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Abstract. This paper describes the value of the conceptual space approach for use 

in teams of robots that have radically different sensory capabilities. The formal 

underpinnings and perceptual processes are described in the context of a biohazard 

detection task.  The architecture is based on the conceptual spaces representation 

that Gärdenfors suggested as an alternative to more traditional AI approaches. 
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1. Introduction 

In robotics, a challenging area involves the sharing of knowledge across widely 

disparate robotic platforms, i.e., when there is no commonality across the sensor space 

between platforms. Heterogeneous robots need to share their knowledge with each 

other to achieve a team task efficiently. For our research for the Army, each type of 

robot is equipped with radically different sensors, so a framework to share sensor data 

with other widely heterogeneous robots efficiently is essential. However, classical 

knowledge representations (e.g., symbolic representations and connectionist methods) 

have several deficits such as the frame and symbol grounding problems, and can 

exhibit difficulty in computing similarity between concepts.  

To address these problems, we use the conceptual space that Gärdenfors [1] 

suggested as a basis for human and machine cognition. A conceptual space constitutes 

a metric world in which objects and abstract concepts are represented by quality 

dimensions. A concept has several domains to distinguish it from other concepts. Thus, 

a specific concept forms a set of regions across these domains in the conceptual space. 

Each domain is composed of quality dimensions, and the primary function of the 

domain is to represent various qualities of situations or objects. As a result, the linkage 

between a concept and its domains directly grounds the concept in sensory experience. 

Because the quality dimensions are metric, the similarity can be measured easily. To 

deal with potential sensor and representation differences, we abstract raw sensory data 

into natural object properties such as color, features, chemical composition, and so on 

based on existing MAST mission requirements and sensor capabilities. To represent the 

regions of a property, a Gaussian Mixture Model is used because a property of a 
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concept cannot always be represented by a single Gaussian. Table 1 summarizes some 

of the definitions used in this approach. 
Table 1:  Conceptual Space Definition Summary 

 Definition 
Concept A concept is represented as a set of convex regions in a number of 

domains. 

Domain A domain is a set of integral dimensions that are separable from 
all other dimensions. 

Property A property of a concept is a convex region in some domain. 

Prototype Prototypes are the most representative members of a category. 

Quality Dimension Quality dimensions  represent various object qualities. 

Quality Sensory input from a sensor system. 

 

Earlier research in our laboratory [2-4,7] focused on limited heterogeneity in the 

sensors fielded on different robots. In our ongoing research as part of the Army 

Research Laboratory’s Microautonomous Systems Technology Collaborative 

Technology Alliance, we are extending this previous work to incorporate sensor, power, 

communication, and computation impoverished platforms with the goal of being able 

to provide fully distributed team coordinated control for search and rescue, biohazard 

detection, and other related missions [5]. 

2. Related Work 

Knowledge representation, studied by many AI researchers, constitutes one of the 

fundamental topics in AI. However, while answering the question—what is the correct 

knowledge representation for a particular task? — may seem easy, it is more 

complicated than we expect. Thus, we need to define the concept of knowledge 

representation. One simple definition [10-11] is that it is the study of how to store 

knowledge into a form that an agent can reason with. For this application, the agent is a 

robot that can move and navigate autonomously. To represent knowledge in such 

systems, several theories of representation, two of which are the symbolic and 

connectionist paradigms, are widely used in various areas and applications [12-16]. 

The symbolic paradigm represents the environment with symbols and has a formal 

syntax [1] [6]. The role of the syntax is to determine what and how symbols must be 

manipulated. In other words, knowledge can be represented with a set of symbols that 

are connected based on the principles of syntax. Thus, basic concepts are not modeled 

in a sensory space per se, but represented by the basic symbols. As a result, learning a 

new physical property for given symbols and dealing with changes in the meaning of 

concepts cannot be easily represented in symbolic representation. Therefore, symbolic 

representation is vulnerable to the frame problem and the symbol grounding problem [1] 

[6] [17]. In addition, since concepts at one level are represented by symbols, similarity 

between symbols cannot be easily modeled at the purely symbolic level. Consequently, 

as similarity plays an important role in learning and concept formation, systems using 

the symbolic representation can have difficulty learning new grounded symbols.  

The central idea of the alternative connectionist approach takes the form of 

mimicking the human brain, so it is composed of highly interconnected units or 

neurons [12] [14].  Artificial neuron networks (ANNs) are a specific instance of the 

connectionist approach. Connectionism appears brain-like, and it is not subject to the 



symbol grounding problem that typical symbolic representations suffer from. However, 

since ANNs consist of a large number of simple, highly interconnected neurons, the 

modification of ANN representations is difficult, so it is often called a ―black box 

model.‖ Another weakness of connectionism is that while similarity can be represented 

in ANNs by categorization, it cannot be readily computed as a mathematical value. 

