
Mobile robots at your fingertip:
Bezier curve on-line trajectory generation for supervisory control

Jung-Hoon Hwang1, Ronald C. Arkin2, Dong-Soo Kwon1

(hwangjh@robot.kaist.ac.kr, arkin@cc.gatech.edu, kwonds@kaist.ac.kr)
1Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea

2College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

Abstract - A new interfacing method is presented to control
mobile robot(s) in a supervised manner. Mobile robots often
provide global position information to an operator. This research
describes a method whereby the operator controls a mobile
robot(s) using his finger or stylus via a touchpad or touchscreen
interface. Using a mapping between the robot’s operational site
and the input device, a human user can provide routing
information for the mobile robot.

Two algorithms have been developed to create the robot
trajectory from the operator’s input. Information regarding
numerous path points is generated when the operator moves his
finger/stylus. To prune away meaningless point information, a
simple but powerful significant points extracting algorithm is
developed. The resulting significant points are used as
waypoints.

An on-line piecewise cubic Bezier curves (PCBC) trajectory
generation algorithm is presented to create a smooth trajectory
for these significant points. As the method is based on distance
and not on time, the velocity of mobile robot can be controlled
easily within its allowable dynamic range. The PCBC trajectory
can also be modified on the fly. Simulation results are presented
to verify these newly developed methods.

I. INTRODUCTION

A joystick is a common interface to teleoperate a

mobile robot. Joystick control, however, can quickly
become a tedious and time-consuming task. Since the
joystick requires continuous input and attention from the
operator, when the user is expected to control more than
one mobile robot at a time, it becomes at best extremely
difficult to do so without using special methods.

To solve this problem, supervisory control can be used.
This paper presents an interface and underlying control
algorithms that enable an operator to manipulate a robot
manually with minimal effort. Such an interface should be
intuitive and simple to reduce the cognitive workload of
the operator. At a minimum, 2D spatial input is needed to
operate the robot in order to convey the operator’s
intentional goals. There exist numerous hardware
interfaces that can capture the operator’s 2D input. Most
(e.g., mouse, tablet - 2D digitizer, and many haptic
devices) can be used as a supervisory interface with or
without video feedback. We chose a touch pad/screen
with visual feedback for this research. Figure 1 shows a
conceptual overview of the approach.

There is relatively little research involving the use of
touch pad/screen for mobile robot teleoperation. For
example, Fong et al used a touchscreen device (PDA) as a

collaborative interface for robot [1]. In this work, they
used the touchscreen as a virtual joystick or to generate
typical waypoints for the manual control of robot.

In this paper, we propose a trajectory generation
method using the user’s fingertip motions, which is a very
simple and intuitive way to create a mobile robot
trajectory. The robot’s route information representing the
operator’s intention can be easily obtained from the touch
pad/screen. With a collection of simple gestures, e.g.,
tapping or dragging coupled with a recognition capability,
selecting which robot(s) to move and various options for
trajectory generation can be performed.

To create a finger-generated route on a touchpad into a
smooth mobile robot trajectory, several steps are required.
The first step is the generation of a mapping between the
input 2D touch space area to the robot’s operational 2D
space (fig. 2(2)). The second step involves extracting a set
of significant points from a large number of points
regarding the route information (fig. 2(3)). The third step
requires producing a smooth trajectory that matches the
requirements generated by the set of extracted significant
points (fig. 2(4)). The final step is involves an on-line
modification of the planned trajectory in a dynamic
environment (fig. 2(5)).

In Section II, the operational space mapping and the
significant point set extraction are described. A Bezier
curve on-line trajectory generation method including on-
line trajectory modification is described in Section III.
Simulation results using a real touchpad are presented in
Section IV. In Section V, conclusions and future work are
discussed.

