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Abstract. More and more, robots are expected to interact with humans in a social, easily 
understandable manner, which presupposes effective use of robot affect. This chapter provides a 
brief overview of research advances into this important aspect of human-robot interaction. 
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I. Introduction	
  and	
  Motivation	
  

Humans possess an amazing capability of attributing life and affect to inanimate objects (Reeves 

and Nass 96, Melson et al 09). Robots take this to the next level, even beyond that of virtual 

characters due to their embodiment and situatedness.  They offer the opportunity for people to 

bond with them by maintaining a physical presence in their world, in some ways comparable to 

other beings, such as fellow humans and pets. 

 This raises a broad range of questions in terms of the role of affect in human-robot 

interaction (HRI), which will be discussed in this article:  

• What is the role of affect for a robot and in what ways can it add value and risk to human-

robot relationships?  Can robots be companions, friends, even intimates to people?  

• Is it necessary for a robot to actually experience emotion in order to convey its internal 

state to a person? Is emotion important in enhancing HRI and if so when and where? 

• What approaches, theories, representations, and experimental methods inform affective 

HRI research?  



	
  	
  	
  	
  	
  	
  	
  	
  I.1	
  Roles	
  of	
  emotion	
  in	
  robotics	
  

There exist at least two different roles for emotion in robotic systems. The first, which will only 

be briefly discussed, is to serve as an adaptive function that increases the probability of correct 

behavior, some of which may relate to survival of an agent (human or robotic) in its 

environment.  The second is for the benefit of the human when interacting with a robot by 

providing a means and mechanism for increasing the bandwidth in communication using non-

verbal methods to create a more effective and stronger relationship between artifact and person. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  I.1.1	
  Adaptive	
  behavior	
  for	
  survival	
  	
  

 Moravec (1988) notes that humans may even perceive emotions in robots even without 

deliberately modeling them: for example, if a robot backs away from a staircase it might be 

interpreted as a fear of falling by a person observing. Braitenberg (1984), using a series of 

Gedanken (thought) experiments, also demonstrates that vehicles can exhibit love, fear, and 

aggression that is attributed to them solely by virtue of human observation.  These perceived 

emotions are likely to attune the robot more closely to its environment and thus enhance its 

survivability, but are not geared expressly for human-robot interaction. People have a natural 

propensity to anthropomorphize artifacts (Reeves and Nass 1996) even if there was no deliberate 

intent by the designer to do so. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  I.1.2	
  Human-­‐robot	
  interaction	
  

Many other researchers, some of which are discussed in more detail below, have chosen to 

deliberately embed explicit models of affect into robots, with the express purpose of enhancing 

the relationship between the human and robot, and in some cases with the explicit goal of 

fostering a strong attachment by a person to the artifact. The underlying goal here is to produce a 

robotic platform that can be a friend or even a life-long companion to a human (Arkin et al 



2003), and in some cases even approach the possibility of intimate human-robot relations (Levy 

2008). 

                        

I.2	
  Definitions	
  in	
  Context	
  	
  	
  

Definitions for nebulous affective terms such as emotions can be debated ad infinitum (Arkin 

05). This volume undoubtedly addresses this in other chapters. We should note, however, we 

take a solipsist stance, i.e., that robots do not need to experience affective phenomena in the 

same way as humans do or even at all, in order for them to be perceived as possessing them.  So 

no claim is made that the robot actually experiences emotions, but rather that the goal of 

affective human-robot interaction is to convey the perception to a person that it does.  While this 

may be unsatisfying to a philosopher, it is a pragmatic solution to the roboticist, where affect lies 

in the eye of the beholder. 

I.3	
  A	
  few	
  short	
  exemplars	
  

In order to carry out this illusion, many psychological models of human affect have been 

explored. Two examples that have had commercial success are described. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  I.3.1	
  Aibo	
  

Aibo (Fig. 1 Left) was a robotic dog marketed by Sony Corp. from 1999-2006 and sold hundreds 

of thousands of units. It was intended to serve as a long-term companion and friend. It 

incorporated an instinct-emotional model, which ranged from an initial simplistic variable-based 

version to considerably more complex forms in some of its variants (Arkin et al 2003).  This 

model was later incorporated into Sony’s QRIO humanoid robot as well. 

