The CMDLi Interpreter

The cmdli.rc file

When the CMDLi interpreter initializes it looks for an optional runtime configuration file named “cmdli.rc” in its current directory, and loads it if it exists. The file syntax is a standard key=value syntax, with one entry per line. Double quotes are necessary around values that are not a simple token. For example, 42.7 is fine without quoting, but “234.5.6.7:5000” requires quotes. Normal C /*comment*/ and C++ //comment styles are allowed, as well as using the sharp character (#) in the first column to make the entire line a comment. The keys ARE case sensitive, and whitespace is ignored, but the entire entry must be on a single line. Currently recognized entries are:
MulticastAddr

Tells the interpreter to use the specified network address for multicasting, instead of the default address of 224.0.1.150:12345 to talk to the other CMDLi interpreters. Note that the default address is a valid multicasting address for the JBoxes and this entry is only required in other circumstances.

Syntax:

 MulticastAddr = “IPaddress:Port”

Example:

 MulticastAddr = “234.5.6.7:5000”
RobotAddresses
The default behavior is that the CMDLi interpreters communicate using multicasting. However, this entry allows converting that behavior into replicated unicast messages. That is, instead of periodically sending a single multicast UDP packet to all other interpreters, each interpreter will instead send N-1 copies of the packet, each directed to one of the addresses listed in this entry. This is normally used if multicasting is not working, due to network topology, or to allow running multiple instances of the interpreter on a single computer for testing or demos. Note that all addresses should be listed, including the one for the local interpreter. It will remove its own address from the list before sending messages. Any number of addresses can be listed, but they have to all be on the same line in the file.
Syntax:

 RobotAddresses = “[robotname@]IPaddress:Port”, “[robotname@]IPaddress:Port”, “[robotname@]IPaddress:Port”

Examples:

 // Provide a list of addresses for each robot so will not use multicasting

 RobotAddresses = “192.168.1.1:5000”, “192.168.1.2:5000”, 192.168.1.2:5001”

 // Provide the name and address for each robot, so each robot can look up the

 // address it should use, and won’t use multicasting. This form is used to allow

 // running multiple robots on a single computer, often for demos or simulation

 RobotAddresses = “Robo1@192.168.1.1:5000”, “Robo2@192.168.1.1:5001”

UnicastPort

Specifies the port the interpreter should listen on for unicast messages. The default port number is 12345, although unicast messages are not used by default and this command is normally used in conjunction with a RobotAddresses entry to specify the port for this instance. Legal port numbers are between 1 and 65535 inclusive, with reasonable values between 4000 and 65000
Syntax:

 UnicastPort = “Portnumber”

Example:

 UnicastPort = 5000
CommsDebug
Used to enable debugging messages from the communications library. The value is a bit mask to allow selectively enabling different classes of messages. To create a value, add the individual bits together to form an overall debug value. The available message classes are:
 1:
General - provides setup details and runtime warnings

 2:
Transmitter - provides details about each message sent

 4:
Receiver - details about each message received

 8:
Detailed Receiver – provides details about each received packet

 16:
Raw – prints the raw data contained in each received and transmitted packet

Syntax:

 CommsDebug = value

Example:
 // Turn on General, Receiver, and Raw messages (1 + 4 + 16)

 CommsDebug = 21
Debug
Used to enable debugging messages from the CMDL interpreter. The value is a bit mask to allow selectively enabling different classes of messages. To create a value, add the individual bits together to form an overall debug value. The available message classes are:

 1:
Loader General - Extra details and warnings while loading the CMDL mission
 2:
Loader Parser – Detailed parsing messages while loading the CMDL mission
 4:
Loader Scanner – Detailed scanning messages while loading the CMDL mission
 8:
Interpreter – Provides detailed status while executing the CMDL mission
 16:
Synchronization – Details of the inter-interpreter synchronization process
Syntax:

 Debug = value

Example:

 // Turn on General, Interpreter, and Synchronization messages (1 + 8 + 16)

 Debug = 25
CommsTimeout
When multiple robots must synchronize at a point in the mission, it can happen that one of them fails, for example due to blocked radio communications or a power failure. After the commsTimeout period, the remainder of the robots will declare the failed robot dead, and begin ignoring it. If they later again receive status messages from the failed robot, they will pause at the end of their current mission segment and wait for it to catch up. This entry sets the length of the default commsTimeout period in seconds that is used if not overridden in the CMDL mission plan. If this entry is not specified, 60 seconds is used as the default value.

