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Abstract

Heterogeneous teams of robots, leveraging a balance between autonomy and human interac-
tion, bring powerful capabilities to the problem of exploring dangerous, unstructured sub-
terranean environments. Here we describe the solution developed by Team CSIRO Data61,
consisting of CSIRO, Emesent and Georgia Tech, during the DARPA Subterranean Chal-
lenge. These presented systems were fielded in the Tunnel Circuit in August 2019, the
Urban Circuit in February 2020, and in our own Cave event, conducted in September 2020.
A unique capability of the fielded team is the homogeneous sensing of the platforms utilised,
which is leveraged to obtain a decentralised multi-agent SLAM solution on each platform
(both ground agents and UAVs) using peer-to-peer communications. This enabled a shift in
focus from constructing a pervasive communications network to relying on multi-agent au-
tonomy, motivated by experiences in early circuit events. These experiences also showed the
surprising capability of rugged tracked platforms for challenging terrain, which in turn led to
the heterogeneous team structure based on a BIA5 OzBot Titan ground robot, an Emesent
Hovermap UAV, supplemented by smaller tracked or legged ground robots. The ground
agents use a common CatPack perception module, which allowed reuse of the perception
and autonomy stack across all ground agents with minimal adaptation.

∗All correspondence should be addressed to N. Kottege at navinda.kottege@csiro.au. This research was developed with
funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are
those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or
the U.S. Government.



1 Introduction

Heterogeneous teams of autonomous robots bring unique capabilities to the problem of exploring unknown,
dangerous environments with limited communications, as occurs in subterranean environments or disaster
scenarios. Steady progress has been made in relevant areas, showcased through programs such as DARPA
Software for Distributed Robotics (Howard et al., 2006) and MARS2020 (Hsieh et al., 2007), and virtual and
physical competition events such as RoboCup Rescue (Balakirsky et al., 2007) and the Multi Autonomous
Ground-robotic International Challenge (MAGIC 2010) (Butzke et al., 2012). The DARPA Subterranean
Challenge (DARPA, 2020), herein referred to as SubT, extends these previous developments with a focus
on autonomy, made essential by the underground environment, which severely limits communications, and
increasing degrees of difficulty in distance, urban obstacles such as stairs, and extreme and ambiguous
traversability presented in natural caves. A single operator must control the fleet of robots to complete a
mission. The goal is to find as many artefacts, e.g., survivors, backpacks, cell phones as possible within the
limited time of one hour.

This paper describes the development of the Team CSIRO Data611 entry to SubT, its deployment in the
Subterranean Integration Exercise (STIX), Tunnel and Urban Circuit events, and the domestic Cave event
held in Northern Australia in lieu of the Cave Circuit which was cancelled due to the COVID-19 pandemic.

Teams of robots have advantages in speed of executing a distributed task, and robustness to failure of
any single agent (Parker et al., 2016). Heterogeneous teams additionally combine the strengths of different
platforms, and allow more capable (and expensive) platforms to be reserved for the tasks that they can
uniquely complete (Parker, 1999). When combined with shared, distributed maps, homogeneous sensing
strengthens the ability for agents to continue to act independently and autonomously when communications
to both the operator base station and to other agents are disrupted.

The CSIRO Data61 team has deployed a heterogeneous team of quadrotor UAVs (developed by Emesent),
and a variety of tracked, quadruped and hexapod UGVs as described in Section 2, with each bringing their
own strengths. For example, the terrain able to be traversed by the large tracked UGV in cave environments
significantly exceeded the smaller UGVs, while the latter were able to pass through narrower doorways and
stairwells in the Urban Circuit. The UAV’s higher speed enables a rapid overview of an area, but have been
found to be particularly effective when deployed from the large UGV in an area identified to have promising
structures that are inaccessible from the ground.

We have approached the problems posed by heterogeneous environments with a heterogeneous team of
robots, but with homogeneous sensing capabilities. All robots in the team utilise a common sensor suite
consisting of a spinning lidar, and cameras, all utilising CSIRO’s Wildcat real-time multi-agent Simultaneous
Localisation and Mapping (SLAM) solution, and 3D frontier-based exploration algorithm (Williams et al.,
2020). The UGVs utilise a common local navigation pipeline optimised for challenging unstructured terrain
and negative obstacles (Hines et al., 2021), while the UAVs use Emesent’s commercially available navigation
system. The component autonomy systems used on each agent are discussed in Section 3.

Coordinating multiple agents, and providing situational awareness to the operator is underpinned by a shared
global map, upon which all other shared information is referenced, described in Section 4. Maps are shared
through a peer-to-peer communications network, with each agent independently solving for a global map,
based on the currently received subset of shared SLAM frames generated by each agent during exploration.
While there is no guarantee agents’ global maps are the same (i.e., agents may have a different set of frames
at a particular instant, and receive frames from different agents in different orders), frame overlap guaranteed
from a common starting area allows each agent to incrementally construct its own global solution based on
information from all agents, enabling an agent to interpret information (such as frontiers, artefact detections,
or traversability data) referenced to any other agent’s SLAM frame.

1Comprising CSIRO, Emesent and Georgia Tech.



A human operator guides the robot team, described in Section 5. The system can be commanded using
various levels of autonomy, ranging from single agent teleoperation, to a consensus-based Multi-Robot Task
Allocation (MRTA) approach, which can coordinate exploration between agents with no input from the
operator. The human supervisor brings unique abilities in confirming artefact detections and classes, com-
manding single agents, such as deciding when to launch the UAV, and influencing MRTA using region-based
priorities.

The human robot team had increasing levels of autonomous operation in each successive DARPA event,
discussed in Section 6. Based on experiences at each event, effort was reduced in developing pervasive
communication solutions and complex legged UGV systems, and instead focused on simpler, robust systems
with more autonomy. At STIX, robots were commanded with manual waypoints. At the Tunnel Circuit, an
autonomous exploration capability was fielded, but the operators tended to prefer manual waypoints which
had more time in testing. The need for autonomy was noted, and at the Urban Circuit, the explore-sync
behaviour (Williams et al., 2020) was the primary mode of operation, accounting for the majority of detected
artefacts and distance travelled. In the natural cave environment, our team explored the majority of the
terrain that could reasonably be covered by a ground agent using coordinated MRTA. On rough terrain, the
physical capabilities of the tracked UGV Platforms still exceeds the ability to distinguish between achievable
and unachievable tasks. Ongoing work is being conducted to improve feedback within the layers of the
navigation stack, and prioritising terrain difficulty when selecting tasks.

1.1 Related Work

While research into elements of autonomous systems has progressed steadily, robotic competitions have
provided significant impulses in demonstrating the state of the art for integrated systems. Before this trend
emerged, a significant demonstration was made in the DARPA SDR program. Howard et al. (2006) describes
a system in which a team of four lidar-equipped robots explored and mapped a building, and then guided 70
small robots (with limited computing and sensing) into place to perform the task of surveillance, effectively
forming a self-deploying sensor network. Each mapping agent solved a single agent SLAM problem (without
loop closures), while maps were merged at the base station.

Hsieh et al. (2007) considered teams of heterogeneous UAVs and UGVs for building situational awareness,
performed as a part of the DARPA MARS2020 program. The system was utilised in three distinct phases,
where the fixed-wing UAVs first generated maps, of the region; secondly, the UGVs constructed a communi-
cations map of signal strength between pairs of locations; and finally the maps were exploited to search and
localise human targets with the aid of a single human operator. Autonomy was based on MissionLab, which
permits visualisation, testing and code generation for control of single robots and robot teams, allowing
higher level behaviours to be composed (and reused) by combining lower level building blocks.

Balakirsky et al. (2007) presents results of the RoboCup Rescue virtual competition, a simulation based
competition for urban search and rescue. Teams were required to explore a building and detect survivors
through simulated RFID tags (selected to avoid the burden of computer vision). Scores were assigned based
on survivor detection, map quality and exploration completeness. The winning entry, described in Kleiner
and Ziparo (2006), utilised local grid-based methods, and deployed RFID tags in the environment to aid
localisation and for global coordination.

Butzke et al. (2012) described work performed in MAGIC 2010. A team of nine UGVs were controlled by two
operators to explore a large, unstructured environment, detect static and dynamic objects of interest, and
follow neutralisation procedures requiring cooperation of multiple UGVs for discovered objects. The UGV
fleet were equipped with GPS, IMU, lidar and cameras, while only particular platforms had the equipment
required for simulated neutralisation. Global navigation, mapping and task and exploration planning were
executed on the operator base station, while individual agents localised and navigated using their own maps.
Operator controls included permitted/excluded exploration regions for each agent, inter-agent distance limits,
and heading biases.



Gregory et al. (2016) worked to explore issues of team management and communication, which were identified
as drivers of complexity in both MAGIC 2010 and the Robocup Rescue League. Motivated by humanitarian
assistance and disaster relief, the goal was to evaluate damage to infrastructure (such as roads, forming a
series static goals), and localise survivors through radio signals (forming dynamic goals, appearing as the
signals are first detected). SLAM utilised lidar, 3D camera and GPS measurements separately on each
agent, communicating resulting poses. The primary behaviour utilised was GotoRegion, allowing robustness
to the precise waypoint location. A higher level GuardedNavigation behaviour additionally defined a safe
region (with known good communications) to return to in the case of failed navigation. Two agents were
utilised and, motivated by the goal of fully autonomous operation, success was measured as the frequency
and duration of the accompanying safety operator.

Qin et al. (2018) considered UGV/UAV exploration of a 3D environment performed in two distinct phases,
where the UGV first performed fast autonomous exploration based on a coarser 2.5D active SLAM using
a 3D lidar, and the UAV subsequently performed fine 3D mapping using a rotating 2D lidar. The aerial
and ground agents utilised different sensors and world representations, but similar approaches for viewpoint
selection.

Recent relevant surveys include Liu and Nejat (2013), which considers control and perception for robotic
search and rescue in urban environments; and Recchiuto and Sgorbissa (2018), which focuses on post-disaster
assessment using UAVs.

1.2 Other SubT Teams

There are multiple teams competing in the DARPA SubT competition. We briefly outline existing publica-
tions from other teams and contrast to our approach; further details of other teams’ entries can be found in
other papers in this special issue.

Team Pluto’s solution to the Tunnel Circuit is described in Miller et al. (2020). The robot fleet incorpo-
rated micro-aerial vehicles (MAVs) and Ghost Robotics Vision60 legged quadrupeds. Due to the limited
communications, a focus was put on autonomous exploration, which executed for a fixed maximum duration
before returning for further commands using a global topological graph. The operator was able to preplan
sequences of turns at a priori unknown tunnel junctions to ensure diversity between missions executed by
different agents. A distributed database was used to share data between all agents and the base station.

Team CoSTAR’s winning solution from the Urban Circuit is described in Bouman et al. (2020), focusing
on the Spot platform, supplementing Spot’s inbuilt sensing with a sensor package that incorporates lidar,
RealSense cameras, an IMU, gas and wifi detectors, and a thermal camera. The architecture utilises NeBula
(networked belief aware perceptual autonomy); key aspects of this work are risk and uncertainty-aware local
planning Kim et al. (2021), yielding a highly capable platform that is able to conduct long-duration, missions
beyond communications range. Comparably, our focus has been on establishing a common understanding
on all agents, enabling them to coordinate autonomously, out of range of the operator base station.

Team Explorer’s winning solution from Tunnel Circuit utilised a combination of large wheeled UGVs and
custom UAVs. A modular autonomy pack incorporated sensors including lidar, IMU, RealSense and thermal
camera, and associated compute. Submaps are shared via a ledger to avoid revisiting the same region.2

Team Cerberus’s approach to exploration using aerial scouts and ANYmal legged robots is described in Dang
et al. (2020). The method combines a local planner, which utilises a rapidly exploring random graph, with
a global planner that is built incrementally based on selected branches of the local graph, and is activated
when a dead end is reached. Agents operate independently given a bounded volume of interest, and the
planned paths are constantly checked to ensure that sufficient battery life remains to return to the base.

2https://www.youtube.com/watch?v=PVRG4Nc3hXE



Ohradzansky et al. (2020) describes aspects of Team Marble’s approach to the tunnel event, achieving
exploration using ground-based agents using a topological graph combined with reactive control for path
centring and obstacle avoidance.

Finally, Huang et al. (2019) describes the innovative robust blimp used by team NCTU in the tunnel event.
The system incorporates perception, localisation and autonomy into a lightweight computing platform.

1.3 Contributions

This paper describes the Team CSIRO development in SubT. Specifically, we make the following contribu-
tions:

• We describe the development and utilisation of our heterogeneous set of ground robots, and Emesent
UAVs. Importantly, these are paired with homogeneous sensing packs (respectively, CatPack and
Hovermap), which utilise equivalent sensors, and common SLAM and 3D frontier logic.