 



    

Figure 1: (Left) AIBO (Right) Paro. (Photographs from Wikipedia Commons.) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  I.3.2	
  Paro	
  

Paro on the other hand is a therapeutic robot for the elderly, which is also commercially available 

(Figure 1 Right). It has been evaluated in terms of physiological, psychological, and social 

benefits to the human it interacts with (Shibata 12). Paro yields its benefits by eliciting emotional 

responses in its users through direct physical interaction, and appears not to rely on a 

sophisticated internal emotional model.  

II.	
  Affective	
  Robotics	
  	
  

Research in affective HRI has come a long way since the early forays of Moravec (1988), 

Tolman (Endo and Arkin 2001), Grey Walter (Holland 2003), and others, both in terms of 

breadth and depth. The following subsections discuss a number of representative recent 

examples showcasing a wide variety of approaches to robot affect.  

	
  	
  	
  	
  	
  	
  	
  	
  II.1	
  Affective	
  Models	
  and	
  Architectures	
  

Several roboticists take a systematic approach of incorporating affective models into robotic 

architectures. Two such systems are described below: the TAME framework, which stands for 



Traits, Attitudes, Moods and Emotions (Moshkina et al 2011, Moshkina 2011) and the DIARC 

architecture, which stands for Distributed Integrated Affect Cognition and Reflection (Scheutz et 

al 2007). Although these two systems differ in a number of important aspects, they both 

emphasize including affect as an integral part of a robotic architecture, and have been designed 

with the goal of facilitating overall human-robot interaction. 

II.1.1	
  TAME:	
  Traits,	
  Attitudes,	
  Moods,	
  Emotions	
  

The TAME framework is comprised of four psychologically-inspired interrelated affective 

phenomena that provides mechanisms for affect generation, affective behavior modification, and 

affect expression. TAME is platform-independent, and can work with a variety of robot 

architectures, although it is particularly well-suited for the behavior-based paradigm (Arkin 

1998). Given relevant perceptual input, such as the categories of visible objects and distances to 

them (stimuli and their strengths), as well as some internal state information (e.g., battery level) 

and environmental conditions (e.g., light and noise levels), the TAME system produces situation-

appropriate affect intensities, which in turn modify currently active task behaviors through 

parameter-adjustment (Figure 2 presents a conceptual overview).  



 

Figure 2: Conceptual view of the TAME framework (after Moshkina 2011). 

The affective components comprising the framework provide a comprehensive, time-

varying base for a robot, and differ with respect to duration (from almost instantaneous to life-

long), and object-specificity (from very specific to diffuse and global). Emotions and moods 

constitute a robot’s dynamically changing, transient affective state (object-specific and short-

term for emotions, and diffuse and prolonged for moods). Moods provide an affective 

background, or “emotional color”, and can vary cyclically, whereas emotions can be viewed as 

“phasic perturbations on this background activity” (Davidson 1994). In contrast, personality 

traits and attitudes are more or less time-invariant, and define general dispositions to behave and 

process information in certain ways. Similar to emotions, affective attitudes (sentiments) are 

object-specific; however, unlike emotions, they refer to ways of seeing and treating an object 

rather than to momentary responses, thus guiding behavior towards desirable goals and away 



from aversive objects. Finally, personality refers to enduring individual differences in behavior 

and information processing of a more general, object-independent kind, and serve as an 

adaptation mechanism to specialized tasks and environments. 

The TAME framework was implemented as an independent software module, and 

integrated within MissionLab, a multiagent mission specification and execution robotic software 

toolset (MacKenzie et al 19971), based on AuRA, a hybrid reactive-deliberative robotic 

architecture (Arkin and Balch 1997). Aspects of the resulting system were tested on Aldebaran 

Robotics’ Nao biped humanoid platform in two human-robot experiments with over 70 

participants. In one of these studies, the impact of Negative Mood and the emotion of Fear was 

assessed in a mock-up search-and-rescue scenario, where the participants found the robot 

expressing affect more compelling, sincere, convincing and "conscious" than its non-affective 

counterpart. Another study showed that different robotic personalities are better suited for 

different tasks: an extraverted robot was found to be more welcoming and fun for a task as a 

museum robot guide, where an engaging and gregarious demeanor was expected; whereas an 

introverted robot was rated as more appropriate for a problem solving task requiring 

concentration (Moshkina 2011). 

