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Abstract

This paper presents the methods used by team CSIRO Data61 for
multi-agent coordination and exploration in the DARPA Subterranean
(SubT) Challenge. The SubT competition involved a single opera-
tor sending teams of robots to rapidly explore underground environ-
ments with severe navigation and communication challenges. Coordi-
nation was framed as a multi-robot task allocation (MRTA) prob-
lem to allow for a seamless integration of exploration with other
required tasks. Methods for extending a consensus-based task allo-
cation approach for an online and highly dynamic mission are dis-
cussed. Exploration tasks were generated from frontiers in a map of
traversable space, and graph-based heuristics applied to guide the selec-
tion of exploration tasks. Results from simulation, field testing, and
the final competition are presented. Team CSIRO Data61 tied for most
points scored and achieved second place during the final SubT event.

Keywords: multi-robot task allocation, exploration, field robots,
subterranean challenge
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1 Introduction

The DARPA Subterranean Challenge (SubT) [1] pushed the limits of teams of
robots in complex, underground environments. These types of environments
are notoriously dangerous during emergencies and disasters. Inspired by the
needs of personnel and first responders in emergency situations, the compe-
tition involved heterogeneous teams of robots exploring tunnels, caves, and
urban underground environments like subways. The objective for these robots
was to localize survivors, gas leaks, and other important objects. One of the
key requirements for a successful team was autonomy. A limit of a single oper-
ator and the difficulty of establishing wireless communications in underground
environments meant that human supervision was limited. The volume to be
searched along with a one-hour time limit meant that having multiple agents
exploring in parallel was necessary to succeed.

This paper describes the approach taken by Team CSIRO Data61 (con-
sisting of CSIRO Data61, Emesent and Georgia Tech) for coordination of
exploration using multi-robot task allocation. Exploration tasks are created,
bid upon, and executed autonomously by agents during a mission. The natural
constraint of one agent per task ensures the team will pursue multiple goals at
once, and the reward of a task provides a straightforward way to incorporate
information on how valuable an area is expected to be for exploration. Coor-
dinating exploration within a multi-robot task allocation (MRTA) framework
provides two key benefits over methods that coordinate exploration at a lower
level. First, other types of tasks can be easily integrated, as the framework
is task-agnostic. Little work was required to introduce the capability for one
agent to ferry data for multiple agents back to the base station, for example.
Second, it provides useful ways for the operator to inject human knowledge and
improve the team’s performance. Allowing an operator to change assignments
and rewards by task or region provides an intuitive interface into a complex
system.

For this competition, a dynamic consensus-based task allocation system
was developed. The consensus auction protocol, inspired by [2], provides
robustness to communications breakdown. By having every agent reach a
consensus, versus a single agent acting as an auctioneer, any sub-group of com-
municating agents will be able to coordinate. This is critical in underground
environments, where concrete and rock can quickly block wireless communi-
cations. The dynamic nature also allows agents to continuously re-plan as the
mission evolves, new tasks are found, and old tasks are completed.

To define exploration as discrete tasks, we use frontiers in an agent’s
traversability graph, which represent the areas in which it is possible to explore.
Clusters of these frontiers become an exploration task. While frontiers do a
good job of representing where an agent can explore, they offer little informa-
tion about the best place to explore. Rather, the utility of a frontier is primarily
determined by its location relative to all agents. In an unknown environment,
spreading agents out is likely to minimize overlap and provide the fastest cov-
erage. Based on a multi-robot tree exploration approach which was shown to
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be optimal under some conditions [3], a set of heuristics were created to bias
the rewards of individual explore tasks and recreate the team-level strategy in
a more realistic and dynamic scenario.

In the final run of the DARPA Subterranean Challenge, Team CSIRO
Data61 fielded four ground platforms running the task allocation system along
with two UAVs that were launched by the operator and explored indepen-
dently. This team tied for the most points scored (detecting 23 objects of
interest), and finished in second place on the tie breaker criterion of the
time of last detection (45 seconds after the winning team over the one-hour
run). This paper will detail these methods and strategies used for multi-agent
coordination by Team CSIRO Data61 during this final event.

2 Related Work

Exploration of unknown environments is a common task for mobile robots,
and has been an active subject of research for decades. While a considerable
amount of work has gone into exploration of graph structures (e.g., [3], [4]),
the bulk of robotics literature focuses on continuous environments often rep-
resented as occupancy grids. Approaches range from pure behavior-based [5]
to information-theoretic [6][7]. A seminal paper introduced the idea of using
frontiers, the boundaries between unexplored and explored space, as the basis
for exploration [8]. Frontier-based exploration approaches have been widely
utilized due to their simplicity and effectiveness [9][10][11]. Recent work has
also focused on hierarchical methods to separate local exploration and global
coverage, and provide a scalable solution for large environments [12] [13].

Exploration is an ideal task for teams of robots, where multiple agents
can work in parallel and provide robustness to individual platform failure.
Strategies can focus on how best to distribute agents [14] or how to maintain
communication constraints [15]. Frontiers are again a popular approach as they
provide discrete goals for exploration to distribute among a team. The work
in [16] provided benchmarks for some of the most popular approaches, includ-
ing simple greedy assignment, heuristic-based methods, solving a multiple
traveling salesman problem, or using task allocation approaches.

Multi-Robot Task Allocation (MRTA) is the problem of finding the assign-
ment of a set of tasks to a set of agents that maximizes reward given the
constraints of the agents and environment. Outside of the simplest case, where
every robot is assigned one and only one known task, MRTA problems are NP-
hard [17]. Approaches thus look for balances between finding effective solutions
and minimizing computation and communication costs. The excellent survey
of modern MRTA approaches found in [18] breaks them down along two main
dimensions. Solutions fall broadly into either optimization-based or market-
based approaches. Optimization approaches can take a range of approaches
from integer linear programming [19] to simulated annealing [20]. Market-
based draw inspiration from economic theory, and use auctions to allocate
tasks by having agents make competing bids based on how suitable they are
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to complete a task. Either approach can be implemented in a centralized or
decentralized manner. Centralized systems have an off-platform base-station,
or leader platform, find an assignment solution and distribute that to all agents,
while decentralized approaches either cooperatively build the solution, or have
agents each individually solve the team’s assignment.