3. Overview of Conceptual Spaces 

The conceptual space that Gärdenfors [1] suggested is a metric world in which 

objects and abstract concepts are represented by quality dimensions. A concept has 

several domains that distinguish it from other concepts. Thus, a specific concept is a set 

of regions from the domains within the conceptual space. Each domain is composed of 

quality dimensions, and the primary function of the domain is to represent various 

qualities of situations or objects. As a result, the direct linkage between a concept and 

domains via sensory data using the conceptual space approach can eliminate the 

symbol-grounding problem. Because the quality dimension constitutes a metric world, 

the similarity between sensed objects and concepts can be measured easily. 

 
Figure 1: Relationship between conceptual space approach entities 

The quality dimensions represent values that can be acquired from sensors. 

Examples of qualities include temperature, shape, taste, etc. The qualities can not only 

be explicit features of objects but also abstract non-sensory characteristics such as 

emotional states. For example, a color domain can be composed of three quality 

dimensions: hue, saturation, and brightness. A property in the conceptual space is a 

geometrical structure within the quality dimensions, where a property of a concept 

forms a convex region in the domain. A concept may also contain salience weights for 

properties and correlations between the properties. For some concepts, a property can 

be more important than others, and can be influenced by the task context. Figure 1 

illustrates these relationships.  

For example, consider how to represent an apple in the conceptual space. The 

apple is a concept and has diverse properties such as taste, color, shape. Each property 

can be a certain region in one domain composed of quality dimensions. As Figure 2 

illustrates, the color domain of the apple has three quality dimensions: R, G, and B. A 

property of the apple is a region in the color domain.  

 
Figure 2.  Concept, domain, and property of the apple 



Since the property forms a convex region, we can define the most representative 

member of a domain as its prototype. In this approach, the prototype can be seen as the 

centroid of objects that are represented. When a robot detects the color of an apple, 

sensor data from the camera is represented as a point in the quality dimensions, and the 

similarity can be computed by measuring the Euclidean distance between the point and 

the prototype of the color domain of the apple.  

Consequently, the theory of conceptual spaces can yield a solution to the symbol-

grounding problem that traditional methods of knowledge representation struggle with.  

Moreover, the conceptual space representation provides a natural way of representing 

similarities, and this ability is one of its major advantages. 

3.1.  Conceptual Space Definition 

A conceptual space is defined as C. The conceptual space is composed of a symbol 

space    and a concept space    [6]. In the symbol space, several symbols can be 

defined, and each symbol names a concept. An ith concept is denoted by   . A concept 

has properties that are defined as                          and each having a range [0, 

1]. An ith property of a kth symbol is denoted by            . A set of concepts 

               is covered by   . Note that concepts are regions in conceptual space, 

but properties are regions in domains. A domain is represented as   , and the concept 

space,    is composed of domains. For instance, the concept of a biohazard can be 

partially defined, (which is used in the test scenarios under development) as      
            , and      is in the color domain   , and      is in the temperature domain 

  . Perceptual features are projected to each domain as shown in Figure 3. 

  

 

Figure 3. Schematic of conceptual space and abstract sensor layer 

A prototype is the centroid of a property and serves as the most representative 

value of a property. Moreover, since we can categorize a sensed object by finding the 

closest prototype to the object, it is useful in categorization. The prototypical value is 

defined as        in the domain    of the labeled with a kth symbol. Figure 4 describes 

the prototype for the biohazard in the color and chemical domains.  

Not all qualities are equally important to a concept, so we need to define the 

relative importance between properties. The importance of      in domain       to 

concept    is referred as          . For instance, chemical composition is a primary 



property in detecting a chemical weapon, since these objects have unique chemical 

compositions. Thus, the property must have significantly higher importance than others. 

As Figure 4 illustrates, the chemical composition domain    has much less overlap 

than the other domains   ,   . Therefore, the chemical domain is the most informative 

in discriminating a biohazard from a similarly colored and shaped but empty trash can. 

3.2. Similarity in Conceptual Space 

     As objects can be represented as property vectors in conceptual spaces, the 

definition of similarity of objects is relatively intuitive and easy. The similarity [1] [6] 

is the distance between objects (and prototypes) and it is one of the main advantages of 

this representation. Like distance, similarity is a real valued non-negative function and 

has several properties: The similarity should be maximum when the distance is zero; it 

should decrease with distance; and be zero when computing the similarity with an 

inapplicable point. So, we define the similarity s between objects a and b with the 

following equation: 

                   . 

As a result, a concept c in the symbol space can be computed with the following 

equation: 

                             

 

   

  

Where                  is the similarity between an ith prototype and the ith property 

in a kth concept;        is the importance of the ith property in the kth domain and n is 

the number of properties in a concept. For instance, one robot detects the color of an 

object, and the color domain is updated. To calculate the concept of a biohazard,     , 

the temperature,   , the chemical composition,   , and the color,    are also required.  

