control case switching in order to prevent 
thrashing and overuse of cases
• Fine-tuning of the case parameters to decrease the size of the case library

• Support for simple feature and output vectors extensions
• Support for probabilistic feature vectors

Overview
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Database of shared
variables

Behavioral 
control 

CBR Module

Behavioral 
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Current State,
Current Task

Behavioral
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Sensor Readings

Motor
Output

FSA

Current State
Current Task

Behavioral
Assemblage

Goal Position

Case Library
Index

Case

Integration (1)
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Integration (2)
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■ About 17% decrease on average in the traveling distance and time steps for a 
MovetoGoal behavior with CBR module over MovetoGoal behavior without CBR 
module (measured over 40+ runs in environments of different types and varying in 
densities, with the best set of parameters chosen manually for non-CBR behavior).

■ Significant increase in the number of solved environments
■ Results of 11 runs with obstacle density varying from 1% to 35 % (the best set of 

parameters is chosen manually for MoveToGoal without CBR module for each run)

CBR over no CBR improvement vs. obstacle density
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■ Hospital Approach Scenario. The Environment has five different homogeneous regions 
in order to exercise the cases fully.

■ On the left - MoveToGoal without CBR Module

■ On the Right - MoveToGoal with CBR Module

Screen Shots
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■ Add second level of operation: 
selection and adaptation of the whole new behavioral assemblage

■ Automatic learning and adjustment of cases through experience

■ Implementation of probabilistic feature identification

■ Integration with Q-learning and momentum learning

■ Significant statistical results on real robots

Future Plans
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■ Reinforcement learning at coarse granularity 
(behavioral assemblage selection)

■ State space tractable
■ Operates at level above learning momentum 

(selection as opposed to adjustment)
■ Have added the ability to dynamically choose 

which behavioral assemblage to execute

■ Ability to learn which assemblage to choose using 
wide variety of reinforcement learning methods: 
Q-learning, value iteration, policy iteration

Behavioral Assemblage 
Selection
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•Implementation of Assemblage Selection Learning

•Implementation of Rolling Thunder Scenario 

•Preliminary results of Assemblage Selection Learning using Q-learning

Overview
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Selecting Behavioral Assemblages - Specifics

• Replace the FSA with an interface allowing user to specify the 
environmental and behavioral states

•Agent learns transitions between behavior states

•Learning algorithm is implemented as an abstract module and 
different learning algorithms can be swapped in and out as 
desired.

•CNL function interfaces robot executable and learning algorithm
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Integrated System
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Architecture

Learning 
Algorithm

(Qlearning)

Cfgedit

CNL function

Behavioral 
States

Environmental States

CDL code

MissionLab
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RL - Next Steps

•Change implementation of Behavioral Assemblages in 
Missionlab from simply being statically compiled into the CDL 
code to a more dynamic representation.

•Create relevant scenarios and test Missionlab’s ability to 
learn good solutions

•Look at new learning algorithms to exploit the advantages of 
Behavioral Assemblages selection

•Conduct extensive simulation studies then implement on 
robot platforms
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4. CBR “Wizardry”

■ Experience-driven 
assistance in 
mission specification

■ At deliberative level 
above existing plan 
representation 
(FSA)

■ Provides mission 
planning support in 
context
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CBR Wizardry /
Usability Improvements

■ Current Methods: Using GUI to construct FSA - may 
be difficult for inexperienced users.

■ Goal: Automate plan creation as much as possible 
while providing unobtrusive support to user.
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Tentative Insertion of FSA Elements:
A user support mechanism currently being worked on

■ Some FSA elements very often occur together.
■ Statistical data on this can be gathered.

■ When user places a state, a trigger and state that follow this state 
often enough can be tentatively inserted into the FSA.

■ Comparable to URL completion features in web browsers.

State A State A

State C

Trigger B

Statistical Data
Tentative Additions

User places State A
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Recording Plan Creation Process

■ Pinpointing where user has trouble during plan creation is 
important prerequisite to improving software usability.

■ There was no way to record plan creation process in MissionLab.
■ Module now created that records user’s actions as (s)he creates 

the plan. This recording can later be played back and points 
where the user stumbled can thus be identified.

