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Abstract— The cognitive process that enables many primate
species to efficiently traverse their environment has been a
subject of numerous studies. Mental rotation is hypothesized
to be one such process. The evolutionary causes for dominance
in primates of mental rotation over its counterpart, rotational
invariance, is still not conclusively understood. Advice-giving
offers a possible explanation for this dominance in more evolved
primate species such as humans. This project aims at exploring
the relationship between advice-giving and mental rotation by
designing a system that combines the two processes in order to
achieve successful navigation to a goal location. Two approaches
to visual advice-giving were explored namely, segment based
and object based advice-giving. The results obtained upon
execution of the navigation algorithm on a Pioneer 2-DX robotic
platform offers evidence regarding a linkage between advice-
giving and mental rotation. An overall navigational accuracy of
90.9% and 71.43% were obtained respectively for the segment-
based and object-based methods. These results also indicate how
the two processes can function together in order to accomplish
a navigational task in the absence of any external aid, as is the
case with primates.

I. INTRODUCTION

Over the years, autonomous navigation has undergone
tremendous developments with increasingly advanced tech-
niques being devised. Nature holds examples of several
efficient navigators and is a source of potential solutions
to many of the remaining challenges that autonomous nav-
igation currently faces. Primates are, by evolution, some of
the most adept navigators in nature [1]. It is speculated that
primates use mental rotation which is the cognitive process
of rotating mental representations of objects, in order to
successfully navigate their habitat. Arkin et al. in [2] and [3],
discuss the architecture of a system that uses mental rotation
in robot navigation using local depth maps generated at the
current location of the agent as it navigates. Pettinati et al.
in [4] describe the implementation of such a navigational
algorithm which uses a series of mental transformations
on the generated local depth maps in order to compute a
rotational and translational vector that directs the agent to a
goal location. The results obtained confirm the usefulness of
mental rotation in robot navigation. Owing to the absence of
maps or other navigational aids in this scenario, an external
input or ’advice’ assisting the navigation would be beneficial.
By specifying a set of key objects and their relative positions
with respect to the final goal, successful navigation of the
robot can be attained. This algorithm does not assume
any a-priori knowledge regarding the overall layout of the
surroundings. Instead, it is focused on a few key elements

in the environment that guides the navigation. An analogous
situation would be instructing a person to “Go down the
hallway and take the first left”. Even without awareness of
the starting location and the absence of maps, the individual
can successfully complete the task based on the advice given
to them and their own observations of the environment. The
use of these visual cues or abstract representations in navi-
gation rather than explicit directions based on distance was
observed by Hutcheson et al. in [5], indicating an underlying
cognitive process supported by advice-giving that enables
the goal to be achieved. In this paradigm, advice-giving
may be used to explain the dominance of mental rotation
higher up the primate evolutionary ladder. In this project,
we attempt to explain the possible correlation between these
two processes by unifying advice-giving and mental rotation
into a navigational algorithm implemented on a robotic agent.
The work in this paper builds upon the existing framework
developed in our lab ([2], [3], [4]), in order to incorporate
advice-giving.

A. Related Work

Mental rotation involves a cognitive representation of the
object and Khooshabeh et al. in [6], showed that good human
rotators relied mainly on the spatial configuration and utilized
the visual information only in relevant tasks. This seems to
indicate that mental rotation involves an analog transforma-
tion, which is further evidenced by Yohtaro et al. in [7]. They
discussed the time dependency of mental rotation stating that
time taken to mentally rotate the mirror image of an object
is dependent on the angular disparity between the actual and
mirror images. In order to overcome the cognitive difficulties
associated with the analog transformation, humans tend to
segment complex object into parts, individually manipulating
each part. Analogous to this aspect, the algorithm used in this
paper, focuses only on a key object, mentally transforming
it instead of acting upon the entire scene itself.

Some species exhibit a cognitive process called rotational
invariance which unlike mental rotation is time independent.
In some primate species, these two processes coexist [8],[9].
It is posited that as hominids retreated from their arboreal
environment, evolving an upright gait where the vertical ref-
erence plane gains importance, they exhibited a dominance
of mental rotation over rotational invariance. We hypothesize
that advice-giving offers a plausible explanation for the
evolutionary preference of mental rotation over rotational
invariance in higher primates. In this project we attempt to



understand the usefulness of advice-giving in conjunction
with mental rotation in navigation.

