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Abstract - A new interfacing method is presented to control 
mobile robot(s) in a supervised manner. Mobile robots often 
provide global position information to an operator. This research 
describes a method whereby the operator controls a mobile 
robot(s) using his finger or stylus via a touchpad or touchscreen 
interface. Using a mapping between the robot’s operational site 
and the input device, a human user can provide routing 
information for the mobile robot.  

Two algorithms have been developed to create the robot 
trajectory from the operator’s input. Information regarding 
numerous path points is generated when the operator moves his 
finger/stylus. To prune away meaningless point information, a 
simple but powerful significant points extracting algorithm is 
developed. The resulting significant points are used as 
waypoints.  

An on-line piecewise cubic Bezier curves (PCBC) trajectory 
generation algorithm is presented to create a smooth trajectory 
for these significant points. As the method is based on distance 
and not on time, the velocity of mobile robot can be controlled 
easily within its allowable dynamic range. The PCBC trajectory 
can also be modified on the fly. Simulation results are presented 
to verify these newly developed methods. 

 
I. INTRODUCTION 

 
A joystick is a common interface to teleoperate a 

mobile robot. Joystick control, however, can quickly 
become a tedious and time-consuming task. Since the 
joystick requires continuous input and attention from the 
operator, when the user is expected to control more than 
one mobile robot at a time, it becomes at best extremely 
difficult to do so without using special methods. 

To solve this problem, supervisory control can be used. 
This paper presents an interface and underlying control 
algorithms that enable an operator to manipulate a robot 
manually with minimal effort. Such an interface should be 
intuitive and simple to reduce the cognitive workload of 
the operator. At a minimum, 2D spatial input is needed to 
operate the robot in order to convey the operator’s 
intentional goals. There exist numerous hardware 
interfaces that can capture the operator’s 2D input. Most 
(e.g., mouse, tablet - 2D digitizer, and many haptic 
devices) can be used as a supervisory interface with or 
without video feedback. We chose a touch pad/screen 
with visual feedback for this research. Figure 1 shows a 
conceptual overview of the approach. 

There is relatively little research involving the use of 
touch pad/screen for mobile robot teleoperation. For 
example, Fong et al used a touchscreen device (PDA) as a 

collaborative interface for robot [1]. In this work, they 
used the touchscreen as a virtual joystick or to generate 
typical waypoints for the manual control of robot. 

In this paper, we propose a trajectory generation 
method using the user’s fingertip motions, which is a very 
simple and intuitive way to create a mobile robot 
trajectory. The robot’s route information representing the 
operator’s intention can be easily obtained from the touch 
pad/screen. With a collection of simple gestures, e.g., 
tapping or dragging coupled with a recognition capability, 
selecting which robot(s) to move and various options for 
trajectory generation can be performed. 

To create a finger-generated route on a touchpad into a 
smooth mobile robot trajectory, several steps are required. 
The first step is the generation of a mapping between the 
input 2D touch space area to the robot’s operational 2D 
space (fig. 2(2)). The second step involves extracting a set 
of significant points from a large number of points 
regarding the route information (fig. 2(3)). The third step 
requires producing a smooth trajectory that matches the 
requirements generated by the set of extracted significant 
points (fig. 2(4)). The final step is involves an on-line 
modification of the planned trajectory in a dynamic 
environment (fig. 2(5)). 

In Section II, the operational space mapping and the 
significant point set extraction are described. A Bezier 
curve on-line trajectory generation method including on-
line trajectory modification is described in Section III. 
Simulation results using a real touchpad are presented in 
Section IV. In Section V, conclusions and future work are 
discussed. 

 
II. MAPPING AND SIGNIFICANT POINTS 

EXTRACTING ALGORITHM 
 

A. Mapping 

The operational space of a mobile robot is often 
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Figure 1. Conceptual diagram of a proposed interface for 
mobile robot(s) 



physically bounded. For example, if the normal 
operational space is the interior of a building, the outside 
of a home or a fenced yard, the workspace of the mobile 
robot can be readily determined. Such 2D workspaces can 
often be bounded using a rectangle or bounding box. The 
perpendicular ratio and the scale of the bounding 
rectangle can be different from that of a standard 2D input 
device, and thus a spatial mapping between them must be 
created. 