One of the earliest applications of MRTA approaches to multi-robot explo-
ration is from [21]. In this work agents asynchronously bid on frontiers to visit
based on path costs and expected information gain. A centralized executive
program greedily assigns the highest bid, and then discounts all unassigned
bids based on the expected overlap with assigned bids. A similar design was
used to win the 2010 MAGIC competition [22], where a fourteen agent team
performed an urban search and rescue mission to identify both friendly and
hostile humans as well as bombs. As with the previous work, exploration is
done by moving towards goal points on frontiers, with the expected informa-
tion gain and distance being used for the reward and cost of the task. The
centralized ground control station greedily assigned tasks based on bids.

Recent work looked at a different variation of the exploration problem,
where potential locations for targets were known, and agents must destroy
targets if found [23]. A two-phase auction based approach was implemented.
Before the start of a mission, agents bid in phases, where the bid with the
lowest travel distance wins out. This continues until all tasks are assigned, as
agents are allowed to bid repeatedly and build an ordered list of tasks. During
execution, new tasks are dynamically bid on, but agents only consider the addi-
tion of the new task within its list, without reordering previous assignments,
to avoid combinatorial growth in computation.

One approach for MRTA is particularly relevant from the problem domain
this paper focuses on. The Consensus-Based Bundle Algorithm (CBBA) [2]
introduced a new distributed auction process where agents broadcast their bids
globally, and each agent executes the same rules to determine who wins what
task. As long as agents are communicating, they will form a consensus on the
allocation of tasks. This work also demonstrated that when agents greedily
build an ordered list of tasks (known as a bundle) one task at a time, the
total team performance is guaranteed to reach at least half the reward of the
optimal allocation.

For dynamic missions in underground environments, this offers two advan-
tages. Consensus-based auctions offer coordination with minimal communi-
cation. Neither needing repeated back-and-forth messages (as in approaches
with designated auctioneers) or the full mission state to be shared, as in
approaches that repeat allocation on each agent independently. It smoothly
allows for sub-groups of communicating agents to coordinate, without any
additional overhead or logic. Second, the bundle building procedure offers a
good balance of performance with reasonable computation loads. Missions
into unknown areas are inherently dynamic, and the best solution can rapidly
change. Pursuing higher quality solutions will often be wasted effort.
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However, the original CBBA algorithm cannot deal with the dynamic
nature of the SubT challenge, as it is designed to be run offline before tasks
are executed with full knowledge of the mission. Extensions exist to deal with
this; one of the first is Asynchronous CBBA (ACBBA) which updated con-
sensus rules to allow for running the bundle building and consensus phases
simultaneously and asynchronously [24]. ACBBA also introduced the idea of
an individual agent dropping its entire bundle to replan when faced with sig-
nificant change in its environment. An alternative approach allowed for more
limited replanning, dubbed CBBA with Partial Replanning (CBBA-PR) [25].
Here, agents could drop the tasks with the lowest bids from the bundle in each
auction round.

The work in this paper extended the ideas described above in several ways.
A graph-based exploration was integrated with the frontier-based task alloca-
tion by providing heuristics to weight the reward for certain agents to execute
certain tasks. A new method for continuously replanning an agent’s bundle
and updating bids is introduced. This work also presents an effective rule for
dealing with failed attempts at tasks, and a simplified set of consensus rules.
The methods were rigorously tested with a range of simulated experiments,
hardware experiments, and in physical competition.

3 Task Allocation

The approach for dynamic task allocation can be decomposed into the three
processes that run continuously in parallel. First, a task set uses a consensus
protocol to maintain a consistent set of tasks with every communicating agent
and the base station. Second, a task bundle continuously selects the best
available task for an agent and bids on it, building a bundle of owned tasks
to execute. Finally, a task monitor continuously executes the leading task in
the bundle, and monitors it until completion or failure.

3.1 The Task Set and Consensus

The Task Set is a list of all tasks and relevant information about them, and
represents the current state of the mission as known by an agent. This includes
information about the task itself (the type, location, base reward, etc). It
also includes information related to the auction process: The state of the task
(unassigned, assigned, executing, complete), the owning agent (i.e. the agent it
is assigned to), the winning bid amount, the last update time, etc. As an agent
creates, bids on, and executes tasks it can update its own task set directly.
The key feature of the task set is the use of a consensus protocol to manage
updates from other agents.

This consensus protocol acts as the auction mechanism for task allocation.
Rather than having a single auctioneer, agents collaboratively fulfill that role.
Updates to a task, such as new bids, are broadcast globally and all agents use
the same rules to determine which update is valid and whose bid wins. As long
as communication is maintained, agents will form a consensus. Figure 1 shows
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how consensus is reached in a simple case of the base station broadcasting
a new task. This decentralized approach allows agents to generate and dis-
tribute tasks among any sub-group that shares communication. The inherent
robustness to limited communication makes the approach ideal for the SubT
competition, where communication is lost frequently and for long durations.

Fig. 1 (a) A task is generated at the base station and broadcast to two agents to execute.
(b) Initially both agents bid on the task, assigning themselves as the owner in their own task
set. (c) Each agent receives the other agent’s bid, and the base station receives the bids from
both agents. All come to consensus that agent 2, which has a higher bid, will execute Task 1.

The consensus protocol is used for more than an auction mechanism. Agents
may renege on tasks to execute different ones, or platforms may stop running.
Communication failures can lead to two agents executing the same task, an
agent being unaware a task has been completed, etc. The consensus procedure
must be able to resolve any conflict between the task sets of two agents. This
can be done with four rules defining when an agent updates the information in
its task set. From highest to lowest priority, an agent will update a task based
on an incoming message when:

1. The new message has the task in a terminal state.
2. The new message has a more recent manual assignment time.
3. The current set and new message show the task as owned, and the new

message has a higher bid.
4. The new message has a more recent auction update time

The first three rules are simple. Terminated tasks are finished and thus
can’t change, manual assignments by the operator supersede autonomous deci-
sions, and agents contesting ownership of a task will have it go to the highest
bidder (bidding ties are resolved by alphanumeric ordering of agent names).
For all other conflicts, update time is used as the resolution, with more recent
updates taking priority. The auction update time changes whenever an agent
makes a change to the task information, usually due to bidding, executing, or
releasing the task. The dynamic nature of the task allocation problem in this
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work means that most changes to a task are equally valid in reverse. Consider
if agent A believes some task is being executed by agent B who is no longer
in communication range, and then agent C enters communication range and
sends an update that the task is unassigned. Was the task released by agent
B, or was agent C never informed about the task being executed in the first
place? Based on the task status and bid information alone, it is impossible to
tell.

