

MULTISTRATEGY LEARNING METHODS FOR
MULTIROBOT SYSTEMS

R.C. Arkin, Y. Endo, B. Lee, D. MacKenzie, and E. Martinson
Mobile Robot Laboratory, College of Computing, Georgia Tech, Atlanta, GA 30332

Abstract: This article describes three different methods for introducing machine learning
into a hybrid deliberative/reactive architecture for multirobot systems: learning
momentum, Q-learning, and CBR wizards. A range of simulation experiments
and results are reported using the Georgia Tech MissionLab mission
specification system.

Key words: Machine learning, Multirobot systems

1. INTRODUCTION

As part of our research under DARPA's Mobile Autonomous Robot
Software Program, we have been investigating the use of multiple levels of
machine learning within a hybrid deliberative reactive robotic architecture.
Of late we have been focusing on several multirobot team mission scenarios,
where we have explored the use of two different forms of reinforcement
learning (learning momentum and Q-learning) as well as the application of
case-based assistance for complex multirobot mission specification within
our MissionLab software system.

This paper will present a summary and overview of the results to date
obtained for this project in the context of multirobot missions and scenarios.
Specifically:

• Learning momentum (LM), which has already been shown to have
value in the context of single robots, has now been applied to the
multirobot domain. While less than promising results were initially
obtained when using LM to switch between discrete roles that a

2 R.C. Arkin, Y. Endo, B. Lee, D. MacKenzie, and E. Martinson

robot could perform, greater success resulted by allowing the LM
module to alter the influences of components of a behavioral
assemblage on the robot's final output. The components, when
mixed in different proportions, can lead to qualitatively different
behaviors. If other robots in the team influence these proportions,
appropriate roles for each robot can emerge without the need for
inter-robot communication.

• Q-learning is applied as a coordination mechanism for multiple
robot teams. Using well-formulated roles, a group of robots with no
direct communication can learn to perform complex jobs with
multiple subtasks, and each robot is able to select and switch
between these roles within an overall team context.

• A CBR mission planning wizard assists users during the pre-mission
phase; by retrieving and adapting previously stored mission plans in
its memory, whereby even novice users can create complex multi-
agent missions without substantial training. Formal usability testing
has recently demonstrated its power and utility.

2. LEARNING MOMENTUM

 We have previously demonstrated that multiple behavior-based robots
can work together to complete a task [1] using statically defined behaviors.
If robots within a team are able to alter their behavior at runtime to better
suit the current situation, they may be able to further improve their
performance. Learning Momentum (LM) is a method by which a robot may
change its behavioral parameters in response to perceived situations at run
time, and has previously been utilized to enhance obstacle navigation [4].
We now focus on multirobot teams to assess if it can also help improve
performance.

 A test scenario was invented in which a team of robots is required to
protect a fixed target object from attacking enemy robots. The object is
placed in an open area, and one or more soldier robots are placed around it.
Enemy robots, whose overall goal is to attack the target object, are
periodically created at the fringes of the mission area. The soldier team’s
goal is to intercept and destroy enemies at an optimal distance from the
target object based on various attack strategies. A soldier is always able to
kill an enemy when intercepted. An enemy’s goal is to reach and attack the
target object. In a successful attack, the enemy destroys itself when it
reaches the target, which remains intact. For the purposes of this
experiment, the target is invincible; this allows us to see how many enemies
make it to the target.

Multistrategy Learning Methods for Multirobot Systems 3

For these experiments, the mission specification and simulation
capabilities of MissionLab were used [5]. Two enemy and three solider
types were created and pitted against each other in MissionLab’s simulator.
The first type of enemy (normal) moves directly towards any target object in
sight. The second type (decoy) wanders about where it first appeared in an
attempt to draw soldiers away so that normal enemies can attack from
another direction.

 The three soldier types each use a single behavioral assemblage to
control their actions. The component behaviors include: MoveToTarget,
InterceptEnemies, AvoidSoldiers, and AvoidObstacles. Space limitations
prevent a complete description of these behaviors here. Each soldier
performs a weighted vector summation of the above behaviors. The
difference between each type of soldier comes from how the different
behaviors are weighted via their gains.