• In Section 2.1 we describe the design of the CatPack perception module, which maximises robustness,
and enables reuse of the entire perception and autonomy stack across all ground robots.

• In Section 4.1, we describe the operation of our Wildcat SLAM system, which provides real-time
operation and accuracy that won most accurate artefact detection at the Urban Event (in relation
to the gate, which is detected in one robot and reported to others using the shared SLAM solution).

• We describe our mechanism for peer-to-peer map sharing, with each agent solving for a global map
without dependence on the centralised operator base station, for both ground and air platforms.
This is enabled by homogeneous sensing, and was the only system deploying this capability at the

Figure 1: Team CSIRO Data61 deployed a set of heterogeneous ground and air robots, with homogeneous
sensing payloads. Top Row : CatPack and Hovermap modular sensing payloads, both using a rotating lidar
system for the UGVs and UAVs. Middle Row : CSIRO Hexapod, Ghost Robotics Vision60 quadruped, and
a Emesent UAV with the Hovermap payload. Bottom Row : BIA5 All Terrain Robot (ATR), SuperDroid
LT2-F, and CSIRO Dynamic Tracked Robot (DTR).



Urban Event.3

• The map sharing establishes frames, stable coordinate systems through which frontiers, artefacts
and traversability data can be detected on one robot, and shared (again, peer-to-peer) with another.
Again, this is enabled by homogeneous sensing and mapping.

• In Section 4.2, we propose global navigation using a topometric map, obtained by sequentially
combining local navigation costing data and segmenting using superpixel methods, and referencing
data to SLAM frames. Again, this is shared peer-to-peer among ground robots, enabling one agent
to navigate to frontiers or artefacts detected by another.

• In Section 4.3, we describe our disruption-tolerant, peer-to-peer communications solution, which
enables cooperation of robots in the challenging subterranean communication environment. This is
planned to be released as open source software in the near future.

• In Section 5, we outline our system for multi-agent task allocation, exploiting the homogeneous
sensing and mapping capability, accommodating the highly continuously moving tasks of exploration,
and assigning tasks according to platforms’ heterogeneous capabilities and operator input on task
priorities.

• Finally, in Section 6, we discuss system usage, operator interaction and platform choice based on
deployment to STIX, Tunnel, Urban, Cave environments in the SubT challenge. We discuss lessons
learned in the various events, and their influence on subsequent stages of the development program.

2 System Description

The DARPA SubT Challenge allowed for a fleet of robots to be controlled by a single operator, with little to
no prior knowledge of the course. A wide variety of terrain was encountered in the Urban, Tunnel and Cave
Circuits, including multiple levels connected with stairs and shafts, tunnels spanning multiple kilometres
with constrained passageways, and complex irregular natural formations.

A heterogeneous fleet of robots was use to overcome the diverse set of challenge elements (Figure 1), and
included UAV and UGV systems. The composition of the robot fleet was changed for each event, based on
performance testing and the expected challenges in the event. A modular sensing payload, the CatPack, along
with common power distribution boards and emergency stop systems, reduced the complexity of maintaining
multiple systems. In the Urban an Cave circuits the UAVs were mounted on the large tracked platforms, and
launched in the field. This enabled the UAV to be carried through narrow openings and conserved battery
life. Table 1 provides insight into platform capabilities, and some of the compromises in using each system.

The robot fleet used a mesh network to provide communications between each agent and the base station.
The tracked UGVs additionally carried drop nodes, deployable elements of the mesh network, to maintain
connection as communications degrades in the underground environment. The higher payload capacity of
the larger tracked robots meant it could carry up to eight drop nodes, as used in the Tunnel Circuit.

The following sections describe the CatPack and each of the deployed heterogeneous robots in more detail.

2.1 CatPack

The ability to maintain multiple UGV platforms, and integrate new systems quickly, is enabled by a modular
perception system called the CatPack. This was custom-developed in response to a gap in the capability of
commercially available offerings at the time of design. This contains all the visual sensors used by the UGVs
including multiple RGB and thermal cameras, a spinning lidar and associated compute. Figure 2 shows the

3as per the Urban Technical Interchange Meeting, https://youtu.be/ymBrec7HY4A



Platforms

Attribute
CSIRO GR BIA5 SuperDroid CSIRO Emesent

Hexapod Vision60 ATR LT2-F DTR UAV

Weight (kg) 53.7 48.4 90 25 25 10
Width (m) 1.08 0.55 0.78 0.46 0.51 1.07
Length (m) 1.0 0.93 1.4 0.58 0.8 1.07
Speed (ms−1) 0.5 0.75 0.75 0.5 1.0 2.0
Max Step Height (m) 0.2 0.254 0.25 0.12 0.19 n/a
Max Slope (◦) x x 43 30 44 n/a
Constrained Passage Width (m) 1.5 1.0 1.0 0.75 0.75 2.0

Table 1: Platform Capabilities: Weight includes batteries and sensor payloads; Width and Length is standing
for the legged systems, and blade tip-to-tip for the quadrotor; Speed is that used in the planner, or the default
gait for legged systems; Max Step Height was found by empirical testing; Max slope is with a full payload;
Constrained Passage Width is the minimum width the vehicle was tested to reliably traverse autonomously.

field of view (FoV) of each of the sensors and the high level system architecture of the CatPack is illustrated
in Figure 3.

(a) (b) (c)

Figure 2: The CatPack showing FoV of the lidar and RGB cameras for the newer configuration utilised in
Tunnel, Urban and Cave events in (a), with the thermal camera FoV shown in red in (b) and the older
configuration utilised in STIX with narrow FoV RGB cameras in (c).

The cameras and lidar are calibrated to have pixel-wise alignment (Section 3.1), and co-locating them on the
same sensor head reduces parallax and allow the CatPacks to retain calibration if shifted between platforms.
The CatPacks use a spinning lidar configuration to provide dense depth measurements with an effective
120◦ vertical field of view (FOV). The Velodyne VLP-16 lidar has a 30◦ vertical FOV, and is mounted at
45◦ off horizontal and spun about the CatPack’s vertical axis. The LORD Microstrain 3DM-CV5-25 inertial
measurement unit (IMU) is mounted to coincide with this rotation axis. These CatPacks are strategically
mounted near the front of the UGVs to minimise occlusion of the lidar by the vehicle body, which allows
returns from the ground very close to the front of the robot. On the smaller UGVs, this is limited by the
lidar’s minimum return distance of 0.6 m. The high FOV enables the same sensor to be used for both SLAM
(long range) and perceiving the near field for navigation and avoiding negative obstacles (Section 3.4).

The CatPacks use four 94.9◦H × 71.2◦V FOV RGB cameras (e-con Systems e-CAM130A CUXVR) to form
a near continuous 360◦ horizontal FOV. Matching the FOV of the cameras and the lidar (Figure 2) simplifies
coverage planning for the UGVs, meaning that dense coverage is achieved in lidar based exploration (Section
3.3) and simplifies camera coverage for artefact detection (Section 3.1) as well. At the STIX event, the
prototype packs only had three cameras (Figure 2c), and artefacts were missed behind the vehicle as it
moved past alcoves. The RGB cameras are interfaced via MIPI in order to exploit the Xavier’s dedicated
hardware interface, and to avoid overloading the USB bus. The FLIR Lepton 3.5 thermal cameras are lower

4This is the vertical distance between the robot’s feet and the ground while walking and was not tested.



Figure 3: High level system architecture of the CatPack used on all the UGV platforms. Power distribution
is shown with red arrows, whereas data interfaces are shown with black arrows.

resolution so this is less of a concern; additionally, the thermal cameras have not been utilised to date as
they have not been found necessary to detect the artefacts.

2.2 UGV Platforms

The UGV systems deployed in the challenge were chosen based on a compromise of capability, size, com-
plexity, payload, robustness and cost. Legged systems promise extreme capability with a small or adaptable
vehicle footprint. Tracked (or wheeled) platforms are comparatively simple, robust, inexpensive and with

Figure 4: The high level systems architecture used on all UGV platforms. Power distribution is shown with
red arrows, whereas data interfaces are shown with black arrows.



(a) (b) (c)

Figure 5: SuperDroid LT2-F platforms as used at the Urban Circuit event.

a high payload capacity, but require a larger footprint to be able to traverse comparable step heights or
discontinuities.

Each of the UGV platforms that are deployed use the CatPack (Section 2.1) as its primary sensor for
perception, localisation and mapping. They also share the same high level system architecture that includes
a common power distribution and e-stop system, wireless communications system and a navigation and
control computer system as illustrated in Figure 4. The following sections provide more details about each
of the UGV platforms while a summary of their capabilities was given earlier in Table 1.

As discussed with each platform, the trajectory of platform selection and investment in custom development
over time reflects identified gaps in the capability of available systems. Significantly, the emergence of the
high TRL rugged tracked robots, and high TRL quadruped systems, caused reflection on the necessity of
the custom hexapod development.

2.2.1 SuperDroid LT2-F

The SuperDroid LT2-F platform is a configurable off-the-shelf tracked robot kit. It is small enough to traverse
small doorways and can be checked in as luggage on international flights, whereas the other larger robots
required to be shipped. The system was fitted which our own electronics, shown in Figure 4, including an
Intel NUC navigation and control computer running our autonomy stack. Between the Tunnel and Urban
Circuit events, two additional LT2-F systems were added to our fleet. The flipper arms were instrumented
with customised absolute encoders, enabling the platform to be driven up and down stairs.

The platform performed well in the Urban Circuit where the terrain was mostly concrete floor, and there
was a need to traverse narrow stairwells. In rougher and granular terrain, the platform had difficulty due
to its low ground clearance and regular derailing of the chain or de-tracking when small rocks got caught
in drive chains or tracks, resulting in thrown chains or tracks. This significantly increased the maintenance
requirement for this platform in such terrain. These limitations prompted us both to focus on procuring a
larger tracked platform, the BIA5 All terrain Robot, and to develop our own small tracked platform, the
CSIRO Dynamic Tracked Robot.

2.2.2 BIA5 All Terrain Robot

The experience at STIX identified that a larger platform with greater ground clearance and payload capacity
was required. The Brisbane based Australian company BIA5 (BIA5, 2020) designs and manufactures the All
Terrain Robot (ATR) platform in partnership with Deakin University.5 A light weight 90 kg version of the
BIA5 ATR was custom developed for us, enabling the robot to be easily recovered and lifted. The original
version of this was initially developed for assisting first responders as a remote controlled platform, and fit

5https://www.deakin.edu.au/research/research-news/articles/life-on-mars–may-help-nasa-find-out



(a) (b) (c)

Figure 6: BIA5 ATRs (a) traversing challenging terrain during the Cave event, (b) traversing stairs, (c)
carrying UAV deployment platform and communication node dropper utilised at Urban Circuit event.

through standard doors (764 mm wide vs a ADA compliant door of 813 mm), but weighed nearly 300 kg.

We received our first ATR (Version 1) in early June 2019 ahead of the Tunnel Qualification. This was
then fitted with a similar electronics system used on the SuperDroid LT2-F, along with a CatPack. BIA5
developed a lighter weight version of the system (Version 2), which includes an aluminium (instead of steel)
chassis along with lighter gearbox and motors. The batteries used the lighter LiFePO4 chemistry which also
delivered additional energy. The navigation and control computer changed from the Intel NUC to a Cincoze
DX-1100 ruggedised workstation following difficulties operating in hot environments.

The platform proved reliable and robust in both the Tunnel and Urban events. The exceptional ability of
the platform to traverse rough terrain was thoroughly tested in the cave event, as discussed in Section 6.4.
The size of the platform allowed us to carry and deploy our communications network at both the Tunnel
and Urban event, and also permitted the UAV to be carried and deployed in situ at the Urban event. Both
versions of the ATR have class-leading capability to climb stairs, a feature that we have not had the chance
to utilise at competition to date due to the narrow stairwells at the Urban event. The size also precludes
entering narrow doorways, thus smaller UGVs and the ATR provide complementary capabilities. The ATRs
are now the most robust, capable, and tested robots in the fleet.

2.2.3 Ghost Robotics Vision60

The Ghost Robotics Vision 60 quadruped is a commercial-off-the-shelf (COTS) platform which is integrated
into our fleet of heterogeneous robots (Ghost Robotics, 2020). An early prototype (v3.2) was used at STIX
and a later model (v3.7) that was rented from Ghost Robotics was deployed at the Tunnel event. As with
other agents, perception, localisation and mapping is provided with a CatPack mounted on the robot. The
UGV autonomy stack is implemented on ‘the barn’, an enclosure with the same computation and electrical
payload as in the SuperDroid LT2-F and version 1 of the ATR Systems. Velocity and mode inputs are sent
to the robot’s API from the barn. The ‘Sit’, ‘Stand’ and ‘Walk’ modes can be selected via the operator
station.

