
Masthead Logo
Fordham University

DigitalResearch@Fordham

Faculty Publications Robotics and Computer Vision Laboratory

2017

Establishing A-Priori Performance Guarantees for
Robot Missions that include Localization Software
Damian Lyons
Fordham University, dlyons@fordham.edu

Ron Arkin
Georgia Institute of Technology

Shu Jiang

Matt O'Brien

Feng Tang

See next page for additional authors

Follow this and additional works at: https://fordham.bepress.com/frcv_facultypubs

Part of the Artificial Intelligence and Robotics Commons, and the Robotics Commons

This Article is brought to you for free and open access by the Robotics and Computer Vision Laboratory at DigitalResearch@Fordham. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of DigitalResearch@Fordham. For more information, please contact
considine@fordham.edu.

Recommended Citation
Damian Lyons, Ron Arkin, Shu Jiang, Matthew O'Brien, Feng Tang and Peng Tang, "Establishing A-Priori Performance Guarantees for
Robot Missions that include Localization Software" International Journal of Monitoring and Surveillance Technologies Research
(IJMSTR) Volume 5, Issue 1 2017.

https://fordham.bepress.com?utm_source=fordham.bepress.com%2Ffrcv_facultypubs%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fordham.bepress.com/frcv_facultypubs?utm_source=fordham.bepress.com%2Ffrcv_facultypubs%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fordham.bepress.com/frcv?utm_source=fordham.bepress.com%2Ffrcv_facultypubs%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fordham.bepress.com/frcv_facultypubs?utm_source=fordham.bepress.com%2Ffrcv_facultypubs%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=fordham.bepress.com%2Ffrcv_facultypubs%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=fordham.bepress.com%2Ffrcv_facultypubs%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:considine@fordham.edu

Authors
Damian Lyons, Ron Arkin, Shu Jiang, Matt O'Brien, Feng Tang, and Peng Tang

This article is available at DigitalResearch@Fordham: https://fordham.bepress.com/frcv_facultypubs/58

https://fordham.bepress.com/frcv_facultypubs/58?utm_source=fordham.bepress.com%2Ffrcv_facultypubs%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages

DOI: 10.4018/IJMSTR.2017010103

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

﻿
Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

Establishing A-Priori Performance
Guarantees for Robot Missions that
Include Localization Software
Damian Lyons, Department of Computer and Information Science, Fordham University, New York City, NY, USA

Ronald C Arkin, Georgia Institute of Technology, Atlanta, GA, USA

Shu Jiang, Georgia Institute of Technology, Atlanta, GA, USA

Matthew J O’Brien, Georgia Institute of Technology, Atlanta, GA, USA

Feng Tang, Fordham University, New York City, NY, USA

Peng Tang, Fordham University, New York City, NY, USA

ABSTRACT

One approach to determining whether an automated system is performing correctly is to monitor its
performance, signaling when the performance is not acceptable; another approach is to automatically
analyze the possible behaviors of the system a-priori and determine performance guarantees. Thea
authors have applied this second approach to automatically derive performance guarantees for behavior-
based, multi-robot critical mission software using an innovative approach to formal verification
for robotic software. Localization and mapping algorithms can allow a robot to navigate well in an
unknown environment. However, whether such algorithms enhance any specific robot mission is
currently a matter for empirical validation. Several approaches to incorporating pre-existing software
into the authors’ probabilistic verification framework are presented, and one used to include Monte-
Carlo based localization software. Verification and experimental validation results are discussed for
real localization missions with this software, showing that the proposed approach accurately predicts
performance.

Keywords
Behavior-Based, Formal Verification, Localization, Robot Software, Uncertainty

1. INTRODUCTION

For systems that need to function in critical situations, such as in healthcare applications, search
and rescue robotics, and automated counter weapons of mass destructions (CWMD) missions, it is
crucially important that the system function as specified or the result might be loss of life, or property
damage or both. One approach to this problem is to monitor the system in operation (Leucker &
Schallhart, 2009) and to signal an alert to a supervisor of the system when the performance is going,
or predicted to go, outside the necessary performance envelope. This monitoring approach can be very

49

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

50

effective in cases where a supervisor can step in, or the system can be disabled without consequence,
when a performance problem is observed. However, in the case that the system is autonomous, or
the supervisor cannot interact sufficiently quickly and the system cannot simply be disabled, then an
alternate approach is necessary. In previous work for the Defense Threat Reduction Agency (Lyons
et al., 2015) we have developed an efficient approach to the automatic, a-priori determination of
performance guarantees for behavior-based robot missions operating in uncertain environments.

This work is related to formal software verification (Jhala & Majumdar, 2009) (DeMoura &
Bjorner, 2012): a design tool to determine whether a piece of software will function properly without
having to execute the software. The field has progressed strongly in recent years with developments
in model-checking (Jhala & Majumdar, 2009) and satisfiability (SMT) engines (DeMoura &
Bjorner, 2012). However, all such methods can at best approximate real robot performance because
of the undecidability of the underlying verification problem. Designing a verification approach for
mission critical robot software requires understanding what aspects of the robot software are of most
importance to the problem. Behavior-based robot programming (Arkin, 1998) is an important tool
in autonomous robotics that yields robot programs that are robust to uncertainty about exactly what
environment the robots will face during execution. For this reason, in recent work (Lyons et al., 2015),
we addressed the problem of automatically verifying behavior-based robot programs by leveraging
the structure of such programs. The approach employs a unique combination of static analysis
techniques and probabilistic reasoning to provide performance guarantees for behavior-based robot
programs operating in physical environments with uncertain knowledge about obstacles to motion.
Rather than addressing computational verification problems such as absence of deadlock or absence
of run-time errors (Trojanek & Eder, 2014) (Walter, Taubig, & Luth, 2010), or verifying software
generated control signals without consideration of the physical platform (Kim, Kang, & Lee, 2005),
our work focuses on establishing performance guarantees for the mission software with a model of
an uncertainly-known physical environment.

A key robotics development in recent years has been the use of probabilistic mapping and
localization algorithms that allow a robot to operate robustly in previously unseen areas by
automatically building a map and continually localizing the robot with respect to the map (Thrun,
Burgard, & Fox, 2005). Many such algorithms have been programmed and tested and made available
in software libraries (Dellaert, Fox, Burgard, & Thrun, 1999). Our prior work in verifying the
performance of behavior-based robot missions involved manual and autotranslation of missions
(O’Brien M., Arkin, Harrington, Lyons, & Jiang, 2014) specified using Georgia Tech’s MissionLab
(MacKenzie, Arkin, & Cameron, 1997) robot mission development toolkit. Other approaches to
the verification of behavior-based systems have also been based on specific programming toolkits
(Kiekbusch, Armbrust, & Berns, 2015). However, since there already exist software libraries for
probabilistic mapping and localization, it would be advantageous to simply include one of these in
a robot mission if it provided the necessary performance. In this paper, we address the problem of
incorporating existing software into our novel approach to performance verification of behavior-based
systems. Building on our work in (Lyons D., et al., 2016), we present some general theoretical results
relating to this challenge, and then we address the specific problem of incorporating probabilistic
localization (ROS AMCL) (Dellaert, Fox, Burgard, & Thrun, 1999) (Jiang & Arkin, 2015) into a
C-WMD robot mission.