 Two soldier types (Static1 and Static2) are non-learning and use static
weights for the vector summation. The third type (LM) uses learning
momentum to dynamically change the weights. The only difference between
the two static types is the MoveToTarget weight. The lower weight for the
Static1 types allows more freedom to intercept, but they are unstable in the
absence of any enemies as the AvoidSoldiers behavior may keep them apart.
The Static2 types are stable without enemies, but they don’t have “as long of
a reach” when intercepting.

 The LM soldiers check to see which one of five possible situations it is
in:
• All Clear – There are no visible enemies.
• Clear to Enemy – The soldier is between the target object and an enemy

group that is not occluded by another soldier.
• Flanking Enemy – The solider sees an enemy group that is not occluded

by any soldier, and it is not between that group and the target object.
• Soldier Needs Help – All enemy groups are being intercepted by

soldiers, but at least one soldier group is overwhelmed by an enemy
group. “Overwhelmed” is defined to mean that S/E < T, where S is the
size of the intercepting soldier group, E is the size of the enemy group
being intercepted, and T is a threshold (set to 0.5 for these experiments).

• No Soldiers Need Help – Enemy groups exist, but they are all being
intercepted by soldier groups of appropriate size.

 Table 1. Behavioral weight adjustments for different situations
 Move
To Target

Intercept Avoid
Soldiers

All Clear 0.05 -0.05 0.05

Flanking Enemy -0.1 0.1 -0.1

Clear To Enemy -0.1 0.1 0.1

Needs Help -0.1 0.1 -0.1

No Help 0.1 -0.1 -0.1

4 R.C. Arkin, Y. Endo, B. Lee, D. MacKenzie, and E. Martinson

 The behaviors’ weight changes using learning momentum parametric
adjustment rules [4] for each situation (Table 1). Groups of 1, 2, 3, and 6
soldiers of each type were run against five different enemy attacking
strategies. The first strategy had enemies approaching from north, south,
east, and west. The second had enemies approaching from northwest, west,
and southwest. The third had decoy enemies to the west while groups of five
normal enemies approached from the northeast. The fourth was similar to
the third, except decoys also appeared in the south. The last had enemies
coming from all directions, but always in pairs from opposite sides of the
target object. The target object was in the middle of a 200m x 200m mission
area with 3% obstacle coverage, where obstacles ranged from 1 to 5 meters
in radius. When 1, 2, or 3 soldiers were present, preliminary results were
averaged over 10 runs per enemy strategy, and when 6 soldiers were present,
results were averaged over 100 runs per enemy strategy.

Statistics were gathered on enemy creations, successes, and intercepts.
Several metrics were used to gauge the performance of groups of learning
(LM) robots versus groups of (static) non-learning ones. From this
information, the average distance from the target of an enemy’s death and
the percentage of enemies intercepted can be determined. A useful metric,
similar to “speedup” [1], is the ratio P(n) / P(1)*n, where P(n) is the average
distance of enemy death (by intercepts or enemy successes) when n soldiers
are present. A ratio value > 1 indicates a superlinear improvement, whereas
a value < 1 indicates a sublinear improvement over a single robot. Figures 1-
3 present results for three different teams of six soldiers, each of which has
faced the five different enemy strategies.

Comparisons of the results show that Static1 soldiers nearly always
perform better than the Static2 soldiers for these conditions. Thus if the LM
soldiers perform as well or better than the Static1 soldiers, then they also
will likely outperform the Static2 soldiers. Static2 soldiers might be better
for more realistic scenarios, as attacks tend to be intermittent.

The LM soldiers, in most cases, performed as well or better than the
Static1 soldiers. The only case where the non-learning robots outperformed
the learning ones was for the second enemy strategy. For the first strategy,
the learning soldiers had a clear performance advantage. For enemy
strategies 3, 4, and 5, the learning and non-learning soldiers performed
similarly, with the non-learning getting slightly better numbers for distances
of enemy deaths, and the learning soldiers getting slightly better numbers for
intercept percentages.

