Path planning for a vision-based autonomous robot

Ronald C. Arkin :

Computer and Information Science Department, University of Massachusetts,
Graduate Research Center, Amherst, Massachusetts, 01003

Abstract

The VISIONS research environment at the University
of Massachusetts provides an integrated system for the
interpretation of visual data. To provide a testbed for
many of the algorithms developed within this framework,
a mobile robot has been acquired.

A multi-level representation and the accompanying ar-
chitecture used to support multi-sensor navigation (pre-
dominantly visual) are described. A hybrid vertex-graph
free-space representation {meadow map) based upon the
decomposition of free space into convex regions capable
for use in both indoor and limited outdoor navigation is
discussed. Of particular interest is the capability to han-
dle multiple terrain types.

A bierarchical path planner that utilizes the data avail-
able in the above representational scheme is described.
An overview of the UMASS mobile robot architecture
(AuRA) is presented.

1. Introduction

Obtaining intelligent autonomous robotic navigation has long
been a concern for Al and robotics researchers. Many differ-
ent issues are involved in the production of such travel. These
include spatial reasoning, heuristic search, motor control, rep-
resentation of uncertainty and environmental sensing of various
types, particularly vision.

HARYV is a mobile robot (a Denning Research Vehicle) eq-
uipped with video and ultrasonic sensors (fig. 1}. It is to be
operated in two distinctly different domains:

Figure 1.

This research was supported in part by the General Dynamics Cor-
poration under grant DEY-601550 and the U.S. Army under ETL grant
DACA76-85-C-008.

240 / SPIE Vol, 727 Mobile Robots (1986)

o The confines of a research building; including halls, foyers,
and large rooms.

o The grounds of the UMASS campus; including sidewalks,
building entrances, parking lots, and grassy areas.

Thus, any architecture and representation scheme to be used
must be sufficiently general to handle both the indoor and out-
door case.

This paper is concerned primarily with path construction and
navigation in a partially modeled environment. The UMASS au-
tonomous robot architecture (AuRA) incorporates a hierarchical
planner (fig. 2) consisting of a pilot, navigator, mission planner
and motor schema manager (the execution arm of the pilot).
This paper addresses specifically the role and operation of the
navigator and its associated world model representations upon
which the navigator bases its decisions.

In the remainder of this introduction, a brief review of rel-
evant work will be presented followed by a description of the
UMASS environment. Section 2 will describe the representation
used by the navigator and the software that builds this map.
The operation of the navigator will be described in Section 3.
The extension of the representation to include diverse terrain
types will be related in section 4. A brief overview of the entire
AuRA system architecture will appear in section 5. A summary
and conclusions will complete this report.

1.1 Previous work

Early in the days of artificial intelligence, Amarel showed
that a good representation is essential for the efficient solution
of a problem!. Many different tacks have been taken by var-
ious researchers regarding appropriate navigational representa-
tions. These include pure free-space representations®>4, vertex
graphs, potential fields®, regular grids®™%, quadtree!® and au-
tomaton representations!?. A hybrid representation involving
both vertex graph and free-space representation techniques has
also been used!?1314, Each approach has its own strengths and
weaknesses!®. In several instances!®!? multi-level representa-
tions are used to exploit the best of several different representa-
tions.

The UMASS VISIONS system!®1%20 a system used for the
interpretation of natural scenes, also encompasses a multi-level
representation scheme. Knowledge sources provide hypotheses
and instantiate perceptual schemas based on top-down knowl-
edge and video sensor input. This system will ultimately be the
gateway for visual and other sensor data entering into the robot.
Previously, VISIONS has not maintained representations specif-
ically addressing navigational path planning. While provision
is made for 3D representations of objects and their 2D projec-
tions in the vertical plane, no express representation of horizontal
projections to the ground plane has been present. The system
proposed in section 5 extends and complements the VISIONS
system by adding representation levels that specifically deal with
the issues involved in navigational path planning.

Spatial
a2
g ;eo'urle's adr:: 3 MISSION Parameter Settmgs | Homeostahc
S “:"l':’"; o PLANNER (satety, shergy, etc) ___Control
Mission
Commands Status
and
Parameters
¥
=
4
3 Meadow
£ teg — NRUIGATOR
= :
9 (LTM)
£
>oint to Point Status
commands (Successtul completion or
intelligent disobedience)
' Motor Schema lnstantiation
M . = ha D
Instentisted Motor
EI ” —_ PiLOT Schema
($TH) Status Monager
N
1
Sensor | __ Panie Shunts__ |
Suybsystem (Refex Arcs)

Figure 2. Hierarchical Planner for UMASS AuRA

1.2 UMASS environment

The UMASS Denning Research Vehicle (fig. 1) is a mobile
robot manufactured by Denning Mobile robotics. It is equipped
with 24 ultrasonic sensors and shaft encoders for both the steer-
ing and drive motors. A single video camera (the VISIONS
system uses monocular images) is mounted on the vehicle and
connected to a Gould digitizer. Although some of the sensor pre-
processing (ultrasonic and encoder) is done on board the vehicle,
the bulk of the software runs on the Computer and Information
Science department’s VAXen. It is anticipated that the process-
ing load will be distributed over multiple processors by taking
advantage of the VAXcluster architecture connecting the depart-
ment’s numerous computers. The development of the UMASS
Image Understanding Architecture and the CAAPP (Content
Addressable Array Parallel Processor??) is expected to enhance
the vision processing performance when it becomes available. In
addition, the robot is to be equipped with a UHF TV transmitter
enabling remote operation.

The two locales in which the robot is to be operated in-
clude both indoor and outdoor environs. The first is within the
confines of our building, the Lederle Graduate Research Cen-
ter (GRC). The navigator assumes significant but incomplete a
priors knowledge of the world. Blueprints for the building con-
stitute the basis on which the initial indoor representation is
built. A digitizer is used to enter the relevant map features. It
is conceivable that this map could be acquired dynamically by
interaction with the environment in a manner akin to HILARE?¢
or Neptune?. Environmental acquisition via learning will not be
addressed in the near future in our work, although other UMASS
researchers may be involved in this research.