II.1.2	
  DIARC	
  Architecture	
  

Unlike system-independent TAME, DIARC is an example of a novel robotic architecture 

incorporating general affect throughout its functional components. The architecture integrates 

cognitive capabilities (e.g., natural language understanding and action planning) and lower level 

activities (such as perceptual processing, feature detection and tracking, etc.) In this system, 

positive and negative affect (not differentiated into separate phenomena) plays a vital role in goal 

                                                
1 MissionLab is freely available for research and development and can be found at http://www.cc.gatech.edu/ai/robot-
lab/research/MissionLab/ 



and task selection, by changing utilities of actions currently under consideration for selection, 

based on a short-term history of failures that produce increases in negative affect, and successes 

that produce increases in positive affect (Scheutz and Schermerhorn 2009). This mechanism 

serves as a kind of affective memory, allowing a robot to take into account past information 

without perfect knowledge of prior probabilities, a mechanism possibly used by humans in their 

decision-making.  

In addition to affective goal action selection which takes place in every functional 

component of the architecture, DIARC also provides means for affect recognition, appraisal, and 

affective expression generation. DIARC has been used extensively as a testbed for research in 

HRI, including a number of human-subjects experiments and AAAI robot competitions. In one 

experiment (Scheutz, Schermerhorn and Kramer 2006), subjects and robots were paired in the 

context of a hypothetical space exploration scenario, where they had to work together to achieve 

a common goal. The results showed that when the robot and its human teammate were physically 

co-located, the robot’s expression of anxiety over its lowering battery level (via voice) led to a 

performance advantage. 

	
  	
  	
  	
  	
  	
  	
  	
  II.2	
  Socially	
  Interactive	
  Affective	
  Robots	
  

The two aforementioned affective robotic systems fall under the general umbrella of socially 

interactive robots, defined in (Fong, Nourbakhsh, and Dautenhahn 2003) as “robots for which 

social interaction plays a key role”. A wide variety of other affective robotic systems also follow 

this research paradigm, focusing on affect as a key human social characteristic.  

	
   II.2.1	
  Robot	
  Emotions	
  	
  

Emotion has been by far the most frequent affective phenomenon modeled in robots, though in 

some cases the distinction between emotion per se and other related phenomena has been 



blurred.  The research in this category varies in terms of emotion generation mechanisms, modes 

of emotional expression, and underlying psychological and/or engineering approaches. Due to its 

practical applicability, facial emotional expressiveness has received a lot of attention, ranging 

from realistic robot heads to schematic faces to imaginary animals. Hanson Robotics android 

head “Einstein” (Wu et al 2009) is a good example of more or less realistic facial expressivity; 

the system is capable of learning and producing a large number of facial expressions based on 

Ekman’s Facial Action Coding System, FACS (Ekman and Friesen 1978). Another system using 

FACS for displaying emotional expressions, though not as physically complex, is the expressive 

robotic head EDDIE (Sosnowski et al. 2006), capable of displaying affect based on the 

circumplex model of emotion (Posner, Russell and Peterson 2005). A highly stylized socially 

interactive robot head, ERWIN (Murray et al. 2009), expresses 5 basic emotions generated 

through modulation of hormonal-like parameters based on the context of current interactions. 

Farther down on the less realistic axis, an imaginary animal-like Huggable robot Probo (Goris et 

al. 2009) designed specifically for children, also produces emotional expressions based on the 

circumplex model of affect.  

Although facial emotional display is the primary cue for emotion recognition in humans, 

not all physical platforms allow for this capability, lacking either facial motors, or heads 

altogether. A number of researchers addressed this challenge by designing for non-facial 

emotional expressivity. For example, Robovie-mini R2 and Robovie M (Nakagawa et al. 2009) 

are equipped with a method to control affective nuances by mapping dimensions of valence and 

arousal onto velocity and extensiveness of motion and body posture. In (Park et al. 2010), 

expressions of Fear and Joy, as well as Introversion and Extraversion, were achieved on a biped 

humanoid robot Nao (Aldebaran Robotics) through a combination of body posture and 



characteristic kinesics, that were successfully recognized in an online survey. For an extensive 

survey of non-facial non-verbal affective robot expressions the reader is directed to (Bethel and 

Murphy 2008).  