II. MAPPING AND SIGNIFICANT POINTS

EXTRACTING ALGORITHM

A. Mapping

The operational space of a mobile robot is often

Start

Goal

Desired Path

2D Touch Space

Figure 1. Conceptual diagram of a proposed interface for
mobile robot(s)

physically bounded. For example, if the normal
operational space is the interior of a building, the outside
of a home or a fenced yard, the workspace of the mobile
robot can be readily determined. Such 2D workspaces can
often be bounded using a rectangle or bounding box. The
perpendicular ratio and the scale of the bounding
rectangle can be different from that of a standard 2D input
device, and thus a spatial mapping between them must be
created.

When the operator generates an input command using
a touch pad/screen, the finger route information that
consists of many input points is recorded. The desired
route information for a mobile robot can be reconstructed
from that information using scaling or topological
mapping, Even for a topological mapping, humans can
adapt to this form of mapping with some practice.

B. Significant points extraction algorithm

The initial route information produced from the
operator’s fingertip still needs to be manipulated since the
actual robot’s route needs to be smoothed. Several
significant points extraction algorithms have been used in
CAD/CAM and computer graphics to digitize old paper
drawings or drafts. The most common and simple method
uses corner detection. By detecting a sharp corner point,
the entire drawing can be vectorized. Sharp corners can be
detected by checking the curvature or the radius of the
curve [2,3]. The basis for one of the most popular
algorithms is given in equation (1). This algorithm is good
at extracting points, which can then be used to represent
almost exactly the shape of a given curve.

()
()

threshold &
 maxima local is ifpoint t significan is

,
,, where

intervaltest :,pointtest:)(

>

−−=
−−=

⋅=

−−

++

C(i)
C(i)i

yyxxb
yyxxa

kiba
baiC

kiikiiik

kiikiiik

ikik

ikikk

(1)

A mobile robot, however, does not need to follow the
exactly the entire set of mapping points of operator inputs,
but rather it only needs a smaller number of waypoints,
since the route information from operator input can be
noisy or locally meaningless. A new simple, yet
significant method, has been developed for this reason.

Figure 3 shows the algorithm in flowchart format. The
main idea lies in detecting points that are outside of a
given linear tolerance.

start

Points data

P1=Start Point of Region i
P2=End Point of Region i

Px= furthest point from P1P2

Devide region i at Px
of region +=1

Px=out of tolerance ?

i > # of region ?

end

i+=1

i=1
of region = i

No

No

Yes

Yes

Figure 3. Significant point extracting algorithm

Significant Point

Proposed
Algorithm

Corner
Detecting
Algorithm

Figure 4. Comparison of significant point extraction algorithms

Figure 4 shows typical results for the corner detection

algorithm in equation (1) and the new algorithm in Figure
3. Since equation (1) depends on the angular difference
between three points and the new method depends on the
tolerance between three points, the new method easily can
be made to extract less significant points, but still are
enough to represent the global shape of the curve, while
excluding small noisy variations of the curve.
Furthermore, the corner detection algorithm has two
parameters, a test interval k and threshold in equation (1),
which need to be tuned, while the new method has only
one parameter, a linear tolerance.

(1) (2) (3) (4) (5)

Obstacle

On-line modified
path

Piecewise cubic
Bezier curve

Selected
significant
points

Robot route
points
after mapping

Route input
by Finger

Figure 2. Overall Scope of this paper: (1) route input from 2D touch space by finger, (2) robot route after scaling or topological mapping
from input of (1), (3) significant point extraction using linear tolerance scheme, (4) piecewise cubic Bezier curves(PCBC) trajectory

generation, (5) consideration of on-line modification of PCBC trajectory

III. BEZIER CURVE ONLINE TRAJECTORY
GENERATION ALGORITHM

As seen above, the waypoints for a mobile robot can

be obtained using a significant point extraction algorithm.
In order to make a smooth and continuous trajectory from
the resulting waypoints, there exist a few trajectory-
planning algorithms which incorporate a spline-based
methodology.