The remainder of the paper is laid out as follows. In Section 2, we review the relevant literature.
In Section 3, we present as background an overview of our approach to verification. In Section 4,
we present the main challenge: incorporation of existing software into the verification process, and
we develop a theoretical basis for addressing this. Section 5 presents an application of the theory to
the specific example of a C-WMD mission using the ROS AMCL localization module. Section 6
presents our conclusions.

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

51

2. LITERATURE REVIEW

Approaches to the problem of ensuring that a critical system will perform according to an a-priori
formal performance guarantee include both run-time monitoring (Leucker & Schallhart, 2009) and
formal verification (Jhala & Majumdar, 2009). Run-time monitoring has the advantage of typically
being lightweight, however, it has the disadvantage that it can only be applied if a supervisor can be
alerted, or the system disabled, in the event of a run-time monitor performance alert. Certain critical
systems, such as health monitoring systems with life-critical intervention events, or autonomous
systems handling explosives disposal with significant danger of life and property damage, do not
have this property. In such cases, it is necessary to establish that the system will always abide by
specified performance guarantees in advance. Our work addresses Counter-Weapons for Mass
Destruction (C-WMD) robot mission software: software for multiple-robot teams searching for and
locating WMDs. This falls into the category of software requiring a-priori performance guarantees.

Approaches to software verification include model checking (Jhala & Majumdar, 2009), static
analysis (Venet, 2008) and theorem proving (Shankar, 2009). The model checking approach, which
has proved widely successful, involves a comprehensive exploration of reachable states of the program
to be verified. In the case of robot missions, it is very important to model the robot software, the
properties of the robot actuators and sensors, and the behavior of the environment in which the
robot is to operate. The addition of an environment model is rarely seen in general purpose software
verification, but is crucial for any software that interacts with a complex physical system. Model
checking approaches are sensitive to the size of the problem state space. This has been recognized
as a problem in applying these techniques to robotics (Wongpiromsarn & Murray, 2008) because of
the requirement to model sensors, actuators and environment behavior in addition to the software.

On approach to sidestep the additional state complexity (Fisher, Dennis, & Webster, 2013) is by
verifying the robot’s belief rather than the actual physical behavior. However, this begs the question of
how belief will correspond to reality on any specific mission. We have followed an alternate approach
(Lyons D., et al., 2013) (Lyons D., Arkin, Jiang, Harrington, & Liu, 2014) – avoiding making the state-
space of the problem explicit. We developed a static analysis method to extract a set of flow-functions
from behavior-based robot software. The functions describe how the variables of the program, robot,
sensor and environment models recurrently interact during execution. The performance guarantee is
mapped to boundary constraints on these functions. The flow functions which characterize the robot
mission software are used to construct a Dynamic Bayesian Network (DBN), and verification of the
software consists of filtering the DBN (as opposed to inspecting sample execution paths e.g., (Younes
& Simmons, 2002)). Random variables are represented as Mixtures of Gaussians (MoG) (Lyons D.,
Arkin, Liu, Jiang, & Nirmal, 2013), essentially a multiple hypothesis representation for the variable
value. Propagation of parametric distributions through a Bayesian network is very fast; many of the
verifications take less than a few minutes despite extensive logging and debugging commands.

There are two challenges in automatically verifying existing probabilistic robot localization
software. The first is that it requires an environment model, separate from, and interacting with, the
robot software. The model has to include the physical location of the robot, the geometry of the map,
and the relationship between these and the sensor measurements. Uncertainty in physical location (at
the least) needs to be modeled. The second is that existing software must be directly included into
the verification, rather than recoded and then included.

There is little directly related work in applying automated verification to critical missions in
real-world environments. Proetzsch et al. (Proetzsch, Berns, Schuele, & Schneider, 2007) document
verification of a behavior-based architecture of an outdoor mobile robot RAVON. They rewrite the
software into the formal, synchronous language Quartz and carry out model-checking using the Averest
model checker to ensure that the robot slows down and stops based on its proximity sensors. Since
they have no environment model, what they verify is that the software issues appropriate velocity
commands – in our work we verify the state of the robot itself. Walter et al. (Walter, Taubig, & Luth,

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

52

2010) also verify collision avoidance software for a mobile robot. They do include an environment
model (their Domain model) and use the Isabelle theorem proving system. They manually annotate
the code in their own formal language and use Isabelle as an assistant for human-driven, rather than
automated, verification of the program.

Verification of software that includes probabilistic algorithms has been addressed by the formal
verification community (Baeir & Katoen, 2008) (Katoen, 2010), and probabilistic model-checking
tools such as PRISM (Kwiatkowska, Norman, & Parker, 2004) have existed for some time. However,
such tools require a user to code their algorithm specifically for verification, whereas our objective
is to have automatic verification, and to include existing probabilistic localization code into the
verification process. The recoding approach has the general weakness that a re-implementation may
not represent the actual code (it might be a better or worse implementation). Even published algorithm
descriptions for widely known algorithms have been shown to contain errors (Zaks & Joshi, 2008).
Recoding also inherently requires a large investment of expertise and manpower (Kim, Kang, & Lee,
2005). However, the main challenge in including preexisting code is that such code is designed to
execute a single instance whereas verification reasons about all executions that are possible given the
a-priori environment model information. Including existing code is possible in some model-checking
tools – for example SPIN 4.0 and later allows C code to be embedded in a Promela model and the
code is executed as an atomic transition within SPIN. Our approach is to consider the embedded
code can transform a sample from a random variable, and we define a framework for sampling and
reconstructing variable distributions.

3. VERIFICATION OF BEHAVIOR-BASED ROBOT MISSIONS

As background for our approach to addressing verification of existing localization code, we present
an overview of our approach. The first subsection briefly introduces and motivates our theoretical
approach using PARS (Process Algebra for Robot Schemas). The second subsection introduces the
implementation in MissionLab and VIPARS (Verification in PARS).

3.1. Theoretical Framework for Automatic Verification of Behavior-Based Systems
As we have discussed, state-space explosion is a key challenge for automatic software verification.
This problem is exacerbated in our case by the need to include not just the robot software, but also
a model of the environment in which the robot program will operate. On top of this, both the robot
software and the environment model will need to support the representation of uncertainty, a sine
qua non in real-world robotics. To address these serious computational complexity problems, we
elected to 1) not focus on state-based representations but rather process-based representations, and 2)
to leverage the structure of behavior-based programming (Arkin, 1998) – a successful, robust robot
programming paradigm.

A behavior-based program and its environment are modeled in PARS as a set of interconnected,
recurrent processes, where a process P is written as:

Pu u i i o o v v
n j k m1 1 1 1

, , , , , , , ,… …() …() … 	 (3.1)

where u1,…,un are the initial values for the process variables, i1,…,ij and o1,…,ok are input and output
port connections, and v1,…,vm are final result values of the process variables. Processes compute
result values from initial values, and this computation may be influenced by any communications that
occur over port connections. By focusing on processes rather than states, we shift the computational
complexity from state combinatorics to the generator of those states – the process description. So,
of course, we need a good language for that description.

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

53

Processes can be defined as combinations of other processes using the following composition
operators: parallel (‘|’), disabling (‘#’) and sequential (‘;’). Bounded recursion is captured using tail-
recursive process definitions, e.g.:

Px Qxy Py� �;= 	 (3.2)

Here process P first activates process Q with input value x. Q delivers output value y, which is then
used to recur P. A variable flow function fP relates the values of variables at the start of each recursive
step of P to those at the end. The flow-function for atomic processes are specified a-priori; those for
composite process, those defined as compositions of other processes, e.g., (3.2), are composed from
the flow functions of the component processes. This can be automated in a standard static analysis
(the approach used by compilers to check or optimize software) approach to generate flow functions
given a set of processes (Lyons, Arkin, Jiang, Liu, & Nirmal, 2015) with complexity linear in the
number of processes. Since any execution of Equation (3.2) is modeled by fP

n(x0) for n≥1 and initial
parameter value x0, we have a straight-forward verification method. However, not all processes are
defined in this form.

The system to be verified is expressed as the parallel, communicating composition Sys of a robot
controller, e.g., Ctr with variable r1, and an environment model, e.g., Env with variable r2, written:

Sys r r Ctr r a b Env r b a
1 2 1 2
, ()() ()()= 	 (3.3)

 = ()Sys r r Sys f r r
Sys

' , ; ,
1 2 1 2

	 (3.4)

f r r f r r f r r
Sys Sys r Sys r1 2 1 1 2 2 1 2

, , , ,
, ,() = () ()() 	 (3.5)

In Equation (3.3), the input of Ctr is connected to the output of Env, (a), and the output of Env
is connected to the input of Ctr, (b). If (3.3) were a sequential composition like (3.2) then we could
extract flow functions for the combined interaction of controller and environment and conduct an
efficient verification. Therefore, in (Lyons, Arkin, Jiang, Liu, & Nirmal, 2015) we developed an
interleaving theorem1 for behavior-based systems to convert Equation (3.3) to a sequential form
Equation (3.4). The intuition is that a behavior-based system has behavioral ‘states’ each with an
associated set of sensory-triggered responses. A static analysis algorithm Sysgen was developed to
identify the set of processes for these states and rewrite parallel compositions of the form (3.3) into
a sequential composition (3.4) where Sys’ is the automatically identified behavioral state process,
referred to as the system period. Once Sysgen analysis is complete, a system flow function can
be extracted from Sys’ in the usual way. In the small example of Equations (3.3), (3.4) above, the
function extracted is shown in Equation (3.5). This is a recurrent function that evaluates the values
for r1 and r2 as computed by the interactions between Ctr and Env in each execution of the system
period Sys’. The result of this is that a parallel composition of controller software and environment
model, such as in Equation (3.3), can be automatically verified by checking fSys

n(x0) for n≥1 and initial
parameter value(s) x0.

While this addresses the state combinatorics problem mentioned in the first paragraph of 3.1,
it does not address the challenge of representing uncertainty mentioned in that same paragraph.
Process variables, e.g., r1, r2 in Equation (3.3), can be random or deterministic. Random variables
are represented as multivariate mixtures of Gaussians, and operations on random variables are
automatically translated into operations on distributions (Lyons D., Arkin, Liu, Jiang, & Nirmal,
2013); for example, a sum of random variables is translated to a convolution of their distributions.
All these operations can be written (as approximations in some cases) as operations on the parameters
of the Gaussian mixtures. Flow functions relate variable values at recursion step t of Sys’ to those at
t+1, and can be written as conditional probabilities, e.g.:

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

54

fSys,r1 (r1,t, r2,t) = P(r1,t+1 |r1,t, r2,t) 	 (3.6)

In the final phase of verification, extracted flow functions are converted to conditional probabilities
e.g., (3.6). These are used to build a Dynamic Bayesian Network (Russel & Norvig, 2010) to carry out
a forward propagation of probability distributions – a probabilistic version of fSys

n(x0) – to determine
whether the combination of controller and environment will meet a performance specification.
Although (Lyons, Arkin, Jiang, Liu, & Nirmal, 2015) discusses more complicated performance
guarantees, we basically restrict our attention to the guarantee that a mission will achieve some
criterion on environment variables (usually a spatial accuracy for a waypoint goal and/or a temporal
requirement for achieving the mission) with probability greater than a threshold before a time-limit
has expired. We have demonstrated that this approach is fast and accurate when validated against
physical executions (most recently (Lyons et al., 2015)).

3.2. Implementation of Verification in MissionLab and VIPARS
The result of our research effort is a software verification tool VIPARS, which provides the
performance guarantee for a robot mission based on how well the specified performance criteria are
satisfied by the control program, robot, and the environment models for the mission.

VIPARS (Lyons D., Arkin, Jiang, Liu, & Nirmal, 2015) is built upon MissionLab (MacKenzie,
Arkin, & Cameron, 1997), a behavior-based robot mission specification environment (Figure 1).
MissionLab provides a usability-tested graphical programming interface, where the robot’s program
is specified in the form of a finite state automaton (FSA) assembled from a library of primitive
behaviors. MissionLab missions are autotranslated (O’Brien, Arkin, Harrington, Lyons, & Jiang,
2014) to the process-algebra notation PARS for analysis. Environment models are also processes
in this notation and we have proposed that a standardized set of environment models could be used

Figure 1. System architecture (reproduced from (Lyons et al., 2015))

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

55

to capture different classes of environment (e.g., motion uncertainty (Lyons, Arkin, Jiang, Liu, &
Nirmal, 2015); obstacle uncertainty (Lyons et al., 2015)).

The first phase of VIPARS verification is a static analysis of the concurrent, communicating
mission software and environment model to generate a set of recurrent flow-functions capturing how
the two interact. The second phase of VIPARS uses a Bayesian network to predict the performance
of the mission from these functions.

The output of VIPARS is the performance guarantee, currently quantified as a set of probability
distributions, that describes the likelihood of mission success. Rather than a single yes/no answer for
whether the robot software being analyzed meets the performance requirements, VIPARS can output
random variable distributions (e.g., the location of the robot at the end of the mission) and a set of
performance graphs (e.g., the probability that a mission will be successful versus time, or the spatial
accuracy of the final position as a graph of probability versus spatial error). This rich output fuels a
feedback loop that allows the mission operator to improve the performance of the mission software.

4. VERIFYING EXISTING LOCALIZATION SOFTWARE

There are two key challenges to extending automatic verification to handle the verification of previously
existing localization software incorporated into a robot mission. The first challenge is to provide an
environment model for verification that includes the geometric and position uncertainty needed to
verify any probabilistic localization approach. That will be addressed first, in subsection 4.1. The
second challenge is to provide a framework for including the automatic analysis of previously existing
software into probabilistic verification without requiring that the software be rewritten, annotated,
or modified in any way. That will be addressed in subsection 4.2.

4.1. Environment Model for Localization
Section 3 included an introduction to the VIPARS verification module and to PARS, the process
algebra framework underlying it. The software for a robot mission is translated from the MissionLab
GUI Editor to a set of PARS process definitions. We refer to the top-level process as Mission and we
verify this process by analyzing its interactions through the sensor and actuator signals it generates
with a model of the environment in which it is to execute. This environment model is also defined as
a set of PARS processes. The concurrent, communicating combination of the robot control software
Mission and the environment model is called the system process, Sys.