There exist two primary spatial transformation strategies
commonly employed by humans namely, spatial visualization
(mental rotation) and spatial orientation (perspective taking).
Though related, mental rotation and perspective taking are
dissociated processes [10], [11], where the former strategy is
preferred when a greater than 90 degree rotation is required
to accomplish the task [10],[12],[13]. Several studies also
evidence the existence of perspective taking capabilities in
more evolved primate species like chimpanzees [10],[11].
This may be indicative of a co-evolutionary relationship
between mental rotation and perspective taking. The role
of advice-giving in these spatial transformation strategies
is elucidated by Keyser et al. in [14]. The definition of a
mutual knowledge base demarcates the perspectives of two
individuals and advice-giving helps resolve any ambiguities
associated with the key objects by ”filtering out” objects that
do not fit the specifications in the advice specified from one
person to the other. For instance, in the algorithmic imple-
mentation described in this paper, when the external agent
specifies advice regarding the key object as the ”biggest red
bucket”, the information allows disambiguation of the object
from other red objects and smaller buckets. In this respect,
mental rotation may be employed, for instance, to identify
the object an individual is referring to based on the advice
that is specified. The navigation algorithm described in this
paper thus draws from the concept of mutual knowledge
and advice disambiguation. Trafton et al. in [15] implement
perspective taking on a robotic platform and elucidates this
form of disambiguation.

Mental rotation is distinct from visual servoing as ex-
plained by Arkin et al. in [2]. The work in this paper
explores a more deliberative approach unlike visual servoing.
Three-dimensional structured representations of the scene are
constructed and correspondence of the specified key object
across the captured scenes is identified in order to guide the
navigation. This makes the approach described in this paper,
different from other approaches such as visual servoing.

Research conducted by Rigal et al. in [13] offer some
evidence that may further assert the correlation between
advice-giving and mental rotation. Their research showed
that children in the age group 5-11 years had difficulty
discerning ”left” and ”right” when different from their
egocentric perspective. This may be attributed to the lack
of cognitive development that is necessary for performing
mental rotation which helps in the differentiation. The grad-
ual cognitive development that eventually allows them to
accomplish the task may be derived from the numerous
social interactions the children encounter, requiring them to
perform some mental rotation either to identify objects or
scenes. These interactions could be in the form of advice-
giving.

Some of the components of advice-giving in a navigational
scenario, as elucidated in [16], are shown below:

• A named destination – This is the final goal, for instance

a goal object.
• Operations describing movement – E.g. Move straight,

keep left
• Operations performed in relation to reference points –

E.g. Turn left at the intersection
Some of the other characteristics of advice-giving involve
sequential execution of the advice and the use of state-of-
being verbs [16].

II. OBJECT RECOGNITION

The navigation algorithm consists of two components:
a bootstrap phase and a feedforward phase. The bootstrap
phase of the navigation algorithm consists of the object
recognition component that enables the agent to identify the
key object in the goal scene and use it as a navigational aid.
A goal image to which the agent is expected to navigate is
fed as input into the algorithm along with a 3D reconstruction
of the key object in point cloud format (pcd). At the onset
of navigation, the agent captures an image corresponding to
its current location/starting point via an onboard Kinect.

The object recognition algorithm begins by extracting a set
of SIFT (Scale Invariant Feature Transform) points from the
object. These points are subsequently compared to the SIFT
points extracted from the scene using a Euclidean distance
measure in order to identify the key object in the scene.
The invariance of SIFT to various image transformations
like translation, scaling and rotation highlights properties
similar to the neurons in the inferior temporal cortex of
the brain that predominantly contributes to primates’ object
recognition [17]. Compared to alternatives like uniform sam-
pling, this aspect makes SIFT an apt choice for the overall
primate-inspired algorithm. Following the feature extraction,
application of SHOT correspondence estimation enables the
object - scene feature descriptors to be matched even in case
of cluttered or occluded environments. RANSAC iterations
help determine the optimum model describing the pose of
the object in the scene. It first computes an initial model
by randomly selecting a set of data points from the entire
pool and validating its fit based on the number of inliers
and outliers. Repeated iterations of the algorithm yields a
final optimum model corresponding to the pose of the object.
The implementation returns a 4x4 rotation matrix indicating
the object pose which is subsequently used to generate the
control vector used by the robot in the feedforward phase
for navigation.