The second locale is the grounds surrounding the GRC. The

- model is derived largely from a map made by aerial photography.
Multiple terrain iypes are present including concrete sidewalks,

grassy regions and a gravel path, all of which are available for
navigation by the robot.

It should be noted that although the ground plane assump-
tion is made, (i.e. the free space is flat), as a simplification for
these early phases of research, there is nothing inherent in the
representation that precludes the use of surface models, (e.g. pla-
nar patches), to represent topographic features within the free
space regions.

The navigator serves a role analogous to the navigator in a
road rally: to provide a piecewise linear path to the vehicle pilot
(driver) for execution. Instructions might be: proceed 120 m and
turn right 85 degrees. The navigator operates from a relatively
static map and is not concerned with unrepresented obstacles
unless the pilot expressly requests an alternate route.

The pilot is considerably more short-sighted. It is concerned
only with satisfying one subgoal from the navigator at a time
(although future subgoals may affect its decisions). The pilot ad-
ditionally accepts constraints from the navigator such as criteria
for failure to attain a subgoal. If any of those criteria are met,
the navigator is informed and navigational replanning initiated.
Local alterations in the route specified by the navigator can be
made without navigator reinvocation as long as the alterations
fall within these limits. The pilot does not utilize the same rep-
resentation the navigator does, as it assumes that the navigator
has correctly produced a path that avoids any modeled obstacle.
Consequently the pilot is concerned -with avoiding unmodeled
obstacles (subject to certain constraints). Other work!%:21:22 de-
scribes the use of similar hierarchical planning systems.

Section 3 mentions how the pilot will be schema based; choos-
ing motor actions from a library of appropriate behaviors (sche-
mas) that are relevant to satisfying the navigator’s subgoals. The
scope of this paper, however, is primarily limited to navigational
planning issues and the schema based pilot and its representa-
tions will be described in a separate paper.

2. Representation

To address the issues of path planning, a static representa-
tion and a dynamic representation have been developed. The
static form, or long term memory (LTM), is where all a priors
knowledge is embedded. Although a variety of sensor interpre-
tation strategies access data stored in LTM, the navigator is the
prime consumer of this representation within the confines of the
hierarchical planner. .

The dynamic representation or short term memory (STM),
is a layered representation consisting of the robot’s current per-
ception of the world based on a long term memory context. Of
the planner components, the pilot and motor schema manager
are the principal users of this data. Portions of LTM are instan-
tiated in STM based upon the robot’s current position and the
navigator’s instructions. As the robot traverses this path, sensor
data (visual and ultrasonic) are incorporated to build up a dy-
namic model of the perceived world. This is then used to direct
the pilot to appropriate action when the path is blocked or other
alternate actions are in order. Additionally, vehicle localization
(increasing positional certainty) can be guided by available land-
marks found in these regions of visibility. Further discussion of
the details of short term memory for navigation will be deferred
to a separate paper.

2.1 Long term memory - meadow map

The principal representational form used by the navigator is
3 “meadow map” and is based on previous work by Crowley?¢
and Chatila and Laumond!?. It models free space as a collection

SPIE Vol. 727 Mobile Robots (1986) / 241

[(]]
tigure 3. Different Convex Decompositions

of convex polygons. Diagrams depicting an indoor scene and an
outdoor scene appear in figures 3 and 4. The rationale for using
convex regions is that a line between any point within one convex
region to any other point within that same region is guaranteed
to be free of collisions with all known obstacles. Thus the global
path planning problem simplifies to finding an appropriate se-
quence of convex region traversals. (Actually finding a “good”
path is more difficult - see sec. 3.2 and 4.2).

What distinguishes this representational form from the ef-
forts that preceded it lies in its ability to embed both terrain
and sensor data and its extension to include diverse terrain types.
Convex regions were chosen over a regular grid approach due to
their ability to avoid digitization bias, a smaller search space
and a significant reduction in memory requirements. Voronoi
diagrams were avoided due to their inability to relate landmark
and terrain data as readily and their perceived limitations on
flexibility of path construction when compared to this strategy.

2.1.1 Meadow map construction

The algorithm for the construction of the long term memory
meadow map representation is described in figure 5 and consists
of the following phases: initialization, main map building and
clean-up.

Initialization

In the initial phase, a series of vertices in global coordi-
nates describing the maximum reaches of robot navigation are
accepted. In the case of the interior of a building, this would be
the bounding walls. In more open terrain, it might be bound-
aries of limiting paths or an imaginary polygon bounding the
traversable region. There are no restrictions on the shape of
the bounding region and obstacles other than that they be rep-
resented by a series of straight line segments. Curves must be
converted to piecewise linear segment approximations. The raw
data is obtained from a map or blueprint of the region and the
use of a bitpad digitizer.

242 / SPIE Vol. 727 Mobile Robots (1986)

C O NCRH T T ¢

Gup B

GRASS .

BUILDING

PARKING
LoT

TmAamownO 200

figure 4. Multi-terrain Mep

After the actual coordinates of the bounding region are ac-
cepted, the region is shrunk in the configuration space manner?’.
This enables the robot to be treated as a point thereafter for
path planning purposes. A specialized shrinking technique?? is
available for highly cluttered environments.

Known obstacles that are present in the environment (pillars,
telephone poles, ... any static impediment to motion) are then
added. These are grown in the C-space style for the same rea-
son that the bounding region was shrunk. Any obstacles whose
growth results in a collision with the bounding region, are merged
into the border as they can no.longer be completely circumnav-
igated.

Finally, the obstacles are attached to the bounding region.
The obstacle vertex that is closest to a border vertex is attached
to the border by two passable links; one going out to the obstacle
and the other returning. This is repeated until all the obstacles
are connected. In essence, a single region is produced which -
includes all grown obstacles (fig. 6).

Main map building algorithm

This portion of the algorithm decomposes the region pro-
duced in the initialization step by recursively splitting the area
until all resulting regions are convex. Upon receipt of the initial
region it is checked for convexity. If the region is convex, this
portion of the procedure terminates. If it isn’t, a concave angle is
selected from those available in the region. There is guaranteed
to be at least one concave angle or the region would be convex.
Three options are available for selection: the least concave, the

FREE SPACE MAP BUILDING ALGORITHM
Initialisation

Accept and shrink bounding regions (a la configuration space)
Accept and grow modeled obstacles (configuration space)
Merge collided grown obstacles and border together

Attach obstacles to border (1 region results)

Main map building algorithm
IF region is convex
done
ELSE

Find (most,least first) concave angle
Connect it to (most opposite,leftmost,rightmost) clear vertex
Apply main map-buildisg algorithm recursively
to the two resuiting regions
ENDIF

Clean-up

Merge any regions together that will yield a convex region
Output list of connected coavex regions

Figure 8.

N

o
P}
IE}

—

L]

Figure 6. Attached Obstacles
The grown obstacles have been ottached to the surrounding shrunken

border. The resulting single region is now ready to undergo convex
decompasition.

most concave, or the first concave angle found can be chosen.
After an appropriate concave vertex is selected, the second (vie-
tim) vertex for splitting the region in two must be chosen. Three
possibilities again exist: the lefimost clear vertex, the rightmost
clear vertex, or the most nearly opposite vertex (right of center).
A connecting edge, labeled as passable, is completed between the
concave angle and its victim and the initial region is split in two.
The algorithm is then applied recursively to each of the resulting
two newly formed regions. Thus a graph of convex regions and
their traversability (fig. 3) is produced, facilitating search during
the path finding process. This decomposition continues until all
of the regions produced are convex.

Considerable experimentation was carried out, trying to de-
termine which of the concave selection modes and victim se-
lection modes (of the 9 possibilities) yields the “best” results.
Figures 3a-b show 2 different decompositions on the same re-
gion. The decomposition results were evaluated on the basis of
the quality of the paths that they produced.

How to define what constitutes the best results is nebulous.
Shortest Euclidean distance as a path length metric, (which
might appear to be the most obvious choice), may result in sig-
nificant problems with the clipping of modeled obstacles during
travel due to the inherent positional uncertainty found in the
mobile robotics domain. Fewest overall legs in a particular path
is another possible choice.

When the path search was restricted to the midpoints of the
bounding regions, (A*-1, see sec. 3.1), the experimentation in-
dicated that the results obtained were more strongly influenced
by the shape of the initial bounding region and the choice of
start and goal points of a particular path than by any predeter-
mined choice of vertex selection modes for decomposition. That
is not to say the choice of decomposition method did not pro-
duce significantly different paths in certain circumstances for the
midpoint search; rather information that is dependent on a par-
ticular initial region and the most likely paths to be taken within
that region should appropriately influence the vertex selection
process. An expanded search (A*-3) through 3 points on each
passable meadow boundary (the midpoint and one point near
each end) largely decouples the dependency of the path cost on
the decomposition method. Consequently, it becomes less sig-
nificant which mapbuilding strategy is chosen if this more costly
search methodology is used. Map building times ranging from 3
to 12 CPU seconds were observed in the non-optimized version
of this algorithm for the indoor scenario.

Clean-up

The resulting number of convex regions produced by the main
decomposition algorithm is not always minimal. There may be

some regions which can be merged together that still result in
a convex region. In some instances there are relatively few, in
others it is a bit more common. During this phase, a pass is
made on the convex region list that merges together any regions
that would result in a single convex region. The mapbuilder
process then invokes the feature editor.

It should be recalled that the algorithm thus far described is
for the simplest case, involving only one terrain type. Multiple
terrain types require additional processing and will be described
in section 4.

2.1.2 Feature editor

A major advantage this representation affords is the ease in
which additional representations of objects, landmarks, terrain
features, etc. can be embedded. In an experimental system this
is very important. The level of granularity can vary; for ohstacles
or walls, full 3D models of the entire object, 2D planar represen-
tations of surfaces (pop-up views) associated with sides (edges),
or even simplistic line models for individual corners, projected
up into the image plane, can be readily embedded via pointers.
For terrain, entire region characteristics (traversability data, sta-
tistical error data, data for guiding visual region segmentation
algorithms, etc.) can be tied to the free space regions. Indi-
vidual meadows can have topographical models (for non-planar
surfaces) which represent contours in any way the designer of
such a representation chooses. This flexibility for adding world
representations in an object-oriented manner is one of the prime
factors in the choice of the meadow map scheme over other al-
ternatives.

The mechanism for adding these representations is the fea-
ture editor. The concept is simple:-a particular free space region,
obstacle, obstacle edge, or vertex is chosen through the editor.
The new representation is accepted by the editor, storage allo-
cated for it and a link is made between the new representation
and the old. This is repeated until no more data is to be added.

This data can be acquired via sensing as well. For example,
in the case of visual data for region segmentation, by point-
ing the robot’s camera in the direction of a known region type
(e.g. grass), then acquiring the appropriate statistics through
the video digitizer and a histogram process, the robot can store
the statistical features for a particular terrain type on a per run
basis. This avoids the inflexibility that would be present if the
statistics had to computed once for all weather and seasonal con-
ditions. The result should be more robust visual segmentation.
The robot can be trained quickly and efficiently to recognize
certain terrain features.

The initial direction for features in our system include (but
are not limited to) :

o Terrain data

1. Traversability factor (ease of passage)

2. Translational and rotational error data - (to guide
the spatial error map for managing positional uncer-
tainty)

3. Data to guide visual region labeling

4. Unmodeled obstacle density

¢ Obstacle data

1. 2D pop-up views of sides
2. Vertical edge data for particular vertices (corners of
buildings, doorways, etc.)

SPIE Vol. 727 Mobile Robots (1986] / 243

In the last stage of the mapbuilder, after the user exits the
feature editor, the pointers for long-term memory are installed
making LTM available to other processes. The map builder pro-
cess then terminates.

3. Navigation (global path planning)

After the mapbuilder process terminates, the planner pro-
cess is initiated. The high-level planner is hierarchical in design;
consisting of a mission planner, navigator and pilot. The mis-
sion planner is delegated the responsibility of interpreting high
level commands, determining the nature of the mission, setting
criteria for mission, navigator and pilot failure, and setting ap-
propriate navigator and pilot parameters. The mission planner,
although part of the overall design, is not yet implemented, and
has a relatively low priority.