The key mechanism for consensus is therefore the update time, i.e., the
time the status or bid of a task was last changed. This simplifies the consensus
protocol to the above set of rules. Note that while this provides a method
for consensus, it does not answer the underlying problem of which agent was
correct. When two agents out of communication conflict, update time does not
necessarily provide the optimal resolution, but it provides a consistent rule for
resolution every agent can use. In rare edge cases an agent may lose ownership
of a task due to a consensus update, even though it is the best agent to execute
said task, but it will immediately have the opportunity to rebid on the task.

The balance between updating the current solution, or resetting and build-
ing a new solution is a repeating theme in this work. Excessively re-planning
can have agents repeatedly leaving tasks incomplete and wasting time, but
locking in a task once started potentially ignores significant changes to the
state of the mission or conflicts with others.

3.2 The Task Bundle and Task Selection

An agent continuously builds and executes a task bundle, i.e., an ordered list
of tasks. Some tasks will be more efficient to execute together, primarily due
to their location and the time/energy costs of traveling to different areas. Task
bundles allow an agent to consider these interactions.

Finding the optimal bundle even for a single agent is a combinatorial prob-
lem, and given the rate at which bundles must be updated, it would not make
sense to continuously re-solve it. Instead, the approach from [2] is adopted and
extended. When an agent looks to select a new task to add to its bundle, it
finds the available task in the task set with the highest profit and bids on it.
Profit is related to a task’s reward, and will be defined momentarily. A task is
“available” for an agent to select if the agent can execute it, there is no higher
bid already placed on it, and the task has not been completed or recently failed
(failures will be discussed more in Section 3.3.1).

Let us define cj as the base reward of task j. The vector bi is the bundle of
agent i, the list of tasks in order they were added to the bundle. In contrast,
pi is the “path,” a list of the same tasks in the order the agent will execute
them. Both orders are important and will be used. Si(pi) is the expected total
reward of agent i for executing the bundle (or path) pi. τ

j
i (pi) is the expected

time for agent i to complete task j (including all prior tasks in the bundle),
i.e., if pi = (j1, . . . , jn) and j = jk, then
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τ ji (pi) =

k∑
k′=1

t(jk′−1, jk′) + T (jk′) (1)

where t(j′,′ ) denotes the expected time to travel from task j′ to task j, t(j0, j)
denotes the time to travel to task j from the agent’s current position, and T (j)
denotes the expected duration involved in executing task j.

The total reward of a bundle is the sum of the rewards of each task, with
an increasing time discount applied to each successive task:

Si(pi) =
∑
j

λτ
j
i (pi)cj (2)

where 0 < λ < 1 is the time-discount parameter. The traversability costs
t(j, j′) are calculated based on the global topometric graph described in [26].
Specifically, traversability data is collected and consolidated into submaps cor-
responding to each SLAM frame. Superpixel decompositions are computed for
each submap, and a simplified graph formed with one node per superpixel, and
edges between neighboring superpixels, as well as between superpixels that
coincide in neighboring submaps. Edge costs are determined based on distance
between superpixels, as well as the slope and roughness of the two superpixels
(also including a risk-related penalty). Thus, task costs provide a prediction
of the navigation cost that accounts for both the path distance and terrain
difficulty. Part of the global topometric graph from the SubT finals event is
illustrated in Figure 2.

As mentioned, a bundle is an ordered list of tasks, and the order will
impact the total reward. When an agent is selecting a task, each position in
the bundle is checked to find which maximizes reward. The profit of a task is
the total increase in bundle reward from adding the task into its best index.
Let us introduce the insertion operator, ⊕n, used to designate the inclusion
of a new task into a bundle at the index n. Therefore p′i = pi ⊕n j means the
new bundle p′i is made of the old bundle pi with the task j inserted at index
n. With this, we can write down the profit of a task j for agent i as:

cij [bi] = max
n
{Si(pi ⊕n j)} − Si(pi) (3)

In other words, the profit is the reward of the best bundle created with the
new task, minus the reward of the original bundle. This profit will always be
less than the base reward of the new task, as its own reward is discounted due
to the time needed to execute tasks in front of it, and its inclusion will further
discount the reward of any task following it. The profit of a task is the bid an
agent will place on it and send to other agents as part of the auction process.

3.2.1 Updating Bundle Bids

An agent may renege on a task, or have a task stolen by another agent. One
issue this creates is that the profit of a task, and thus the bid placed on it,
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Fig. 2 (a) portion of topometric graph from finals course, showing railway platform, railway
tunnel, tunnel underneath platform, and other parts of urban and tunnel courses. Orange
circles denote traversable superpixels, while cyan circles denote frontiers, i.e., boundaries to
unknown space. Edges color code traversability cost, with green denoting low cost and red
denoting high cost. (b) topological graph from field test described in Section 6.2 (shown in
white).
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Algorithm 1 Bundle Update algorithm, for re-evaluating rewards when a task
is removed from the bundle. Note that we do not explicitly show the execution
order of the bundle, but this is maintained alongside the bundle and used in
reward evaluations as previously described.

Require: Bundle bi = (j1, . . . , jn), ordered by when the tasks were inserted
into the bundle; path pi = {j : j ∈ bi} ordered by when tasks will be
executed; order of task to be removed k, 1 ≤ k ≤ n; cached reward of the

bundle prior to inserting k-th element S
[bi]1:k−1

i .
Ensure: Bundle with the profit for each task updated.
1: b← (j1, . . . , jk−1)
2: p← pi \ jk
3: S ← Sbi
4: for k′ ∈ {k + 1, . . . , n} do
5: b′ ← b⊕ jk′
6: S′ ← Si(b

′) (preserving previous path order)
7: cijk′ [b

′]← S′ − S
8: S ← S′

9: b← b′

10: end for

depends on the other tasks in the bundle. When a task is removed from the
bundle for any reason, every task that was added after it no longer has a valid
value for profit. It is important to clarify that here, “after” does not mean
further back in the queue of the task bundle, but that the task was inserted
into the bundle later in time. Thus later in the list bi, not pi. We will refer to
this as the insertion order.