Komoriya et al incorporated the B-spline in path-
planning [4]. They added straight-line segments to make
the overall trajectory close to the intended one. But their
trajectory did not pass through the exact waypoint.
Vazquez et al also used B-splines in path-planning by
adding a time variable [5]. The time variable was not
linear, however, but monotonically increased with real
time. The speed of the mobile robot was controlled by the
given B-spline itself. Zhang et al created a fuzzy
trajectory controller, which emulates the B-spline [6].
They stated that the robot could pass through the subgoal,
although their robot seemed to be unable to pass through
the exact subgoal in their simulation. Khatib et al
proposed the bubble band concept, connecting the bubbles
with bezier curves [7]. They could generate collision free
paths to the destination by moving these bubbles. The
trajectory was restricted to where the bubbles were
located. Eren et al also utilized the spline in path-
planning [8]. They generated several interior points within
a spline and let the robot follow the points in succession.
Yamamoto et al considered the dynamic and kinematic
constraint in B-spline-based path-planning to find the
time optimal trajectory in a static environment [9].
Nagatani et al also used the bezier curve in path-planning
[10], considering the minimum radius of curvature of
vehicle.

Most previous research regarding spline-based path-
planning considers a static environment except Khatib’s,
but even their research had a limitation, which was
mentioned above. Since the mobile robot will be used in a
dynamic environment which has unexpected or moving
obstacles, its trajectory needs to be modified in on-line.
With our on-line smooth trajectory generation algorithm,
piecewise cubic bezier curves are used and on-line
modification of the curves is studied. Piecewise cubic
bezier curves can provide C3 within a curve and C1 in the
connection between two curves.

A. Piecewise cubic Bezier curves

Piecewise cubic Bezier curves (PCBC) are used
between each waypoint to connect them with smooth
curves. Equation (2) shows the equation for a cubic bezier
curve [11]. Cubic Bezier curves require four control
points (figure 5). The first control point is the start point,
and the last is the end point. Each waypoint is used as a
first and last control point to ensure that the resulting path
passes through each significant point. Jensen presented a
simple method for determining the second and third

control point that makes a smooth connection between
each cubic Bezier curve [11].

His algorithm is slightly modified in our research to
consider the robot’s initial and final direction. The tangent
vector of the second control point of a first curve is set to
the robot initial direction, and the tangent vector of the
third control of a last curve is set to the robot’s final
direction if the final direction is specified.

B. Direction vector generation

Since the parameter of Bezier curves is not time or
distance dependent, the curves generated as described in
Section 3.1 cannot be used directly as a trajectory. Some
researchers used a modification of parameter t of curves
as a time variable [5,7] while others used an
approximation of the curves by dividing the parameter t
into n intervals [4,8].

In this paper, a numerical method is used to get the
parameter t of bezier curves with respect to the moving
distance S of a robot. If the curve parameter t can be
obtained at the current mobile robot position, the
directional vector of the curve can then be calculated at
that position. The position on the curve is expressed by
parameter t as shown in equation (2). The derivative of
equation (2) is shown in equation (3). The relation
between the distance and the parameter t can be expressed
as shown in equation (4). To calculate the parameter t
with respect to the robot’s position, the inverse of
equation (4) is integrated by a fourth order Runge-Kutta
method as shown in equation (5).

P0

P1
P2

P3

t=0

t=1
Figure 5. Cubic Bezier curve

()
() cbppacppb

ppcyxp
tptctbtatp

rrrrrrrrr

rrrr

rrrrr

−−−=−−=

−==
<<+++=

0312

01

0
23

,3

3 ,),(where
10For ,)(

 (2)

1,0 where,
23)(

23)(

2

2

≠
++=

++=
t

tctbtaty
dt
d

tctbtatx
dt
d

yyy

xxx (3)

)(

)()(
22

tS

ty
dt
dtx

dt
d

dt
ds

=







+






= (4)

)(
1,,

)(
1

6
)22(),(where

),(

3
41

4321

1

sftS
f

tS
f

ffffsstT

stTtt

nn

nn

nnnn

∆+
==

+++
∆=

+=+

L

 (5)

The directional vector at the known parameter t is
shown in equation (6).