The navigator accepts a start and goal point from the mis-
sion planner and using the global map built by the mapbuilder
determines the “best” path to attain that goal. Just what con-
stitutes “best” is determined by the mission planner. It might be
the shortest, or the safest, or the fastest, or the least energy con-
suming path. In essence the mission planner determines which
cost functions and heuristics the navigator will use in carrying
out its role in the hierarchical planner. The remainder of this
section will deal with how the navigator fulfills its responsibili-
ties. But first,. a brief discussion of the operation of the pilot.

The pilot'is charged with implementing leg-by-leg the piece-
wise linear path that is output by the navigator. To do so the
pilot chooses from a repertoire of available sensing strategies
and motor behaviors (schemas) and passes them to the motor
schema manager for instantiation. Distributed control and low-
level planning occur within the confines of the motor schema
manager during its attempt to satisfy the navigatior’s require-
ments. As the robot proceeds, the sensors build up a model
of the perceived world in short term memory that is used by
the motor schemas and when the pilot recognizes that it can-
not satisfy the navigator’s goals without making changes in the
specified path. If the changes required are too severe, (as spec-
ified by the higher levels of the planner), the navigator will be
reinvoked and a new global path computed. If the deviations are
within acceptable limits, the pilot and motor schema manager
will, in a coordinated effort, attempt to bypass the obstacle or
other problems. Additionally, the problem of robot localization
is constantly addressed through the monitoring of short term
memory and appropriate find landmark schemas. Multiple con-
current behaviors may be present during any leg, for example:

o Stay on path (a sidewalk)

¢ Avold statlc obstacles (parked cars etc.)

¢ Avold moving obstacles (people etc.)

o Find Intersection (to determine end of path)
¢ Find landmark(building) (for localization)

The control of the priorities of the behaviors, (e.g. when is it
more important to follow the sidewalk than to avoid uncertain
but possible obstacles) is dependent on the certainty associated
with the STM representation and is controlled by the motor
schema manager. A sensor independent short term memory rep-
resentation will be the fusion point for all the different sensor
modalities and strategies.

The remainder of this section deals with the search strategies
used by the navigator, the path improvement strategies that con-
vert a coarse, raw path into a refined one, and a presentation of
results. The modifications necessary for multi-terrain navigation

244 / SPIE Vol. 727 Mobile Robots (1986)

are presented in the section following.

3.1 Search

The navigator’s task is to search through the meadow map
produced by the map builder and derive a good path for a spec-
ified start and goal. A reasonable but non-optimal solution is
satisfactory for this domain. Even if an optimal path (by what-
ever definition) was attainable by the navigator, it would only be
based on partial information (i.e. the modeled world). Since the
robot’s environment is subject to unmodeled and even moving
obstacles, there is no @ priors guarantee that any path produced
by any navigator is truly optimal. Consequently, the ultimate
goal of the navigator is to arrive at a “reasonable” path. Opti-
mality is perhaps a misplaced notion in a dynamically changing
world (without constant replanning), thus the value of spending
high computational effort in ensuring absolute minimal costs in
this mobile robot’s domain is unjustified.

After stating that, let me contradict myself a bit by saying
that the A* algorithm is used with heuristics (at this point) that
guarantee optimality. Two different search spaces are available
for the search algorithm. The simplest and most efiicient, A*-1,
is built from the midpoints of the bordering passable regions (as
in 28). The larger space, A*-3, is derived from a triad of points
on the bordering regions; the midpoint and two points near each
end of the passable edge (separated from the end by a specified
safety margin). Although computationally more expensive, the
advantage of A*-3 over A*-1 lies in a significant decoupling of
the path planning from the mapbuilding decomposition method.
Finding the initial coarse path is a fairly rapid operation (less
than 2 seconds for A*-1; less than 7 seconds for A*-3 for typical
paths). It is guaranteed to be the best path available (subject
to the cost function chosen) within the specified search space. .

The choice of A*-1 or A*-3 is made by the mission planner,
differentiating between the two on the basis of whether it is more
important to compute a path rapidly (A*-1: faster) or more
important to traverse the path rapidly (A*-3: can yield a lower
cost path). In many cases the paths resulting from both A*-1
and A*-3 are identical after refinement.

The simplest heuristic function is the shortest straight-line
Euclidean distance on the plane assuming optimal terrain. Since
the search space is relatively small, no effort has been placed
into finding better heuristics. The cost function used takes into
account the traversability factor of a given terrain type, the ac-
tual distance traversed, and can readily incorporate other factors
such as threat measurement, topographical grades, unmodeled
obstacle density (perhaps a function of time of day - (e.g. high
between classes on a sidewalk, low otherwise)), and ease of lo-
calization (based on numbers of readily discernible landmarks
within a given region).

In summary, the navigator algorithm (shown in fig. 7) ac-
cepts first two points from the mission planner. It then searches,
using the A* algorithm with a cost function based on terrain
factors and traversability, the space of midpoints (A*-1) or tri-
ads (A*-3) of connecting adjacent passable meadows, outputting
a coarse path consisting of a series of piecewise linear segments
connecting the start, the edges of bordering meadows and the
goal (fig. 9a). This approach expands fewer nodes than would a
comparable pure vertex graph of the obstacle edges (and obvi-
ously much fewer than a regular grid). The pure vertex graph
(although guaranteed to produce the shortest path) also suffers
from an inability to readily produce safer paths from shorter
paths, hence the strategy used here is considerably more versa-
tile. A Voronoi diagram can readily produce safe paths, but also

PATH FINDING ALGORITHM

Accept start and goal from mission planner.
Search

Apply A* search algorithm through convex region connectors.

(A* - 1: midpoint only)

(A* - 3: midpoint + two points near endpoints of connectors)
Output Raw Path

Path Improvement Techniques

If specified
A. Tighten path by sliding towards side vertex
by some given amount.
B. Straighten path by removing any turns that are not essential
for a clear traversal.
(details for both parts A and B appear in fig. 8)
Return “reasonable” piecewise linear path through world model.

Figure 7.