In prior work, we have defined environment models to capture the motion and sensing uncertainty
of the robot (Lyons D., Arkin, Jiang, Liu, & Nirmal, 2015), and environment obstacles with uncertain
location and size (Lyons D., et al., 2015). To verify localization software, the environment model needs
to contain information about the uncertain geometry of the environment. The system process Sys for
the localization mission is shown in Equation (4.1) and illustrated as a process network in Figure 2:

Sys Mission clp clh cl cv Localization D cp co ch cl cm= (()() (), , , , , ,0 cclp clh

Map sysmap cm MB Laser ms mo lo cm cp ch

,

() _ , , , ,

()
() (()()
()())

cl

Robot P H cv cp ch co 0 0, , ,

	

(4.1)

Recall from Section 3, that the names in parenthesis after the process name are port connection
names. The initial values for the process variables are show between angle brackets. The Mission
software, as we’ll see in a later section, programs a waypoint mission and is fundamentally similar to
all prior waypoint missions we have verified and validated. It has inputs clp (position), clh (heading)
and cl (laser readings); and output cv (velocity). Robot is the environment model, capturing motion
and odometry error as well as the robot interactions with obstacles. It is also fundamentally similar

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

56

to the models used in our prior work. PO, HO are the initial robot position and heading, and the
process ports are inputs cv (velocity) and outputs cp, ch (odometry position and heading) and co (real
position distribution, i.e., without sensing noise – used for performance guarantee evaluation only).

In the behavior-based localization approach (Jiang & Arkin, 2015), the obstacle avoidance sensor
(MB_Laser) gets its information from the map, rather than directly from measuring sensory input. Map
makes map information available on its output cm; MB_Laser uses the map to generate map-based
laser data on its output cl. Localization implements a localization method using the map cm, laser cl,
and robot cp, co, ch inputs, where D0 is the initial position uncertainty. The output of Localization, clp,
is the localized position (and heading clh) used by the Mission process. How the Localization process
encapsulates an existing localization algorithm will be addressed in subsection 4.2.

A key difference between this localization mission and prior missions to which we have applied
our verification approach (Lyons D., Arkin, Jiang, Liu, & Nirmal, 2015) (Lyons D., et al., 2015)
(O’Brien M., Arkin, Harrington, Lyons, & Jiang, 2014) is the map and the role it plays in both the
obstacle avoidance behavior and in localization. The Map process in Equation (4.1) contains a
map (sysmap) which represents the geometry of the physical environment in which the mission is
executed. Our assumption is that this map has been generated a-priori for an environment of interest.
Our concern here is how this map can be represented for the purposes of probabilistic verification.

Random variables are represented in VIPARS as Mixtures of Gaussians distributions (MG). If
a ~ MG(CM), for CM={(μi, Σi, wi) | i ∈ 1…m} the set of the mixture parameters (means, variances,
weights), then ai refers to mixture member N(μi, Σi,), and w(ai)=wi are the mixture weights, where

i

m

i
w

=
∑ =

1

1, � and MG(x; CM)=
i

m

i i i
w N x

=
∑ ()

1

; ,µ Σ . The mixture size is written | a | = m. Map

information – the locations and geometry of obstacles, walls and other physical aspects of the mission
environment – can be directly represented using this mixture model as we explain below. The advantage
of this approach to representing physical geometry is that there is no restriction on the spatial location
or extent of obstacles, and finer precision of modeling can be obtained at the cost of adding more
mixture members (Figure 3).

Figure 2. The system process Sys for the localization mission

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

57

Definition: An indexed mixture of Gaussians is a mixture of Gaussians distribution a ~ MG(CM)
together with an index set I. The mixture is restricted as follows:
◦◦ a[x] ≡ ai where μ(ai) = x ∈ I, i∈ 1…m;
◦◦ μ(ai) ∈ I, for all i∈ 1…m; a only contains members indexed by I;
◦◦ For any x∈ I, |{a[x]}| ≤ 1; a has at most one member for each index.

We define w[x] and Σ[x] similarly to a[x] to label member weights and covariances. A map
is defined as an indexed bivariate mixture of Gaussians where I=[0…X]×[0..Y] and where each
member is a Gaussian kernel with covariance Σ[x,y]=σm

2I, where σm reflects the map resolution. This
corresponds somewhat intuitively with an occupancy grid representation, where w[x,y] is related to
probability of occupancy for the location (x,y).

During verification, the location random variable (the connection cp in Equation (4.1)) represents
the location of the robot for all possible executions. It’s relevant to compare this with the representation
of robot location in a localization algorithm: the representation there may be also be a random variable,
but the interpretation is different. In any single execution, the robot can only be at a single physical
location; the localization distribution is an estimate of this. In verification, the objective is not to find
the single most likely location, but to propagate the effects of being at all locations. Rather than using
a ray trace algorithm to determine how each location is supported by sensor readings and refining the
position estimate based on that, the ray trace algorithm is used by the MB_Laser process to gather
all possible sensor readings that can arise due to the robot location distribution.

We begin by defining a ray scan on a map represented as an indexed mixture:

Figure 3. Example of VIPARS Gaussian mixture model map representation

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

58

Definition: Scanline((xs,ys), θ) ⊆ R2 = { (x,y): x=xs + t cos θ, y = ys + t sin θ, t ∈ R+ }

The set of map mixture members encountered by Scanline is easily calculated as Scanline ∩ I and
for convenience we also define the members encountered by Scanline on the indexed mixture Map as:

Definition: Scanmix((xs,ys), θ) ⊆ Map ={ (a[x,y], w[x,y]/Σw[x,y]): a[x,y]∈Map ∧ (x,y) ∈
Scanline((xs,ys),θ) ∩ Y }

The return from a sensor will then be an indexed univariate mixture calculated as follows. Let
bi for i=1…m be the members of Scanmix, then we calculate each member si of the sensor return
Sensor((xs,ys), θ) from the members of Scanmix. Each member mean is the distance from the sensor
origin to the map index and each member variance is the map accuracy variance convolved with a
sensor specific noise distribution SN:

� , * ���� ��� , ,���s s N S where x y b
i i i i N i s s i i
= 


 = () = () ()µ µ σ µ µ σ == σ

m
	 (4.2)

However, calculating the mixture weights is a little more involved due to the potential occlusion
of mixtures (representing objects) by other mixtures (representing objects) that are closer to the
sensor. The weights of the members of Scanmix need to be modified for the corresponding members
of Sensor in order of visibility – that is, in order of μi as follows, where w are weights in Scanmix
and w’ the new, corresponding weights in Sensor:

� []
�

′ =w w
0 0

µ 	

′ = 


 −










=
∑w w w

i i
j

i

j
µ � ’1

0

	 (4.3)

Sensor((xs,ys), θ) defines the sensor return to have an uncertainty related to the accuracy of the
map. However, it does not include any uncertainty associated with the robot position. To incorporate
the uncertainty in robot position into the sensor return, we extend the definition as follows:

Definition: Sensor(N((xs,ys),Σ), θ) = {(si, w’i): i=1…m } as in Equation (4.2) but where Σ is a diagonal

covariance Σ =
















σ

σ
x

y

2

2

0

0
 and σ σ σ θ σ θ

i m x y
= + +()� cos cos � .

However, this definition assumes a diagonal variance Σ for the robot motion uncertainty. This
is unrealistic and we need to relax the assumption if we are to handle realistic robot motion. Any
covariance matrix can be interpreted geometrically as the product of rotation Rθ and scaling S matrices:

Σ =















= ()() =

−σ σ σ ρ

σ σ ρ σ

φ
φ φ θ

x x y

x y y

T
R S R S where R

2

2 ��
cos sinφφ
φ φsin cos

�
















=
















andS
s

s
x

y

0

0
	 (4.4)

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

59

Using this relationship, the angle (ϕ) and diagonal variances (sx
2, sy

2) of a non-diagonal covariance
matrix can be identified and the scan angle rotated accordingly.