As stated in Section 1, the current image stored at the
initial position of the agent can be related to the mutual
knowledge described in [14]. The specification of a key
object in the advice helps resolve any ambiguities, thus
guiding the agent’s navigation to the goal position.

III. NAVIGATION ALGORITHM

The feedforward step as described in [4] first computes
the occupancy grid from the depth images generated by the
Microsoft Kinect for both the current and the goal images.
A number of mental transformations are then applied to
the current occupancy grid in order to match it with the



occupancy grid generated from the goal image. A motion
vector is derived from this correspondence and the robot
moves a short distance forward as defined by the generated
motion vector. It then repeats the process for the new current
location until it has arrived at the goal location. Introduc-
tion of object recognition and advice-giving, in addition
to shedding light on their possible correlation with mental
rotation, helps eliminate a limitation of the bootstrap phase
of the previous algorithm, namely the requirement of hand
matching individual segments. Fig. 1 indicates an overview
of this process.

Fig. 1: Navigational algorithm architecture

IV. OBJECT-BASED ADVICE GIVING

Object-based advice giving revolves around computing the
relative orientation of the key object across successive images
captured as the robot navigates (Similar to the cognitive
process of mental rotation). This algorithm can be broadly
divided into two computational steps. The first involves
calculation of the rotation matrix as a result of the mental
transformations (mental rotation) required to match the key
object’s orientations across the scene captures made during
the navigation. The second step involves the computation
of a bounding box that helps the agent keep track of the
object location. It also helps improve the accuracy of the
object recognition algorithm by constraining the environment
as described below.

A. Rotation Matrix Computation

Fig. 2: Architecture of the feed forward phase

A ‘relative’ rotation matrix corresponding to the transfor-
mation of the object from the current to the goal scene is key
to generating the motion vector for the robot’s navigation and
is computed from the object’s pose in the current and goal
images. Additionally, the resultant matrix is decomposed
to isolate the rotation about the vertical axis owing to the

three DOFs of the robot (X/Y translation and rotation about
vertical axis).

[Obj] * [TR1] = [Object alignment in current scene];
[Obj] * [TR2] = [Object alignment in goal scene];
[Relative alignment] = [Tf] = (inv[TR1]) * [TR2];
Decompose [Tf] about Y axis = [TR-y];
Return [Tr-y];
Algorithm 1: RotCalc: Calculate final rotation matrix

Algorithm 1 (RotCalc function) summarizes this rotation
matrix calculation. [TR] indicates the original rotation matrix
and [Tf] the relative rotation matrix. The final rotation matrix
([TR-y]) gives the relative alignment about the Y axis, used
by the remainder of the feed forward algorithm. Several
iterations of this process are carried out as the agent makes
a new capture at every step until it has attained the goal
location. Figure 2 shows an overview of the rotation matrix
computation.

B. Bounding Box Estimation

Prior to the computation of the rotation matrix, a bounding
box is computed to enclose the object allowing it to be
tracked at all times. Additionally, the scene surrounding the
bounding box is filtered out to increase accuracy of the object
recognition algorithm. The initial bounding box is currently
manually drawn to include the object’s expected location and
is subsequently propagated automatically across successive
frames depending on the rotation or translation the agent
undergoes. The filtered scene is used to compute the rotation
matrix. The pseudocode for the entire algorithm is shown in
Algorithm 2.