The solution used in [2] is to drop all tasks with a higher insertion order
then the task being removed (i.e., all tasks later in bi) and let agents rebid
on the released tasks. While effective, this creates additional communication
costs. When task allocation is performed online, it could also interrupt and
drop the task being executed by an agent. The alternative used in this work is
to have an agent update the profit, and therefore bids, of the tasks based on
the current bundle without removing them.

The process is shown in Algorithm 1. Starting with the bundle b before any
task with insertion order k or later was added, we can add the tasks that were
not removed, one at a time, based on their insertion order. Let pi(j) provide
the index of task j in the path pi, i.e. the order it is to be executed. This order
does not change, all tasks after the one being removed simply move one step
forward. Each step, the total reward for agent i, Si(b), and therefore the new
profit and bid for the task, are recalculated.

Except for unusual circumstances where the agent has been relocated in a
manner inconsistent with the task bundle, the profit for any individual task
will increase when another task is removed, so an agent will generally not lose
ownership due to this process decreasing a bid. As discussed, the profit of a
task is how much it increases the bundles total reward (equation 2), which will
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be less than the base reward cj of the task. A task ahead in execution order

of task j will increase the time τ ji (pi), and therefore decrease the discount

factor λτ
j
i (pi) applied to the base reward cj . Similarly, when task j is inserted

it increases all the times and discounts for tasks after it, reducing how much
reward they provide and thus the total profit of task j. Whether they will
be executed before or after, a task with non-zero time to travel and execute
reduces the reward gained from other tasks in the bundle, thus its removal
increases the profits of other tasks.

This process corrects individual bids, but drops the guarantees on solution
quality provided by the original CBBA algorithm when building a task bundle.
In this case we choose to update the known solution, rather then resetting and
rebuilding a potentially better solution. The guarantees on a bundle’s perfor-
mance are based on a mission with a priori known and fixed tasks/agents, and
thus are invalid anyway without frequent full resets due to the dynamic nature
of the mission. The next section describes a specific replanning-procedure used
to update bundles without needing to reset them entirely.

3.2.2 Rebuilding Bundle

In a highly dynamic mission, creating large bundles that plan far into the future
is likely to be a waste. The mission will usually change significantly before
the bundle completes. This is particularly true for exploration, where the end-
point of tasks is unknown a priori. Instead, limits are placed on a bundle,
both for the number of tasks and the estimated time to execute them. This
introduces a new issue: How does the agent respond to changing conditions
after its bundle is full?

A simple approach proved to be effective. Dropping the last task in the
bundle path (i.e., execution order, not insertion order) allows for the agent to
bid on new tasks. This does not limit an agent to swapping only the final task
in pi, as a new task can be inserted in any location in the bundle. An agent
continuously checks if dropping a task allows it to pickup another task that
creates a bundle with higher reward. To add some hysteresis to the bundle,
the last task is only dropped if the the replacement task improves the overall
bundle reward by more then a small threshold.

Empirically, dropping the final task is particularly effective. When a non-
final task is removed, the agent’s bundle path must be updated to connect
the prior and subsequent tasks. The new path segment may not be efficient
in terms of reward per distance without the original task in the middle. Since
only one task is being dropped at a time (to limit the number of bundles
to continuously evaluate) the new path segment is likely near the dropped
task, and often no better option will exist. This can be thought of as a local
minimum. The final task, by contrast, is only connected with one other task.
As it removes a path segment without adding any, this leaves more flexibility
in terms of tasks that will provide a net increase in reward.
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Message Type Channel Count Send Condition

Single Task Definition One Shared Channel Update (high-freq)
Bundle Auction Info Channel Per Agent Update (high-freq)
All Task Definition Channel Per Agent Timer (low-freq)

All Auction Info Channel Per Agent Timer (low-freq)
Table 1 Agents update each other frequently by broadcasting changes to individual
tasks, or their own task bundles. The full task set is broadcast out at a regular but slower
interval to balance synchronization with communication bandwidth.

3.2.3 Reducing Bandwidth

Due to the potential that a neighboring agent was out of communication range
for some time, agents need to share all the information in their task set to
ensure other agents are up-to-date. Agents must also update each other fre-
quently as they continuously bid on and execute tasks. Though task messages
are not particularly large, we want to avoid naively broadcasting the entire
task set at a high frequency in a communication-constrained challenge where
all bandwidth is valuable.

One method of limiting excess communications bandwidth is the division
of task information into a definition of the task itself (task type, position,
reward, etc) and the auction-related information (task state, owning agent,
highest bid, update time, etc). The auction information is likely to change
far more frequently as agents bid on tasks, while the definition of a task is
usually constant. When agents broadcast new bids or renege on tasks, they
only broadcast the auction message.

Communication channels are also split into high/low frequency options.
High-frequency channels, for both task definitions and auction information, are
broadcast any time there is an update: A new task is generated, a new bid is
made, etc. For the auction channels, agents send their whole bundle each time
the bundle changes. This allows an agent to quickly receive the full bundle of
every connected agent, and get the current state of which agents own which
tasks. These bundles are still significantly smaller than broadcasting the full
task set.

Low-frequency channels broadcast the entire set of definitions or auction
states on a timer (in competition, every 30 seconds). These ensure the full
task set will be shared without an agent having to wait too long. Table 1
summarizes the four communication channels used.

3.3 Task Execution and Monitoring

Task execution is a parallel process to the maintenance of the task set and the
construction of the task bundle. Whenever the agent is not executing a task,
and the task bundle is not empty, it will execute the leading task. Each task
generates the appropriate list of commands: A list of primitive and composite
behaviors the agent needs to perform to complete a task.

When a task completes, either successfully or not, the task’s information
in the task set is updated and it is removed from the agent’s bundle. The next
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task in the bundle is then executed. Executing tasks can also be stopped and
released if the agent finds a better task to bid on and reneges on its original
task, or if another agent provides a better bid and steals ownership.