PATH IMPROVEMENT ALGORITHM
(single terrain type)

Accept the coarse path from the search component of the navigator

Tautness part

Accept safety margin (clearance from side)
Get first border midpoint of coarse path
DO WHILE Not at end of path
compute length of path for three cases
a. Midpoint unchanged
b. Midpoint slid to right (maintaining safety margin)
¢. Midpoint slid to left (maintaining safety margin)
choose lowest cost path from a, b or c.
modify path if necessary and mark path node as moved
Get next path node
ENDDO

Straightness Part

Get start of path
DO WHILE not at end
IF clear path is available to any path node ahead of current node
delete all intervening nodes
ENDIF
Get next path node
ENDDO

Clean up

Slide towards edges again as in tightening part above if path was
straightened (only for path nodes still at midpoint)
Output refined path

Figure 8.

lacks the flexibility afforded by this representation to change its
strategies (safe to short to fast) when deemed appropriate by the
mission planner.

The key however lies in the path improvement techniques de-
scribed below. Without these techniques the raw path produced
in many cases would appear to be haphazard and unreasonable
(especially for A*-1) even to the casual observer.

3.2 Path improvement strategy

Path improvement techniques are relatively common in the
use of regular grids. Although the representation used in the
UMASS AuRA long term memory is a meadow map and not a
regular grid, the precedent of refining a coarse path into a better
one exists. Thorpe? uses a relaxation based approach on a coarse
grid while Mitchell and Keirsey® use a compensation technique
to minimize inefficiency due to digitization bias.

The algorithm for path improvement for the simple single
terrain type case is presented in figure 8. The “raw” path is first
received from the planner. Beginning at the start path node and
proceeding to the end pode, each node on a passable meadow
border is tested at three locations; slid all the way to the left
(leaving a specified safety margin clearance), slid all the way to
the right (minus safety margin), and unchanged at the middle.
The lowest cost solution is chosen and the path modified accord-
ingly. This can be visualized as pulling on the ends of the path
thus tightening the path around the obstacles and walls. This
is considerably less costly than a relaxation algorithm requiring
multiple iterations over the entire path. (A limited relaxation
algorithm involving only the transition zones is required for the
multiple terrain case - see sec. 4). The A*-3 search method can
bypass this initial tautness processing as its search strategy has
already effectively accomplished it.

For eliminating unnecessary turns a straightening algorithm
is utilized. Beginning with the start path node, all further path
nodes are checked against the current path node to see if a path
exists that does not intersect with any of the known environmen-
tal obstacles. If such a path exists, all intervening path nodes
between the two connectable nodes are deleted from the path.
This process is repeated for all nodes in the path.

If the path is straightened, a better path may now be ob-
tained by sliding some of the previously unmoved path nodes.
Before exiting, the algorithm checks all these unmoved nodes to
see if a lower cost path can be obtained by sliding them along
their meadow boundaries The resulting refined path is output
from the navigator and stored in short term memory for use by
the pilot.

3.3 Results

See figures 9-11 for the results. The straightness part can be

L
L —T
(o)
N
1 ,
Bla T
7T :

Figure 9. Single Tervain Path Planaing Example (8°-1)

(o) The initial path produced by the A® search oigorithm through the
midpoints of the passadle bordering meodows.
(b) The path after undergoing path improvement strategies

SPIE Vol. 727 Mobile Robots (1986) / 245

]
O 51\\\
= |
B =

1)}
Figure 10. Another Single Terrain Planning Exampie

(0) Initiol coorse path -

(b) improved path (safety margin 1 foot)
observed to remove unnecessary detours around obstacles while
the tightening component reduces the overall path cost.

For A*-1, (figures 9-10), the actual paths produced from the
navigator are a function not only of the start-end points and im-
provement strategies used, but are also dependent on the modes
used during the mapbuilding. Considerable experimentation was
conducted trying to determine which if any of the nine modes
available to the mapbuilder resulted in consistently better paths.
No clear connection could be made between the cost of the path,
the start and end points of the path, and the nature of the con-
vex region decomposition. In some decompositions, for a given
start and end point a better path (A*-1) could be obtained us-
ing one decomposition approach over another. - For another set
of start-goal points however the same approach that performed
poorly in the first case did better than the one that previously
performed well. For an arbitrary start and end point, no single
map building strategy was clearly superior.

For A*-3 noticeable improvement occurred. Figure 11 shows
the ability to produce a better path than was the case with
the A*-1 method. The computational penalty however can be
significant as the search space is considerably larger®®.

4. Maulti-terrain extensions

One of the principal advances of this works lies in its exten-
sion to handle diverse terrain types. Previously the regular grid
has been the predominant approach used to deal with diverse
ground covers®. Certainly, for the planner to produce realistic
paths in outdoor scenarios, a reflection of different terrain types
must be taken into account by the navigator. Some terrain types
will be more costly to trayerse than others (e.g. grass as opposed
to concrete). We do not want to exclude these different terrains
as navigable areas, but yet we don’t want to lump them into one
uniform terrain type. The traction of the vehicle will depend on

246 / SPIE Vol. 727 Mobile Robots (1986}

@))

Figure 11. A°-1 versus A*-3
in tight quarters, A*-3 can make a slight difference. The gain however is
small, on the order of 2%.

(a) A*-1 final improved path.
(b) A*-3 final improved path.

the specific surface encountered. More slippage is expected to oc-
cur on gravel than on pavement. The cost in terms of positional
uncertainty can be high on loose ground. On the other hand, if
a significant reduction in the total distance to be traversed from
start to goal can be obtained (and associated reduction in time
cost), the tradeoff of increased positional uncertainty for greater
time savings may be warranted. In some cases the total amount
of positional uncertainty gained by traveling over poor surfaces
may be substantially less than that garnered by traveling over a
superior cover due to the much shorter distance the robot may
travel in taking a rougher terrain short-cut.

Another sticky point lies in terrain borders; where one ground
cover type ends and another begins. If the robot keeps one wheel
on one terrain type and the other(s) on a different cover, disori-
entation can be rapid. One of the goals of the representational
strategy used here will be to prevent the robot from unduly
straddling terrain borders. This is accomplished by the creation
of transition zones which separate the ground covers and de-
fine clean traversal points. Forbidden zones are also produced
which prevent the robot from navigating at the corners of ter-
rain boundaries; regions expected to be problematic in terms of
maintaining proper localization.

This section will first describe how the mapbuilder accommo-
dates multiple terrain types through the construction of transi-
tion zones. The next section will describe how the navigator
has been modified to accommodate path-planning through this
extended representation.