When the operator generates an input command using 
a touch pad/screen, the finger route information that 
consists of many input points is recorded. The desired 
route information for a mobile robot can be reconstructed 
from that information using scaling or topological 
mapping, Even for a topological mapping, humans can 
adapt to this form of mapping with some practice. 

 
B. Significant points extraction algorithm 

The initial route information produced from the 
operator’s fingertip still needs to be manipulated since the 
actual robot’s route needs to be smoothed. Several 
significant points extraction algorithms have been used in 
CAD/CAM and computer graphics to digitize old paper 
drawings or drafts. The most common and simple method 
uses corner detection. By detecting a sharp corner point, 
the entire drawing can be vectorized. Sharp corners can be 
detected by checking the curvature or the radius of the 
curve [2,3]. The basis for one of the most popular 
algorithms is given in equation (1). This algorithm is good 
at extracting points, which can then be used to represent 
almost exactly the shape of a given curve. 
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A mobile robot, however, does not need to follow the 
exactly the entire set of mapping points of operator inputs, 
but rather it only needs a smaller number of waypoints, 
since the route information from operator input can be 
noisy or locally meaningless. A new simple, yet 
significant method, has been developed for this reason. 

Figure 3 shows the algorithm in flowchart format. The 
main idea lies in detecting points that are outside of a 
given linear tolerance. 
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Figure 3. Significant point extracting algorithm 
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Figure 4. Comparison of significant point extraction algorithms 

 
Figure 4 shows typical results for the corner detection 

algorithm in equation (1) and the new algorithm in Figure 
3. Since equation (1) depends on the angular difference 
between three points and the new method depends on the 
tolerance between three points, the new method easily can 
be made to extract less significant points, but still are 
enough to represent the global shape of the curve, while 
excluding small noisy variations of the curve. 
Furthermore, the corner detection algorithm has two 
parameters, a test interval k and threshold in equation (1), 
which need to be tuned, while the new method has only 
one parameter, a linear tolerance. 
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Figure 2. Overall Scope of this paper: (1) route input from 2D touch space by finger, (2) robot route after scaling or topological mapping 
from input of (1), (3) significant point extraction using linear tolerance scheme, (4) piecewise cubic Bezier curves(PCBC) trajectory 

generation, (5) consideration of on-line modification of PCBC trajectory 



III. BEZIER CURVE ONLINE TRAJECTORY 
GENERATION ALGORITHM 

 
As seen above, the waypoints for a mobile robot can 

be obtained using a significant point extraction algorithm. 
In order to make a smooth and continuous trajectory from 
the resulting waypoints, there exist a few trajectory-
planning algorithms which incorporate a spline-based 
methodology. 

Komoriya et al incorporated the B-spline in path-
planning [4]. They added straight-line segments to make 
the overall trajectory close to the intended one. But their 
trajectory did not pass through the exact waypoint. 
Vazquez et al also used B-splines in path-planning by 
adding a time variable [5]. The time variable was not 
linear, however, but monotonically increased with real 
time. The speed of the mobile robot was controlled by the 
given B-spline itself. Zhang et al created a fuzzy 
trajectory controller, which emulates the B-spline [6]. 
They stated that the robot could pass through the subgoal, 
although their robot seemed to be unable to pass through 
the exact subgoal in their simulation. Khatib et al 
proposed the bubble band concept, connecting the bubbles 
with bezier curves [7]. They could generate collision free 
paths to the destination by moving these bubbles. The 
trajectory was restricted to where the bubbles were 
located.  Eren et al also utilized the spline in path-
planning [8]. They generated several interior points within 
a spline and let the robot follow the points in succession. 
Yamamoto et al considered the dynamic and kinematic 
constraint in B-spline-based path-planning to find the 
time optimal trajectory in a static environment [9]. 
Nagatani et al also used the bezier curve in path-planning 
[10], considering the minimum radius of curvature of 
vehicle. 

Most previous research regarding spline-based path-
planning considers a static environment except Khatib’s, 
but even their research had a limitation, which was 
mentioned above. Since the mobile robot will be used in a 
dynamic environment which has unexpected or moving 
obstacles, its trajectory needs to be modified in on-line. 
With our on-line smooth trajectory generation algorithm, 
piecewise cubic bezier curves are used and on-line 
modification of the curves is studied. Piecewise cubic 
bezier curves can provide C3 within a curve and C1 in the 
connection between two curves.  