3.3.1 Exponential Back-off for Failed Tasks

With real robots in complex environments, it is common for attempts to com-
plete a task to struggle or stall, but this does not necessarily mean that the
task cannot be completed. Balance is needed between stopping a robot from
wasting too much time trying to complete a task, and choosing to ignore tasks
too quickly. A notion of a failed attempt is used for tasks. Most commonly,
this is due to the agent being unable to progress towards the goal for too long.
The relevant question is then how these failures should be treated by the task
allocation system.

Inspiration from communications networks is used to answer this question.
Exponential back-off is a protocol for managing transmissions when interfer-
ence can cause transmissions to fail [27]. After each failure, the average amount
of time before the next attempt at transmission increases exponentially. In
this work, a task that fails is released from ownership, becoming unassigned,
and blocked from being selected for some time. The time T jblocked the task j is
blocked increases exponentially with the number of failures fj , based on the
equation

T jblocked = 30× 2fj (4)

The first failure will only block the task briefly, which gives an agent the oppor-
tunity to move out of a potentially problematic location before attempting it
again if no similar value tasks are around. The blocked duration will rapidly
increase with repeated failures, ensuring that problematic tasks do not waste
too much time, but allowing them to potentially be re-attempted later in the
mission.

4 Task Types

In the SubT context, the vast majority of the agent’s time is spent exploring.
Accordingly, explore tasks will be described in detail in this section. Other
tasks include “return to synchronize”, “drop communications node” and “go
to”. Synchronization tasks require the agent to return towards the base sta-
tion until all data are uploaded to and downloaded from the base, ensuring
that the two contain equivalent data sets. These utilize the multi-agent coor-
dination, allowing one agent to bid on another agent’s synchronization task
if it holds the data being synchronized. This avoids having multiple agents
needing to return to the base simultaneously. Mechanisms were developed for
autonomously generating drop node tasks, but were not employed due to the
risk of a poorly placed communications node rendering narrow passageways
impassable. Therefore both drop node and go to tasks are manually generated
by the operator.
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The task allocation system allocates tasks to agents based on the rewards
that agents receive for doing them. That alone will not lead to effective explo-
ration of an environment. Exploration tasks must be created in a way that
provides both complete and efficient options for exploration. If the rewards for
these tasks are poorly chosen, even an optimal allocation of tasks (in terms
of net reward) could lead to poor team performance during actual execution.
The remainder of this section provides an overview of how exploration tasks
are created based on frontiers, before detailing how rewards are modified to
drive the MRTA system to perform efficient exploration.

4.1 Creating Exploration Tasks

Exploration of environments such as those in SubT involves a range of complex
3D structures such as steep ascents and descents, stairs, rubble piles, partially
see-through barriers, and passages above and below each other. Initially, explo-
ration tasks were generated by forming a 3D mesh describing the boundary of
observed space [28], but this was found to be undesirable for ground agents as
it results in a loose tie between frontiers and the path to observe them. For
example, a region may be entirely observed from the top of a platform, but it
is still necessary to traverse the lower part of the region to find paths to sub-
sequent areas. Subsequently, the focus switched to analysis of traversability
frontiers, i.e., a boundary between traversable and unknown space. Thus the
goal of the system is to progressively expand the map of known traversable
space. Three dimensional features are accommodated by allowing submaps to
contain multiple layers.

As described in [26], global traversability submaps are tied to SLAM
submaps, which are communicated and solved independently on each agent,
allowing each agent to develop a representation of the global traversability
map combining information from all agents. Each agent develops its own set
of traversability frontiers based on its local solution of the global traversability
map. A key advantage of this approach is that it accommodates the late arrival
of data from different agents due to communications dropout. For example,
if agent 1 traverses a region and loses communications with agent 2, explo-
ration tasks for agent 2 will lie at the traversability frontier from the latest
submap received from agent 1. If agent 2 continues in this direction, its known
traversable space will be expanded based on its own observations. When com-
munications are reestablished between the agents, each agent will update its
own traversability frontiers (and hence exploration tasks) based on the com-
bined data from the two agents. By fusing raw data, we avoid the need to agree
on task labels (e.g., agent 1’s frontier #13 is equivalent to agent 2’s frontier
#45). An example of a fused global traversability map from the final event is
shown in Figure 2.

Frontier pixels in the traversability submaps are initially clustered based on
the superpixel methods described in [26]. Clusters of frontier superpixels are
then formed based on an k-means approach adapted to incremental updates.
Specifically, we incrementally add updated frontiers to the cluster containing
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the nearest existing frontier, creating a new cluster if the diameter of the cluster
will become too large. By using the global traversability graph to measure
distances, we avoid clustering frontiers that are near by Euclidean distance,
but far by paths, e.g., frontiers in adjacent rooms that require long traversal,
or frontiers on different floors of a building. The diameter threshold is set to
15m, which in the environments of interest will likely capture all frontiers in
a particular tunnel or room, for example, but split tasks between different
tunnels/rooms.

A consequence of this process is that different agents will have their own
set of equivalent explore tasks. For this reason, the bidding process is amended
such that each agent can only bid on explore tasks within its own set, but two
tasks from different agents will be considered equivalent if they are within a
distance threshold of each other, and thus a bid on one task will only be suc-
cessful if it outbids a nearby explore task that is assigned to another agent (i.e.,
the two tasks are considered as one within the bidding process). When com-
munications are strong and agents are fully synchronized, their submaps and
generated explore tasks will be nearly identical, but as communications break-
down this provides a graceful way for agents to rectify tasks over diverging
maps.

4.2 Utility of an Exploration Task

It is common for the reward of an exploration task to factor in estimates of
the size (e.g., volume) of the space that may lie behind the frontier. However,
this often leads to undesirable behavior. For example, when progressing down
a narrow tunnel, the new volume being discovered seems small compared to a
nearby task in an open area, so it may seem beneficial to interrupt the current
task and move to the open area. Similarly, small doorways will rarely seem
sufficiently rewarding to enter compared to the larger open area to which they
are attached. Without awareness of this semantic information (e.g., the specific
value of narrow tunnels and doorways in the context), size-based rewards were
found to be counter-productive, and were thus dropped.