	
   II.2.2	
  Beyond	
  Emotions:	
  Multiple	
  Affective	
  Phenomena	
  in	
  Robots	
  

A small subset of affective robotic systems differentiates between emotion and other affective 

phenomena, making the resulting affective capabilities richer and more compelling. Due to space 

limitations, apart from the aforementioned TAME, only four of these systems will be showcased 

here.  

Roboceptionist – a combination of Emotions, Moods and Attitudes  

This affective system (Kirby et al. 2010) was implemented on a virtual robot face placed on a 

rotating monitor at a receptionist’s desk. It was used to interact with people on a daily basis for a 

prolonged time, and incorporated a generative model of affect consisting of emotions, moods, 

and attitudes. The affect is expressed through animated facial expressions and a priori composed 

narrative, rather than body language or mobility.  The categorical emotions modeled in the 

system are joy, sadness, disgust, and anger, and are generated in response to interaction with 

people and displayed immediately after an eliciting event. The robot’s moods are primarily 

caused by its personal history and “live” events. Values for moods are assigned to the storyline 

by dramatic writers and are influenced by the emotions the robot experienced during the day. 

Finally, attitudes are represented as a long-term mood associated with a particular person or 

thing, where each person who visits the robot may cause various emotional responses which, 

through mood modulation, influence the “opinion” of this person. In addition, familiarity with 

the person influences the robot’s attitude towards that person. 



A number of experiments have been conducted testing the components of this affect 

model. An on-line emotion recognition survey showed that people were able to detect differences 

between the robot’s emotional expressions and differentiate between their intensities. Another 

study examined the influence of the robot’s mood on people’s interaction during a longer term 

(nine weeks, during which the robot was typically operating 8 hours per day, 5 days per week). 

During “low traffic” weeks, people interacted with the robot in positive mood for a shorter 

period of time than with the robot in neutral mood; in contrast, during “high traffic” weeks, 

where there were significantly more visitors, the robot in neutral mood elicited the least amount 

of interaction. This model is psychologically inspired to a certain extent, but relies heavily on 

input from the designers who write the robot’s “life” story. 

Waseda Eye No. 4 – a combination of Emotions, Moods and Personality  

The latest incarnation of the robot, Waseda Eye No.4 Refined, combines emotions, moods, and 

personality (Miwa et al 2001, Miwa et al 2004). The overall goal of the system is to achieve 

smooth and effective communication for a humanoid robot. The Emotion space is defined along 

three dimensions: activation, pleasantness, and certainty. Emotions are represented as second 

order differential equations, based on laws of motion, and are influenced by three emotion 

coefficient matrices: Emotional Inertia, Emotional Viscosity, and Emotional Elasticity. The 

stimuli for emotion generation is extensive and includes visual (e.g., target is near), tactile 

(pushed, stroked, etc.), auditory (loud sound), temperature and olfactory (alcohol, smoke, etc.). 

The personality of the robot consists of Sensing and Expression Personalities. The Sensing 

Personality provides a mapping from sensory input to emotion generation as well as influences 

emotion duration and decay via the emotion coefficient matrices. The Expression Personality 

determines a particular emotional expression (Miwa et al 2001).  Finally, mood is represented 



along pleasantness and activation axes. The mood pleasantness component is an integral of the 

emotion vector, and its activation component is based on an internal clock (Miwa et al 2004). 

The resulting emotional expression is not limited to the face, but also includes neck, waist, and 

arms; the speed of the motion is also varied depending on the emotion. 

Although many elements of this system are not psychologically or biologically founded, 

it provides a few interesting mechanisms, such as modeling personality’s influence on emotion 

via a variety of coefficient matrices and using internal-clock activation component in moods. No 

extensive human-robot interaction studies have been conducted to date to evaluate this system. 

Combining Emotions and Moods on iCat  

This research group (Leite et al 2008) implemented emotional reactions and moods on the 

Philips iCat robot within the context of a chess game. Emotional reactions were modeled as an 

“emotivector” – an anticipatory system that generates an affective signal resulting from a 

mismatch between the expected and sensed values of the sensor to which it is coupled. Mood is 

expressed as a less intense affective state, where positive values are associated with good scores 

in the game, and negative are related to bad scores. Moods are filtered over time, and are explicit 

when emotional reactions are not occurring. In two HRI experiments, it was found that emotional 

behavior of the robot helps users to have a better perception of the game (Leite et al 2008). 