While the platform’s capabilities improved with new hardware and software iterations, due to reliability
concerns with the electrical and power system, we decided to de-prioritise the use of this platform for
the Urban and Cave events, focusing instead on the ATRs due to its reliability and traversal capabilities.
However, with upgraded hardware, electrical and power systems, the v4.3 robot is showing promise with
rough terrain, narrow gap and stair climbing capabilities. This version is shown with the CatPack and the
barn mounted in Figure 1. The improved low level firmware provides better ‘blind walking’ capability on
rough terrain without relying on explicit foot placement planning. The platform itself is only 0.55 m wide,
making it physically capable of walking through narrow openings. The blind stair mode uses high stepping
to climb up stairs and a low body height with backward walking to go down stairs. With the success of team
CoStar in the Urban event using quadruped robots, we are re-prioritising the use of the Vision60 quadruped



platform for the final event through rigorous testing and evaluation of their locomotion capabilities.

(a) (b) (c)

Figure 7: CSIRO Dynamic Tracked Robot (DTR) shown in (a) and (b) was designed to overcome stairwells
and high steps without the use of a flippers. A CAD drawing of the DTR is shown next to a 180 mm step
as reference in (c).

2.2.4 CSIRO Hexapod

Initial development focused on building a custom hexapod, aiming for a generalist legged robot with a
large polygon of support using a splayed tripod gait. This was based on previous work done by our group
developing prototype hexapod robots (Bjelonic et al., 2018, Elfes et al., 2017). The resulting CSIRO Hexapod
robot named Bruce (Steindl et al., 2020) is a six legged prototype robotic platform designed and built by
CSIRO to participate in the DARPA SubT Challenge. Similar to all other platforms in the fleet Bruce has
the CatPack mounted for perception, localisation and mapping. It has two computers, one for the low level
drivers and controllers and another similar to that of the barn on the Vision60 quadruped running the UGV
autonomy stack. Its ‘Sit’, ‘Stand’ and ‘Walk’ modes were commanded via the operator station.

Bruce, shown in Figure 1 and later in Figure 21, was intended to expand the capabilities of the SubT
heterogeneous robotic fleet through the addition of fast statically stable locomotion over difficult rough
terrain, the ability to climb over obstacles too difficult for traditional modes of locomotion and the ability to
change the body configuration to fit through narrow openings. Given the short development time to bring
up a brand new platform, the prototype did not achieve the ambitious goals within the expected timeline,
but did demonstrate rough terrain traversal over grass, rocks and rubble at 0.3 ms−1, and flat-ground speeds
of up to 0.5 ms−1. The overall weight of the platform and the performance limits of the actuators introduced
a severe constraint on operational time where the actuators would reach the thermal cut-off with prolonged
operation at the top speed after a few minutes. Investigations of customised heat sinking combined with
additional ventilation were commenced to address this issue.

As with the Vision60 quadruped platform, development of Bruce was de-prioritised for the Urban and Cave
events in favour of the ATR platforms that demonstrated exceptional rough terrain traversal capability. Due
to the development effort and time required to bring this platform up to the desired reliability and capability
levels, it was decided to halt work and divert the resources to address other priorities.

2.2.5 CSIRO Dynamic Tracked Robot

The Dynamic Tracked Robot (DTR) was designed to bring the strengths of the ATR platform to a smaller
footprint, allowing passage through narrow doorways, climbing of stairs without flippers, and easy transport
for international travel as checked-in luggage, as well as improving ground clearance and robustness of the
SuperDroid LT2-F. As shown in Figure 7, the front track geometry mimics that of the ATR, allowing the
system to climb up steps, and use the same motion planning and behaviours as the larger ATRs. The tracks
are also suspended akin to the ATR platform to absorb impacts from drops.



2.3 UAV Hardware

The UAV system consists of a DJI M210 UAV, fitted with an Emesent Hovermap payload, custom gimballed
camera system and Rajant radio. The Hovermap payload is a commercial payload6 that runs Emesent’s
autonomy stack with additional functionality to facilitate integration with the rest of the CSIRO Data61
Team’s system, and to provide perception capabilities. The Hovermap payload and the UAVs that were
deployed are shown in Figure 1 and later in Figures 20, 21 and 23.

The Hovermap payload utilises a similar hardware configuration to the CatPack, utilising the same Velodyne
VLP-16 lidar and SLAM software. Compute is provided by an Intel NUC single board computer. The payload
utilises the DJI Onboard SDK to interface with the UAV, and provides attitude and thrust setpoints.

In contrast to the UGV’s CatPack, the UAV utilises a single camera system on a three-axis gimbal for
detection and localisation of artefacts. Gimballed cameras are common in UAV inspection applications
as the dynamic movement of the UAV easily leads to motion blur in imagery from fixed cameras. In the
subterranean environment, a lack of lighting is an additional motivator as this requires longer exposure times
which exacerbates motion blur.

For the Tunnel and STIX event, we used a DJI Zenmuse 4S gimbal system with an illumination system
fixed to the aircraft frame. This constrained the gimbal range of movement to the forward 90◦of the aircraft
as illumination was only provided in this direction. This constraint prevented behaviours such as looking
down side passages during aircraft navigation. During the Urban and Cave events, this gimbal was replaced
with a custom implementation that mounted a spotlight coaxially with the camera system allowing light in
the direction of pointing, freeing the camera pose from the UAV body frame. This second system utilised
FLIR BlackflyS cameras and a 16 mm lens, which limits FOV but gave an effective artefact detection range
of around 10 m.

2.4 Communication Systems

The concept and implementation for the communication system changed drastically during development,
based of the results of the circuit events, and by taking inspiration from other teams.

The original concept of operations had robots deploying a chain of small lightweight drop nodes (Figure 8),
creating a communication backbone in a tree topology, with most information flowing from each agent back
to the base. The primary focus was on creating a long multi-hop communication backbone, following the
path of each robot, with robots staying in contact with this backbone to relay information, trickling data at
a steady low bandwidth. An initial implementation of this network used Ubiquity UniFi Mesh Access Points
(UAP-AC-M), communicating over dual-band WiFi (2.4GHz and 5GHz) and repackaged into self erecting,
self powered drop nodes. While the drop mechanism, deployment and self erection worked as designed, this
initial communication system had many limitations, as it used all in-band communications, with bandwidth
halving at each hop. In addition, meshing was unreliable, even when a fixed topology was configured, and
caused significant issues in the STIX and Tunnel event.

In parallel to using the Ubiquiti-based network, a custom communication node was developed, using three
ESP-32 modules at each node. Each ESP-32 module on the device operated in a different band, with
alternating frequencies connecting to each neighbour along the chain, reducing bandwidth loss from in-band
interference. A functioning demonstration of this system was created, but ESP-32 modules transmitting
overloaded the other ESP-32 modules receiving on the same node, causing degradation.

Instead of continuing to develop a pervasive but fixed communication network, we instead switched to
increasing the autonomy of each agent, allowing them to operate beyond communication range and return

6https://www.emesent.io/Hovermap/
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Figure 8: Ubiquiti drop nodes, as they were carried in the node dropper at the back of the ATR (a), a self
erected node after being dropped (b) and a another view of the deployed drop node that consists of the
Ubiquity radio, a LiPo battery, a servo motor and the circuitry to perform delayed self righting and erecting
the antenna after being dropped (c).

to report data. Inspired by team PLUTO at the Tunnel event, who used a mesh network of Rajant radios,
accumulating data on each agent and ferrying the data back through some combination of connectivity and
deliberate return of agents to the base (Miller et al., 2020), we adopted Rajant radios. Specifically, we
utilised a combination of dual-band (2.4GHz and 5GHz) ES-1 nodes for ground robots and drop nodes, and
single-band (5GHz) DX-2 nodes for the UAVs. Unlike PLUTO, we continued to drop nodes, aiming to keep
persistent communications back to the operator wherever possible.

This decision to switch communication paradigms was also driven by the desire for robots to share map data
with other agents (Section 4). Agents now store all data onboard in a database called Mule (Section 4.3),
sharing it with nearby agents and the base station when connected. If an agent, or group of agents, is discon-
nected from the base station and they accumulate significant information, they will return to communication
range either independently or coordinating through task allocation (Section 5.2).

At the Urban event, the ATRs each had a dropper containing five nodes, while the SuperDroids had a single
node dropper (Figure 9). After analysing the performance at Urban circuit, it was found that only a few
nodes were actually dropped, and most data traversed though the nodes on the robots themselves, or when
they returned to base. Thus, for the cave event each UGV had a single drop node, and the ES-1 hardwired
on the robot itself. A new deployment mechanism was also designed so that the node dropper no longer hung
off the back of the robot, which decreased the overall footprint of the robot (Figure 10). This modification
allowed greater manoeuvrability in tight spaces, and reduced the likelihood of the dropper colliding with
obstacles during autonomous operation.

(a) (b) (c) (d)

Figure 9: Drop Nodes from the Urban Circuit: Rajant ES-1s were modified to contain a battery and hold
the antenna upright. (a) and (b) show a five node dropper ‘stack’ attached to the back of the ATR. (c)
shows a single node deployed from a SuperDroid robot. (d) shows a single Rajant node.



(a) (b)

Figure 10: Node droppers from the cave circuit, with (a) showing the new dropper attached to the ATR.

3 Single Agent Capabilities

To score points in SubT, artefacts must be detected, correctly classified, and localised to within five meters
of their surveyed location, where the origin is defined at the starting gate to the course. This in turn
requires agents to be able to autonomously explore a large, complex environment, traverse challenging terrain,
construct an accurate map for both navigation and accurate localisation of artefacts, and communicate results
to other agents and the base station. Each robot in our fleet is equipped with the capability to perform each
of these tasks, exploring, mapping, and locating artefacts. In this section we introduce the systems that are
present on each platform that allow us to perform these feats.

3.1 Perception

The robots were required to autonomously detected five artefact classes at each circuit event. Three artefact
classes, survivors (a thermal mannequin in high visibility clothing), cell phones (emitting Bluetooth and
WiFi signals), and backpacks were common at each event. Additional course specific items included fire
extinguishers, drills, air-vents, high CO2 gas concentrations, rope, and helmets. Detecting CO2 required the
use of a specific gas sensor, whereas all other artefacts could be detected visually. Both the UGV and UAV
platform primarily detected artefacts using onboard RGB cameras, using lidar data projected into the camera
frame to localise the artefact with respect to the a local map. The UGV platforms had additional Bluetooth
and WiFi signal signal analysers to detect cell phones, and gas sensors to detect high CO2 concentrations.

All artefacts detections are relayed back to the operator, and appear on a specialised GUI for the operator
to review, confirm and report to the DARPA scoring server. Artefacts are provided to the operator within
a sortable list, alongside the artefact location in the global map, plus its associated image.

3.1.1 Camera Based Detection

An annotated RGB dataset was collected of the DARPA artefacts using a combination of images acquired
from cellphone cameras, hand-held CatPacks, and images from the robots during runs. This dataset has been
continuously extended and now contains more than 13000 images in multiple environments including urban
construction sites, natural caves, and underground areas, with artefacts appearing in poorly illuminated
environments with a wide variety of poses, with and without occlusion. The dataset contains labelled
instances of fire extinguishers (262), cell phones (477), survivors (793), vents (1242), helmets (2484), ropes
(2413), backpacks (987), and drills (1250). Images were captured in 9 different environments, averaging 1480
labelled artefacts per environment. Images containing multiple artefacts are also present. Images of the
environment containing none of the artefacts (i.e. negative examples) were also gathered (3412 images) in
order to increase the robustness of the model in each environment.

The UAV and UGV platforms use detectors trained on this data set, augmented with images from the UPenn



Dataset by Shivakumar et al. (2019), MSCOCO by Lin et al. (2014) and ImageNet by Deng et al. (2009).

The total number of annotated images of each artefact was guided by the performance of the artefact detector
during practice competition events. In cases where the detector performed badly (e.g., the artefact was in
the field of view of agent for 150 frames but was detected only 5 times), a subset of these frames would be
annotated and a new detector model would be trained. This manual inspection process was repeated until
the artefacts were reliably detected during full system testing. This approach was adopted as it gives the
best indication of actual detector performance in a new environment.

The only factor we consider when deploying the artefact detector on the agent is the number of artefact
detections received by the operator. The operator has a finite amount of time to process detections and
it is critical that they are not overwhelmed. The desired rate is achieved by removing detections with
a posterior probability below an artefact specific threshold. The thresholds are calculated a priori using
datasets acquired in environments which were anticipated to be similar to competition events. The datasets
were approximately 45-60 minutes in duration and were captured by an agent operating as it would during
a competition event.

All ground vehicles use the NVIDIA Jetson Xavier GPU in the CatPack for image processing, batching
together the images from the four cameras before inference. DeNet (Tychsen-Smith and Petersson, 2017,
2018) is used for artefact detection, ported to the NVIDIA TensorRT framework (NVIDIA, 2020), and
processes images at 12 Hz (3 Hz per single camera) using a single CPU core in conjunction with the GPU.