If the goal is for the entire environment to be explored, one could assign all
explore tasks equal reward, and allow the task allocation system to determine
an efficient way to allocate them. In a situation with a static mission, that
would be effective. For dynamic missions into unknown environments, the task
allocation system tries to optimize received reward by completing known tasks
as fast as possible. It does not consider where new undiscovered tasks might
be. For basic situations, like a tunnel with two distinct branches, tasks will
naturally allocate agents to different areas. However as environments get more
complicated with loops, large areas containing multiple explore tasks, and
agents that are doing more than exploring (e.g., returning to offload data),
agents may end up executing tasks nearby each other. This is usually less
efficient then having one agent explore a region independently.

An intuitive strategy would be to instead distribute agents to different
areas as much as possible; work on multi-robot exploration of trees and graphs
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[3] bears this out. In this work, individual agents explore depth-first, while
hypothetical book-keeping devices at each vertex in a graph track which edges
agents have traversed. When encountering a visited node, an agent chooses
edges that have not been explored first, and then follows edges with the least
agents downstream if no alternatives are available. This was shown to be opti-
mal for two agents on a tree, and provide good performance in more general
cases. In summary, the idea is to make individual agents explore depth-first,
while the team explores breadth-first.

To leverage this idea, there are several differences with the SubT competi-
tion that must be taken into account. The most important is that agents are
not exclusively exploring. They have other tasks, and must occasionally return
to establish communications with the base station and dump data. Thus a
sequential algorithm is not directly applicable. However, modifying the rewards
of exploration tasks provides a natural way to bias agents to select tasks that
best approximates the behavior. There are no bookkeeping devices, instead
agents share their trajectory with each other, which includes their current
position. Finally, a topological graph of the environment, expanding from the
base station outwards, is created to represent the structure of the environment.
Exploration tasks within this graph are the options for exploration.

The topological graph is built from an underlying dense topometric graph
used for path planning and navigation via skeletonization [29]. The minimum
distance from each topometric vertex to a boundary (wall or unknown space)
is measured, and vertices that are local maxima with respect to this measure-
ment become the vertices of the topological graph. This provides the high-level
representation needed to reason over. An example from a real run is shown
in Figure 2. As described above, each agent independently builds its own
topometric map from local and shared cost map information. This means the
topological maps will be unique, though generally the maps of different agents
will be very similar.

Three heuristics are used to capture the desired behavior of the depth-
search for individuals, breadth-search for the team. First, a basic depth reward
increases the reward of exploration tasks based on how much further they are
from the base station, compared to the agent. Second, a branch penalty applies
to tasks on the same branch. When a task is evaluating its reward, it checks
the path from itself to the base station in the topological graph against the
equivalent path for any other explore task being executed. When these paths
overlap, the overlap distance is added up to create a net penalty. Therefore
the longer the overlap, or the more tasks it overlaps with, the more penalty
accumulated. The ideal explore tasks therefore branch immediately at the root
of the graph (the base station) into a section with no other active explore
tasks. Finally, there is a simple nearest neighbor penalty. When the topometric
distance to the nearest active explore task is within a threshold, every meter
below that threshold increases the penalty. This has the same goal as the
branching penalty, i.e., to spread agents out. On large scales, underground
environments are usually well approximated by graphs, but on smaller scales
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something like an open room can break the graph-based formulation. The
nearest neighbor penalty helps push agents in a large room, for example, to
take opposite sides.

Formalizing this, consider a task j from the viewpoint of agent i. Let E(j)
be the set of edges of the topological path from the base to task j. Let Xi
denote the set of exploration tasks in the bundles of other agents (note that
any agent can only hold a single exploration task), and t(e) denote the cost
(time) of traversing edge e. Then the depth reward ρjd, branch penalty ρi,jb and
nearest neighbor penalty ρi,jn are given by:

ρjd =
∑

e∈E(j)

t(e) (5)

ρi,jb =
∑
j′∈Xi

∑
e∈E(j)∩E(j′)

t(e) (6)

ρi,jn =
∑
j′∈Xi

max {0, η − t(j, j′)} (7)

Where η is the threshold distance under which the nearest neighbor penalty
applies. The overall heuristic penalty ρi,j , and the new modified task reward
ĉj , is then given by:

ρi,j = wdρ
j
d + wbρ

i,j
b + wnρ

i,j
n (8)

ĉj = λρ
i,j

cj (9)

where −∞ < wd ≤ 0 denotes the weight for the depth reward, 0 ≤ wb < ∞
denotes the weight for the branching penalty, and 0 ≤ wn < ∞ denotes the
weight for nearest neighbor. λ is the same time discount used in equation
2. All penalties are functions of distance, and impact the reward as if
adding/subtracting distance required to travel to it in the bundle path.

This common currency of distance provides an intuitive way to tune the
rewards, grounding the value of associated weights for each heuristic. For exam-
ple, the depth penalty’s weight wd specifies how much distance is added per
meter of depth. If wd = −1, tasks downstream of an agent (relative to the
base) will have no penalty for being further away, as the travel cost and depth
penalty cancel out. To make the agent prioritize the deeper tasks, regardless
of travel distance, then wd could be set below −1. If the agent should still
minimize distance traveled, a value −1 < wd < 0 will prioritize tasks closer to
the agent and downstream from the base station.

5 Operator Interface

Humans still have significant knowledge and insight that cannot be repli-
cated in autonomous systems, and leveraging that knowledge can improve
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performance. However, understanding and controlling a multi-robot team is
challenging. It is important to have a well-designed interface to allow the oper-
ator to have a clear overview about the multi-robot team status and effective
control.

To provide a clear overview for the operator, the interface adapts a
map-based approach where the robots (models highlighted by octagons with
segments denoting status), tasks (pin makers), and priority regions (gray
shapes) are displayed in a real-time 3D map constructed using SLAM data and
navigation data (Figure 3). As a result, the operator has a good understanding
of the current status of the mission at a glance.