=

dt
tdy

dt
tdxV)(,)(v

 (6)

C. On-line modification of trajectory

For most cases of teleoperation, there exists an
unstructured environment and the mobile robot is required
to cope with that circumstance. Arkin et al presented a
dodging behavior to avoid both moving and stationary
obstacles for a schema-based reactive control system [12].
Arkin’s motor schema method offers several advantages
such as there is no predefined behavioral hierarchy and no
arbitration is required for coordination [13]. We combined
our teleoperated trajectory generation scheme with this
purely reactive dodging behavior for motor schema-based
reactive control. Figure 6 depicts the dodging behavior.
The collision zone means the predicted collision area.
Since our trajectory generation method can produce a
desired direction vector at the current mobile robot’s
position, it is easily integrated with motor schema method.

Collision
ZoneMobile

Robot

Figure 6. Dodging behavior

There is, however, one problem. If obstacles are

present, the mobile robot may require leaving the current
PCBC trajectory. To solve this problem and to make the
trajectory adjustable, the position of the control point of
the PCBC is recalculated in real time after numerically
updating the curve parameter t. Equation (7) shows the
recalculation rules. In each step, the position of only one
control point is recalculated to reduce the computational
overhead.

()()

()()
3

2
2

1
2

0
3

3

3
3

3
2

2
1

2

0

13131750

1
13132500

t
-t)P(t + P-t)t(+ P-t)(P-=Pt<.

-t)(
P + t-t)P(t + P-t)t(P-=P.t<

M

≤
(7)

By moving one control point, the mobile robot can be
on the PCBC trajectory even though the robot needs to
change its path from the planned one due to dynamic
events, and the mobile robot can continue following the
locally modified PCBC trajectory.

D. Reference velocity generation

By virtue of the algorithm’s distance-based path-
planning capability, the velocity of a mobile robot can be

computed easily. This method determines two conditions
in velocity planning. The first condition requires
maintaining a maximum velocity except in the presence
of the second condition, which requires maintaining the
centrifugal force under a safe value, to ensure that the
robot does not suffer from sideslip.

The two wheeled mobile robot used in this paper is
shown in figure 7. Since each wheel has a speed limit, the

maximum linear velocity of the robot depends on the
angular velocity. Equation (8) is used to keep the robot
direction aligned with the directional vector, which is
generated by the methods described in Sections 3.2 and
3.3. Vr and Vl represent the linear velocities of each wheel.

()
()

()

ocitylinear vel maximum:and)(where

2
)(versa viceelse

2max

2max)(,max)(0)(If

maxV
t

s

rVlV
sfV

rVDV

DV
slVVsrVs

∆
=

+
=

+

−
==>

θθ

θ

θ
θ

&

&

&
&

 (8)

These velocities are computed again to ensure that the
robot centrifugal force is within a safe value. Equation (9)
is the acceleration value induced by the robot’s centrifugal
force and the velocity bound is then derived from that. To
obtain the radius of curvature (figure 8), an approximation
equation (10) is used.

lcentrifugaMaxlcentrifugaMax

lcentrifuga

aRV
R

Va

__

2

=∴

=
 (9)

fadebcebcfadE

V
VtVpfep

dcpbap
wvu

E
uvwR

fnn

nn

−−−++=

⋅∆⋅+==

==

=

+

−

v

v

),(

),,(),,(
and pointsbetween distance are,,where

2

1

1

 (10)

X

Y

θ

(xc, yc)

D

r

Figure 7. Kinematics of the mobile robot

Pn

Pn-1
θ

Direction
Vector

Pn+1

R

Figure 8. Directional vector and radius of curvature

Vf is regulated by the value of VMax_centrifugal that is
function of R. The radius of curvature R, on the other
hand, depends on the value of Pn+1 which is calculated
using Vf. The functional relationalships between Vf,
VMax_centrifugal, R and Pn+1 are cross-linked. To get the Vf that
ensures the robot centrifugal force within a safe value, an
iterative method is used.

-2 0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

Obstacle

Obstacle

Initial robot direction

X-axis (m)

Y-
ax

is
 (m

)

(a) Overall trace

4 4.5 5 5.5 6 6.5 7 7.5

4.5

5

5.5

6

6.5

7

7.5

Obstacle

X-axis (m)

Y-
ax

is
 (m

)

(b) Zoomed trace of circle zone

0 5 10 15 20
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

time (sec)

ve
lo

ci
ty

 (m
/s

ec
)

VR VL

(c) Reference velocities for each wheel

Figure 9. Simulated results of the on-line PCBC trajectory

generation algorithm

In figures 9(a) and (b), it can be shown that the PCBC

trajectory can be modified on the fly when unexpected
obstacles are encountered. The velocity of the mobile
robot is varied by the turning angle as shown in figure
9(b). From the figure 9(c), it can be seen that the
maximum velocity between wheels is reduced to make the

robot’s centrifugal force remain within a safe value
(Vmax=3m/s, aMax_centrifugal=3m/s2).

IV. SIMULATION

A virtual mobile robot control simulation using the

touchpad interface has been conducted to evaluate these
algorithms. The size of the touch pad interface is
0.06×0.04 m2. Simple gesture recognition like tapping and
dragging is incorporated to enable selecting a particular
robot or to capture the finger-generated route information.
During the interaction, the visual feedback of the finger-
generated route is given.

The mobile robot dynamic equation developed by
Yamamoto [9] and the parameters of a Pioneer 2-DXe
(Table 1) are used to produce a realistic simulation. A
simple PD controller which has a torque bound (Umax), is
also used. The simulation runs at a 200Hz sampling rate

Obstacles

Waypoints

(a) Trace of mobile robot

0 5 10 15 20
-0.5

0

0.5

1

1.5

2

time (sec)

ve
lo

ci
ty

 (m
/s

ec
)

VL

VR

(b) Velocities of each wheel
Figure 10. Simulated results of realistic simulation with

touchpad

TABLE I.
PARAMETERS OF PIONEER 2-DXE

D=0.4m M=9kg Vmax=1.6m/s
b=0.44m Iz=1.0741kgm2 Umax=3Nm

R=0.1m Iy=0.0075kgm2

and the computation is performed in real-time without any
significant burden on the CPU (Average CPU usage is
lower than 1% for a Pentium3-800MHz).

The trace of a mobile robot and the generated
waypoints that were extracted from the finger route are
shown in figure 10(a). The dotted line is the finger route.
The mobile robot can pass through each waypoint except
when obstacles prevent it. Even when navigating around
the obstacles, the trajectory was modified in real-time on-
line. Figure 10(b) shows the velocity profile for each
wheel. The maximum velocity between wheels is lower
than Vmax due to centrifugal force.

This on-line PCBC trajectory modification capability
can be better seen in Figure 11. The mobile robot
trajectory is continuously modified by a sudden moving
obstacle until the obstacle goes out of the range of
concern for the robot. After that, the mobile robot
continues following the locally modified PCBC trajectory.

V. CONCLUSIONS

We presented a new interfacing method to control

mobile robot(s) in a supervisory manner that is capable of
real-time dynamic obstacle avoidance as well. To realize
this method, two new algorithms were developed. One is
a significant points extraction algorithm for noisy input
data, and the other is an on-line piecewise cubic Bezier
curves trajectory generation algorithm for a mobile robot.
With the significant points extraction algorithm,
extraneous significant points could be pruned from the
noisy data. A smooth trajectory can also be achieved and
modified on-line using our on-line PCBC trajectory
generation algorithm.