Definition: Sensor N xs ys x

y

, , ,()


































σ

σ

2

2

0

0






= ()



























� , , �Sensor N xs ys
s

s
x

y

2

2

0

0 
−












,�� φ

Having ensured that environments, maps and sensor readings can all be reasoned about using the
random variable framework in PARS – necessary for both obstacle avoidance and localization – we
next turn our attention to localization itself.

4.2. Including Existing Software in Probabilistic Verification
The main difficulty with the incorporation of existing localization code directly into the VIPARS
verification algorithm is that localization code is designed to execute just a single instance of a robot
mission, whereas VIPARS is probabilistically reasoning about all executions that are possible given
the a-priori environment model information. Consider that the C++ program we want to add to a
mission is P. A PARS process wrapper for P is built, so the code behaves like a ‘black box’ process
P〈x〉〈y〉. However, when P is called, it will map one input value x to an output, y; only one possible
execution of P, whereas verification has to check all possible executions.

Our approach to this challenge considers building a process wrapper for the embedded code that
is capable of transforming a sample (which represents a single instance of a mission) from a PARS
random variable, and for this purpose we define a framework for sampling and reconstructing variable
distributions. This approach has the advantage of using the actual code that will get executed by the
robot at run-time for the mission. It has the disadvantage of potentially lengthening verification times,
since multiple samples need to be evaluated for a representative result.

We define an extension to the flow function fP for the process/program P (representing the
actual embedded code): the mixture extended flow function FP takes a random variable x as input
and produces a random variable y as output. It samples the input distribution x and calls fP on the
samples, and reconstructs the output distribution mixture p(y | x)= FP(x) from the result. Let x,y ~
MG(CM); our objective is to evaluate y = Π(x) (=fP above) where Π is the transformation carried
out by the embedded code on the variable x. We will present several ways this can be done.

Definition: The MG mean-extended real function (MER) Π is defined as follows:
◦◦ If Π is defined as Π: ℜ→ℜ, where y = Π(x), for x, y ∈ℜ, then;
◦◦ The MG mean extended real function Π is defined as Π: MG→ MG;
◦◦ Where y = Π(x), for x,y ∈ MG (and MG is the set of all MGs); and
◦◦ Where we define y = x;
◦◦ Except μ(yi) = Π(μ(xi)) for all xi in x.

So, the MER function preserves number of members and variances. Only the mean is transformed,
and a normal distribution is transformed to another normal distribution with the same variance. This
limits our modelling of what the software in Π can do:

•	 It cannot for example add or reduce uncertainty since variance is unchanged. The entire distribution
is moved to center over a new mean;

•	 It cannot add new members to the mixture since the number of members is unchanged.

This is clearly very limiting, though it might be sufficient for a fast estimate of performance.
Consider that if we call Π with a single number x, it returns a normal distribution with the result for

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

60

x as the mean and a variance: y = N(μ,σ) = Π(x). Now, if the input to code is a MG x, then we could
define a MG extension of Π as:

Definition: The MG mean extended normal function (MEN) Π is defined as follows:
◦◦ If Π is defined as Π: ℜ→ℜ×ℜ, where (μ,σ)=Π(x), for x, μ,σ ∈ℜ, then;
◦◦ The MG normal extended function Π is defined as Π: MG → MG;
◦◦ Where y = Π(x), for x,y ∈ MG; and
◦◦ Where we define y=x;
◦◦ Except (μ(yi), σ(yi)) = Π(μ(xi)) for all xi in x.

Notice however that the MEN function effectively ignores σ(xi); only the mean is used. In
probabilistic terms, this is like only operating on the most likely value. However, since a variance is
returned, it means the code does include an increase or decrease in the uncertainty associated with
the transformed variable.

Definition: The mean and variance of an MG is defined similarly to the mean and variance of a
mixture of Gaussians. For a random variable x ~ MG:

◦◦ μ(x) =
=
∑
i

m

i i
w

1

�µ , that is, the weighted sum of means;

◦◦ σ(x) = −() +







=
∑
i

m

i i i
w

1

2 2� µ

Let’s consider the input xi to actually be a collection of samples, where the weight of sample sj
is given by N(sj ; μI, σi) – that is, member i evaluated at sj. This discretizes and samples the a-priori
distribution. We can evaluate the MEN function for each sample, and then use the results to reconstruct
the a-posteriori (posterior) distribution as follow:

Definition: The MG extended normal function (ENF) Π is defined as follows:
◦◦ If Π is defined as Π: ℜ→ℜ×ℜ, where (μ,σ) = Π(x), for x, μ,σ ∈ℜ, then;
◦◦ The MG extended normal function Π is defined as Π: MG → MG;
◦◦ Where y = Π(x), for x,y ∈ MG; and
◦◦ Where we define y = x;
◦◦ Except (μ(yi), σ) = Π(μ(xi)) for all xi in x; and
◦◦ Where σ(yi) is calculated as follows:

▪▪ (μ’j, σ’j) = Π(si) for si a sample of the input xi;

▪▪ σ(yi) = () ()() −()() +







=
∑
j

k

j i i j i j
N s

1

2
2�; , ’x x � y ’µ

So rather than evaluating the program Π on a single number, it is evaluated on a set of numbers
of predefined size (k) and the results combined to form a single normal distribution.

It’s also possible to take a sample approach to a real function Π, and calculate a variance on the
result sample.

Definition: The MG extended real function (ERF) Π is defined as follows:
◦◦ If Π is defined as Π: ℜ→ℜ, where y=Π(x), for x,y ∈ℜ, then;
◦◦ The MG mean extended real function Π is defined as Π: MG → MG;
◦◦ Where y = Π(x), for x,y ∈ MG); and

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

61

◦◦ Where we define y = x;
◦◦ Except μ(yi) = Π(μ(xi)) for all xi in x; and
◦◦ Where σ(yi) is calculated as follows:

▪▪ μ’j = Π(si) for si a sample of the input xi;

▪▪ σ(yi) = () ()() −()()







=
∑
j

k

j i i j i
N s

1

2
; , 'x x yµ

This set of definitions for MEN, MER, ENF, and ERF, allows for a range of options in interfacing
embedded code with verification in general, and with VIPARS in particular.

5. VERIFICATION AND VALIDATION OF A ROBOT
MISSION WITH LOCALIZATION

To assess the effectiveness our approach in providing performance guarantees for probabilistic
localization missions, we present two waypoint missions where the robot is tasked to navigate through a
series of waypoints, avoiding obstacles and toward a goal with behaviors that are based on probabilistic
localization. The general assessment process consists of three steps: 1) verification – use VIPARS to
generate a performance guarantee for the mission with respect to some specified performance criteria,
2) validation – conduct experimental trials of the mission with a real robot, 3) evaluation – compare
the predicted performance generated by VIPARS with the actual performance of the robot.