V. SEGMENTATION-BASED ADVICE-GIVING

The navigation algorithm described in [4], implements
segment-based navigation. The segmentation algorithm de-
veloped by Natesh et al. is described in [19]. Advice-
giving was introduced into the bootstrap phase to elimi-
nate a shortcoming of the previous algorithm, namely the
requirement of hand-matching or manual cycling through
all the segments in order to isolate the key segment in the
goal and the matching segment in the current image. This
was achieved by computing a mean RGB value and size
for each segment. Two separate functions for each of these
were implemented. These functions take into account all of
the superpixels (groups of pixels) that compose the segment.
Iterating over the pixels in each superpixel, the average RGB
value (RGB data obtained from the Kinect capture) and size
was computed (Total number of pixels). The advice was
specified in terms of the size and color, for example, ”The
biggest red segment”. All the segments were then filtered
based on this information to finally obtain the key segment.
This is based on the assumption that the segment is unique in
both the current and goal images. When identifying the color
of the segment as red, blue or green, the RGB value threshold
is relaxed by 10% to accommodate lighting variations. Fig
3a shows a sample scene and Fig 3b shows its corresponding



Initialize bounding box in current, goal frames;
% Compute final rotation matrix
[TR-y] = RotCalc([TR1,TR2]);
while (not GoalReached) do

% Compute angle of rotation theta
theta = -arcsin([TR-y](2,0));
% Undo rotation for new bounding box location
theta’ = -theta;
Initialize rotation matrix [TR-y]” with theta’;
Apply [TR-y]” to initial bounding box = New
bounding box BB’;
% Cloud filtering step
Extract indices outside BB’;
% New filtered cloud
Save new cloud Cl’;
if Cl’ not empty then

% [TR3], rotation matrix for object alignment
in Cl’
% Compute final rotation matrix with [TR3]
and [TR2]
[T-final] = RotCalc([TR3],[TR2]);

else
% Undo previous rotation
[T-final] = [TR-y]”;

end
Rotate according to [T-final];
Save new current image
[TR-y] = [T-final];

end
Algorithm 2: Feed forward pseudocode

segmented image with ”Biggest blue segment” specified as
advice. This segment corresponds to the blue bucket.

(a) A sample scene with vari-
ous objects

(b) Segmentation with advice
specified

Fig. 3: Segmentation-based advice-giving

This process is similar to the form of disambiguation
illustrated in [14]. The advice specified helps eliminate any
ambiguities, by filtering out the segments that do not match
the description in the advice. For instance, it isolates all the
blue segments and picks the largest.

VI. RESULTS

The navigation algorithm was implemented on the Pioneer
2-DX platform. The experiments were carried out for both
the segmentation-based and object-based advice-giving im-
plementations described above. For the object case, the key

object and its corresponding pcd file is shown in Fig 4.

A. Results for Segmentation-Based Advice-giving

The navigation algorithm was executed in three different
test scenes shown in Figure 5. Each of them consisted
of different planar and non-planar objects kept at varying
depths. In each of the three scenes the final goal was the
biggest red segment (the large red bucket). In location 1,
there were no waypoints specified and the agent had to
directly navigate to the goal segment. The goal segment
was partially occluded by the blue bucket. There was a
smaller red segment (small red bucket) in the background.
In locations 2 and 3, one waypoint and two waypoints
respectively, were specified. In location 2, the blue bucket
was specified as the waypoint whereas for location 3, the first
waypoint was the small red bucket and the second waypoint
was the blue bucket. Fig 5 shows each of the three locations.
At each of the goal positions the agent was kept facing the
goal segment. The locations are as follows (all measurements
were made from the starting position of the agent):

Location 1: The object was placed at 1.925 m and the
goal position was at 1.066 m. The agent’s starting position
was 0.375 m to the right of the goal. No waypoints were
specified.

Location 2: The goal object was placed at 3.286 m and
the goal position was at 2.316 m. The agent started 0.317 m
to the right of the goal. One waypoint was specified (blue
segment). The blue bucket was at 1.842 m.

Location 3: The object was placed at 3.319 m and the goal
position was at 3.115 m. The agent’s start position was at
1.911 m to the right of the goal. The first waypoint specified
was situated at 1.308 m and the second waypoint at 2.133
m.