One of the key features of the operator interface is the effective control
of the task allocation process at both the single-task level and the region
(multi-task) level. At the single task level, the operator can create, delete, and
manually assign tasks by interacting with the task markers directly. Manually
assigned tasks are given higher priority than tasks that agents independently
bid on. A priority system avoids the difficult task of having an operator manu-
ally tune rewards during a mission. Every bid has an associated priority level.
Within the task allocation system, a higher priority is treated as infinitely
higher reward, and thus higher priority tasks are always executed first. This
simplifies interaction with the task allocation system, providing a direct way
to specify to do certain promising tasks first or dangerous tasks last.

For modifying multiple tasks at once, the operator can create different
types of priority regions: geometric priority regions and graph-based priority
regions. The geometric priority regions prioritize/de-prioritize tasks within the
region bounds (e.g., within a rectangular prism), while the graph-based ones
not only change the priorities of affected tasks within the regions but also tasks
downstream from the regions, where “downstream” is defined as away from
the base station in the global graph. By setting up these priority regions, the
operator can guide the multi-robot team toward important areas or “push”
them away from dangerous or uninteresting areas.

More details of the user interface for the task allocation system can be
found in [30].

6 Results

This section discusses the performance of the system across three tests: a
simulated experiment, field testing, and the SubT final competition itself.
These range from more realistic (the final competition) to more repeatable
(simulations).

6.1 Simulated Experiments

After competition, a set of experiments to compare performance were exe-
cuted using the Gazebo robotics simulator. This is a high fidelity simulation
utilizing the full perception and navigation stack. An example of the starting
area is shown in Figure 4(a). The experiment mimics the design of the SubT
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Fig. 3 Part of the map-based operator interface for controlling a multi-robot team. The
map is constructed using SLAM and navigation data, including a point cloud map and a
traversability map. Tasks are represented as pin markers (red ones are unassigned tasks and
green ones are executing tasks), and robots are highlighted by the green octagons. The large
gray cuboid region (“r3/3”) is a geometric priority region, where tasks within the region have
reward or priority altered according to the region parameters. The large spherical region
(“r1/2”) is a graph-based priority region, where task lying within or beyond the region (i.e.,
any attached to the vertices colored purple) have reward or priority altered according to the
region parameters.

competition, with agents entering through a narrow gate into an underground
environment approximating either man-made tunnels, urban spaces, or natural
caves. The simulated environments are shown in Figure 4(b)-(d).

Four simulated robots were used in each trial based on the BIA5 ATR plat-
form used by Team CSIRO Data61. At the start of a trial, these agents were
given waypoints to move through the gate one by one (shown in Figure 4(a)),
and then start automatic exploration. After the first agent passed the threshold
to the environment, the experiment time started, and agents had thirty min-
utes to explore as much of the space as possible. Communication limitations
were approximated based on distance, with data transfer rates being reduced
after 40m, and cut off after 80m, for both agent-to-agent and agent-to-base
communications.

To compare the potential benefit of the task allocation approach, two
other strategies were tested. A baseline “no coordination” strategy had agents
exploring simultaneously but fully independently (i.e., not sharing data).
An “implicit coordination” strategy had agents share their maps and area
explored, but not perform any collaborative allocation or use the graph-based
heuristics when selecting tasks. The final condition, “explicit coordination,”
used the full task-allocation approach as described. All relevant parameters in
each condition were identical to what was used in the final competition. The
major parameters are shown in Table 2.
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(a)

(b)

(c)

(d)

Fig. 4 (a) detailed view of BIA5 ATR platforms entering a simulated course; (b) tunnel
simulation world with scale shown for agent’s starting area at bottom of figure; (c) and (d)
similar for urban and cave worlds respectively.

Time Discount per Minute λ 0.774
Depth Penalty wd -0.3
Branch Penalty wb 0.25

Nearest Neighbor Penalty wn 1.2
Nearest Neighbor Max Distance (m) η 30

Table 2 Key parameters for task allocation and exploration.

The key metric tracked was the percent of the map explored. Exploration
markers were spread uniformly throughout the environments. Once an agent
has reached within 5m of a marker (a distance where real camera detections of
competition artifacts was reliable), it is logged as explored. Trajectories were
also tracked for qualitative analysis of the team’s exploration. Sixteen trials
per condition were run. The total area explored for all nine conditions is shown
in Table 3.

A second version was run requiring agents to sync after they had been out
of communications with the base station for 15 min, causing agents to drive
back to towards the start until they could connect with the base station, upload
and download data, and then restart exploration. This provided a better rep-
resentation of the requirements of SubT events. Results of this experiment are
shown in Table 4.
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Coordination Method Tunnel Urban Cave

None 56.6% 86.7% 88.3%
Implicit 61.4% 95.0% 96.8%
Explicit 66.3% 97.4% 97.1%

Table 3 Results of simulation testing, shown as the average percentage of markers for
which an agent passed within 5m during the 30 min run. For this first set of experiments,
agents are not required to return to synchronize data with base.

Coordination Method Tunnel Urban Cave

None 32.2% 85.6% 83.4%
Implicit 37.0% 95.4% 95.9%
Explicit 45.9% 95.1% 97.6%

Table 4 Results of simulation testing, shown as the average percentage of markers for
which an agent passed within 5m during the 30 min run. For this second set of
experiments, agents must return to synchronize data with the base after being out of
communications for 15 min.

The data show explicit coordination performing significantly better than no
coordination in all environments. Compared to implicit coordination, the task
allocation approached used with explicit coordination significantly increases
performance in the tunnel environment, but the difference is small in the cave
and urban environments. As shown in Figures 4, the scale of the tunnel envi-
ronment is the largest, and it best represents the tree structure exploited in
the graph-based penalization. Both the cave and urban environments also have
a clear initial branch point with three options leading to distinct areas. The
implicit coordination was able to divide agents between these branches, as
paths already taken had further out frontiers, leading to more penalized explore
tasks. This initial division into different areas seemed to be the most impor-
tant step, after which exploration can run in parallel without coordination for
some time until agents overlap.

6.2 Field Testing

A field test was conducted at the CSIRO Queensland Centre for Advanced
Technologies (QCAT) site to evaluate the performance of the proposed method
when utilized in a purely autonomous manner, i.e., without operator input. The
course included indoor and outdoor segments of an industrial area, gravel and
concrete roads, and an artificial tunnel environment. Photographs of segments
of the course are shown in Figure 5.