 

 

Figure 4. (Left) Potential Biohazard Object. (Right) Notation for prototypes. Note that a similarly 

colored trashcan may be ambiguous with a biohazard, but the chemical composition which has no 

overlap provides the basis for disambiguation. 



3.3. Abstract Sensor Layer 

In this section, the process to convert sensor data to vectors that can represent a 

property of an object is described, in this case, a bio-weapon. Each robot has a set of m 

sensors,               . We denote the number of sensors as |S|. At time t, the 

robot receives an observation vector      from each sensor,   , resulting in a set of 

measurement or observation vectors,                       . We denote the robots 

with a superscript, so that   
 
 is sensor i of robot j. Sensor data provide a stream of 

unprocessed information so it is presumed that each robot has a set of p feature 

detectors,               , that further process observations and output perceptual 

features. We denote specific values of a set of features at time, t as    , and the specific 

value of a feature i as      . A feature detector is a function,  , that maps a set of 

observation vectors into a set of feature vectors. For instance,         
  where    

   

denotes the set of input observations used by the feature detector. 

Figure 5 (left) depicts sensors, observations, and perceptual features for a robotic 

microflyer tasked for this mission. This robot has three sensors,       
    

    
  : mm-

wave radar, vision sensor, and thermal IR camera. A thermal IR camera provides a 

color image where each pixel represents a temperature value, and a blob detector takes 

the thermal image as input and outputs a vector specifying a list of blobs found and 

their positions. After calculating an average RGB color of the output regions of the 

blob detector in a thermal image, temperature can be found based on a table lookup. 

Therefore, the feature detector,     
 , contains the computational process to obtain an 

object’s temperature from a thermal image.  

 
Figure 5. (Left) Flyer robot  (Right) Crawler robot 

The feature detector,     
 , for a mm-wave radar differs from     

  because we need to 

extract features of a shape from a radar image. Instead of using the blob detector, we 

will use the line approximation to represent shapes in a radar image. Therefore, the 

feature,     
 , is composed of feature points of a recognized shape so that we can 

measure Euclidean distance between a detected feature and a prototype of a barrel 

shape. The feature detector,     
 , for a vision sensor is to extract blobs from an image, 

and then returns an average RGB color of a blob as a feature.  

According to the scenario, the crawler has a micro gas chromatograph and a HAIR 

sensor, where Figure 5 (right) depicts the feature detector of a crawler robot. Since raw 

sensor data of the micro gas chromatograph can be used in measuring Euclidean 

distance, the feature detector,     
  is a null function, but     

  will not be used for a 



property in the conceptual space, since direction of air flow cannot be a property of this 

particular object (if it were a fan it might be). However, air flow can be combined with 

the sensor data of the micro gas chromatograph for a robot to move toward the source 

of a biohazard using chemotaxis for more accurate sensor confirmation.  

3.4. Learning Properties from Samples 

In conceptual spaces, properties of the concept are regions in a domain. The 

regions can represent all samples of a concept. To represent the regions of a property, a 

Gaussian Mixture Model (GMM) [9] is used because a property of a concept cannot be 

represented by a single Gaussian in some cases. For example, the color of an apple 

varies (e.g., yellow, red, green), so representing the color with one Gaussian is not 

effective. The GMM is a parametric probability density function represented as a 

weighted sum of Gaussian component densities: 

                    

 

   

  

where x is feature vector for a property, and M is the number of Gaussian density 

functions.    is known as the mixing proportions, 

          

 

   

    

  is a set containing all of the mixing proportions and model parameters, 

                
    

                  , are the component Gaussian densities,  

           
 

        

     
 

 
      

   
           

Since each property is modeled as a mixture of Gaussians, a data association 

problem must be solved. There will be several clusters in the space, and the algorithm 

must first determine which cluster the data belongs to before updating the parameters 

of the model. The method used to solve this is Expectation Maximization, which 

alternates between estimating the association of the points to the clusters and updating 

the parameters of the clusters given the association.  

4. Summary 

We have presented the underpinnings of an overall robotic architecture being 

developed for use in sharing knowledge across heavily constrained microautonomous 

platforms with respect to power, communication, sensing, and computation.  It is 

inspired by conceptual spaces and can be applied to multi-robot systems equipped with 

widely heterogeneous sensors. The conceptual space can be used to solve some of the 

problems that classical knowledge representations have such as symbol grounding. The 

abstract sensor layer converting raw sensor data to vectors is introduced in order to 

project the vectors into the conceptual space. Because of the abstract sensor layer, 

applying the architecture to various multi-robot systems is straightforward. Figure 7 

illustrates the overall architecture for heterogeneous robots and how robots share the 

information that they individually recognize.  We are in the process of implementing 

and testing the architecture on actual robotic platforms for the scenario described. 
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Figure 7: (Top) The architecture of the whole system is composed of three components: 

communication module, conceptual space, and abstract sensor layer. (Bottom) Overall System. 
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