The Creation of a Plan
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Wizardry - Future Work

■ Use of plan creation recordings during usability studies to identify 
stumbling blocks in process.

■ Creation of plan templates (frameworks of some commonly used plan 
types e.g. reconnaissance missions)

■ Collection of library of plans which can be placed at different points in 
“plan creation tree”. This can then be used in a plan creation wizard.

Plan 1

Plan 2 Plan 3 Plan 4

Plan 5 Plan 6 Plan 7 Plan 8

Plan Creation Tree
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■ “Softer, kinder” method for matching situations and 
their perceptual triggers

■ Expectations generated based on situational 
probabilities regarding behavioral performance (e.g., 
obstacle densities and traversability), using them at 
planning stages for behavioral selection

■ Markov Decision Process and other Bayesian 
methods to be investigated

5. Probabilistic Planning and 
Execution
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Purpose

Integration of probabilistic planning into a behavior-based system 

Theory

Probabilistic planning can be used to address issues such as sensor uncertainty, 
actuator uncertainty, and environmental uncertainty.

POMDPs (Partially Observable Markov Decision Processes) can be used to plan based 
on models of the environment.  These models consist of states, actions, costs, 
transition probabilities, and observation probabilities.

By mapping the policy graph to a finite state automaton, the resulting plan can be used 
in behavior-based systems.

Different costs and probabilities result in different plans. Our working hypothesis is 
that humans are bad in determining optimal plans, which is why planning should be 
automated.

Overview
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POMDP Solver FSA MissionLab

Simulation

Robot

1. The POMDP is specified.
2. The POMDP is solved resulting in an FSA (finite state automaton).
3. The FSA is converted into .cdl and loaded into MissionLab.
4. The FSA is compiled and executed in simulation or on a physical robot.

Integration (1)
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Integration (2)

POMDP generated plan

empty occupied

destroyedin room

enter 
room

enter 
room

0.3 0.7

scan scan

move move

POMDP Model Sensor model for scan:
P(detect-occupied|occupied) = 0.8
P(detect-empty|empty = 1.0

Policy Graph FSA
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Mine removalRoom clearing – robot is 
traversing a hallway to determine
which rooms are safe to enter.
(POMDP model on previous slide)

Room clearing with higher cost of failure

These simple examples demonstrate the ability of the POMDP solver to 
generate different plans by weighing costs against probabilities and the ability 
of the compiler to integrate the resulting policy graphs into MissionLab.  

Currently, the compiler generates “modules” which the user integrates into 
complete plans. 

Experiments and Results



Georgia Tech / Mobile Intelligence 32

Issues

It is currently difficult to solve large POMDPs.  This restricts the application 
domain to small problems.

The mapping of states and transitions of the policy graph to triggers and behaviors 
of the finite state automaton may give rise to semantic problems.  This mapping 
must be taken into account during modeling based on the scenario, the details of 
the simulation used, and the capabilities of the robot.

Future Plans

Gather more numerical data based on simulation runs.  

Test on real robots.  Sensor models must be developed (based on sampling) for the 
sensors being used.  A microphone, for example, maybe used for the room 
searching scenario. 

Develop a simpler interface for modeling the POMDP.

Issues and Future Plans
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Role of Mobile Intelligence 
Inc.

■ Develop a conceptual plan for integrating learning 
algorithms into MissionLab

■ Guide students performing integration
■ Assist in designing usability studies to evaluate the 

integrated system
■ Guide performance and evaluation of usability 

studies
■ Identify key technologies in MissionLab which could 

be commercialized
■ Support technology transfer to a designated 

company for commercialization
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Schedule

Milestone

Demonstration of all learning 
algorithms in simulation ♦
Initial integration within MissionLab on 
lab robots ♦
Learning algorithms demonstrated in 
relevant scenarios ♦
MissionLab demonstration on 
government platforms ♦
Enhanced learning algorithms on 
government platforms ♦
Final demonstrations of relevant 
scenarios with govt. platforms ♦

Oct Jan Apr

GFY04
Jan Apr JulJul Oct

GFY01 GFY02 GFY03
Jul Oct Jan AprJul Oct Jan Apr