Additionally, a later study (Castellano et al 2009) suggested that when the iCat displayed facial 

expressions during a game of chess, the level of user engagement towards the robot increased. 

 

Combining Emotions and Motivational Drives in Kismet  

The robotic creature Kismet (Breazeal 2003) is one of the earliest and most influential affective 

robotic systems. It is modeled after an infant and is capable of proto-social responses, providing 



an untrained user with a natural and intuitive means of communication. Kismet’s motivation 

system consists of drives (motivations) and emotions, where emotions are a result of its affective 

state. The affective space is defined along three dimensions: arousal, valence and stance; each 

emotion is computed as a combination of contributions from drives, behaviors, and percepts. The 

motivation system plays a role in the behavior selection process and attention selection process, 

as well as providing activation for facial emotional expressions and speech. 

	
  	
  	
  	
  	
  	
  	
  	
  II.3	
  Affect	
  for	
  Enhancing	
  Robotic	
  Behavior	
  	
  	
  

The affective robotic systems described until now have all had a common goal for the inclusion 

of affect – i.e., to facilitate human-robot interaction. However, this review would be remiss if it 

ignored the efforts which did not have HRI as its primary focus; where the general projected 

improvements in performance due to the addition of affect may well prove useful in making 

potential interaction with humans more robust.  

With a focus on improving the robot’s behavior through decision-making, learning, or 

action selection, a number of researchers used the fuzzy logic approach to emotion generation. In 

El-Nasr et al. (2000)’s emotional system for decision-making in mobile robots, the emotional 

states have no definite boundaries, and are represented by fuzzy sets with intensities of low, 

medium, and high. Their values are generated according to fuzzy logic inference rules and the 

OCC model (Ortony, Clore and Collins 1988), and are based on goals and expectations where at 

different intensities the same emotion can trigger different actions. In another fuzzy logic-based 

system (Hashimoto, Hamada and Akazawa 2003), Fuzzy Cognitive Maps (FCM) are used to 

represent the generation and effects of emotional states. FCMs allow a robot to learn associations 

between stimuli and emotional states, as well as between emotions and tasks. Finally, (Yu and 

Xu 2004) present an emotional system consisting of four fuzzy emotions (Sad, Lonely, Disgust, 



and Fear) and four Sensory inputs (Energy, Friendship, Cleanness, and Brightness). Emotions are 

based on both sensor input and current emotional history and can influence behavior selection by 

increasing/decreasing corresponding action-selection weights. 

Murphy and her colleagues (Murphy et al. 2002) describe the use of emotions to control a 

group of robots working on interdependent tasks by dynamically adapting current behaviors to 

the context or changing the set of active behaviors altogether. The emotion model is based on 

Scherer's multilevel process theory of emotions (Leventhal and Scherer 1987). The Emotional 

State Generator (a finite state machine) accepts measures of task progress as input, then emotion 

influences the task selection of the Behavioral State Generator. The following advantage of using 

emotions was noted - they help break cyclic dependency problems without centralized planning 

and minimum communication. 

Another control architecture for autonomous mobile robots which incorporates 

biologically-inspired artificial emotions was implemented by (Lee-Johnson and Carnegie 2007). 

Five emotions modeled in the system are fear, sadness, anger, surprise, and happiness. They are 

characterized by certain elicitation/response patterns – e.g., fear is invoked if the robot is 

damaged, and anger if progress towards a goal is obstructed. Once elicited, emotions modulate a 

robot’s planning and control parameters providing bias towards certain drives without overtly 

controlling the behavior; e.g., anger helps achieve the current goal even at the expense of 

secondary considerations. This model was implemented on a simulated version of MARVIN, a 

custom-built mobile robot, and was shown to have certain advantages in a navigation task, such 

as fewer collisions, and greater exploration coverage. 



III.	
  Methods	
  and	
  Metrics	
  -­‐	
  Measures	
  of	
  Success	
  in	
  Affective	
  HRI	
  	
  

One of the major challenges facing affective HRI is effective testing and evaluation. In the task- 

or function-oriented areas of HRI (such as collaborative endeavors between people and robots, or 

learning by imitation) measuring robot performance is more or less straightforward. In the case 

of affective robots, however, often it is not the robot’s performance per se that needs to be 

evaluated, but rather the social response the robot invokes in people it interacts with. These could 

be reflected in their subjective impressions (measured through self-assessments), behavioral 

responses and expressions (obtained through observation), certain physiological responses, or in 

objective difference in human task performance due to the presence of robot affect.  