4.1 Multi-terrain mapbuilder

The extended mapbuilder is built from the uni-terrain map-
builder described in section 2.1. The algorithm appears in figure
12. The input structure of a terrain region is identical to that
for the previous mapbuilding algorithm: a list of border and ob-
stacle vertices. This region is decomposed in exactly the same
manner as before. All borders of the terrain region and enclosed
obstacles (which may later turn into other terrain regions) are
initially labeled as impassable.

After the initial terrain area is decomposed, the mapbuilder
algorithm keeps accepting new areas until none remain. After
each terrain area is decomposed in isolation, a matching algo-
rithm is run on each of the new terrain convex regions to see if it
shares any common impassable edges with any of the previously
decomposed regions. If a match is identified, evidenced by at
least partial overlap of any impassable edges, a transition zone
is built.

MULTI-TERRAIN MAPBUILDER ALGORITHM

DO WHILE no more terrain to add
Run the uni-terrain map builder (fig. 5) on a terrain region
Tag all resulting free space regions with a new terrain identifier
Match borders of new free space regions against
terrain free space regioans already produced
IF matches exist
Build transition zones connecting terrain types
Add these transition zones to free space regions
ENDIF
ENDDO

Figure 12.

The transition zone is a special region connecting two differ-
ing terrain types. Basically, the two grown edges representing
the two matched regions are used for two of the edges (fig. 13a).
This gives a distance across the zone equal to the robot’s diame-
ter plus twice the safety margin that was used in the shrinking of
the initial terrain regions (see fig. 13b). The initial zone consists
of the four vertices of the two matched edges.

It is highly desirable to minimize the time it takes for the
robot to cross a transition zone, implying a normal straightline
path. Consequently the initial polygonal representation is con-
verted into a rectangle (fig. 13c). The new edges produced are
labeled as impassable, producing small forbidden zones which
the planner construes as unnavigable. Any path that is pro-
duced by the path planner is guaranteed to be normal to the
original matched edges, thus ensuring the smoothest and fastest
transition possible. Finally, appropriate passable links are made
to connect the new transition zone and the two bordering free
space regions of the different terrain types.

The traversability factor (used for costing in path planning)
should be high for transition zones due to the problems asso-
ciated with terrain changes. Currently the traversability of a
transition zone is defaulted to the sum of the traversabilities
of the two bordering terrain types. This value can be readily
changed if appropriate via the feature editor.

Summarizing: wherever two different terrain types are found
to touch, rectangular transition zones are built allowing a limited
type of traversability between them. As a side effect, forbidden
zones, (corners of intersecting bounding regions), are marked
as off-limits for later path planning purposes. This restriction
ensures that any path taken across a transition zone will result
in a minimal distance path across said zone.

Terrain Type A

Terrain
Type 8

(a)

>

3
(b) (c)
Figure 13. Transition Zone Construction
(@) initial bordering terrain types. Terrains A and B shere
8 common edqe from vertex S to 6.
(b) The initiei transition zone is built by cannecting the four
vertices of the bordering C-space lines.
(c) The initial region is converted into a rectangie yielding
the final transition 20ne. The resulting forbidden zones
are shown as shaded aress.

4.2 Multi-terrain navigator

The navigator must be modified to ensure that the path pro-
duced is reasonable in the multi-terrain case. The only compo-
nents of the navigator that must be changed are the path im-
provement strategies. This includes both the straightening and
tautness components. No modifications whatsoever are neces-
sary for the search component. As the transition zone is rectan-
gular, any path produced by the A*-1 method through the mid-
points of passable regions is guaranteed to result in a straightline
across the transition zone. The A*-3 case occasionally requires
slight path preprocessing to ensure a perpendicular crossing of
the transition zones prior to improvement. Unfortunately, mod-
ifying the path improvement strategies (for both A*-1 and A*-3)
was non-trivial and required the implementation of a relaxation
algorithm, limited to relaxing the terrain crossings only.

The algorithm for multi-terrain path improvement is shown
in figure 14. Actually, the complexity is somewhat greater due to
special case treatment. Reviewing the algorithm: the previous
path improvement strategy is first run within the framework of
each terrain type in isolation. This is the identical algorithm
as described in section 3.2 but restricted to individual terrain
types. To reduce the cost of the relaxation later, the transition
zone crossings are then slid in the same manner as was done
for the individual meadow border passages, with one exception.
Both crossing points on the transition zones are slid in tandem,
insuring a perpendicular passage across the transition region.
Any previously unmoved vertices within the regions themselves
are then retested to see if sliding will lower the overall cost. If
necessary, additional path straightening is then performed.

Although avoiding a relaxation method for path improve-
ment was an initial design ‘goal due to perceived high compu-
tational costs, it eventually became necessary to resort to one.
The cost associated with this relaxation is not particularly high
however, due to the preprocessing on the path and, more im-
portantly, only the transition zone crossings are relaxed. The
algorithm used is fairly standard: displace the transition zones
an increment in both directions and measure the lowest cost.
Use the new lower cost point as the starting point for the next
displacement. Keep repeating until any displacement results in a
higher or equal cost path. Convergence is guaranteed using this
standard hill-climbing methodology. The time for convergence
is determined to a large extent by the displacement size and on
the number of terrain crossings. The results for the worst test
cases in the lab have yielded times for the relaxation component
that are not disproportionate with the other components of the
planning algorithm?®. Finally the path is attempted to be re-
straightened within the context of each terrain type before final
release to the pilot.

4.3 Results

A schematic model of the environment outside the Graduate

‘Research Center was used for the outdoor terrain examples. Five

different terrain regions are present: concrete, two disjoint grassy
regions, a gravel path and a parking lot. For the purposes of
path planning: the traversability factor of the concrete and the
parking lot was set to 1.0, grass 1.5, and gravel a factor of 1.2
(these are relative values). The terrain types and their associated
transition zones can be seen in figure 4.