In summary, this experiment shows that Learning Momentum can
improve the performance of a multirobot team guarding a single object
against multiple enemies, if required that the team be stable (as used in the
description of the static soldiers) in the absence of enemies. If that

Multistrategy Learning Methods for Multirobot Systems 5

requirement is not present, however, a static set of weights may be found
that allows performance comparable to dynamic weights, although
depending on the situation, one system may clearly outperform the other.

Figures 1, 2, and 3. These show the improvement ratios,
average distances from the target of enemy deaths, and the
interception percentages for each enemy strategy for teams of
six soldiers.

3. Q-LEARNING

It is usually the case that a world model is not known in advance and the
robot needs to learn this model and simultaneously construct an optimal
policy. Q-learning [8,9] is an algorithm that does just that. Let Q(s,a) be the
expected value of the discounted reinforcement of taking action a in state s.
The value of this quantity can be estimated with the following formula:

∑ ′′′+=
′

),(*max),,(),(),(* asQsasTasRasQ
a

γ

The optimal policy in this case is:

6 R.C. Arkin, Y. Endo, B. Lee, D. MacKenzie, and E. Martinson

),(*maxarg* asQpi
a

=

In other words, the best policy is, in each state, to take the action with the

largest Q-value. Thus the Q-function makes the actions explicit, which
allows us to compute them on-line using the following update rule:

()),(),(max),(),(asQasQrasQasQ −′′++= γα
where α is the learning rate, and γ is the discount factor (0 ≤ γ < 1).

The multirobot scenario chosen to demonstrate the value of Q-learning of
behavioral assemblages [6] is a foraging task in a hostile environment. Anti-
Tank mines are scattered about the simulation where a team of robots is
expected to collect all of the mines and drop them in a designated storage
area. It is assumed that the robots know how to safely handle the explosive
ordnance. The robot team is also faced with a variety of hazards. Firstly,
the robots are not perfectly able to navigate within the environment.
Unknown terrain can leave robots stuck in shallow locations, or mud pits,
preventing them from moving. This is modeled in the simulation as a
random occurrence for each robot. The second hazard is a mobile enemy
hiding in the surrounding environment. If the mobile enemy is not
successfully intercepted by one of the team robots, then it will find the
nearest robot and "kill" that robot. The "killed" robot becomes stuck in a
fixed location until assisted by another robot. When an enemy has "killed" a
robot, it retreats to a random location around the edge of the map and waits
to attack again. When a robot is either in close proximity to an enemy, or is
subject to a random hazard, then it signals the environment that it has died,
changes color, and transitions to a STOP action. The programming, and
experimental testing was performed in the Missionlab [5] system.

Q-learning is used on each team member as a decision-making function
for picking the appropriate role (action), based on the perceptual state of the
world and the action currently being executed by the Q-learning function.
The actions available to each robot are three distinct Finite State Automata
that each encapsulates one robot team member role:

• Forager: designed to locate, pick-up, and return anti-tank mines
found in the environment to the designated storage area.

• Soldier: defends the team from enemies by safely intercepting
detected enemies before they reach other robots on the team.

• Mechanic: searches for and assists those robots that have been
disabled either by the environment or by enemies.

The perceptual state of the world is represented by a set of four Boolean
perceptual triggers:

• Detect_Enemy: true only if an enemy (red object) is visible within the
robot's field of view.

Multistrategy Learning Methods for Multirobot Systems 7

• Is_Invasion: true only if an enemy is detected within 5 meters from
the robot.

• Detect_Dead: true only if a disabled robot (yellow object) is visible
within the robot's field of view.

• Is_DieOff: true only if a disabled robot is detected within 5 meters of
the robot.

Since a combined state-action pair determines the internal state of the Q-
learner, there are 48 possible internal states for the Q-learner. 24 of these 48
internal states are not feasible, because two of the triggers, Is_Invasion and
Is_DieOff, are conditionally dependent on other triggers.

To make decisions, and to learn how successful the robot has been, the
Q-learner is rewarded when either of two events happens. If the robot
successfully drops a mine off at the base, then it receives a reward. If the
robot successfully aids a dead robot while in the Mechanic role, then it is
also rewarded. For most of the experiments, reward values of 20 and 10
respectively were used and were selected after experimenting with different
ratios of reward functions. The third role, Soldier, was not explicitly
rewarded, because a successful intercept allowed the robot to continue
gathering other rewards.