In contrast to the UGV, the UAV utilises a single camera system on a three-axis gimbal for detection of
artefacts. Artefact detection was performed using Mobilenet V2 SSD 300 by Sandler et al. (2018) from
the Tensorflow Object Detection Zoo by Huang et al. (2016). This artefact detector was optimised to run
onboard the Intel CPU at 3Hz using Intel’s OpenVino Toolkit. The model was trained with additional data
containing images with false positives generated from parts of the aircraft in the frame.

UGV Artefact Localisation and Tracking

Prior to the Urban Circuit, all detected artefacts were localised in the map (using the lidar data) and then
reported directly to the operator. We experienced an unmanageable number of (false) detections when
operating in novel environments, and the vast majority of these were re-detections of a previously detected
artefact. For the Urban circuit, we introduced an artefact location tracker which ran locally on each UGV
agent.

Localisation is performed by selecting 3D lidar points which project inside the 2D bounding box of the
detected artefact (the intrinsic and extrinsic parameters for each camera are calculated a priori). The 3D
location of the artefact is determined as a weighted average of the selected points where the weights favour
points closest to the camera. Artefact detections greater than 20 metres away from the robot are ignored
due to the size of the artefact in the image7 and due to the limited range of the lights on board the agent,
recalling that the environments are poorly illuminated in general.

Localised artefacts are tracked by computing the posterior of a new artefact at the incoming localised artefact
location. A Gaussian distribution with isotropic covariance was used to model the position of known artefacts
and a uniform distribution was used to model the probability of a new artefact. A uniform distribution was
used to model the prior probabilities of each tracker hypothesis. The volume of the uniform distribution
was selected such that a new track was created if the artefact position was more than 1m away from a
known artefact. Tracks are dropped when an artefact has not been re-detected for more than thirty seconds.
Artefact detections are linked to the trajectory of the agent making the detection, which can then later be
corrected using the multi-agent SLAM solution. This pipeline provided artefact localisation accuracy at the

7e.g., a plane with dimensions 0.5m×0.5m positioned parallel to the image plane at a distance of 20m will occupy 33 × 33
pixels in the image.



Urban event, where the 9 artefacts reported from autonomous UGV camera detections had a 0.46 m RMS
error compared to the DARPA ground truth provided post-event, and included the most accurately reported
artefact from any team with a 0.22 m error.

UAV Artefact localisation and Gimbal Pointing Autonomy

One of the motivations for using a gimbal camera system on the UAV was to decouple perception from the
flight autonomy, such that a single stabilised camera could cover multiple view points. This had advantages
as tight spaces that were un-flyable were still potential artefact locations, and could look down side passages
that were not at flight autonomy goal locations.

The gimbal pointing autonomy analyses the space around the aircraft for the expected utility for seeing
something new. The expected utility of visible space around the aircraft is conditioned on the camera sensor
model and prior utility of that space. The point target maximising the expected utility evaluated from the
gimbal’s current position is tracked by the gimbal using a 3D pose controller. This autonomy enables the
investigation of side passages as the aircraft passes them as well as spaces that are initially occluded, but
become visible as the aircraft moves past the intervening obstacle. The expected utility is updated each
exposure and maintained globally over the course of the flight.

The UAV maintains a polar range map of occupied voxels around the UAV based on the perception map used
for navigation. Bounding boxes from the above artefact detection pipeline are transformed into a spherical
range map, representing the nearest artefacts around the aircraft. The ranges of the pixels contained in
the spherical bounding box are binned on a 1m resolution and the range to the artefact is computed as the
average of points in the nearest occupied bin. This range is then projected using the centroid of the bounding
box in the original detection using camera intrinsics and extrinsics to provide a location in the odometry
frame. Artefacts detections are not tracked on the UAV, and were less accurate than the UGV system at
the urban event with a 2.34 m RMS error for reported artefacts.

3.1.2 Additional UGV Sensing

The UGV platforms included a Sensirion SCD30 sensor module for detecting CO2 gas. This sensor was
affected by changes in atmospheric pressure, altitude and temperature and thus simple thresholding methods
to detect the presence of CO2 gas gave intermittent false negatives. To avoid constant re-calibration of the
sensor based on these environmental factors, the presence of the gas artefact was instead detected by sensing
spikes in the levels of CO2 within a room.

UGV platforms also included a UD100 Bluetooth adapter and Alfa Long Range 802.11n AWUS036NHA
WiFi adapter for detecting the cell phone artefact. The RSSI from both the Bluetooth discoverable and
WiFi hotspot packets was used to determine the proximity to the artefact. The position of the agent at the
time of reception was reported to the operator, who then inferred the likely artefact position based on the
history of reports, and contextual information. CO2 reports were handled similarly.

These additional sensing modalities provided 5 out of 15 artefact reports scored at the urban event, including
three cell phone detections missed by the RGB cameras.

3.2 Odometry

Localisation and mapping is based on CSIRO’s Wildcat SLAM solution. Here we describe how odometry is
generated from lidar and IMU data, while in Section 4.1.1 we provide an outline of the multi-agent mapping
process.

The odometry solution is based on Bosse et al. (2012). The trajectory is optimised in a five second sliding



window, parameterised as a series of trajectory pose samples at times spaced by 0.1 sec. Iterative optimisation
steps produce corrections that are applied to the corresponding pose to provide improved trajectory estimates.

The optimisation seeks the trajectory which minimises errors, incorporating disagreements with inertial
measurements, and lidar matching errors. Optimisation variables including both the trajectory and the
correspondence of lidar surface elements (surfels). Like iterative closest point (ICP), we alternate between
determining correspondence of lidar surfels, and optimising the trajectory conditioned on these correspon-
dences. Trajectory optimisation steps are solved through iterative re-weighted least squares, where Cauchy
weights provide robustness to outliers.

Lidar points are extracted and voxelised in time intervals of 0.5 s and cubes of 40 cm side, representing
the surfel for each voxel as the mean and covariance of points in each voxel, both of which depend on the
trajectory at the corresponding time. Multi-resolution surfels are formed by nesting hierarchically up to a
resolution of 3.2 m, and an additional offset grid is formed at the finest level offset by half a voxel in each
dimension.

The error term of the optimisation for the correspondence of surfels measures uses the difference between
the surfel means, projected onto the eigenvector corresponding the smallest eigenvalue of the sum of the
covariance matrices. This eigenvector represents an estimate of the normal vector for the combination of
the two surfels, effectively providing plane-to-plane correspondence error. Error terms are included for cor-
responding surfels, where correspondence is determined using a tree-based k-nn lookup considering position,
normal vector and time.

As lidar points leave the five-second sliding window, they are added to consolidated multi-resolution surfels
for each six-second frame (generated every five seconds, containing points from the interval 5-11 s ago). As
discussed further in Section 4.1.1, these frames form stable local coordinate systems which can be used to
locate artefacts, and reference exploration and navigation data over time and between agents.

3.3 Exploration

Efficient exploration is achieved by maintaining awareness of the area that has been mapped so far, and
pushing towards the boundary. Frontier methods were first proposed in Yamauchi (1997), and have been
widely used representing the information state as a global 2D occupancy map. Complications in the SubT
context include the need to incorporate SLAM loop closures (rendering a single global map representation
ineffective), and the fundamental 3D characteristics of the regions to be explored (rendering a 2D occupancy
map insufficient).

Our approach is detailed in Williams et al. (2020), and is described here for completeness. The method
exploits the efficient point cloud visibility approach of Katz and Tal (2015) to maintain an awareness of
the boundary between known and unknown space. The point cloud is supplemented by points on a sphere
at a nominal maximum range, so that maximum range points that are determined to be visible represent
frontiers. As well as determining point visibility, the quickhull operation in Katz and Tal (2015) also produces
a triangulated mesh of visible points. Long edges in this mesh represent discontinuities which could be
openings, another form of frontier. The full watertight mesh of visible points is referred to as a viewpoint.
Segmented frontiers are stored, representing the boundary between free space and unknown space.

Frontier processing is repeated after a metre of agent motion. New frontiers are tested for visibility against
old viewpoints, and old frontiers are tested against the new viewpoint. Any vertices that are visible (i.e.,
inside the watertight mesh) in other viewpoints are no longer frontiers. Frontiers and viewpoints are stored
in the coordinate system of the most recent Wildcat frame, so that they can be compared to data received
later when the agent departs and later returns to an area. An example of the frontier processing is shown
in Figure 11.



Figure 11: Example of frontier processing in CSIRO test tunnel. Left: watertight mesh of visible space
from observer location. Middle: frontiers identified from agent position, having entered from left. Right:
corresponding image with frontiers labelled.

A nascent explore capability was deployed in the Tunnel Circuit, where segmented frontier centroids were used
as goals. In the Urban Circuit multi-agent, autonomous explore became the primary mode of operation,
and traversability was estimated based on the mesh generated in producing frontiers, allowing candidate
observer locations to be identified, and selected by estimating the volume behind the frontier that would
be observed from different candidate observer locations. For cave testing, the additional effort that had
been invested into traversability analysis in the local and global navigation stacks was leveraged to propose
candidate observer locations.

Frontiers (but not viewpoints) are shared between agents, and rewards are discounted according to the
proximity that agents have been to the proposed observer locations. This provides a low-communications
coordination method, although it does result in somewhat reduced performance compared to that achieved
communicating complete viewpoint data. Selection of frontiers utilises the task allocation framework de-
scribed in Section 5.2.

Enabled by the homogeneous sensing and mapping capabilities, the same frontier solution is utilised on all
UGV and UAV vehicles. Differences in frontier selection are described in Williams et al. (2020).

3.4 UGV Local Navigation

In this section, we present the local navigation approach used on UGVs as in Hines et al. (2021). Vehicle
odometry and robot relative point clouds from the front-end SLAM solution are used to plan and execute
movements in order to reach waypoints provided by the global planner. This involves trajectory planning and
the generation of velocity commands for the lower level speed controller. An overview of the local navigation
system is shown in Figure 12 and key components are summarised below.

The major role of local navigation is enabling UGVs to traverse challenging, unstructured subterranean
terrain (e.g., mud, rubble, puddle, or concrete) through a cohesive arrangement of surrounding mapping,
deliberative planning and reactive behaviour modules. To achieve this goal, all submodules are required to
be tightly connected and to have access to high-level situation awareness including terrain slope, visibility
and vehicle orientation enabling robots to recognise, plan and react around unobserved areas. In turn, it is
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Figure 12: UGV local navigation components and shared information.

expected for UGVs to efficiently recognise and handle negative obstacles (e.g., cliffs, ditches, holes), slopes,
steps, overhangs and narrow passageways while minimising collisions.

Occupancy Homogeneous Map (OHM, CSIRO Robotics and Autonomous Systems Group (2020)) is a com-
ponent that is critical for safe and secure local navigation. It provides a high-fidelity heightmap which allows
subsequent modules to estimate virtual surfaces and detect obstacles. OHM maintains a 3D occupancy map
by integrating the SLAM-corrected point clouds produced by Wildcat’s odometry processing. OHM also
generates a height map that specifies a ground height per cell of a 2D grid around the robot. This height
map includes virtual surfaces which are a best case height estimate for surfaces that are obscured. Figure 12
shows OHM’s place in the system relative to adjacent components and Figure 13 contains examples of cost
maps generated from OHM height maps with the virtual surfaces labelled.

Figure 13 also includes labels for fatal (definitely non-traversable) cells. These are found using a method
that considers the change in height between nearby cells in a way that is resilient to noisy or rough terrain
and small holes in the ground. These cells are a subset of the cells that the robot should never plan to
intersect with its footprint.

Short range trajectories are planned using hybrid A*. The cost function that hybrid A* uses considers the
heightmap and costmap cells that intersect with the robot’s footprint. Configurations that cause intersections
with fatal cells in the costmap are costed fatally. The heightmap cells are used to estimate the pitch and
roll components of the robot’s orientation. The orientation estimate is used to increase the cost of difficult
terrain and fatally cost terrain that is too steep for the robot to safely traverse.

Robot velocity commands are generated by a set of behaviours. Each behaviour is intended to handle a
specific situation or task and independently calculates whether it is currently useful (admissible) and what
the robot should do (a velocity command). The behaviours are ordered by priority and the velocity commands
from the highest priority admissible behaviour are given to the robot’s lower level controller. Using a set of



Figure 13: Examples of 2.5D cost maps generated for a bump in a tunnel on the left and a slope unevenly
embedded with stone steps on the right. Green cells have been directly observed and are possibly traversable;
pink cells have been directly observed and are definitely not traversable; and orange cells have not been
observed but are best case height estimates called virtual surfaces.

independent behaviours makes it easier to make changes to one behaviour or introduce new capabilities with
minimal impact on other behaviours. Some of the behaviours used are: a behaviour to attempt to follow
the path from hybrid A* while avoiding obstacles; a behaviour to move away from nearby obstacles when
hybrid A* is not able to plan; a behaviour to attempt to prevent tipping over if dangerous pitches or rolls
are experienced.