The navigation algorithm was executed on the robotic
platform until 10 successful trials were obtained. The number
of failed trials that occurred before the completion of the 10
successful runs was noted as the fail rate. Hence for each

(a) The key object

(b) Pcd file of the object

Fig. 4: The experimental setup



(a) Location 1 with no way-
points

(b) Location 2 with one way-
point

(c) Location 3 with two way-
points

Fig. 5: G = Goal; 1 = First Waypoint; 2 = Second Waypoint

location, 10 out of the total trials were successful while
a varying number of failure cases were observed. Table I
indicates the results obtained for the object-based advice-
giving. The averages in Table I were computed with the
successful trials. For the results, a ’+’ indicates right/ahead
of goal (positive displacement) and a ’-’ indicates left/behind
(negative displacement).

Across all the trials, the agent navigated to the goal
location in 90.9% of the trials (30/33 trials). One failure case
in location 2 and two failed trials in location 3 were observed.
In the case of location 1, the agent made an excessive turn
causing it to navigate very close to the blue segment, oriented
towards the right. Since the final goal was situated to the left
of this segment, eventually the red segment was lost from
sight when the first waypoint was attained. In location 2 the
same error was observed causing the agent to navigate very
close to the first waypoint hence losing sight of the blue
segment (second waypoint), requiring human intervention to
stop the navigation.

B. Results for Object Based Advice-giving

The test scene consisted of several planar and non-planar
objects kept at varying depths. The key object is the Zeno

Fig. 6: Experimental scene for object-based advice-giving

R25 Robot shown in Fig 6. The navigation algorithm was
tested for three different scenarios. For each location the
object was kept at a constant depth of 2.113 m. In each
of these locations the object faced forward (as shown in
the figure) and was displaced to the right (Location 2) and
to the left (Location 3) relative to the starting position of
the agent. There was no displacement for Location 1. At
the goal locations the agent was oriented towards the key
object. At the starting position, the agent was placed facing
forward. The locations are (All measurements indicated from
the starting position of the agent):

Location 1: The object was placed at 2.113 m and the
goal position was at 1.463 m. The object was not displaced.

Location 2: The object was placed at 2.113 m and the
goal position was at 1.489 m. The object was displaced to
the right by 0.492 m.

Location 3: The object was placed at 2.113 m and the
goal position was at 1.697 m. The object was displaced to
the left by 0.55 m.

As previously performed, the navigation algorithm was
executed until 10 successful trials were obtained. The number
of failed trials that occurred before the completion of the
10 successful runs were noted as the fail rate. Table II
indicates the results obtained for the object based advice-
giving. The averages in Table II were computed with the
successful trials. For the results, a ’+’ indicates right/ahead
of goal (positive displacement) and a ’-’ indicates left/behind
(negative displacement).

The agent was able to approximately navigate towards
the goal position in 71.43% of the cases (30/42 cases)
.The remaining 12/42 trials resulted in a failure due to the
incorrect matching of the object within the bounding box
which caused the agent to navigate away from the goal loca-
tion. The presence of multiple objects in the scene slightly
increases the chances of a mismatch. However, in situations
where the object was perfectly (or almost perfectly) matched,
navigation was achieved with a success rate of 100%. To
some extent, as seen in the case of locations 2 and 3, higher
accuracies can be achieved by correctly tuning the parameters
of the object recognition algorithm to obtain better matches.

The use of bounding boxes, however, has helped improve
the accuracy of the object recognition by reducing the num-
ber of mismatches and keeping the agent from straying too
far from the goal position. Additionally it helped the agent
keep track of the object to avoid chances of it being lost from
view. For 60% of the successful trials (18/30 cases) the agent
never lost the object from view. In other words, the object
was present within the field of view of the Kinect. For the
remaining 12 trials the agent was able to correct its position
after the object was lost from view owing to a misguided
rotation, using the tracking maintained by the bounding box.
This led to the successful navigation of the agent towards the
goal. In the cases where the navigation failed (12/42 cases),
tracking was not able to correct the position of the agent
since the discrepancies in the object’s recognition set the
agent moving much beyond the goal location. The Kinect
cannot sense objects within 80 cm (2.6 Ft) depth from the



