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Summary of Approach
• Investigate robot shaping at five distinct levels 

in a hybrid robot software architecture
• Implement algorithms within MissionLab

mission specification system
• Conduct experiments to evaluate 

performance of each technique
• Combine techniques where possible
• Integrate on a platform more suitable for 

realistic missions and continue development



Overview of techniques
• CBR Wizardry

– Guide the operator
• Probabilistic Planning

– Manage complexity for 
the operator

• RL for Behavioral 
Assemblage Selection
– Learn what works for the 

robot
• CBR for Behavior 

Transitions
– Adapt to situations the 

robot can recognize
• Learning Momentum

– Vary robot parameters 
in real time 
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Learning Momentum
• Behavioral parameters are modified at runtime 

depending on a robot’s prior success in navigating 
the environment  

• Robot stores a short history of items such as the 
number of obstacles encountered, the distance to the 
goal, and other relevant data  
– uses this history to determine which one of several 

predefined situations the robot is in and alters its behavioral 
gains accordingly

– a crude form of reinforcement learning, where if the robot is 
doing well, it should keep doing what it's doing and even do 
it more

• Two strategies were previously described: ballooning 
and squeezing



Learning Momentum Trials
• Augments earlier simulation trials with real robot results
• In a limited number of runs, success was achieved only with LM 

active
• Relied on sonar sensing of obstacles
• Future experiments will use laser scanners on indoor/outdoor 

robot
• Recent effort addresses integration with CBR learning
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CBR for Behavioral Selection
• As the environment of a 

reactive robot changes, 
the selected behaviors 
should change

• Previous results 
showed improvements 
in simulation



Behavioral Adaptation Approach

• Select behavioral assemblages based on robot mission 
specification

• Adjust parameters with CBR techniques
• Fine-tuning the behaviors allows the library of cases to remain 

smaller
– Initially done only once, based on temporal “progress” measure
– Now a continuous process, integrating with Learning Momentum 

method
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CBR Trials
• Ten runs were conducted with the CBR module and ten without
• Test course included box canyon and obstacle field
• Obstacle density varied from low to high 
• Results correlate well with the simulation-based data

– as the average obstacle density increases, the benefits from the
CBR module also increase.



Integration of LM and CBR
• The first of several integration steps to combine the advantages

of different robot shaping methods
• CBR module provides discontinuous switching of behavioral 

parameters based on sufficiently drastic changes in the 
environment

• LM module provides a continuous adaptation of behavioral 
parameters
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Specifics of LM/CBR Integration
• CBR module selects a new case either

– when environment characteristics significantly change, or
– when robot performance falls below a threshold for a 

specified interval

• A case is defined as before, but now includes a set of 
parameters that control the LM adaptation rules

• LM Module acts as before, but is “conditioned” by the 
CBR-provided parameters

• The previous library of cases is insufficient
– Lacks adaptation parameters
– Does not address outdoor environments 
– Larger parameter space will make manual case building 

difficult and time-consuming



Automatic Case Learning
• Addresses the rebuilding of the case library
• CBR library now contains cases with both positive and negative 

performance history
• Reinforcement function computation sub-module computes a 

reinforcement function which is used to adjust the performance 
history measure for the last K applied cases

• The previous random selection is now weighted by the 
goodness of each of the spatially and temporally matching 
cases
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CBR “Wizardry”
• Help the user during mission specification

– check for common mistakes
– suggest fixes
– automatically insert elements

• Previous highlights include the addition of a plan 
creation recorder and initial usability studies



Usability studies
• Conducted a set of experiments 

– to evaluate the usability of the MissionLab
interface 

– to determine to what extent the current 
interface enables novice users to design 
relevant missions 

– to provide a baseline 
against which future 
versions of the system
will be evaluated



Test subject demographics
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Unix/Linux Windows Mac

Which Operating Systems Are You Familiar 
With?
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Usability study results
• Results suggest that novices perform nearly as well as 

experienced users
• Two-robot scenario was considerably more difficult than single-

robot scenario
• Studies have contributed to the population of a case database 

that will be used in the initial implementation of the wizard
• Summary data for all subjects:

 Single Robot Scenario Two Robot Scenario 

Number of Tasks 14.23 23.40 (both robots) 

Number of Triggers 21.27 38.50 (both robots) 

Modifications 36.32 69.00 

Modification Time 6 min 10 sec 12 min 11 sec 

Total Completion Time 33 min 3 sec 45 min 2 sec 

Mission Restarts 0.180 0.127 

 



Proposed CBR Wizard
• Will utilize a map-based interface and iconic task 

representations
• Will empower less-skilled robot commanders to 

develop sophisticated missions by avoiding the 
complexities of directly building FSAs

• Instead, users will build
a mission by marking 
critical aspects on a 
map 

• Case-Based Reasoner 
will fill in the gaps to 
form a complete
mission plan.



CBR component of Wizard
• Relevant cases stored in standard relational database
• Two types of cases:

– Task-based mission fragments (e.g., those from usability studies)
– Location-based mission fragments (learned from experience in 

similar situations)

• Possible case indices:
– type of mission (indoor, urban, wooded, etc.)
– number of robots
– localization requirements (accurate map, landmarks, etc.)
– stealthiness of the mission
– presence of enemy threats

• Case evaluation and adaptation currently being considered



Probabilistic Planning
• Partially Observable Markov Decision Processes 

(POMDPs) can model uncertainty for mobile robots
– uncertainty due to sensor noise
– actuator uncertainty
– unpredictable events in the environment

• Hypothesis is that robots can act more robustly by 
modeling this uncertainty explicitly with POMDPs

• Distinctions between this and previous application of 
POMDPs to robot control:
– Emphasis here has been on sensor-planning in the context 

of behavior-based robot systems
– Solutions of POMDPs can be expressed as policy graphs, 

which are similar to the finite state automata used in 
MissionLab



POMDP Planning Progress

• Previously, we showed the creation of FSAs from 
policy graphs

• Recent efforts have included simulation runs and 
actual robot runs

POMDP generated plan

empty occupied

destroyedin room

enter 
room

enter 
room

0.3 0.7

scan scan

move move

POMDP Model Sensor model for scan:
P(detect-occupied|occupied) = 0.8
P(detect-empty|empty = 1.0



Test scenario – cautious room entry

• Penalized heavily for 
entering an occupied 
room

• Equal chance of 
encountering an 
occupied or unoccupied 
room

• Observing room has 
small penalty and 
imperfect result (20% 
false negative)



Analysis & Simulation Results
• Analysis shows that 

multiple observations 
pay off as penalty for 
entering occupied room 
increases

• Simulation study 
compared naïve 
“baseline” plan against 
POMDP-based 
“optimal” plan

• Results correlated well 
with analysis



Actual Robot Results
• Used a Nomadic Technologies 150 

equipped with a stereo microphone
• Robot proceeded down a hallway until it 

detected a door
• Robot stopped and listened for sound

– For occupied rooms, a sound was 
generated every 10 seconds with 80% 
probability

• When executing the baseline plan, the 
robot would enter the room after one 
failure to detect noise
– This caused the robot to incorrectly enter 

a room in 1 out of 5 attempts
• The POMDP-generated plan instructed 

the robot to sense 2-3 times
– the robot correctly avoided occupied 

rooms in all trials



RL for Behavioral Assemblage Selection

• Essentially involves trial and error to determine when 
to switch from one behavior to another

• Operates at coarse granularity
– implements behavioral assemblage selection
– as opposed to parameterization, as is done in CBR/LM 

methods

• As reported previously:
– Approach replaces the FSA with an interface allowing user 

to specify the environmental and behavioral states
– Agent learns transitions between behavior states
– Learning algorithm is implemented as an abstract module 

and different learning algorithms can be swapped in and out 
as desired.



RL test scenario
• An intelligent landmine

– designed to intercept enemy tanks as they move down a 
nearby road and destroy them

– idealized sensor determines the location of enemy tanks 
within a certain radius

– sensor information is used with two perceptual triggers: 
CAN_INTERCEPT and NEAR

• Every timestep that the NEAR observation is made, 
the landmine receives a reward of  +2

• The landmine is not penalized for any action. 
• After making an observation and receiving a reward, 

the mine can choose WAIT or INTERCEPT  



RL learning trials
• 750 learning scenarios

– A learning scenario 
consists of 300 time 
steps in which the mine 
is attempting to intercept 
the tank

• Success of the Q-
learner  judged by the 
convergence properties 
of the Q-value table



Recent MARS-related publications

• Maxim Likhachev and Ronald C. Arkin, “Spatio-
Temporal Case-Based Reasoning for Behavioral 
Selection,” to appear at IEEE International 
Conference on Robotics and Automation (ICRA) 
2001. 

• Amin Atrash and Sven Koenig, “Probabilistic 
Planning for Behavior-Based Robotics,” to appear at 
the 14th International FLAIRS Conference. 

• J. Brian Lee and Ronald C. Arkin, “Learning 
Momentum: Integration and Experimentation,” to 
appear at IEEE International Conference on Robotics 
and Automation (ICRA) 2001. 