The waypoint missions are illustrated in Figure 4. The mission proceeds with robot starting at
(2, 2) and navigates by following a series of waypoint to the goal locations at (11.7, 12.5) and (1.0,
7.3) respectively for each mission. The behavior of the robot for Mission-B (Figure 4a) is shown in
Figure 5, which was created in MissionLab in the form of an FSA. The FSA consists of a series of
GoToGuarded and Spin behaviors, whose transitions are prompted by AtGoal and HasTurned triggers.
The FSA for Mission-A is similar to the one shown in Figure 5 but is omitted for brevity.

In contrast to the behaviors we had examined in our prior work, the behaviors here have leveraged
a probabilistic localization algorithm to improve mission performance. Specifically, the perceptual
schemas of MoveToGuarded and AvoidObstacles, two of the constituent primitive behaviors of the
high-level GoToGuarded behavior, are augmented with a SLAM-based spatial map (Jiang & Arkin,

Figure 4. Waypoint missions for verification and validation

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

62

2015). The MoveToGuarded primitive behavior drives the robot to a specified location with a radius
of velocity dropoff around the goal. Instead of using odometry for localization, the perceptual schema
of MoveToGuarded is replaced with the adaptive Monte Carlo localization (AMCL) algorithm
(Dellaert, Fox, Burgard, & Thrun, 1999). This probabilistic localization algorithm takes the robot
odometry and an a-priori acquired map as inputs, and outputs an estimated pose of the robot along
with a covariance matrix representing the uncertainty of the estimated pose. Furthermore, the
AvoidObstacles behavior uses the spatial map, instead of using direct sensory reading from the
laser scanner, to generate repulsion vectors. The perceptual schema of the AvoidObstacles behavior
is modified to turn the spatial map into pseudo laser scans of the environment through ray tracing
within the occupancy map. As a result, the GoToGuarded behavior utilizes perceptual information
(i.e., robot pose and obstacles) generated by probabilistic algorithms to produce motion commands
while navigating through the waypoints.

Performance criteria are mission specifications that must be met. For missions A and B, these
include constraints on:

•	 Rmax: Maximum radius of spatial deviation allowed from the goal;
•	 Tmax: Maximum allowable mission completion time.

In this example, each waypoint mission is considered successful only when two constraints are met:

Success = (r ≤Rmax) and (t≤ Tmax) 	 (5.1)

where r is the robot’s relative distance to its goal location and t is the time for the robot to finish a
mission. The objective of VIPARS is then to verify how well these performance criteria are satisfied
by the combination of the robot, its control software, and the operating environment.

Figure 5. Behavioral FSA for Mission-B

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

63

5.1. Verification
The localization algorithm used in this paper was Adaptive Monte Carlo Sampling (AMCL) (Fox,
2001) as implemented in ROS. In the sampling approach, the DBN filtering engine of VIPARS issued
requests to a ROS-based AMCL server to evaluate the ERF function for the Localization process. The
interaction is shown in Figure 6: Whenever the flow function for the Localization process needed
to be evaluated on a position random variable, the position variable was sent from the DBN filtering
engine (Top, Figure 6) via a pipe to a concurrently running ROS Indigo system (Bottom, Figure 6).
The ROS STDR simulator node was instructed to move the robot to the appropriate position, and
localization data collected from the AMCL node. For simplicity, the ERF function was restricted to
single member mixtures, and rather than calculating the variance by evaluating multiple samples, only
the mean value was transformed and the variance calculated by convolving the mean with a zero-mean
distribution N(0, σs). This simplified the hysteresis issue with calling AMCL. The hysteresis challenge
in fully implementing the ERF Definition for AMCL is discussed in the Conclusion.

The results of carrying out verification on both waypoint missions was a set of performance
graphs (as described Section 3) showing the predicted performance of the missions with respect to
the performance criteria (5.1).

5.2. Validation
Validation experiments of the waypoint missions were conducted to illustrate that VIPARS’ predicted
performance of the mission is consistent with the robot’s actual performance. The robot used for
the experimental trials is the Pioneer 3-AT, a four-wheeled skid-steered mobile robot. The robot

Figure 6. VIPARS-ROS architecture

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

64

is also equipped with a forward-facing SICK laser scanner. The complete validation experiment
consists of 50 trial runs for each waypoint mission respectively, which resulted in a total of 100
trial runs. Snapshots of the waypoint mission B are shown in Figure 7. Mission success is defined
by how well the performance criteria in (5.1) are met. For each trial, the following performance
variables were measured:

•	 t: Mission completion time;
•	 r: Robot’s relative distance to its goal location.

5.3. Verification vs. Validation (V&V)
Verification and validation are conducted independently by our two research groups, and the results
are not shared until the final comparison stage. Figure 8 shows the results of verification and validation
of the waypoint missions. The performance guarantee is quantified as a probability distribution
that represents the robot mission’s likelihood for success. These results also serve as the basis for
performance feedback; and how this information should ultimately be presented to the mission operator
was investigated in our recent human-subjects study (O’Brien & Arkin, 2016).

Figure 8 compares the validation and verification results of the performance guarantees for the
two waypoint missions. Figures 8a and 8c show the V&V results for the spatial criterion P(r≤Rmax)
of (5.1), the probability that the robot arrives within Rmax radius of its goal location. Figures 8b and
8d show the comparisons for the time criterion P t T≤()max

, the probability that the waypoint mission
is completed under the time limit, Tmax. The results illustrate that the VIPARS verification of
performance guarantees are consistent with the outcomes from experimental validation.

The V&V results can be divided into three regions for further interpretation: High Confidence
(Unsuccessful), Uncertain, and High Confidence (Successful) regions. The High Confidence
(Unsuccessful) is the region of near zero verification error and the mission has a zero probability of
success. The Uncertain region is the region where verification error is significantly greater than zero

Figure 7. Snapshots of validation for Mission-B

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

65

and the probability of mission success is between 0 and 1.0. As a result, the robot is not guaranteed
to succeed with the mission. The High Confidence (Successful) is the region of near zero verification
error and the mission is guaranteed to succeed with probability of 1.0. Consequently, the mission
operator’s decision for robot deployment can be based on which region the mission criteria fall into.
For instance, if the specified performance criterion falls within the Unsuccessful region (e.g., Rmax =
0.5m), the operator can either abort the mission or modify mission parameters or design.

The overall mission success (Equation 5.1) is defined in terms of both spatial and time criteria.
Thus, we examined further in Figures 9 and 10 the effects of various combinations of spatial and
time criteria (Rmax and Tmax) on the mission success and verification error. The results can also be
used to answer queries regarding the performance guarantee for a specific combination of Tmax and
Rmax. Figure 9 shows the effects of the time criterion Tmax on the V&V results of the spatial criterion
P(r≤Rmax) for Mission A. While the Tmax’s in both of its high confidence regions (Figure 8b) have no
effect on the verification error for P(r ≤ Rmax), Tmax’s that are in the Uncertain region (e.g., Tmax= 415
sec) incur significant verification errors. For instance, for Tmax=415sec, VIPARS predicted a success
probability of 0.18, while the robot was actually successful 76% of the time in experimental trials.

Figure 8. Results of VIPARS verification and experimental validation of spatial and time performance criteria for waypoint
missions A and B

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

66

Figure 9. V&V of spatial criterion at various Tmax for Mission A

Figure 10. V&V of time criterion at various Rmax for Mission A

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

67

Figure 10 shows the effects of the spatial criterion Rmax on the V&V results of the time criterion
P(t≤Tmax). While similar observations can be made here as in Figure 9, in this case, Rmax’s have much
less impact on the verification error of P(t≤Tmax) due to VIPARS’s accuracy in predicting the spatial
performance of mission even in the uncertain region (as shown in Figure 8a). Nonetheless, missions
with performance criteria in the Uncertain regions should generally be avoided.