 
A. Piecewise cubic Bezier curves 

Piecewise cubic Bezier curves (PCBC) are used 
between each waypoint to connect them with smooth 
curves. Equation (2) shows the equation for a cubic bezier 
curve [11]. Cubic Bezier curves require four control 
points (figure 5). The first control point is the start point, 
and the last is the end point. Each waypoint is used as a 
first and last control point to ensure that the resulting path 
passes through each significant point. Jensen presented a 
simple method for determining the second and third 

control point that makes a smooth connection between 
each cubic Bezier curve [11].  

His algorithm is slightly modified in our research to 
consider the robot’s initial and final direction. The tangent 
vector of the second control point of a first curve is set to 
the robot initial direction, and the tangent vector of the 
third control of a last curve is set to the robot’s final 
direction if the final direction is specified. 

 
B. Direction vector generation 

Since the parameter of Bezier curves is not time or 
distance dependent, the curves generated as described in 
Section 3.1 cannot be used directly as a trajectory. Some 
researchers used a modification of parameter t of curves 
as a time variable [5,7] while others used an 
approximation of the curves by dividing the parameter t 
into n intervals [4,8]. 

In this paper, a numerical method is used to get the 
parameter t of bezier curves with respect to the moving 
distance S of a robot. If the curve parameter t can be 
obtained at the current mobile robot position, the 
directional vector of the curve can then be calculated at 
that position. The position on the curve is expressed by 
parameter t as shown in equation (2). The derivative of 
equation (2) is shown in equation (3). The relation 
between the distance and the parameter t can be expressed 
as shown in equation (4). To calculate the parameter t 
with respect to the robot’s position, the inverse of 
equation (4) is integrated by a fourth order Runge-Kutta 
method as shown in equation (5). 
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Figure 5. Cubic Bezier curve 
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The directional vector at the known parameter t is 
shown in equation (6).  
 







=

dt
tdy

dt
tdxV )(,)(v

   (6) 

 
C. On-line modification of trajectory 

For most cases of teleoperation, there exists an 
unstructured environment and the mobile robot is required 
to cope with that circumstance. Arkin et al presented a 
dodging behavior to avoid both moving and stationary 
obstacles for a schema-based reactive control system [12]. 
Arkin’s motor schema method offers several advantages 
such as there is no predefined behavioral hierarchy and no 
arbitration is required for coordination [13]. We combined 
our teleoperated trajectory generation scheme with this 
purely reactive dodging behavior for motor schema-based 
reactive control. Figure 6 depicts the dodging behavior. 
The collision zone means the predicted collision area. 
Since our trajectory generation method can produce a 
desired direction vector at the current mobile robot’s 
position, it is easily integrated with motor schema method. 

 

Collision
ZoneMobile 

Robot

   
Figure 6. Dodging behavior 

 
There is, however, one problem. If obstacles are 

present, the mobile robot may require leaving the current 
PCBC trajectory. To solve this problem and to make the 
trajectory adjustable, the position of the control point of 
the PCBC is recalculated in real time after numerically 
updating the curve parameter t. Equation (7) shows the 
recalculation rules. In each step, the position of only one 
control point is recalculated to reduce the computational 
overhead. 
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By moving one control point, the mobile robot can be 
on the PCBC trajectory even though the robot needs to 
change its path from the planned one due to dynamic 
events, and the mobile robot can continue following the 
locally modified PCBC trajectory. 

 
D. Reference velocity generation 

By virtue of the algorithm’s distance-based path-
planning capability, the velocity of a mobile robot can be 

computed easily. This method determines two conditions 
in velocity planning. The first condition requires 
maintaining a maximum velocity except in the presence 
of the second condition, which requires maintaining the 
centrifugal force under a safe value, to ensure that the 
robot does not suffer from sideslip. 