3.5 UAV navigation

The UAV utilises the navigation functionality commercially offered by Emesent as Autonomy Level 2, pro-
viding both local and global navigation solutions Emesent (2020). The UAV features a manager node to
coordinate local and global planning, and implement core behavioural primitives. The manager receives
higher level tasks from the operator, such as move to these waypoints, explore, etc. It coordinates activities
to achieve these tasks, and interfaces with the lower level autonomy. This modular architecture has simplified
the process of continual improvement to our higher level autonomy functionality.

To ease operator load, the UAV supports four major objectives: exploration, 3D waypoints, 2D waypoints,
and planar waypoints. 3D waypoints specify an exact position in space where the UAV must move, useful
to get the UAV into narrow openings when other alternatives are available (i.e., moving into a shed). 2D
waypoints specify an X and Y location, but leaves height free, which is a useful general purpose commands.
Planar waypoints simply require that the UAV reach any point on a user-specified plane, but does not specify
where. It is often selected as a vertical plane, in order to provide a direction of travel without the need for
a precise goal. This is useful for sending the UAV to a general location (i.e., not just basic exploration) in a
space whose approximate layout is very roughly known, e.g., go 100 m down a tunnel and then turn left at
the branch. It can also serve as another form of more directed exploration.

Frontiers for the purpose of exploration are generated using the same solution as implemented for other
robots, as described in Section 3.3, again leveraging the homogeneous perception of the fleet. Frontiers of
sufficient size are fed to the local navigation of the UAV as objectives at approximately 0.5 Hz, biasing for
large, close frontiers in the same direction as the UAV is currently exploring. The full criteria is available in
Williams et al. (2020). One weakness is that the UAV currently uses the direct metric distance to frontiers,
rather than using the global map to reason about the presence of walls or similar obstructions. In practice,
this has not proved a significant drawback given the limited duration of UAV operations. Exploration
distances at DARPA competitions have been limited by the dimensions of the environment, with the UAV
successfully exploring more than 300 m from the start point and returning autonomously in tests in mines.

The UAV can reliably operate in a 3 meter tunnel at speeds of 2 ms−1. The UAV operated at 1 ms−1 both
to optimise artefact detection, and because that is the speed at which the UAV has demonstrated the ability



to perceive and thus avoid a vertically dangling 1 mm wire. In an area known to feature wires no smaller
than 4 mm, the UAV can operate at 2 ms−1 and has demonstrated the ability to travel more than 600 m
underground and then return autonomously to the launch point in a single flight (total length > 1.2 km).

4 Multi-Agent Mapping and Data Sharing

The Subterranean Challenge requires the ability to coordinate robotic exploration in difficult three dimen-
sional environments, often with degraded communication. Particularly during the Urban challenge event, we
found that both single agents and small groups of agents were isolated from the operator and base station
for periods up to ten minutes. To enable coordination, robots shared information with each other using a
system called Mule (Section 4.3), periodically broadcasting their data manifests and then requesting missing
information from nearby (in the communication sense) agents. The operator’s base station is considered
an agent, which both receives information from the robotic agents and disseminates information to robots
(i.e., when a new robot boots up, it receives information cached on the nearby base station). Agents share
multiple types of data encapsulating mapping data, intent, artefact information and status.

Robot coordination, and all shared information is referenced to Wildcat SLAM frames described in the
next section. Waypoints, task goals, artefact locations and information generated from other agents can be
interpreted, conditioned on receiving the respective frame.

4.1 Multi-Agent SLAM

The Wildcat Multi-Agent SLAM system is designed to compute global maps on each agent in a fully decen-
tralised way, using all currently available information at each agent (i.e., a partial set of the union collected
by all agents). Here we sketch its operation; further details will be provided in a forthcoming publication.

Wildcat works by integrating multi-sensor (lidar, IMU) data over a small time window (as described in
Section 3.2, and computing a SLAM frame (Section 4.1.1) which contains features such as surfels and IMU
estimates. Frames are shared between agents and each agent creates an Atlas Graph (Section 4.1.2), solving
for the global alignment of all frames.

SLAM frames are the core building blocks on top of which all other information is referenced. For instance,
a detected artefact’s location is broadcast with respect to a corresponding SLAM frame. For other agents
to interpret the location of this artefact they then require the corresponding SLAM frame as well.

Since the ordering of frames received from different agents will not be identical on each agent, there is no
formal guarantee of metric or topological consistency between the global maps computed by each agent.
However, when the agents commence from a common starting area, the robustness is such that the solutions
are sufficiently similar for all practical purposes. Furthermore, downstream processing (e.g., global naviga-
tion) is designed to be robust to these variations, keeping data in local frames so that it can be reinterpreted
on other agents in light of the local SLAM solution.

The Wildcat SLAM solution produced a solution with error < 0.05% over distance distance travelled during
the Tunnel circuit as discussed in Section 6.2. To the best of our knowledge, Wildcat was the only multi-agent
SLAM solution run in a distributed manner for the most recent Urban circuit. Building on this framework
has allowed us to have robots autonomously coordinate with each other when disconnected from the base
station, and also played a key role in winning the most accurate artefact detection discussed in Section 6.
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Figure 14: Three sequential portions of the odometry output and the associated features generated for the
corresponding frames.

4.1.1 SLAM Frames

Wildcat generates and shares SLAM frames periodically over a small time time window (i.e., every five
seconds a six-second frame is generated). The continuous trajectory that is generated by the odometry
solution (as described in Section 3.2) is used to project the multi-sensor data (i.e., lidar and IMU) into
the fixed-world frame. This results in a spatially and temporally consistent set of information representing
a portion of the odometry solution. As sending raw sensor data would result in prohibitive bandwidth
requirements, the frames instead contain SLAM features that are derived from the raw sensor data.

A SLAM frame contains the features required for the pose graph optimisation, described in Section 4.1.2.
As illustrated in Figure 14, this includes surfels and an IMU integration estimate. Surfels are generated as
described in Section 3.2 with the exception that each voxel does not have a temporal limit or bounding,
resulting in a maximum of one surfel for each voxel. The IMU integration estimate is the mean of all IMU
linear acceleration errors with respect to the odometry solution, producing an estimated gravity vector. The
usage of surfels and an IMU integration estimate, rather than raw sensor data, also allows for the bandwidth
requirements to be reduced when sharing the frames with other agents.

The size of a serialised SLAM frame used for sharing varies and the primary contributor for the size are surfels.
The variation represents the observed geometric volume introduced by the voxelisation process used for the
surfel generation. With a maximum lidar range of 100m the size can reach as much as 500 KBytes in typical
large/open environments. Since frames are generated every five seconds the effective bandwidth requirement
is one-fifth of the indicated size. In the SubT Urban Circuit, the average size over a representative agent’s
one hour mission was 168.8 KBytes (yielding a data rate of 270.1 KBit/sec), while in our cave testing, the
average size was 102.6 KBytes (yielding a data rate of 164.2 KBit/sec).

4.1.2 Atlas Pose Graph Optimisation

As SLAM frames are generated and transmitted by agents, they are collected and optimised as a Hierarchical
Pose Graph problem in a method similar to Bosse et al. (2003), as illustrated in Figure 15. Each SLAM
frame represents a potentially optimisable pose, with edges between frames forming constraints on the final
solution. Edges between frames are formed from various sources such odometry estimates, pair-wise frame
geometry alignments, and loop-closure events. To enable better scaling for real-time multi-agent scenarios,
redundant frames/edges are marginalised (shown in Figure 15e) which results in a graph structure whose
complexity grows with distance travelled rather than time taken (shown in Figure 15f). Non-redundant



frames are referred to as root frames.

Edges within the graph are predominantly formed by odometry and pair-wise frame geometry alignment.
Odometry edges formed between successive frames are guaranteed to exist, which ensures graph connectivity
within an agent. In cases where frames overlap geometrically, a pose offset is generated using feature
matching between the frames. For neighbouring frames ICP methods are used, while for distant frames
pose-invariant methods are used. As the graph is optimised, outlier edges are detected and removed by
analysing the residuals of the optimisation process. For edges where it is not possible to detect outliers, such
as loop-closure or place-recognition events, hypotheses are used.

Hypotheses represent a potential edge between frames that requires more information to be validated or
rejected. As an agent explores an environment the hypothesis is repeatedly checked for new overlapping
frames which can be used. The amount of overlap required is determined by the amount of uncertainty
which generated the hypothesis; i.e., larger loops require more overlap. Once a sufficient amount of overlap
is detected the hypothesis is processed, where it is then added to the graph as additional constraints, or
rejected for further processing. The validation step is performed using a derivation of clique maximisation
for pairwise measurements as explored in Mangelson et al. (2018).

During the DARPA events the agents were initially merged into the graph through the use of hypothesis
hints. These hints act as seed edges within the graph and act in the same manner has a loop-closure or
place-recognition edge. This method was also used when the UAV agents are deployed by the UGV agent
carrying it. In this scenario the UGV provides a hint relative to itself which is used by the optimiser on the
each agent to merge the graphs. The hint has an attached uncertainty value of 2.5 m and 15◦ representing
translation and rotation respectively. This uncertainty is often sufficient to initiate an immediate accept
of the hypotheses, but in scenarios where it is not (due to featureless environments etc.) the agents must
traverse the same area until it is.

Currently all agents broadcast all frames as the bandwidth can accommodate it. While this ensures that all
agents have access to the complete set of data, it does not scale well as the bandwidth required increases
linearly with each added agent. Additionally, as all frames are broadcast, an agent that is stationary will
publish redundant information. Future work involves investigating delta-style communications or partial
map-transfers.

4.2 Multi-Agent UGV Global Navigation

Global navigation has evolved significantly as the challenge has progressed. For the Tunnel Circuit, global
navigation relied on the SLAM Atlas graph, described in Section 4.1.1. Navigation to a distant waypoint
occurred via intermediate nodes in the SLAM graph, which was restricted to the local agent’s data (at the
Tunnel Circuit, each agent only held its local SLAM map). In the more complex environments of the Urban
Circuit, the global map was made up of SLAM frame poses (i.e., poses in which an agent has previously
been), but connections between them were based on traversability analysis performed as a part of the frontier
placement. Since the global, multi-agent map was now being solved in each agent, this allowed a shared
global map, in which an agent could navigate to a pose previously held by any other agent.

Navigation in a cave presents significant challenges in determining what terrain is and is not traversable.
The lethality determination described in Section 3.4 was leveraged to address this challenge, developing and
maintaining a graph of the traversable terrain that has been mapped by all UGVs.

Thus we perform global navigation on a sparse topometric graph that is constructed from cost map data
generated by all agents, and the Wildcat pose-graph solution. As cost maps are generated on an agent, they
are associated with the most recent Wildcat frame. Cost maps associated with the same Wildcat frame
are bundled together and transmitted to all other agents for integration into their topometric graph. The
topometric graph maintains a collection of 2D submaps; one for each Wildcat root frame in the current pose-
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Figure 15: Various Pose Graph data representations for a single agent scan of a cave system, grid-size 10m.
(a) Odometry trajectory (red) with point clouds coloured randomly according to the associated optimisation
node (b) All surfel features present in the graph (c) All optimisation nodes and associated bounding zones
representing the data distribution (d) Odometry trajectory (red) (e) Odometry trajectory (red), optimisation
nodes (green), redundant nodes (blue), redundant nodes parent connections (grey) (f) Odometry trajectory
(red), optimisation nodes (green), odometry edge constraints (blue), surfel match edge constraints (green).
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Figure 16: Topometric map generation involves (a) derivation of subgraphs from the superpixel segmentation
of submaps associated with each root frame, and (b) finding traversable edges between vertices of different
subgraphs by inspecting the intersection of submaps from connected frames

graph solution. Integration of a new cost map bundle involves merging cost map data into the corresponding
submap. This approach handles 3D environments (e.g., overhangs) by relying on accurate gravity-alignment
of cost maps and maintaining multiple submaps for Wildcat root frames where distinct heights have been
observed for the same position projected on to the gravity-aligned plane. Superpixel methods are then
applied to each submap to generate a subgraph suitable for navigation.

Inter-subgraph edges are computed via submap intersections for neighbouring Wildcat root frames. The
complete topometric graph is thus composed of the vertices and edges of all subgraphs, plus the inter-
subgraph edges. As the Wildcat pose-graph solution changes over time, submaps may be merged together
and inter-subgraph edges may need to be recomputed in order to minimise computation costs and remain
globally accurate.