In figures 15 and 16, the results of the path planning algo-
rithm are illustrated. The A*-1 search method was used for all
these cases. Sub-figures (a) show the initial path through the
search space. Note in this and all other cases the perpendicu-

SPIE Vol. 727 Mobile Robots (1986) / 247

P

MULTI-TERRAIN PATH IMPROVEMENT ALGORITHM

Accept a coarse path from search component of navigator

Run tautness and straightness component of uni-terrain path planner
on each part of path within a given terrain type (fig. 8)

Slide only the transition zones as in previous tautness algorithm

Run tautness and straightness component again on each part of path
within a given terrain type (only on previously unmoved vertices)

Relax path by settling transition zone crossings into
a minimal cost point

Restraighten if necessary

Figure 14.

(O]

(©)

Figere 15. Multi-torrein Path Enample
A start point in the lower left corner on concrete with goal in upper right
corner on concrete. The path planner decides it is more efficient to take

the gravel path to acheive its goal, requiring the traversal of two
transition zones,

(a) Initial raw path from A* search through midpoints of passable regions.
The cost function included a traversab!lity factor dependent on terrain.

(b) The same path without the passabie borders. Note the forbidden zones
present at the edges of transition zones.

(c) The final improved path. Note how the total length over concrete was
lengthened while the dfstance over gravel shortened.
(safety margin 1 foot).

lar passage through the transition zone is evident. Sub-figures
(b) show the improved path before transition zone relaxation.

Sub-figures (c) display the final path after relaxation and post-
relaxation straightening.

5. UMASS AuRA architecture overview

A block diagram of the proposed system is presented in fig-
ure 17. Central to the system is the hierarchical planner con-
sisting of a pilot, navigator and mission planner and charged
with the responsibility for decision making (sec. 3). The mo-
tor schema manager, the execution arm of the pilot, implements
pilot-specified behaviors at the lowest level of planning (sec. 3).
A cartographer, whose task is to maintain and provide informa-
tion on demand to requesting planning and sensory modules, is
adjacent. The mapbuilder (sec. 2.1) resides under the cartogra-

248 / SPIE Vol, 727 Mobile Robots (1986)

o)

_I__Or

(¢)

Figure 16. Yet Another Muiti-terrain Path Planning Evampie
Start in lower right- goal in upper left.
(o) Initiol row peth.
(b) Improved but unreloxed poth.
(c) Final relaxed peth.

pher’s jurisdiction. The cartographer also includes modules to
maintain the spatial error map. This map provides an explicit
representation of the robot’s probable location and orientation
and is used to restrict perceptual processing. Appropriate trans-
forms for each “turn-and-run” move of the robot increase the
area of probable positional limit while landmark identification
and other localization techniques are used for error area reduc-
tion. Statistical translational and rotational error data gathered
experimentally from diverse terrain types are used in the error
transforms.

A perception subsystem is delegated the task of fielding all
sensory information from the environment, performing some pre-
liminary filtering on that data to remove noise and then struc-
turing it in a form that is acceptable to the cartographer and
VISIONS. It is also the location where expectations are main-
tained to assist sensory processing.

The motor subsystem is the means by which the vehicle in-
teracts with its environment in response to stimuli. Motors and
motor controllers serve to effect the necessary changes. A vehi-
cle interface is provided that guides the motors to carry out the
requested response from the higher level processing.

One of the distinguishing characteristics of this architecture
is the utilization of cybernetic theory as the basis for much of its
design. Concern with the action-perception cycle, the implemen-
tation of reflex arcs through panic shunts from the sensor inter-
face to the motor subsystem bypassing higher level planning .n
times of eminent danger, consideration of the global data struc-
tures in the context of long-term and short-term memory, and
the use of perceptual and motor schemas, are important con-
tributions to the overall design of a mobile robotic system. A

Human
I Commander

s l-l Mission Planner
F1
Meadow Map | 3 bt Navigator %
Hrgg L A g
High-Level |e 38 Piiot T tignu
- § n & Schowes
Intermediate s :. § g Homaostatic
Low-Level |“ 3 fg _gm z’;r Control
{1 S 11 -
s 2 Signal
3 &f : data
i Instant-
pia Motor fations
Shnts Schema
| Sensor I l Sensor H Sensor l ------ Vehiole interf.
9 _ 9
GB control
control contro
Perception

Figure 17.

homeostatic control subsystem is present which is concerned with
maintaining a safe internal environment for the robot. Utilizing
schema theory?®, dynamic behavioral modifications are made in
response to the changing internal conditions of the robot (energy
level, temperature, etc.) For further information regarding the
system architecture see 30,

6. Summary and conclusions

In order to produce a reasonable path through a partially
modeled environment, a hybrid vertex-graph free space represen-
tation was chosen for a long term memory model of the world.
This meadow map decomposes free space into a group of con-
nected convex regions. Data for landmark recognition, localiza-
tion, error modeling, and the like can be associated with these
regions or their obstacles through the use of a feature editor.

The output of the mapbuilder is consumed in part by the
navigator component of the planner process whose duty it is to
build a collision-free path through the partially modeled world
represented in LTM. An A* search is conducted through the mid-
points (A*-1) or triads (A*-3) of the bordering passable convex
regions to arrive at a coarse path. This is then subjected to path
improvement strategies which tighten and straighten the path
subject to parameters specified by the mission planner. This al-
lows for the production of short, safe, or other types of paths
more freely than other representations might allow.

Multiple terrain situations are accommodated by extending
the basic algorithms to include the construction of transition
zones. These zones assure minimum distance traversal when the
robot changes terrain types, minimizing the increase in positional
uncertainty inherent in this maneuver.

The navigation and long term memory component of the
overall UMASS architecture described within this paper is to be
the basis for path planning for vision-based mobile robot exper-
iments. The flexibility to accommodate diverse new represen-
tations, without any changes to the underlying path planning
representation, is a major advantage of this approach.

AuRA

Acknowledgments

The author would like to thank Prof. E. Riseman, Prof. A.
Hanson, Prof. M. Arbib and the members of the LPR and VI-
SIONS groups for their assistance. This research is being con-
ducted as part of the requirements for completion of the author’s

Ph.D. degree at the University of Massachusetts, Amherst.