To test the robots, the Q-learning function is located within a separate
FSA for each individual robot. When the robot is initially started, it signals
the MissionLab console that it is active and loads the parameters for random
hazards. When the robot is either touched by an enemy, or is subject to a
random hazard, then it signals the environment that it has died, changes
color to yellow, and transitions to a STOP action. At this point, the Q-
learning function is no longer executing. When the robot is aided by another
robot touching it, then it changes color to blue, signals that it is again active,
determines the current state, and queries the existing Q-table to select the
proper action. The Q-learner does not have to select the last role it was
executing before it died.

The success of a robot team is judged by the number of iterations the
simulation steps through before all of the mines are removed from a map.
The faster a team collects all of the mines, the better the team is judged to
have performed. Sometimes, however, every robot on the team has died
before removing the last mine on a map. In this case, the simulation is
allowed to run up to 1,000,000 iterations before stopping. Since most runs
complete before 300,000 iterations have passed, it is highly unlikely that a
team will take up to 1,000,000 iterations to complete. Therefore in the case
of failure, the simulation is judged to have taken the full 1,000,000 steps.

In testing the team's performance, we began with a twofold hypothesis.
Firstly, the more robots participating in completing this task, the better the
performance. Mataric's analysis of interference [7], however, suggests that

8 R.C. Arkin, Y. Endo, B. Lee, D. MacKenzie, and E. Martinson

there is a limit in multiagent systems to the level of improvement gained by
adding additional robots.

Figure 4. Average Performance of Q-learning team as
team size is changed. Dashed line indicates actual
measurements, with the error bars indicating variations
due to different reward functions within each group.
The solid line indicates the values predicted by an
exponential decay.

 The second hypothesis was that the selection of an ideal reward function
was critical to the performance of the team. As such, reward functions were
designed to compare the importance of being rewarded for fixing robots
versus being rewarded for collecting mines. This hypothesis would be
consistent with other work involving heterogeneous reward functions [7].

These hypotheses were then tested using 5 different reward function
variations and 6 team sizes in 7 different environments (Fig. 4). Performance
is graphed versus team size, with the reward function variation displayed as
error bars about the average team size performance. The minimum and
maximum values seen by each size team are indicated by the endpoints of
said bars. What was demonstrated was that while the size of the team causes
an exponential drop-off in the number of iterations required to complete the
map, the change in the reward function only makes local changes about this
curve. For teams up to 12 robots, the importance of selecting the right
relationship between the dual rewards is not as important as selecting a
larger team.

More important to the performance of the overall team than the reward
values are the learning rate and exploration properties. The second battery
of testing focused on finding which parameters used during learning could
best a handcrafted control strategy for coordinating the team. Position and
number of the mines, as well as the proximity of the mines to each other
varied in the maps used for this testing.

Teams of 6 Q-learning robots were tested against two types of
handcrafted teams. The first type of team used a heterogeneous strategy of

Multistrategy Learning Methods for Multirobot Systems 9

fixed role assignments and in general performed very poorly on all of the
maps. The second type of handcrafted team was a homogenous team, with
handcrafted rules for role switching. In this case, the default role was
FORAGER. However, a robot switches to SOLDIER in the presence of an
enemy, and switches to MECHANIC whenever a dead robot was detected.

In general, the homogeneous handcrafted team performed strongly on all
of the maps, and would outperform an arbitrary set of parameters for the Q-
learning team. However, by varying the learning rate, exploration rate, and
the decay of the exploration rate used for learning the policy on each robot,
the Q-learning team could outperform the homogeneous solution on all of
the maps.

Real robot experiments are ongoing. We have performed initial work in
transferring policies learned in simulation to Pioneer2-dxe robots. Given
that a Q-learning algorithm has stabilized in simulation, and that all of the
same roles and perceptual triggers exist on the real robot, we can
successfully move the learned policy from the simulation to the robots.