4.3 Data Sharing

Data-sharing over the Rajant mesh network required a communications strategy that could robustly handle
the highly dynamic and unreliable network conditions encountered in SubT. Since our software stack was
primarily ROS based and a single unified ROS system is not well suited to distribution across an unreliable
network (Tiderko et al. (2016)), we opted to run an independent ROS system on each agent with a multi-
master communication layer to handle data-sharing amongst agents.

At the STIX and Tunnel events, we used an off-the-shelf commercial software package and the open-source
rosbridge suite ROS package to handle multi-master communication. The commercial software was marketed
primarily for cloud-based monitoring/control of robotic fleets and required a ‘gateway’ process (running at
the base station) to broker any connections between ‘client’ processes (running on each agent). This limited
communication to times when there was simultaneous connectivity between the base station and the agents
trying to communicate, and encumbered autonomous coordination at range. Agents that spent long periods
without connectivity to the base station risked losing critical messages such as artefact detections due to a
lack of persistent storage for the data sharing layer. Subsequently, we chose to abandon these packages and
develop a replacement that more specifically suited our needs.

Our replacement solution, Mule, is a ROS package that provides multi-master, disruption-tolerant, trans-
parent bridging of ROS topics. Mule processes dynamically discover one another on the network via UDP
multicast, and establish peer-to-peer (P2P) connections via TCP unicast. Messages associated with ROS



topics configured for bridging are multiplexed onto the P2P connections according to quality-of-service (QoS)
options and link quality metrics provided by the local Rajant node. Mule can bridge a particular topic with
either a ’volatile’ or ’persistent’ QoS.

A ‘volatile’ QoS is suitable for ROS topics that do not require guaranteed delivery of every message (e.g.
status, teleop commands, and camera images). Mule uses the ZeroMQ library and its PUB/SUB sockets to
transport these messages to interested receivers in a best-effort fashion.

Conversely, a ‘persistent’ QoS is suitable for ROS topics that do require guaranteed delivery (e.g. Wildcat
frames and artefact detections). An on-disk database is used to store messages from ‘persistent’ ROS topics,
so that they may be retrieved for delivery to a peer at some later opportunity (in a manner similar to Miller
et al. (2020)). Guaranteed delivery of these messages is thus achieved by the synchronisation of databases
amongst Mule processes. Each Mule periodically assembles a ‘manifest’ compactly describing which messages
are currently stored in their database, and broadcasts this ‘manifest’ to its peers. Peers can then use this
information to request the transfer of certain messages in order to achieve synchronisation. This pull-based
approach is robust in the face of unreliable network conditions and allows for inter-agent data-sharing without
requiring end-to-end paths.

Additionally, Mule publishes information to the local ROS system to enable autonomous decision making
around data-sharing. This includes synchronisation status for each peer, making it possible for agents to
decide if they should return to base to deliver mission-critical data, as was done at the Urban and Cave
events.

5 Human Robot Team Decision Making

In the SubT challenge, a single operator must control a team of robots. The difficulty for the operator is
exacerbated when dealing with heterogeneous platforms with different capabilities. Incorporating human
knowledge with robot autonomy to create an effective human-multi-robot team is therefore a key problem
to solve.

As the challenge has progressed, our solution has matured towards greater autonomy. The design employed
in STIX and Tunnel Circuit utilised FSA-based control, predominantly executing waypoints or location
based goals created by the operator. The high level FSA control design continued in Urban, but was mostly
used through autonomous explore-sync missions, with the operator providing a starting location from which
to explore, and subsequent execution continued for extended periods with no operator intervention.

In Cave testing, we utilised a general task allocation framework which enables autonomous task coordination
among robots, but allows the operator to inject human guidance to influence the team’s behaviours. The
end-goal is to have the operator to focus on high-level decisions to accomplish missions at the team level
instead of individual behaviour at the robot level.

5.1 Finite State Automaton Design

Low-level autonomy is implemented via the dynamic construction and execution of nested finite state au-
tomatons (FSAs). A set of primitive behaviours interact with other systems/nodes, e.g., a goto behaviour
interfaces with the navigation systems to drive the agent to a goal location. More complex behaviours can be
built as FSAs of these primitive behaviours, e.g., a drop-comms-node behaviour sequences a goto behaviour
for the goal location, a behaviour to execute the node-drop, and a behaviour which moves away from the
node to avoid accidental collisions.

The operator can specify linear sequences of simple parameterised behaviours via ‘command lists’. The



executive node parses an incoming command list, constructs an FSA, and executes it. Execution involves
‘ticking’ the FSA at 1 Hz, limiting the speed at which the FSA can transition between states. Individual
behaviours may perform computation or interact with the system at any rate, but are only entered or exited
on a ‘tick’.

The primary behaviours needed in the SubT challenge have been: goto, explore, sync, drop-comms-node
and launch-UAV. The goto behaviour takes a desired goal pose and engages the global planner to move the
agent towards that goal. The explore behaviour reads frontier information and engages the global planner
to pursue the selected frontiers. The sync behaviour reads Mule information and engages the global planner
to move the agent back towards the base station until their Mule databases have synchronised. The drop-
comms-node behaviour engages the comms-node-launcher and global-planner in order to drop a comms-node
and move the agent to a safe distance. The launch-UAV behaviour engages the launch-platform to disengage
latches holding the UAV to the agent, so that it may then begin take-off.

5.2 Multiple-Robot Task Allocation

The multi-agent coordination problem is solved using a market-based task allocation approach. Agents bid on
tasks by estimating the expected reward if they execute it. For simple cases and certain auction mechanism,
the optimal allocation of a set of tasks amongst a team can be found (Bertsekas (1990)). However, the
general case is NP-hard (Gerkey and Matarić (2004)), so often in robotics literature simpler mechanisms are
used that find good sub-optimal solutions while requiring less computation and communication, e.g., Otte
et al. (2017), Ulam et al. (2007), Zlot and Stentz (2006).

One of the major challenges in SubT is the dynamic nature. The environment and tasks are not known
ahead of time. Task allocation must continuously update as new tasks are discovered/created and old ones
are completed. Agents often lose communication with each other. Even team composition changes over time
as platform failures are not uncommon in the difficult environments.

The core tasks defined and used so far are explore, drop-comms-node, and sync-data (for agents who are out
of comms range). Each task has a reward, which is discounted by the expected time it would take an agent
to complete the task. Agents bid on tasks by building bundles, an ordered list of tasks. When considering
the bid for a new task, the difference in total reward between the new bundle and the original bundle is the
bid placed the task. This approach allows an agent to consider what tasks are efficient to execute together,
generally due to close positions. However, it avoids the full combinatorial calculation to find the optimal
bundle, only to have the state of tasks change and the process repeated.

Tuning of rewards for use in task allocation is a challenging problem. To simplify, a hybrid system of
reward and priority was introduced, where a higher priority acts as an infinitely higher reward within the
task allocation system, which provides a simple way for the designer or operator to ensure certain tasks are
executed first (or last) without estimating reward adjustments. The initial version of task allocation utilised
at the cave event used fixed rewards for frontiers, but varied the priority between three values based on
the size of the frontiers, with thresholds selected based on simulated and real data. This resulted in the
behaviour to initially follow the main trunk of the environment, and subsequently fill in details. Further work
on reward tuning has been conducted since based on extensive robot testing in a variety of environments,
focusing both on improvements to frontier representation, and more directly on reward tuning.

Auctions use a consensus protocol, based on the work from Choi et al. (2009), but extended to deal with
continuously updating the task set. Available tasks are broadcasted to all agents, and any agent bidding on
a task broadcasts its ownership and bid on the selected task to all other agents. If multiple agents bid, every
agent will receive the bids and use the same rules to determine who wins. A simple example of this process
is shown in Figure 17. These auctions are completely decentralised, and agents can generate and distribute
tasks amongst any sub-group that shares communication.



Figure 17: Simple consensus example. (a) Operator station sends a drop-node task. (b) each agent bids
and broadcast their bid across the network. (c) Agents and base station form consensus on who will execute
task.

Determining the winner of an auction is simple (the highest bid wins) but unreliable communication can
lead to agents with more complicated conflicts. Two agents may execute the same task, only one agent
may know a task has been completed, an agent may be unaware that another agent released a task it was
executing, etc. The key is to carefully develop the rules such that when agents regain communication and
share their task sets with each other, they will form a consensus about the state of all tasks. In practice,
many difficulties are mitigated by the fact that agents that are competing for tasks are generally close, and
thus are able to communicate.

Figure 18 shows an example of the potential coordination. When one agent is tasked by the operator to
return home, another agent immediately takes the tasks it released over. This task allocation approach is
enabled by the homogeneous sensing of the platforms, which permits tasks and navigation data from one
agent to be shared in local coordinate frames which are solved by Wildcat on other agents. Subsequently,
other agents can determine their ability to execute the task, and submit bids as required.

5.3 Incorporating Operator Guidance

Incorporating operator feedback into a complex multi-agent system such as this is an ongoing challenge.
The current implementation allows an operator to place manual tasks, allowing the operator to point out
tasks to be completed without requiring manual selection of an agent. A priority-region tool has also been
developed, allowing the operator to create 3D regions that modify the reward and priority of tasks within
them.

Priority regions allow the operator to prioritise areas they believe are important, or effectively block off
regions they believe are unproductive or dangerous for platforms. These regions can be set to apply to
specific task types or agents, also allowing the operator to ensure a specific agent executes certain tasks or
works in a certain area. This is a flexible and powerful tool for an operator to influence task allocation, but
one that can be difficult to use. Continued work is looking at ways to simplify and streamline the common
actions operators wish to perform, such as direct assigning of tasks to specific agents, without needing to
create regions.



Figure 18: (Left) Two agents distribute tasks to investigate separate areas between themselves. The light-
blue lines represent the ’task-path’, the path the agent expects to take as it completes its bundle of tasks.
(Right) One agent is tasked to return home, the other agent immediately picks up the released task to
execute itself.

Figure 19: (Left) Command panel of operator GUI with example of operator command input in form of task
prioritisation region in blue. (Right) Object panel of operator GUI with a detection selection from detection
list, visualised as a location on the map and the detection image for operator verification and potential report
submission.

The operator interface is shown in Figure 19, specifically illustrating the interface for generating an arbitrary
task prioritisation region. The right-hand figure shows the interface used to review artefact detections.

6 Discussion

The first two phases of the DARPA Subterranean Challenge spanned two years of development, and evaluated
the systems performance through four field trials. The first SubT Integration Exercise (STIX) took place
six months after project inception at Colorado’s Edgar Experimental Mine in April 2019. This event was
planned to be followed by three circuit events, where each competing team was ranked by the number of
artefacts found. The Tunnel circuit was held at the Bruceton Experimental Mine, U.S. Bureau of Mines, in
August 2019, and the Urban Circuit was held at Satsop Business Park in Elma, Washington in a partially-
complete, abandoned, nuclear power plant in February 2020. The Cave Circuit, planned for August 2020,
was cancelled due to global travel restrictions from COVID-19. The CSIRO Data61 Team instead travelled
to the Carpenteria Cave systems, a naturally formed limestone cave in Chillagoe, Queensland, and progress
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Figure 20: Robot team utilised at STIX at starting gate (a), consisting of two Emesent Hovermap UAVs,
a SuperDroid LT2-F and a Ghost Robotics Vision60 quadruped prototype (v3.2) automated with modular
CatPacks. The Miami Tunnel at STIX constricted to under two meters width within 30 m of the entrance
(b),preventing further exploration with the UAV system. The rails in the Miami Tunnel caused the Super-
Droid LT2-F platform to get stuck after traversing 120 m due to its low ground clearance (c).

was evaluated by conducting field tests that followed the format of the official circuit events.

These formal periodic evaluations provide a rigorous set of tests to analyse the advantages and deficiencies
of the developed approaches. As system development occurred throughout the phases, circuit testing results
fed back into prioritising work and changing the approaches taken. The CSIRO Data61 Team entered
the program with a mature SLAM solution Wildcat, and UAV autonomy technology, which spun out from
CSIRO into Emesent during Phase I. The modular UGV CatPack was developed to complement Emesent’s
Hovermap payload used on the UAVs, and allowed greater heterogeneity in UGV platforms. UGV platforms
where changed for each event, as compared to other teams such as Explorer and CTU-CRAS, who reused
their highly effective platforms from early events. The deployed communications system, UGV fleet, and
multi-agent autonomy and operational concepts changed significantly for each event, pivoting based on
testing results. Overwhelmingly the importance of robotic autonomy and a coordinated robotic fleet was
demonstrated, and prioritised over continuing to develop better communication systems and relying on a
single operator for all higher level guidance.

A nascent system was deployed at STIX, with the UAV and UGVs running independently, with separate
Ubiquity point-to-point radios, and Emesent/DJI controllers. All systems could only be commanded via
waypoints and there were no higher levels of autonomy. The difficulty of the encountered terrain during
testing and subsequent site inspections demonstrated the need for larger, robust UGVs.