The two wheeled mobile robot used in this paper is 
shown in figure 7. Since each wheel has a speed limit, the 

maximum linear velocity of the robot depends on the 
angular velocity. Equation (8) is used to keep the robot 
direction aligned with the directional vector, which is 
generated by the methods described in Sections 3.2 and 
3.3. Vr and Vl represent the linear velocities of each wheel. 
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These velocities are computed again to ensure that the 
robot centrifugal force is within a safe value. Equation (9) 
is the acceleration value induced by the robot’s centrifugal 
force and the velocity bound is then derived from that. To 
obtain the radius of curvature (figure 8), an approximation 
equation (10) is used. 
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Figure 7. Kinematics of the mobile robot 
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Figure 8. Directional vector and radius of curvature 



Vf is regulated by the value of VMax_centrifugal that is 
function of R. The radius of curvature R, on the other 
hand, depends on the value of Pn+1 which is calculated 
using Vf. The functional relationalships between Vf, 
VMax_centrifugal, R and Pn+1 are cross-linked. To get the Vf that 
ensures the robot centrifugal force within a safe value, an 
iterative method is used. 
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(a) Overall trace 
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(b) Zoomed trace of circle zone 
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(c) Reference velocities for each wheel 

 
Figure 9. Simulated results of the on-line PCBC trajectory 

generation algorithm 

 
In figures 9(a) and (b), it can be shown that the PCBC 

trajectory can be modified on the fly when unexpected 
obstacles are encountered. The velocity of the mobile 
robot is varied by the turning angle as shown in figure 
9(b). From the figure 9(c), it can be seen that the 
maximum velocity between wheels is reduced to make the 

robot’s centrifugal force remain within a safe value 
(Vmax=3m/s, aMax_centrifugal=3m/s2). 

 
IV. SIMULATION  

 
A virtual mobile robot control simulation using the 

touchpad interface has been conducted to evaluate these 
algorithms. The size of the touch pad interface is 
0.06×0.04 m2. Simple gesture recognition like tapping and 
dragging is incorporated to enable selecting a particular 
robot or to capture the finger-generated route information. 
During the interaction, the visual feedback of the finger-
generated route is given. 

The mobile robot dynamic equation developed by 
Yamamoto [9] and the parameters of a Pioneer 2-DXe 
(Table 1) are used to produce a realistic simulation. A 
simple PD controller which has a torque bound (Umax), is 
also used. The simulation runs at a 200Hz sampling rate 
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Figure 10. Simulated results of realistic simulation with 

touchpad 

TABLE I.  
PARAMETERS OF PIONEER 2-DXE 

D=0.4m M=9kg Vmax=1.6m/s 
b=0.44m Iz=1.0741kgm2 Umax=3Nm 

R=0.1m Iy=0.0075kgm2  



and the computation is performed in real-time without any 
significant burden on the CPU (Average CPU usage is 
lower than 1% for a Pentium3-800MHz).  

The trace of a mobile robot and the generated 
waypoints that were extracted from the finger route are 
shown in figure 10(a). The dotted line is the finger route. 
The mobile robot can pass through each waypoint except 
when obstacles prevent it. Even when navigating around 
the obstacles, the trajectory was modified in real-time on-
line. Figure 10(b) shows the velocity profile for each 
wheel. The maximum velocity between wheels is lower 
than Vmax due to centrifugal force. 

This on-line PCBC trajectory modification capability 
can be better seen in Figure 11. The mobile robot 
trajectory is continuously modified by a sudden moving 
obstacle until the obstacle goes out of the range of 
concern for the robot. After that, the mobile robot 
continues following the locally modified PCBC trajectory. 

 
V. CONCLUSIONS 

 
We presented a new interfacing method to control 

mobile robot(s) in a supervisory manner that is capable of 
real-time dynamic obstacle avoidance as well. To realize 
this method, two new algorithms were developed. One is 
a significant points extraction algorithm for noisy input 
data, and the other is an on-line piecewise cubic Bezier 
curves trajectory generation algorithm for a mobile robot. 
With the significant points extraction algorithm, 
extraneous significant points could be pruned from the 
noisy data. A smooth trajectory can also be achieved and 
modified on-line using our on-line PCBC trajectory 
generation algorithm. 

Each algorithm can be extended to 3D space with 
simple modification. Also, using the touchpad/screen 
interfacing method, a robot trajectory can be specified in a 
simple and intuitive way. As such, this new interfacing 
method can be potentially used for various kinds of 
mobile robots such as a personal/house robot, military 
robot, service robot, and other robots that require easy 

operation for an end-user. 
In the near future, we will apply the newly developed 

algorithms to real mobile robots and conduct quantitative 
experiments regarding their performance. 
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