III.1	
  Self	
  Assessments	
  

These are subjective evaluations used to uncover people’s perceptions of and attitudes towards 

their interactions with robots. In the HRI community, these methods of evaluation commonly 

include: Likert-style questionnaires designed for evaluating specific goals of a particular study 

(often applied in an ad hoc manner in this new field (Bartneck et al 2009)); reusable semantic 

differential scales or other psychometric scales for measuring certain concepts relevant to 

human-robot interaction (also designed specifically for use in HRI); and established 

psychological and sociological measures, borrowed from corresponding research communities.  

III.1.1	
  Existing	
  psychometric	
  tests	
  

 These methods have the advantage of having been tested and validated on a large number of 

subjects; however, only a few of them have been tested to date with regards to affective robots. 

Two such measurement scales, particularly suitable for the affective HRI domain, are: (1) A brief 

version of Goldberg’s Unipolar Big-Five Markers (provides personality trait assessment) 



(Saucier 1994); and (2) Positive Affect/Negative Affect Schedule  (measures current mood state) 

(Watson et al. 1998). These two instruments have been used successfully for assessing both 

subjects’ and robot’s personality and mood states in a number of HRI experiments conducted as 

part of TAME evaluations. The reader is referred to (Moshkina, 2011) for further details on their 

use and recommendations for their application in HRI.  

III.1.2	
  HRI-­‐specific	
  tools	
  

Social robotics is a very young field, and only a few reusable self-assessment tests are currently 

in existence. One of the most widely used ones is the Negative Attitudes towards Robots Scale 

(NARS), developed and tested by (Nomura and Kanda 2003, Nomura et al 2008). This scale 

measures general negative attitudes towards robots via three subscales: Situations and 

Interactions with Robots, Social Influence of Robots, and Emotions and Interaction with Robots, 

with each subscale item given as a Likert-style question.  

Bartneck et al. (2009) present an overview of other existing scales which have been 

successfully used in HRI experiments and have acceptable internal reliability. These scales (most 

of them translated by the authors into semantic differential scales from Likert scales) measure the 

concepts of Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived 

Safety of Robots. 

Finally, two recent HRI studies (Moshkina 2011, Moshkina 2012) presented 7 alternative 

semantic differential scales for measuring concepts of relevance to affective HRI. These 5-item 

scales assess the following concepts with acceptable internal consistency reliability (Cronbach’s 

Alpha for each 0.7 or higher): Persuasiveness, Naturalness, Understandability, Appropriateness, 

Welcome, Appeal, Unobtrusiveness and Ease. These scales were specifically designed with the 

goal of facilitating reuse and replicability in future HRI experimentation. 



Although self-assessments are among the most commonly used methods of evaluation in 

HRI studies and allow querying people’s perceptions of their interaction directly, they suffer 

from lack of objectivity. They can be notoriously unreliable, as they reflect a large amount of 

individual differences, and make replication of results and comparison between different studies 

rather difficult.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  III.2	
  Behavioral	
  and	
  Psychophysiology	
  Measures	
  	
  

Behavioral measures are observational, and refer to an analysis of participants’ micro- and 

macro-behaviors and speech utterances during interaction. In this case, the human-robot 

interactions are recorded; the human behaviors to watch for are carefully selected and accurately 

described, and then are extracted from the video either automatically or by independent human 

coders (c.f. Jeff Cohn's chapter in this volume).  Although not specifically within the affective 

domain, (Dautenhahn et al. 2002, Dautenhahn and Werry 2002) successfully used a combination 

of quantitative and qualitative behavioral techniques in HRI experiments. The quantitative 

approach was based on an analysis of micro-behaviors presented as well-identifiable, low-level, 

action-oriented categories; the examples of such categories include touch, eye gaze and eye 

contact, handling (picking up, pushing), approach, moving away. The qualitative approach was 

based on Conversation Analysis (Psathas 1995) that provides a systematic analysis of everyday 

and institutional talk-in interaction. Although these methods avoid some of the biases inherent in 

self-assessments, the differences in individual behavioral styles, possible interpretation bias, and 

high time workload can be cited as weaknesses in using these behavioral measures.  