4. CBR MISSION PLANNING WIZARD

Suppose there is a solider standing in front of an unknown building. He
has multiple survey robots ready to be deployed. His assignment is to inspect
the building for existence of biological weapons. However, there might be an
enemy sentry patrolling inside the building. Because of the possible
contamination, the soldier himself should not enter the building. Because of
the complexity of the task, it may be infeasible to teleoperate all of the
robots by himself to carry out the mission. Quick specification of an
autonomous multirobot mission is therefore desired. The case-based
reasoning (CBR) mission planning “wizard”, a high-level mission
specification feature recently integrated into the MissionLab system, was
designed especially to help in this type of situation.

The CBR mission planning wizard enables novice users to create complex
multirobot mission plans by adding tasks and constraints to a map-based
interface. It then composes a suitable mission plan by retrieving relevant
mission plan fragments and adapting them to fit the new situation.

The diagram in Figure 5 illustrates the case-based reasoning cycle for
problem-solving situations [3]. Out of the six tasks in the cycle, our current
implementation of the CBR mission planning wizard supports four of them:

• Retrieve: Retrieval of partially matching cases from memory.
• Propose Ballpark Solution: Extraction of a solution from the retrieved

cases above.
• Adapt: Revision of the proposed solution above to fit the new

situation.

10 R.C. Arkin, Y. Endo, B. Lee, D. MacKenzie, and E. Martinson

• Criticize: Further adaptation of the solution above.
 Implementation of the Evaluate (evaluation based on an external feedback)
and Store (storage of the new solution) tasks is one of our current research
agendas. All the cases (mission plans) are currently stored by experts
manually. Even with the current implementation, however, our formal
usability study (explained below) has showed the significant advantage of
the CBR mission planning wizard on creating complex multirobot missions.

In order for the CBR mission planning wizard to propose a mission plan,
the user first specifies requirements and preferences of a desired mission
using the map-based mission specifier or mlab (Fig. 6). Here, the
requirements and preferences refer to global mission preferences (e.g.,
Number of Robots and Maximum Velocity), local tasks (e.g., biohazard
assessment task, explosive ordinance disposal task, and waypoints task), and
task-specific constraints (e.g., Environment, Localization Method, Enemy
Consideration, and Aggressiveness).

Retrieve

Propose Ballpark

Adapt

Evaluate

Store

Criticize

Figure 5: The CBR cycle [3] Figure 6: Mission planning using the MissionLab
system with the CBR mission planning wizard feature.

After the mission requirements and preferences are specified, the

information is passed to the mission plan database and mission planning
engine (or miCBR), where previous mission plans (written in Configuration
Description Language [5]) are stored as “cases” along with their indexing
features. In miCBR, the cases whose indexing features match the user-
specified requirements and preferences are extracted and refined to propose
a new mission plan that fits with the current situation. The proposed FSA-
based mission plan is then sent back to the mission composer (CfgEdit),
where the user verifies it with the graphical user interface. Once the user is
satisfied with the plan, it can be compiled and executed on robots.

The current state of the CBR mission planning wizard was examined
with a formal usability study [2]. In terms of multirobot mission

Multistrategy Learning Methods for Multirobot Systems 11

specification, we found that increasing the number of robots involved in a
mission does not particularly degrade the quality of the user-created mission
plan if the CBR mission planning wizard is used. However, when the
mission planning wizard is disabled, the quality of the multirobot mission
appears to degrade. Here, the “quality” refers to how many assigned tasks
(e.g., “did the robot use waypoints?”, “did the robot alert after finding
biohazard?” etc.) the user-created plan was able to accomplish.

All of the participants in this study had never previously used
MissionLab, and they were divided into two control groups: one group
(Group A) who only used the basic MissionLab features, and the other group
(Group B) who used the mission planning wizard. A total of 29 people (14 in
Group A, and 15 in Group B) participated. Two tests were conducted on
each participant. In Test 1, the participant was asked to create a single robot
mission in which the robot follows a series of waypoints to approach an
unknown building that may contain biological weapons. Inside the building,
the robot had to enter all the opening rooms, check for the existence of a
biohazard, and alert if it found any.