Each algorithm can be extended to 3D space with
simple modification. Also, using the touchpad/screen
interfacing method, a robot trajectory can be specified in a
simple and intuitive way. As such, this new interfacing
method can be potentially used for various kinds of
mobile robots such as a personal/house robot, military
robot, service robot, and other robots that require easy

operation for an end-user.
In the near future, we will apply the newly developed

algorithms to real mobile robots and conduct quantitative
experiments regarding their performance.

VI. ACKNOWLEDGMENT

This work was partly supported by the Brain Korea 21

Project in 2002.

VII. REFERENCE

[1] T. Fong, F. Conti, S. Grange, C. Baur, “Novel interfaces for

remote driving: gesture, haptic and PDA,” SPIE 4195-33,
SPIE Telemanipulator and Telepresence Technolgies VII,
Boston, MA, November, 2000.

[2] M. Sarfraz, M.A. Khan, “Automatic Outline capture of
Arabic fonts,” Information Sciences 140, pp. 269-281, 2002.

[3] S.C. Bae, I.S. Kweon, and C.D. Yoo, “COP: a new corner
detector,” Pattern Recognition Letters 23, pp. 1349-1360,
2002.

[4] K. Komoriya and K. Tanie, “Trajectory Design and Control
of a Wheel-type Mobile Robot Using B-spline Curve,” Int.
Workshop on Intelligent Robots and Systems, pp. 398-405,
1989.

[5] B. Vazquez G., J. Humberto Sossa A. and Juan L. Diaz-de-
Leon S, “Auto Guided Vehicle Control using Expanded
Time B-Splines,” Int. Conf. on Systems, Man, and
Cybernetics, pp. 2786-2791, 1994.

[6] J. Zhang, J. Raczkowsky and A. Herp, “Emulation of Spline
Curves and Its Applications in Robot Motion Control,”
IEEE conf. on Fuzzy Systems, pp. 831-836, 1994.

[7] M. Khatib, H. Jaouni, R. Chatila, J.P. Laumond, “Dynamic
Path Modification for Car-Like Nonholonomic Mobile
Robots,” Int. Conf. on Robotics and Automation, pp. 2920-
2925, 1997.

[8] H. Eren, C. C. Fung and J. Evans, “Implementation of the
Spline Method for Mobile Robot Path Control,”
Instrumentation and Measurement Technology Conference,
pp. 739-744, 1999.

[9] M. Yamamoto, M. Iwamura, and A. Mohri, “Quasi-Time-
Optimal Motion Planning of Mobile Platforms in the
Presence of Obstacles,” Int. Conf. on Robotics and
Automation, pp. 2958-2963, 1999.

[10] K. Nagatani, Y. Iwai, and Y. Tanaka, “Sensor Based
Navigation for car-like mobile robots using Generalized
Voronoi Graph,” Int. Conf. on Intelligent Robots and
Systems, pp. 1017-1022, 2001.

[11] Paul Bourke, “http://astronomy.swin.edu.au/~pbourk
e/curve/bezier/cubicbezier.html, ” 2000.

[12] R. C. Arkin, W. M. Carter and D. C. Mackenzie, “Active
Avoidance: Escape and Dodging Behaviors for Reactive
Control,” International Journal of Pattern Recognition and
Artificial Intelligence, Vol. 7, No. 1, pp. 175-192, 1993.

[13] R. C. Arkin, Behavior-Based Robotics, MIT Press,
Cambridge, 1998.

(1) (2) (3) (4)

(5) (6) (7) (8)

Moving
obstacle

Mobile
robot

Previously
Planned
PCBC
trajectory0.8m/s

Figure 11. On-line PCBC trajectory modification: The gray
trail shows a PCBC trajectory for no obstacle, and robot

follows modified PCBC trajectory.