Another way to avoid participant subjectivity is to measure certain physiological 

responses (such as heart rate, skin conductance and temperature) before, during and after the 

interaction; such responses can be correlated with a subject’s emotional state and arousal level 



(c.f. Jennifer Healey's chapter in this volume). The primary advantage of this method is that 

participants usually cannot manipulate the response of their autonomic nervous system; therefore 

the results obtained by this means are free from self-report bias. Perhaps the main disadvantage 

of this method is the limitation as to what they can measure; for example, they cannot distinguish 

anger from joy, but rather report the overall level of arousal. This method works well when, for 

example, the level of human anxiety needs to be determined (Kulic and Croft 2006, Rani et al. 

2004), and has been used especially for affect recognition, but it would need to be supplemented 

by other measures to obtain cross-validation and additional information. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  III.3	
  Task	
  Performance	
  

Finally, human task performance metrics provide a fair amount of objectivity, as they allow 

quantifying benefits a particular robot type, behavior, or algorithm might have. This is 

accomplished through such variables as accuracy, performance success, task completion time, 

error rate, resource usage and others, depending on a particular task and scenario. One example 

of employing a task performance metric to evaluate the effectiveness of robot affect is presented 

in (Scheutz et al. 2006). In their study, the authors measured changes in task performance as a 

result of a robot’s expression of anxiety during an exploration scenario. In particular, as the 

robot’s anxiety increased (expressed by changes in the robot’s speech rate and pitch), the human 

participants were alerted to the impending deadline, and worked more efficiently.  

Another HRI study examined the effect of robot expressions of Negative Affect (mood) 

and Fear on human subjects’ compliance with a robot’s request to evacuate a potentially 

dangerous area (Moshkina 2012). This study, set as a mock-up search-and-rescue scenario, 

showed that the participants responded to the request earlier and moved faster and further in 

response to the affective robot when compared to one without affect. Although task performance 



metrics provide objective and easily quantifiable results, their use in affective HRI is far from 

trivial. The biggest challenge lies in predicting which types of tasks would directly or indirectly 

benefit from affective robotic behaviors, and how the people would respond to a robot’s 

expressed affective state. 

Each type of evaluation has its associated pros and cons, and we join Bethel and Murphy 

(2010) in advocating the inclusion of more than a single method of evaluation to obtain 

comprehensive understanding and convergent validity in assessments of affective HRI.  

IV.	
  	
  Ethical	
  Questions	
  and	
  Future	
  Directions	
  	
  

The ethical issues confronting roboticists relate to the questions: what if we succeed?  What if we 

are able to create robotic artifacts that more effectively interact with humans than other humans 

do? Could we engineer out the difficulties in relationships that people often encounter with each 

other, through the use of affective models (among other techniques)?        

Philosophers and Social Scientists (e.g., (Sparrow 02, Turkle 11)) have written about the 

potential dangers of highly interactive robots in human lives, broaching a broad range of issues, 

including: 

• The introduction of a deliberate misapprehension of the world in the aged. Does there 

not exist a fundamental right to perceive the world as it really is? (i.e., the robots are not 

alive, even if they appear to be to a human observer). 

• The abrogation of responsibility between humans by relegating the role of caregivers to 

robots and the resulting impact on those being cared for and the caregiver alike.  

• The deterioration of the fabric of society and human relationships in general by 

potentially creating artifacts that are more appealing than fellow humans to interact with. 



There are no obvious answers to these questions at this time, and considerable discussion and 

precaution is wise as robots move into ubiquity in our lives perhaps during our lifetimes.  

Nonetheless the frontier remains to be explored. There are interesting models and a new 

understanding arising from deeper insights in neuroscience and the role that emotions play 

(Gazzaniga 2005).  The role of mirror neurons (Arbib 2012) may show new ways to elicit 

emotional response in both human and robot alike.  Understanding secondary emotions, such as 

those governing moral judgment may lead to robots that can even outperform humans in ethical 

respects (Arkin and Ulam 2005).  The list goes on and on. It is an exciting time for the young 

field of human-robot interaction, and affect plays a central role in its progression. 
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