Performance in the Tunnel Circuit was restricted by the reliance on an unreliable mesh communication
system. The operator base station computed a joint global map from all available agent data allowing unified
commanding in one map, where each robot was capable of simple exploration, waypoint following, and a
return state. The success of autonomy versus manual waypoints led to prioritisation of further autonomy
development, shutting down development of a CSIRO-communications system, and purchasing a dedicated
Rajant mesh system for the subsequent circuits. An initial long (∼250 m) non-branching tunnel topology
prompted the marsupial approach to UGVs carrying UAVs, increasing the number of large UGVs in the
fleet. The lack of reliability in both legged systems and the excellent performance of the ATR platform
focused UGV development entirely onto tracked platforms.

By the Urban Circuit, each agent computed an on-board global map from shared data, which enabled implicit
coordination between agents prioritising regions away from other agents. The explore-sync behaviour in
Williams et al. (2020) was the primary mode of operation, and the most successful agents operated beyond
communication range for extended durations. The marsupial UAV system allowed for targeted exploration
through shafts, and the small UGVs were used to traverse stairwells. Several points were missed by not-



traversing small doorways and barrier based switchbacks during exploration, leading to a focus on making
global and local traversability consistent and shared. The clumping of exploring agents led to adoption of
multi-robot task allocation.

The expectation for the cave circuit further focused development on terrain costing and the ability to
rationalise over unobserved ground. The robots primarily operated in the multi-robot task allocation mode,
with the operator falling back to assist with stuck robots or prioritising tasks.

6.1 STIX

The team at STIX consisted of two Emesent Hovermap UAVs, one SuperDroid LT2-F, and a Ghost Robotics
Vision60, as illustrated in Figure 20a. In different runs, the SuperDroid and UAV each traversed 120 m, while
the Ghost’s best result was 40 m.

It is believed that the Ghost slipped on rails in the tunnel, while the same type of obstacle caused the
SuperDroid to become beached in one run. Two key advantages of the SuperDroid were its ease of repair,
and ability to be carried as checked luggage, whereas the Ghost was not field repairable by our team, and
needed to be disassembled into multiple cases to meet the checked luggage weight requirements. The rough
terrain and issues with beaching drove the decision to acquire the large BIA5 ATR platform for subsequent
events.

An automated artefact detection capability was deployed on the ground agents with some success. The
limited field of view prevented some further detections, and was supplemented with additional cameras in
subsequent events. Artefact detection was also subsequently deployed on the UAVs.

The UAV performed well, navigating 120 m in the Army tunnel. Speed was limited by the dust experienced
by the platform. A constriction 30 m inside the Miami tunnel (shown in Figure 20b) prevented further
progress. This limitation drove the decision to develop the marsupial launch capability that was deployed in
subsequent events.

The operator loading caused by both manual commanding of robots, lack of automation in startup, and
communications difficulties, triggered subsequent work on higher levels of autonomy.

6.2 Tunnel Circuit

At the Tunnel Circuit, a diverse team was deployed consisting of the Ghost Robotics Vision60 quadruped,
two SuperDroid LT2-Fs, three Emersent Hovermap UAVs, as well as the new BIA5 ATR and the internally
developed CSIRO Hexapod as shown in Figure 21. The modular perception pack design was particularly
valuable in deploying this heterogeneous team, and allowed us to develop independently and accommodate
hardware received shortly before the event. A multi-hop mesh communications network was deployed by the
lead robot, and used alongside a drop/delay tolerant backend.

At the Tunnel Circuit, a single agent autonomous exploration capability was fielded, but the operators tended
to prefer manual waypoints due to time constraints in training. At this point in development, each agent
communicated with the base station, but not with peers, and the base station contained the only multi-agent
SLAM solution.

Large amounts of operator time were consumed in troubleshooting of communications issues, which were
exacerbated by robots traversing over and damaging communications nodes. The manual mode of operation
was highly dependent on good communications, so this significantly limited performance. Subsequently,
development of multi-agent autonomy beyond communication ranges was prioritised.



Artefacts were detected and scored by both the ATR UGV and the Hovermap UAV. This again demonstrated
the multi-agent SLAM performance; the gate defining the reference coordinate system was detected on a
single agent, and artefacts detected on other agents were transformed using the multi-agent SLAM solution
on the base station. The additional FoV provided by the multiple cameras on the revised UGV pack design
(Figure 2) provided improved coverage and performed very well. The limited coverage of the gimballed
camera on the UAV, combined with the UAV’s speed (which, at that point, did not account for camera
coverage) led to missed artefacts.

The artefact detector running on the UGVs sent back a large number of false positives. Analysis of these
detections showed some of the detections were of the robot itself e.g., communications antennae. These
detections were subsequently removed with the introduction of a simple image mask. Other false positives
were of artefacts not present in our training data e.g., the anchor plates of rods inserted in to the earth
to reinforce the mine. These were mitigated by selecting thresholds for the detector which resulted in a
manageable number of detections for the operator.

A total of 11 artefacts out 80 artefacts were correctly detected and located during the tunnel event. Three of
the artefacts were detected by both the UGVs and UAVs. Three artefacts were detected by the UGVs only
and two by the UAVs. The remaining three artefacts were scored by the operator by inspecting the map.
The UGVs and UAVs detected two additional artefacts but the operator failed to report the detections due
to the large number of false positives. The small field of view of the camera in conjunction with the gimbal
system onboard the UAVs failed to observe an additional five artefacts that were within detection range.

Issues were experienced with local navigation with low-hanging obstacles such as lights. This was found to
be due to an inflated vehicle height used in configuration data, which had not been identified as cases had
not been encountered in prior testing. The number of agents utilised was more than had been encountered
in prior testing, and this revealed a range of issues associated with restarting agents, etc. Many of these
issues were the consequence of the aggressive schedule for bringing on new platforms; this led to the decision
to focus development on the ATR and SuperDroid UGV platforms for the Urban Circuit.

The accuracy of the map was evaluated by comparing the point clouds produced by one of the UGVs in
the Safety Research Mine to the registered, surveyed point cloud provided by DARPA. The analysis was
performed by first registering UGV and reference point clouds for the staging area (as shown in Figure 22),
and then evaluating the RMS error for corresponding points in the most distant region of the trajectory
(215 m from the staging area). The analysis revealed error rates of 0.63%, 0.22%, and 0.025% over distance

Figure 21: Tunnel Circuit robot fleet consisting of three Emesent Hovermap UAVs (front) which were
launched from the starting gate, the Ghost Robotics Vision60 v3.7 (top left), SuperDroid LT2-F, BIA5 ATR
(top middle) and the CSIRO Hexapod (top right).
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Figure 22: The point cloud map from a single UGV for the Safety Research Mine course with a total transit
of approximately 215 m overlaid with the SLAM solutions and reference map. Approximate cross-section
measurements are supplied for reference. Red: Odometry, Blue: Atlas (real-time), Yellow: Global (offline),
Green: Reference point cloud provided by DARPA. (a) Top orthographic projection showing the entire map
(b) Top orthographic projection showing the end of the map (c) Side orthographic projection showing the
end of the map.

travelled for the odometry, atlas (real-time), and global (offline) state estimation components of the solution
respectively. This method creates an error distribution that accumulates with distance travelled from the
deployment area and reflects the same model used for scoring points. This particular course contained
several large corridors which proved to be difficult for SLAM as the geometric features were sparse. While it
was observed that other teams employed additional sources of external positioning to aid SLAM (such as a
totalstation or the secondary gate reference targets in the tunnel), no such aiding was used by the Wildcat
SLAM solution. The only accuracy issues observed with our SLAM occurred during hard landings of the
UAVs. At this stage, the operator did not have the ability to remove an agent or part of an agent’s trajectory
from the solution, so this did cause some difficulties.

6.3 Urban Circuit

At the Urban Circuit, the supported platforms were consolidated, so that the team consisted of two Hovermap
UAVs, two large ATR UGVs and three smaller SuperDroid UGVs, as shown in Figure 23. Communications
switched to the Rajant-based solution (Section 2.4), peer-to-peer sharing was incorporated (Section 4.3) and
multi-agent, decentralised SLAM was activated, so that each agent solved for a global multi-agent map. This
enabled navigation on the shared global map, as described in Section 4.2. A marsupial launch capability
was deployed, in which a UAV was carried by each ATR UGV and launched in the vicinity of a promising
region that was unable to be accessed by the ground agents. This proved to be a critical capability as the
Beta course had constriction early in the course which would have prevented the UAV flying in from the
staging area.

Testing in a realistic site proved invaluable; we performed this in a parking garage under construction,
containing many obstacles from construction supplies and debris. This provided representative scale and
complexity, particularly with relatively wide open spaces. A key feature that it did not represent was narrow
doorways and small rooms, which turned out to be a weakness of our approach. Conversely, Team Explorer



trained in an abandoned hospital with many small rooms but without wider open spaces, and also experienced
some issues due the environment mismatch.8

As described in Section 3.3 and Williams et al. (2020), the same frontier logic was deployed in the UGVs and
UAVs. In the UGVs, this was set up as explore-sync missions, which were very successful. The total distance
traversed by the ground robots over the four runs was 7902 m. In the Beta course, a ATR UGV traversed
1337 m and observed seven artefacts, mostly operating on explore-sync. In the Alpha course, a SuperDroid
UGV descended a flight of stairs and explored autonomously, covering 782 m and detecting three artefacts.
Narrow doorways were often missed due to the resolution of the traversability analysis used for exploration.

The frontier selection logic performed well when exploring large, complex areas. It was less effective when
it came to declaring a complex area as completed, and selecting between distant regions. The interruption
caused when robots returned to synchronise data was a significant issue, as robots often did not return to
the area being explored. This also caused robots to cluster near the entry where synchronisation was finally
obtained, as can be seen in the lower-left corner of the upper floor in Figure 24a. This was subsequently
addressed through the MRTA approach (Section 5.2), which considered clusters of frontiers rather than
individual frontiers, such that tasks were more distributed.

The course layouts and robot trajectories for the second runs of the alpha and beta courses are shown in
Figure 24. Launching the UAV in situ was very successful and allowed exploration of areas that could not
be covered by the ground agents. In one instance, a vertical shaft was identified by the operator, and the
UAV was launched, descended and autonomously traversed the lower level, before returning; the trajectory
taken is shown in Figures 24 and 25.

The artefact detector for the UGVs reported 13.3 detections per minute for the first run which overwhelmed
the operator. This was mitigated by increasing the thresholds to reduce the number of detections sent to
the operator to approximately 5-7 detections per minute. The small number of detections per minute was
due to an inefficient user interface for inspecting artefact detections. Improvements to this interface were
prioritised after the event to increase the number of detections an operator could process per minute.

The introduction of artefact tracking on the UGVs resulted in a 70% reduction in the number of artefact
detections reported to the operator by a single UGV during the first run.

A total of 15 out of 80 artefacts were correctly detected and localised over the duration of the event. Two
artefacts were detected by both the UGVs and the UAVs, 12 were detected by the UGVs and one artefact
was identified by the operator upon inspection of the map. Three of the artefacts were cellphones detected
using the UGV bluetooth/wifi system. One gas artefact was also correctly identified using the UGV gas

8As reported in Urban Circuit Technical Interchange Meeting https://youtu.be/ymBrec7HY4A?t=19667.

Figure 23: The Urban Circuit robot fleet consisted of two BIA5 ATRs each carrying an Emesent Hovermap
UAV, and 3 Superdoid LT2-F platforms.



sensor. A further six artefacts were possible if the agents had been able to navigate through doorways. Five
artefacts were also in the field of view but too far away for detection.

Agent specific details of perception performance during each run at the Urban Circuit can be found in
Table 2. We note that the above analysis and Table 2 is generated by post-processing the recorded data with
the perception system configured to generate logging information. The post-processing is not guaranteed to

(a)

(b)

Figure 24: Course map and robot trajectories for Urban Circuit event (a) alpha course and (b) beta course.
The grey map sections were ground truth data provided by DARPA, with grid cells representing 10m. The
coloured map sections, overlaid or adjacent to grey map, were generated by the UAVs. In the beta course,
the UAV flew between the upper and lower levels of the course. The multi-colored trajectories overlaid on
the grey map are from the multiple UGV systems.



(a) (b)

Figure 25: Post-processed, intensity-coloured point cloud generated from UAV in mission descending through
shaft in the Beta course, with trajectory overlaid. (a) shows upper level where mission commenced, while
(b) shows lower level with trajectory descending through shaft and entering adjacent rooms.

produce identical results to what occurred during an event but we expect the variations to be minor. The
configuration of the perception system in the post-processing is identical to the configuration used during
the run. This can be seen by comparing the number of detections sent during the first attempt at the Beta
course and the remaining Urban course attempts.