References

1. Amarel, S., “On Representations of Problems of Rea-
soning about Actions”, Machine Intelligence 3, 1968, reprinted
in READINGS IN ARTIFICIAL INTELLIGENCE, ed. Webber
and Nilsson, pp. 2-22, Tioga, 1981.
2. lyengar, S., Jorgensen, C., Rao, S., and Weisbin, C., “Learned
Navigation Paths for a Robot in Unexplored Terrain®, IEEE Sec-
ond Conf. On Artif. Intel. App., pp. 148-155, Dec. 1985.
3. Kuan, D.T., Zamiska, J., and Brooks, R., “Natural Decompo-
sition of Free Space for Path Planning®, Proc. IEEE Int. Conf.
Robotics and Automation, St. Louis, Mo., pp. 168-173, 1985.
4. Miller, D., “A Spatial Representation System for Mobile
Robots”, CH2152-7/85, IEEE , pp. 122-127, 1985.
5. Krogh, B., “A Generalized Potential Field Approach to Ob-
stacle Avoidance Control®, Rl Technical Paper, MS84-484, Soc.
of Mech. Engr., 1984.
6. Mitchell, J. and Keirsey, D., *Planning Strategic paths thr-
ough Variable terrain data”, SPIE Vol. 485, Appli. of Artif. In-
tell., pp. 172-179, 1984.
7. Mobile Robot Laboratory Staff, “Towards Autonomous Ve-
hicles®, Annual Research Review, The Robotics Institute, Car-
negie-Mellon University, 1984.
8. Parodi, A. M., *Multi-Goal Real-Time Global Path Plan-
ning for an Autonomous Land Vehicle using a High-speed Graph
Search Processor”, Proc. IEEE Int. Conf. Robotics and Automa-
tion, St. Louis, Mo., pp. 161-167, 1985. :
9. Thorpe, C., “Path Relaxation: Path Planning for a Mobile
Robot®, CMU Robotics Inst. Tech. Rep. CMU-RI-TR-84-5,
1984,

SPIE Vol. 727 Mobile Robots (1986) / 249

10. Andresen, F.P., Davis, L.S., Eastman, R., and Kambham-
pati, S., “Visual Algorithms for Autonomous Navigation”, Proc.
IEEE Int..Conf. Rob. and Auto., St. Louis, Mo., pp. 856-861,
1985. :

11. Tachi, S. and Komoriya, K., “Guide Dog Robot”, ROBOT-
ICS RESEARCH, Second Int. Symposium, ed. Hanafusa and
Inoue, MIT Press, pp. 333-340, 1985. .

12. Chatila, R. and Laumond, J.P., “Position refe}encing and
Consistent World Modeling for Mobile Robots®, Proc. IEEE
Int. Conf. Rob. and Auto., St. Louis, Mo., pp. 138-145, 1985,
13. Monaghan, G., “World Modeling and Path Planning for Au-
tonomous Mobile Robots”, manuscript 579-51.

14. Thorpe, C., Kanade, T., and Shafer, S., “ALV System Inte-
gration Plan”, The Robotics Inst., CMU, May 1985.

15. Arkin, R.C., “Path Planning and Execution for a Mobile
Robot: A Review of Representation and Control Strategies”,
COINS Tech. Rept., Comp. and Info. Sci. Dept., Univ. of Mas-
sachusetts, 1986.

16. Keirsey, D., Mitchell, J., Payton, D., and Preyss, E., “Mul-
tilevel Path Planning for Autonomous Vehicles”, SPIE Vol. 485,
Applications of Artificial Intelligence, pp. 133-137, 1984.

17. Stentz, A. and Shafer, S., “Module Programmer’s Guide to
Local Map Builder for ALVan”, CMU Comp. Sci. Dept., July
1985.

18. Hanson, A. and Riseman, E., “VISIONS, A Computer Sys-
tem for Interpreting Scenes®, COMPUTER VISION SYSTEMS
(Hanson and Riseman eds.), Academic Press, pp. 303-333, 1978,
19. Parma, C., Hanson, A. and Riseman E., “Experiments
in Schema-driven Interpretation of a Natural Scene”, COINS
Tech. Rep. 80-10, Comp. and Info. Sci. Dept., Univ. of Mas-
sachusetts, 1980.

20. Weymouth, T.E., “Using Object Descriptions in a Schema
Network for Machine Vision”, PhD dissertation, Comp. and Info.
Sci. Dept., Univ. of Massachusetts, May 1986.

21. Koch, E., Yeh, C., Hillel, G., Meystel, A., and Isik, C.,
“Simulation of Path Planning for a System with Vision and Map
Updating”®, Proc. IEEE Int. Conf. Rob. and Auto., St. Louis,
Mo., pp.146-160, 1985.

22. Nitao, J. and Parodi, A., “An Intelligent Pilot for an Au-
tonomous Vehicle System”, IEEE Second Conf. On Artif. In-
tel. App., pp. 176-183, Dec. 1985.

23. Weems, Charles, “Image Processing on a Content Address-
able Array Parallel Processor”, COINS Technical Report 84-10,
Comp. and Info. Sci. Dept., Univ. of Massachusetts, 1984,

24. Giralt, G., Chatils, R., and Vaisset, M., “An Integrated
Navigation and Motion Control System for Autonomous Multi-
sensory Mobile Robots”, Robotics Research, The First Interna-
tional Symposium, MIT Press, pp. 191-214, 1984,

25. Moravec, H. and Elfes, A., “High Resolution Maps from
Wide Angle Sonar”, CH2152-7/85 1985 IEEE, pp. 116-121, 1985.
26. Crowley, J., “Navigation for an Intelligent Mobile Robot”,
CMU Robotics Institute Tech. Rep., CMU-RI-TR-84-18, 1984.
27. Lozano-Perez, T., *Automatic Planning of Manipulator Tr-
ansfer Movements”, in ROBOT MOTION: Planning and Con-
trol, ed. Brady et al, pp. 499-535, 1982,

28. Arkin, R.C., “Path Planning for a Vision-based Autonomous
Robot”, forthcoming COINS Technical Report, Comp. and Info.
Sci. Dept., Univ. of Massachusetts, 1986.

29. Arkin, R.C., “Internal Control of a Robot: An Endocrine
Analogy”, unpublished paper, Dec. 1984.

30. Arkin, R.C., Ph.D. Proposal, Computer and Information
Science Department, University of Massachusetts, Spring 1986.

250 / SPIE Vol. 727 Mobile Robots (1986)