Similarly, the overall mission objective in Test 2 is to approach an
unknown building by following waypoints, and assess the building for
existence of biohazard. However, in Test 2, two “friendly” robots and one
enemy sentry are involved in the mission; as the sentry would be patrolling
inside the building, each participant had to create a mission plan that would
coordinate two robots to look after each other while surveying the rooms.
Before conducting the tests, all the participants went through 70 minutes of
basic training to learn the functionalities of MissionLab, and another 20
minutes training was given to Group B to learn about the CBR mission
planning wizard feature.

While the success rate of Group A (without the CBR mission planning
wizard) in Test 2 (multirobot mission) was relatively worse than in Test 1
(single robot mission), the success rate of Test 2 by Group B (with the CBR
mission planning wizard) seems better than their Test 1 score. The sizeable
improvement of Group B’s Test 2 may be due to the fact that the participants
may have started becoming comfortable using the feature after the first test
(Test 1 was always conducted before Test 2). Regardless, we conclude that
increasing the number of involved robots in the mission would not degrade
the quality of the user-created mission plans if the CBR mission planning
wizard is used.

A comparison of average test duration was also determined. Although it
is apparent that using the CBR mission planning wizard reduces the time to
create mission plans (compared to the system without it), increasing the
number of involved robots in the mission does not seem to pose any
significant impact on the test duration. In other words, the test duration did

12 R.C. Arkin, Y. Endo, B. Lee, D. MacKenzie, and E. Martinson

not particularly increase or decrease throughout the tests for either with and
without the CBR mission planning wizard.

5. SUMMARY

Incorporation of a range of disparate learning algorithms is both feasible
and desirable within a hybrid deliberative/reactive architecture. In particular,
we have presented three different methods suitable for multirobot missions:
learning momentum, a parametric adjustment technique; Q-learning of roles
when represented as behavioral assemblages in the context of team
performance; and a case-based wizard to enhance the user’s ability to specify
complex multirobot missions.

Future work involves expanding other learning algorithms already in use
for single robot missions including as well as investigating the interactions
between these methods when they are allowed to be active concurrently.

ACKNOWLEDGEMENTS

This research is supported by DARPA/U.S. Army SMDC contract
#DASG60-99-C-0081. Approved for Public Release; distribution unlimited.

REFERENCES

1. Balch, T., Arkin, R. C., “Communication in Reactive Multiagent Robotic Systems,”
Autonomous Robots, Vol. 1, 1994, pp. 1-25.

2. Endo, Y., MacKenzie, D.C., and Arkin, R.C. Usability Evaluation of High-Level User
Assistance for Robot Mission Specification, Georgia Tech Technical Report GIT-
GOGSCI-2002/06, College of Computing, Georgia Institute of Technology, 2002.

3. Kolodner, J. and Leake, D. “A Tutorial Introduction to Case-Based Reasoning.” Case-
Based Reasoning: Experiences, Lessons and Future Directions, MIT Pr., 1996, pp 31-65.

4. Lee, J. B., Arkin, R. C., “Learning Momentum: Integration and Experimentation,” Proc
2001 IEEE International Conf. on Robotics and Automation, May 2001, pp.1975- 1980.

5. MacKenzie, D.C., Arkin, R.C. and Cameron, J.M. “Multiagent Mission Specification and
Execution.” Autonomous Robots, Vol. 4(1), 1997, pp. 29-52.

6. Martinson, E., Stoytchev, A., and Arkin, R., “Robot Behavioral Selection using Q-
learning”, Proc. IROS 2002, Sept. 2002, Lausanne, CH, pp. 970-977.

7. Mataric, M. "Reward Functions for Accelerated Learning" in Machine Learning: Proc.
Eleventh International Conference, San Francisco, CA, 1994, 181-189.

8. Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, MIT Press,
Cambridge, Mass, 1998.

9. Watkins, C., “Learning from Delayed Rewards”, Ph.D. Thesis, King's College, Cambridge,
UK, 1989.

	INTRODUCTION
	LEARNING MOMENTUM
	Q-LEARNING
	CBR MISSION PLANNING WIZARD
	SUMMARY