TABLE I: SEGMENT-BASED ADVICE-GIVING RESULTS

Location Success % Avg. angular offset
from goal position

Avg. displacement
from goal

Avg. horizontal
displacement

Location 1 (avg.
over 10/10 trials) 100 %

+ 4.04◦

- 4.8◦
+ 14.4 cm
- 7.95 cm

+ 13.86 cm
- 10.3 cm

Location 2 (avg.
over 10/11 trials) 90.9 %

+ 4.8◦

- 4◦ - 10.5 cm
+ 17.3 cm
- 6.8 cm

Location 3 (avg.
over 10/12 trials) 83.3 %

+ 4.78◦

- 3.35◦
+ 12.72 cm
- 3.8 cm

+ 11.78 cm
- 20.6 cm

TABLE II: OBJECT-BASED ADVICE-GIVING RESULTS

Location Success % Avg. angular offset
from goal position

Avg. displacement
from goal

Avg. horizontal
displacement

Location 1 (avg.
over 10/16 trials) 62.5 %

+ 4.33◦

- 2◦ - 8.738 cm
+ 7.47 cm
- 3.55 cm

Location 2 (avg.
over 10/14 trials) 71.4 %

+ 8.37◦

- 1◦ - 27.7 cm
+ 12.37 cm
- 8.8 cm

Location 3 (avg.
over 10/12 trials) 83.3 %

+ 5.75◦

- 5.78◦
+ 18.75 cm
- 23.15 cm

+ 11.53 cm
- 8.63 cm

sensor, rendering any correction in the position impossible
once the agent enters the specified range. This causes the
algorithm to run indefinitely as the subsequent captures will
no longer include the key object. Hence, even though no
further transformation was needed, the agent was unable to
identify the actual goal position causing it to overshoot and
requiring human intervention to stop the navigation.

The overall navigation algorithm is subject to significant
limitations associated with the object recognition component
currently employed. However, since the aim of the project
is to understand the correlation between advice-giving and
mental rotation by developing a system that integrates the
two processes, the inaccuracies associated with the object
recognition algorithm may be disregarded to some extent.
As shown by the results, in situations where the object
recognition algorithm has a reasonable performance (some
of the incorrect matches can be compensated for using the
bounding box approach), successful navigation is achieved
for 100% of the cases. Even though a higher accuracy can
be obtained by improving the object recognition algorithm,
the existing results combined with the results obtained from
the segment-based advice-giving approach certainly validate
how advice-giving and mental rotation can fit together in
a navigational scenario, which is the primary goal of this
project.

VII. CONCLUSION AND FUTURE WORK

This research explores a navigational algorithm inspired
by mental rotation while drawing a possible relationship
between advice-giving and mental rotation. It is inspired by
the biological process of mental rotation by using a series
of mental transformations on the observed scenes in order
to achieve navigation to the goal. It incorporates the form of
advice-giving elucidated in [14]. The first scene captured at

the starting location of the robot is indicative of the mutual
knowledge base existent between the external advising agent
and the robot. Specification of a key object helps filter
out the ambiguities in the advice, leading the agent to the
goal location. The results obtained show that advice-giving
could play a key role in guiding navigation in scenarios
where maps or external aids may be absent. Additionally
the system developed also indicates how advice-giving and
mental rotation fit together in a navigational scenario. It
should be noted that this research is intended to complement
existing navigational methods such as SLAM, rather than
replacing them, by providing the ability to inject advice into
the navigational process.

Future work aims at trying to improve the object recog-
nition algorithm in order to be able to correctly identify
the object in a scene without the aid of bounding boxes.
Semantic labelling of the objects and implementation of
natural language processing capabilities will allow the advice
to be specified verbally instead of using pcd images of
the key object. Additionally, waypoint specification may be
incorporated into the navigation algorithm to allow the goal
location to be specified in terms of a series of key objects.
Future work will also focus on replacing the Kinect with
a monocular camera so that its limitations regarding depth
information and field of view, can be overcome and the
algorithm can be tested in outdoor environments as well,
which is currently limited by the capabilities of the Kinect.
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