6. CONCLUSION

We have presented an approach to the problem of establishing a-priori performance guarantees for
robot mission software for C-WMD robot missions in which failure could mean significant loss of
life or severe property damage. In particular, we have addressed the issue of automatic verification
of robot mission software that includes some preexisting software libraries that have to be included
in the mission without being rewritten or annotated.

Two unique theoretical results were presented. The first theoretical results was the development
of an environmental model representation for probabilistic maps, an indexed mixture of Gaussians,
sufficient to support the reasoning necessary for automatic verification of missions that include
probabilistic localization algorithms. The second theoretical result presented a collection of techniques
for ‘wrapping’ existing software in a random variable envelope so that it could be included in
probabilistic verification. A series of four wrapper functions – the mean-extended real function
MER, the mean-extended normal function MEN, the extended normal function ENF, and extended
real function ERF – were developed, each with different constraints and representational power.

Localization and mapping techniques intuitively offer advantages for robots navigating in
unknown environments. This paper has applied MissionLab/VIPARS mission design and verification
approach to the verification of autonomous behavior-based robot missions that use the ROS AMCL
localization module. Verification result using the index mixture of Gaussian map representation and
ERF wrapper function for ROS AMCL were presented for two different localization missions. The
ERF wrapper was limited to a single member and a fixed variance was used. To completely implement
the mixture extended function for the sampling-based approach in this paper, the full motion history
for each sample request would need to be sent to the STDR node and AMCL reset between samples.
The ability to cache these multiple sensory histories would improve computation time, but at the cost
of directly instrumenting AMCL – a step we were avoiding for reasons discussed.

Experimental validation was also carried out for these two missions, and the verification and
validation results compared to demonstrate the effectiveness of the approach. It is observed however,
that VIPARS performs much better on the spatial performance criterion than on the time criterion.
While the spatial random variable transformations are calculated using flow functions in a Bayesian
network, time is represented only as discrete iterations of the Bayesian network. A key avenue of
future investigation is to represent time as a random variable and have it also calculated using flow-
functions, separating it from iteration so of the Bayesian network.

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

68

REFERENCES

Arkin, R. C. (1998). Behavior-Based Robots. Cambridge, MA: MIT Press.

Baeir, C., & Katoen, J.-P. (2008). Introduction to Model Checking. Cambridge, MA: MIT Press.

Bailey, T., & Durrant-Whyte, H. (June, September 2006). Simultaneous Localization and Mapping (DLAM):
Party I, II. IEEE Robotics and Automation Magazine.

Blackman, S. (2004). Multiple Hypothesis Tracking for Multiple Target Tracking. IEEE A&E Systems Magazine, 19(1).

Brahman, J. (2009). Verification and Analysis of Goal-Based Hybrid Control Systems [Thesis]. P.D. California
Institute of Technology, Pasadena, CA.

Cowley, A., & Taylor, C. (2011). Towards Language-Based Verification of Robot Behaviors. Proceedings of the
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo localization for mobile robots. Proceedings
of the IEEE Int. Conf. on Rob. & Aut., Detroit.

DeMoura, L., & Bjorner, N. (2012). Satisfiability Modulo Theories: Introduction and applications.
Communications of the ACM, 54(9), 54–67.

Fisher, M., Dennis, L., & Webster, M. (2013). Verifying Autonomous Systems. Communications of the ACM,
56(9), 84–93. doi:10.1145/2500468.2494558

Fox, D. (2001). KLD–Sampling: Adaptive Particle Filters. Neural Information Processing Systems 14. Vancouver,
Canada: NIPS.

Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., & Rosu, G. (2014). ROSRV: Runtime
Verification for Robots. Proceedings of the 14th International Conference on Runtime Verification, Toronto.

Jhala, R., & Majumdar, R. (2009). Software Model Checking. ACM Computing Surveys, 41(4), 1–54.
doi:10.1145/1592434.1592438

Jiang, S., & Arkin, R. (2015). SLAM-Based Spatial Memory for Behavior-Based Robots. Proceedings of the
11th IFAC Symposium on Robot Control (SYROCO), Salvador, Brazil.

Katoen, J.-P. (2010). Advances in Probabilistic Model Checking. Proceedings of the 11th International Conference
VMCAI ‘10, Madrid Spain.

Kiekbusch, L., Armbrust, C., & Berns, K. (2015). Formal Verification of Behavior Networks including Sensor
Failures. Robotics and Autonomous Systems, 74, 331–339. doi:10.1016/j.robot.2015.08.002

Kim, M., Kang, K.-C., & Lee, H. (2005). Formal Verification of Robot Movements - a Case Study on Home
Service Robot SHR100. Proceedings of the IEEE Int. Conf. Robotics and Automation.

Klavins, E. (2004). A Language for Modeling and Programming Cooperative Control Systems. Proceedings of
the International Conference on Robotics and Automation, New Orleans, LA. doi:10.1109/ROBOT.2004.1308780

Kress-Gazit, H., Wongpiromsarn, T., & Topcu, U. (2011). Correct, Reactive Robot Control from Abstraction
and Temporal Logic Specifications. IEEE Rob. & Aut. Mag., 18(3).

Kwiatkowska, M., Norman, G., & Parker, D. (2004). Probabilistic symbolic model checking with PRISM: A
hybrid approach. International Journal of Software Tools and Technology Transfer, 6(2), 128–142. doi:10.1007/
s10009-004-0140-2

Leucker, M., & Schallhart, C. (2009). A brief account of runtime verification. Journal of Logic and Algebraic
Programming, 78(5), 293–303. doi:10.1016/j.jlap.2008.08.004

Livingston, S., Murray, R., & Burdick, J. (2012). Backtracking temporal logic synthesis for uncertain environments.
Proceedings of the International Conference on Robotics and Automation. doi:10.1109/ICRA.2012.6225208

http://dx.doi.org/10.1145/2500468.2494558
http://dx.doi.org/10.1145/1592434.1592438
http://dx.doi.org/10.1016/j.robot.2015.08.002
http://dx.doi.org/10.1109/ROBOT.2004.1308780
http://dx.doi.org/10.1007/s10009-004-0140-2
http://dx.doi.org/10.1007/s10009-004-0140-2
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1109/ICRA.2012.6225208

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

69

Lyons, D., Arkin, R., Jiang, S., Harrington, D., & Liu, T. (2014). Verifying and Validating Multirobot Missions.
Proceedings of the IEEE/RSJ Int. Conf. on Robots and Systems, Chicago.