The median error for correctly reported artefacts was 0.58 m; the artefact corresponding to this median
happened to be the longest (line of sight) distance from the gate, at 99 m. Team CSIRO received the award
for the most accurate artefact detection, which had an error of 0.22 m. The median error as a proportion of
the line of sight distance from the gate was 0.83%. These statistics include reports that are inherently less
accurate than visual detections, such as bluetooth and gas.

The obstacles shown in Figure 26 were not autonomously traversed due to assumptions of environment
characteristics, and prior test environments. This further motivated the effort on traversability analysis that
was made in preparation for the cave event.

Figure 26: A traversable barrier on the Urban Circuit alpha course, which prevented further access for the
UGV systems. The BIA5 Titan robot, from which the picture was taken, is physically capable of traversing
the barrier, but the autonomous navigation was far too conservative.



6.4 Cave Circuit

The field trip to the Carpentaria Caves in Chillagoe, Queensland was originally planned as a preparatory
step for the DARPA Cave Circuit event. When the latter was cancelled, plans were altered to build a
more intense trial, mimicking DARPA test conditions. The robot team employed consisted again of two
Hovermaps, carried on two ATR UGVs, along with the newly developed DTR (Section 2.2.5). Photos of the
agents and terrain are shown in Figure 27.

(a) (b)

(c) (d)

Figure 27: Team CSIRO Data61 deployed a set of heterogeneous ground and air robots, with homogeneous
sensing payloads, at the local Cave event. In (a) The BIA5 ATR is navigating down a steep rocky slope after
exploring a ledge several meters above the cavern floor, and in (b) is traversing up a slope, avoiding steep
drop offs on either side. (c) Shows the Emesent UAV launching from the back of the UGV, and (d) shows
the UAV exploring over high rocks in a cavern. The parts of the cave system shown in (a) and (b) were in
complete darkness, while the areas in (c) and (d) had openings admitting natural light.

The terrain in the cave was more challenging than previously encountered, which caused significant difficul-
ties. The superpixel-based global navigation graph described in Section 4.2 performed well at identifying
terrain that was able to be traversed, and this analysis was also utilised in the frontier exploration. However,
the cost of traversing difficult terrain was not sufficiently modelled or penalised, and consequently global
paths and frontier selections often preferred short distances that involved unnecessarily traversing challeng-
ing terrain. Subsequently, risk-based selection has been made a priority. Changes have also been made to
allow local navigation more flexibility in executing the global path.

The local navigation approach described in Section 3.4 and Hines et al. (2021) performed exceptionally well in
reaching difficult waypoints and avoiding negative obstacles. Vehicles rolled several times, but each of these
were traced slip, subsidence, and operator teleoperation with insufficient understanding of the environment.
Minimal damage was sustained, and in some instances vehicles continued after a complete roll. It was the
overwhelming impression that the autonomous local navigation was more reliable in the challenging terrain



than the operator teleoperating with the aid of a local cost map and cameras.

The insufficient modelling of risk in waypoint selection led to instances where the agent became stuck in a
location of challenging terrain. These instances were either resolved by commanding of a different waypoint
which allowed successful navigation, or operator intervention. Repeated failed navigation attempts led to
tasks which were temporarily blocked from execution. This is being addressed by development of an explicit
“unstuck” behaviour, and improved awareness of the navigation state where task blacklisting is performed.

The UAV exhibited excellent exploration performance in the cave environment, allowing coverage of more
terrain than was possible using the ground agents. The mode of operation was altered to utilise the UAV as
a scout, rather than a focused tool to analysis identified inaccessible locations.

The courses and trajectories are illustrated in Figure 28. In alpha course, the red agent traversed 367 m, and
four out of ten artefacts were detected (the UAV did not operate in this run). In beta course, the green agent
traversed 231 m, while the UAV (yellow) traversed 400 m. Again, four out of ten artefacts were detected.

MRTA (described in Section 5.2) accounted for the majority of missions. Agent separation generally im-
proved, due to improvements in inter-agent coordination, and representation of tasks at a higher level than
individual frontiers. The courses were limited to parts of the cave that could be safely accessed by humans,
and from which robots could be retrieved. Because of the distribution of impassible segments in the cave,
this led to a smaller scale course in comparison to Tunnel and Urban circuit events. Consequently, good
communications links were maintained throughout; the challenge of the test was extreme traversability rather
than scale.

A total of 16 out of 44 artefacts were correctly detected and located across the four evaluations. Of these,
14 were detected by the UGVs and the remaining two were identified by the operator upon inspection of the
map. Three additional artefacts were in field of view but were to far away to be detected. One artefact was
missed because the detector thresholds were too high.

Agent specific details of perception performance during each run at the Cave Circuit can be found in Table 2.
Again, we note that the above analysis of the perception system performance and the data present in Table 2
was generated by post-processing the recorded data with the perception system configured to generate logging
information.

7 Conclusions

The CSIRO Data61 Robot fleet was deployed in three challenging terrain types for the DARPA SubT Phase I
and Phase II circuit events. Through these competitions, the team focused on increasing levels of autonomy
and coordination rather than creating better communication systems, and exploited the heterogeneity of
simpler UGVs and the UAVs over fielding more capable, but more complex, individual agents with legs.
Creating a modular perception system based around a spinning lidar for the UGVs, complemented the
Emesent Hovermap system on the UAVs, and allowed rapid experimentation and adoption of UGV platforms.
The homogeneous sensing on each agent and associated WildCat SLAM, allowed for meaningful sharing of
information between agents through a global map computed by each agent. This map provided the basis for
creating higher levels of autonomy including sharing navigation and artefact information between agents, as
well as autonomous task allocation. Consistently, the most effective robotic agents at each event (in terms
of scoring points) where those commanded to use the highest levels of autonomy available at the time. The
most important uses of fleet heterogeneity was to increase course coverage: The UGVs could carry the UAVs
and breach narrow parts of the course, in turn enabling the UAVs to demonstrate rapid access to shafts or
terrain not traversable by the UGV systems. Smaller UGVs also provided the ability to access the narrowest
parts of courses (such as stairwells) not traversable by either the larger UGVs or the UAVs and also were
used as extra communication relays. Harnessing this heterogeneity was achieved through the shared global



Course Agent #Raw #Sent
# Missed

(Perception)
# Missed
(Comms)

Distance
(m)

Duration
(mins)

Urban Beta 1 Atlas 3468 296 151 54.8
Urban Beta 1 Kitten 3012 820 2 670 60.0
Urban Beta 1 Winslow 2058 422 509 36.7
Urban Alpha 1 Atlas 554 68 379 23.1
Urban Alpha 1 Beachhead 262 55 1 414 54.0
Urban Alpha 1 Kitten 173 36 118 57.6
Urban Alpha 1 Rat 783 182 3 1 907 60.0
Urban Alpha 1 Winslow 494 32 104 32.6
Urban Alpha 1 Hovermap 174 4.3
Urban Beta 2 Atlas 932 191 1 490 40.4
Urban Beta 2 Rat 981 303 1 1337 60.0
Urban Beta 2 Winslow 4571 56 131 24.1
Urban Beta 2 Hovermap 367 12.0
Urban Alpha 2 Atlas 2890 167 782 51.0
Urban Alpha 2 Beachhead 996 115 288 23.0
Urban Alpha 2 Kitten 696 161 610 33.9
Urban Alpha 2 Rat 1179 139 514 59.4
Urban Alpha 2 Winslow 1972 121 498 28.1

Cave Alpha 1 Rat 162 17 179 27.4
Cave Alpha 1 Kitten 357 35 205 23.6
Cave Alpha 1 Pumpkin 103 22 100 26.2
Cave Alpha 2 Kitten 226 27 1 367 37.6
Cave Alpha 2 Pumpkin 64 7 1 94 25.6
Cave Beta 1 Rat 127 20 231 40.0
Cave Beta 1 Kitten 403 19 1 195 36.0
Cave Beta 1 Pumpkin 1336 9 82 31.6
Cave Beta 1 Hovermap 262 10.6
Cave Beta 2 Rat 1280 9 87 48.4
Cave Beta 2 Kitten 261 18 2 206 44.9
Cave Beta 2 Pumpkin 57 12 136 38.2
Cave Beta 2 Hovermap 281 12.2

Table 2: A summary of agent, communications and perception performance for the Urban and Cave events.
The “# Raw” column indicates the number of artefact detections made by an agent during a run. The
number of unique tracked artefacts sent to the base station is shown in the “# Sent” column. The number
of competition points missed due to perception failure and communication issues are shown in the two “#
Missed” columns. The last two columns show the distance traversed in the duration the agent was active.
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10m
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Figure 28: Maps of (a) alpha and (b) beta courses in cave testing, and robot trajectories. Green and red
show large ATR UGVs, blue shows small DTR UGV, and yellow shows Hovermap UAV. (c) and (d) show
maps of the larger respective areas with the intended course areas shaded, and artefact positions marked.
In alpha course, the segment to the bottom right was not explored, due to constrained access through a
steep narrow and rocky path. The beta course was almost entirely explored by the combination of UAV
and UGVs, but the large cavern at the top was not explored completely, instead the UAV flew through a
narrower opening and beyond the intended course area (right section of the yellow trajectory in (b)).

map, with agents gaining coordination by providing situational awareness to the operator, and by the the
multi-robot task allocation system.

Follow-on work which is currently in progress includes:

• Incorporating terrain risk into frontier selection and global navigation in order to prioritise explo-
ration of easily accessible areas before challenging terrain

• Improving the coordination of exploration between agents, rewards of exploration tasks, and operator
interaction to prioritise exploration



• Introducing additional behaviours to autonomously pass through narrow openings, to utilise when
agents are stuck, and to allow vehicles to navigate cooperatively in close proximity

• Introducing a live colourised point cloud (based on Vechersky et al. (2018)) to enhance operator
situational awareness

• Improving the perception capability of the UAV by improving aircraft and gimbal motion, or intro-
ducing multiple cameras

• Developing smart nodes, packaging a computational platform running the Mule peer-to-peer software
with the Rajant drop node, allowing data from a passing agent to be stored and transmitted to
another agent which becomes close at a later time

• Generally improving platform robustness and stability; e.g., avoiding mounting of the drop nodes
which increase the platform footprint and reduce the maximum slope

The focus on autonomy, coordination and platform heterogeneity will form the basis for deploying the fleet
in even larger scale environments for the SubT final competition in September 2021.
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Tiderko, A., Hoeller, F., and Röhling, T. (2016). The ROS Multimaster Extension for Simplified Deployment
of Multi-Robot Systems, pages 629–650. Springer International Publishing, Cham.

Tychsen-Smith, L. and Petersson, L. (2017). Denet: Scalable real-time object detection with directed sparse
sampling. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 428–436.

Tychsen-Smith, L. and Petersson, L. (2018). Improving object localization with fitness nms and bounded
iou loss. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6877–6885.

Ulam, P., Endo, Y., Wagner, A., and Arkin, R. (2007). Integrated mission specification and task allocation for
robot teams-design and implementation. In Proceedings 2007 IEEE International Conference on Robotics
and Automation, pages 4428–4435. IEEE.

Vechersky, P., Cox, M., Borges, P., and Lowe, T. (2018). Colourising point clouds using independent cameras.
IEEE Robotics and Automation Letters, 3(4):3575–3582.

Williams, J., Jiang, S., O’Brien, M., Wagner, G., Hernandez, E., Cox, M., Pitt, A., Arkin, R., and Hudson,
N. (2020). Online 3D frontier-based UGV and UAV exploration using direct point cloud visibility. In
IEEE International Conference on Multisensor Fusion and Integration (MFI).

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In CIRA, pages 146–151.

Zlot, R. and Stentz, A. (2006). Market-based multirobot coordination for complex tasks. The International
Journal of Robotics Research, 25(1):73–101.

https://github.com/NVIDIA/TensorRT

	Introduction
	Related Work
	Other SubT Teams
	Contributions

	System Description
	CatPack
	UGV Platforms
	SuperDroid LT2-F
	BIA5 All Terrain Robot
	Ghost Robotics Vision60
	CSIRO Hexapod
	CSIRO Dynamic Tracked Robot

	UAV Hardware
	Communication Systems

	Single Agent Capabilities
	Perception
	Camera Based Detection
	Additional UGV Sensing

	Odometry
	Exploration
	UGV Local Navigation
	UAV navigation

	Multi-Agent Mapping and Data Sharing
	Multi-Agent SLAM
	SLAM Frames
	Atlas Pose Graph Optimisation

	Multi-Agent UGV Global Navigation
	Data Sharing

	Human Robot Team Decision Making
	Finite State Automaton Design
	Multiple-Robot Task Allocation
	Incorporating Operator Guidance

	Discussion
	STIX
	Tunnel Circuit
	Urban Circuit
	Cave Circuit

	Conclusions