The agents utilized in both the field test and the SubT final event are
shown in Figure 5. Three agents were utilized in the field test, including two
BIA5 OzBot ATRs, and one Boston Dynamics Spot quadruped, and the mis-
sion time was limited to 30 mins. Drones were not utilized in the field test.
Communications nodes were pre-positioned to enable communication across
most of the course (during the SubT competition, these were deployed from
the agents, but this process was not automated due to the risk of poor node
placement rendering narrow tunnels impassible). The paths followed by the
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(b) (c) (d)

(e) (f) (g)

(a)

Fig. 5 Robot fleet used in experiment ()and SubT final event), and course utilized in
experiment. (a) shows robot fleet and components (drone was not uilized in experiment). (b)-
(g) show examples of parts of the course utilized in the experiment, and placement of artifacts
that the agents needed to discover: (b) backpack in indoor section; (c) fire extinguisher in
outdoor industrial area; (d) helmet in industrial barrel storage area; (e) survivor in outdoor
terrain park; (f) rope in synthetic tunnel environment; (g) rope under mezzanine within
synthetic tunnel region.
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(b)

(a)

Fig. 6 (a) shows point cloud and agent trajectories for experiment, both colored by agent,
with Spot agent colored in yellow, and ATR agents colored in red and green. Spot agent
covered urban sections of course (shown in Figure 5(b)-(d)); red ATR covered terrain park
region (shown in 5(e)); and green ATR covered tunnel region (shown in 5(f) and (g)). (b)
shows similar for the SubT Final Event, where the robots start from the top-left region;
upper area (i.e., the upper part covered by Bluey) is the urban environment, middle area
(i.e., green and lower part of blue, covered by Rat and Bluey) is tunnel, and lower area
(yellow/red, covered by Bear and Bingo) is cave.
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three agents and resulting point cloud are shown in Figure 6(a), with each
agent’s point cloud and trajectory shown in a different color. The total dis-
tance traveled by the three agents was 2263m. Collectively, the agents covered
essentially the entire course.

6.3 SubT Final Competition

The final event of the DARPA Subterranean Challenge was hosted in the
Louisville Mega Cavern. Within it, a course was built to simulate urban under-
ground environments like subways, mining tunnels, and natural caves. This
course provided severe navigation and communication challenges for robot
teams, which had 60 min to explore and localize artifacts placed throughout
the environment. Team CSIRO Data61 fielded four ground vehicles: Two BIA5
OzBot ATRs and two Boston Dynamic Spots. All ground vehicles ran the task-
allocation system described in this paper. Two Emesent quadrotor UAVs were
mounted and launched from the ATRs, however once launched these explored
independently.

The point clouds and trajectories for the ground agents in the final prize
run of the event are shown in Figure 6(b). During the final competition a sin-
gle operator was able to command and control the agents. This, by design,
provided too high a workload for one person to directly control agents, so
autonomous operation was essential. Figure 7(b) shows a breakdown of the
mode of operation of each robot during the 60 minute run. Bingo (Spot)
entered the cave segment of the course and explored under a prioritization
region, falling in rough terrain in the end cavern after 20 min. Bluey (Spot)
entered the urban area and was carefully managed to prevent it from entering
the railway tunnel where it had fallen on high tracks in the two preliminary
runs. Beyond communications range and under a task prioritization region,
it traversed two sets of stairs to explore the subway platform and the tun-
nel course connected to the railway tunnel. In doing so it connected to Bingo
and subsequently relayed parts of Bingo’s data back to the base. Bluey was
then manually assigned an exploration task following a different route head-
ing towards the back cave. After exploring the back cave, it began to follow
a different route back towards the base before falling, still out of communica-
tions range. Rat (ATR) explored much of the tunnel section before losing a
track soon after becoming tangled in a loose fire hose. Bear (ATR) was initially
autonomous, but gained the operator’s close attention when it was the one
remaining operational robot within communications range. Due to time con-
straints, the operator manually operated it through a combination of waypoints
and teleoperation to bridge the connection from Bluey to the base, overcoming
a dynamic obstacle, an alternative route blocked by Rat, and finally launch-
ing the drone to reduce the clearance sufficiently to be able to reach a point
where communications were bridged.

While the initial allocations were heavily influenced by the operator in line
with a priori knowledge gained from preliminary runs, the majority of oper-
ation is autonomous, and there are several extended periods where different
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robots are beyond communications. An example is shown in Figure 7, where
Bingo and Bluey (green and yellow trajectories) are out of communications
from the base, but communicating with each other.

7 Conclusion

This paper has described the multi-agent coordination approach used by Team
CSIRO Data61 for exploration of underground environments in the DARPA
Subterranean Challenge. Framing multi-agent exploration as a multi-robot
task allocation problem allowed for non-exploration tasks and operator input
to be combined with autonomous exploration into one cohesive framework. To
better handle an unknown and changing mission, new methods for updating
an agent’s set of owned tasks and bids were presented. Techniques to deal with
some of the challenges of physical robots, such as inconsistent failures, were
also discussed.

The approach described was effective in competition, and Team CSIRO
Data61 achieved second place. The simulated experiments show that the
approach provides significant benefit for larger scale environments with long
tunnels and tree-like structure, but less benefit for smaller environments with
denser connections or more open areas. Estimating the value of exploring an
area with unknown structure is a challenging problem. Characterizing differ-
ent types of environments to better predict which frontiers should be explored
first is necessary for efficient exploration across diverse domains.
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(b)

(a)

Fig. 7 (a) shows snapshot of communications links around half-way through final prize run.
Agents colored by trajectory, as Rat (blue), Bluey (yellow), Bingo (green) and Bear (red).
Communications links shown with straight lines, with green indicating good link quality,
ranging to yellow, orange and finally red indicating the poorest quality. (b) shows mode of
operation of each robot during SubT final prize run. Rat (ATR), Bluey (Spot) and Bingo
(Spot) were mostly utilized in autonomous task allocation mode, with prioritization regions
being used extensively on Bluey and Bingo, and manual task allocation being used on Bluey.
Bear soon became the final robot operational robot in contact, and was utilized with manual
control, through waypoints and (in the final time critical period) teleoperation.
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