Lyons, D., Arkin, R., Jiang, S., Harrington, D., Tang, F., & Tang, P. (2015). Probabilistic Verification of Multi-
Robot Missions in Uncertain Environments. Proceedings of the IEEE Int. Conf. on Tools with AI., Vietro sul
Mare, Italy. doi:10.1109/ICTAI.2015.22

Lyons, D., Arkin, R., Jiang, S., Harrington, D., Tang, F., & Tang, P. (2016). Formal Performance Guarantees
for Behavior-based Localization MIssions. Proceedings of the IEEE Int. Conf. on Tools with AI, San Jose CA.
doi:10.1109/ICTAI.2016.0025

Lyons, D., Arkin, R., Jiang, S., Liu, T.-L., & Nirmal, P. (2015). Performance Verification for Behavior-based
Robot Missions. IEEE Transactions on Robotics, 31(3), 619–636. doi:10.1109/TRO.2015.2418592

Lyons, D., Arkin, R., Liu, T.-L., Jiang, S., & Nirmal, P. (2013). Verifying Performance for Autonomous Robot
Missions with Uncertainty. Proceedings of the IFAC Intelligent Vehicle Symposium, Gold Coast, Australia.
doi:10.3182/20130626-3-AU-2035.00034

Lyons, D., Arkin, R., Nirmal, P., Jiang, S., Liu, T.-L., & Deeb, J. (2013). Getting it Right the First time: Robot
Mission Guarantees in the Presence of Uncertainty. Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Tokyo, Japan. doi:10.1109/IROS.2013.6697122

MacKenzie, D., Arkin, R., & Cameron, R. (1997). Multiagent Mission Specification and Execution. Autonomous
Robots, 4(1), 29–52. doi:10.1023/A:1008807102993

O’Brien, M., & Arkin, R. (2016). An Analysis of Displays for Probabilistic Robotic Mission Verification Results.
Proceedings of the 7th International Conference on Applied Human Factors and Ergonomics, Las Vegas NV.

O’Brien, M., Arkin, R., Harrington, D., Lyons, D., & Jiang, S. (2014). Automatic Verification of Autonomous
Robot Missions. Proceedings of the 4th Int. Conf. on Simulation, Modelling and Prog. for Aut. Robots, Bergamo,
Italy.

Piterman, N., Pneuli, A., & Sa’ar, Y. (2006). Synthesis of Reactive(1) Designs. Proceedings of the 7th International
Conference VMCAI ‘06, Charlestown SC.

Proetzsch, M., Berns, K., Schuele, T., & Schneider, K. (2007). Formal Verification Of Safety Behaviours Of The
Outdoor Robot Ravon. Proceedings of the 4th Int. Conf. on Informatics, Automation and Control, Dortmund,
Germany.

Ropertz, T., & Berns, R. (2014). Verification of behavior-based networks-using satisfiability modulo theories.
Proceedings of the 41st International Symposium on Robotics ISR/Robotik ‘14.

Russel, S., & Norvig, P. (2010). Artificial Intelligence. Prentice-Hall.

Shankar, N. (2009). Automated Deduction for Verification. ACM Computing Surveys, 41(4), 1–56.
doi:10.1145/1592434.1592437

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. Cambridge, MA: MIT Press.

Trojanek, P., & Eder, K. (2014). Verification and testing of mobile robot navigation algorithms. Proceedings of
the IEEE/RSJ Int. Conf on Intelligent Robots and Systems (IROS), Chicago.

Venet, A. (2008). A practical approach to formal software verification by static analysis. ACM SIGAda Letters,
27(1), 92–95.

Walter, D., Taubig, H., & Luth, C. (2010). Experiences in Applying Formal Verification in Robotics.
Proceedings of the 29th International Conference on Computer Safety, Reliability and Security, Vienna Austria.
doi:10.1007/978-3-642-15651-9_26

Watkins, O., & Lygeros, J. (2003). Stochastic reachability for discrete time systems: an application to aircraft
collision avoidance. Proceedings of the IEEE Conf. on Decision and Control, Maui, Hawaii. doi:10.1109/
CDC.2003.1272482

http://dx.doi.org/10.1109/ICTAI.2015.22
http://dx.doi.org/10.1109/ICTAI.2016.0025
http://dx.doi.org/10.1109/TRO.2015.2418592
http://dx.doi.org/10.3182/20130626-3-AU-2035.00034
http://dx.doi.org/10.1109/IROS.2013.6697122
http://dx.doi.org/10.1023/A:1008807102993
http://dx.doi.org/10.1145/1592434.1592437
http://dx.doi.org/10.1007/978-3-642-15651-9_26
http://dx.doi.org/10.1109/CDC.2003.1272482
http://dx.doi.org/10.1109/CDC.2003.1272482

International Journal of Monitoring and Surveillance Technologies Research
Volume 5 • Issue 1 • January-March 2017

70

Damian M. Lyons is a Professor of Computer Science at Fordham University, and Director of Fordham’s Robotics
& Computer Vision Laboratory. He has degrees in Math, Engineering, and Computer Science from Trinity College,
University of Dublin, Ireland, and a doctorate in Computer Science from the University of Massachusetts. His
research interests include formal approaches to plan and program analysis and robot team exploration strategies.
He was a senior researcher and department head at Philips Corporate Research, NY. He has served as Chair of
the IEEE RAS TC on Assembly and Task Planning and is an IEEE Senior Member.

Ronald Arkin is Regents’ Professor and Associate Dean in College of Computing at Georgia Tech. He served
as STINT visiting Professor at KTH Stockholm, Sabbatical Chair at Sony IDL in Tokyo, and in the Robotics/AI
Group at LAAS/CNRS in Toulouse. His research interests include behavior-based control and action-oriented
perception, deliberative/reactive architectures, multiagent robotics, biorobotics, human-robot interaction, and
robot  ethics. He served on the Board of Governors of IEEE Society on Social Implications of Technology, IEEE
Robotics and Automation AdCom, and founding co-chair of IEEE RAS TC on Robot Ethics. He is Distinguished
Lecturer for the IEEE SSIT and IEEE Fellow.

Shu Jiang is a Robotics Ph.D. student in the Institute for Robotics and Intelligent Machines at Georgia Institute
of Technology and a member of the Mobile Robot Laboratory. He received B.S. and M.S. degrees in Electrical
Engineering from the University of Florida in 2009. His research interests include formal methods, human-robot
team, educational and assistive robotics.

Matthew O’Brien is a Robotics Ph.D. student in the Institute for Robotics and Intelligent Machines at Georgia
Institute of Technology and a member of the Mobile Robot Laboratory.

Feng Tang is a graduate student in the Robotics and Computer Vision Laboratory, Fordham University NY.

Peng Tang is a graduate student in the Robotics and Computer Vision Laboratory, Fordham University NY.

Wongpiromsarn, T., & Murray, R. (2008). Formal Verification of an Autonomous Vehicle System. Proceedings
of the Conference on Decision and Control.

Younes, H., & Simmons, R. (2002). Probabilistic verification of discrete event systems using acceptance sampling.
Proceedings of the 14th Int. Conf. on Computer Aided Verification, Copenhagen Denmark. doi:10.1007/3-540-
45657-0_17

Zaks, A., & Joshi, R. (2008). Verifying Multi-threaded C programs with SPIN. Proceedings of the 15th
International SPIN Workshop, Los Angeles CA.

ENDNOTES

1 	 In process algebra, an interleaving theorem relates the sequential and parallel composition operations.

http://dx.doi.org/10.1007/3-540-45657-0_17
http://dx.doi.org/10.1007/3-540-45657-0_17

	Fordham University
	DigitalResearch@Fordham
	2017

	Establishing A-Priori Performance Guarantees for Robot Missions that include Localization Software
	Damian Lyons
	Ron Arkin
	Shu Jiang
	Matt O'Brien
	Feng Tang
	See next page for additional authors
	Recommended Citation
	Authors

	tmp.1533053111.pdf.40S1W