Syntax:

 commsTimeout = seconds

Example:

 commsTimeout = 300
The CMDL Mission Plan File Format

Whitespace
All white space is ignored and not significant

Case Sensitivity

Keywords such as UNIT or IF are NOT case sensitive. However, robot names, parameter names, and some values ARE case sensitive, with the robot name Alv1 being distinct from ALV1.

Comments

Standard C-style comments such as /* this is a comment */ are supported, along with two additional single line comment styles:

// The rest of this line is a comment

-- The rest of this line is also a comment
File format

A valid CMDL file consists of two parts, the header and the body.

Legal Header commands:

MISSION NAME "name of the mission"
This command specifies the name of the mission. This may be used for display purposes in status messages, by collaborating robots to ensure they are all operating on the same mission plan, and by editors for informational purposes.

A typical example is:

 MISSION NAME "recon.cmdl"

NEW-ROBOT NewRobotClassName NameOfExecutable
This is archaic, but required. The NameOfExecutable parameter is currently ignored, but units must be grounded in a defined robotClassName. The recommended usage is:

 NEW-ROBOT robot “robotexec”

UNIT <robotName> robotClassName
One entry using this form is used to define each of the robots participating in the mission. NOTE: It is critical that the robotName matches (case sensitive) the name that each robot passes to its CMDLi interpreter. For example, if the robot is passing the name “Truck24” to the CMDLi interpreter as its myName parameter, then there MUST be a line in the cmdl file header with that name, such as
 Unit <Truck24> robot

The cmdli interpreter does simple string matching against these names to determine which commands it should execute, and will die with an error if the names don’t match.

UNIT <unitName> robotName

UNIT <unitName> unitName

UNIT <unitName> (robotName1 … unitName …)

The Unit command is also used to create shorthand names for a collection of one or more robots and other units. This new unitName can be used in subsequent statements to create any collection of robot necessary. These names are used in the body of the CMDL file to specify which robots should execute each command. A typical set of unit descriptions:

// Declare a single class of robots. robotexec is ignored, but required.

NEW-ROBOT robot "robotexec"

// Declare the robots

unit <GT1> robot

unit <GT2> robot

unit <P1> robot

unit <P2> robot

unit <P3> robot

unit <AT1> robot

unit <AT2> robot

unit <RMP> robot

// Declare the various units

unit <GT> (GT1 GT2)

unit <Penn> (P1 P2)

unit <USC> (AT1 AT2 RMP)

unit <all> (GT USC Penn)

unit <AT2_RMP> (AT2 RMP)

unit <GT1_RMP> (GT1 RMP)

unit <GT2_P1_AT1> (GT2 P1 AT1)

unit <GT1_P2_AT2_RMP> (GT1 P2 P3 AT2 RMP)

unit <GT1_P2_P3_AT2> (GT1 P2 P3 AT2)

unit <P2_P3> (P2 P3)

defaultSyncTimeout [[hh:]mm:]ss[.ss]
Specifies the default synchronization timeout. This is used when one or more robots are waiting at a synchronization point in the mission for another robot. If they do not receive any status messages from this wayward robot for the specified period of time, they will begin ignoring the robot and continue the mission. If the missing robot later beings sending status messages again, the other robots will pause and wait for it to catch up, before they all continue the mission together.

Transition from Header to Body Commands

command list:
The end of the header and start of the body is marked with this string. Notice the required colon at the end.

Legal Body Commands:
