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Abstract— Establishing a-priori mission performance 

guarantees is crucial if autonomous robots are to be used with 

confidence in missions where failure could incur high costs in 

life and property damage. Automatic mission software 

verification, in addition to simulation and experimental 

benchmarking, is a key component of the solution for 

establishing performance guarantees. This component requires 

automatically verifying that the software constructed by the 

mission designer when executed in a partially known 

environment will adhere to the performance guarantee. In prior 

work we developed VIPARS, a unique approach to verifying 

performance guarantees for autonomous behavior-based robot 

software based on a combination of static analysis and Bayesian 

networks. While that approach produced fast and accurate 

verification of single robot missions with robot motion 

uncertainty, it did not address multiple-robot missions or any 

form of uncertainty related to environment geometry.  

This paper addresses the challenges involved in building a 

software tool for verifying the behavior of a multi-robot 

waypoint mission that includes uncertainly located obstacles 

and uncertain environment geometry as well as uncertainty in 

robot motion. An approach is presented to the problem of a-

priori specification of uncertain environments for robot 

program verification. Two approaches to modeling probabilistic 

localization for verification are presented: a high-level approach 

and an approach that allows run-time localization code to be 

embedded in verification. Verification and experimental 

validation results are presented for several autonomous robot 

missions, demonstrating the accuracy of verification and the 

mission-specific benefit of localization. 

Keywords-component; Probabilistic Verification, Validation, 

Multi-robot Missions, Behavior-Based Robots. 

1  INTRODUCTION 

1It is crucial to be able to establish an a-priori guarantee of 
mission success for robots deployed in critical missions such 
as counter weapons of mass destruction (C-WMD) and other 
missions where failure brings serious consequences to life 
and property. In other, less critical applications it is highly 
desirable to have a-priori guarantees of performance to 
reduce overall mission costs. In prior work for the Defense 
Threat Reduction Agency (DTRA) [1], we have developed 
an approach to automatic verification of performance 
guarantees for autonomous behavior-based robot mission 
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software operating in uncertain environments. We developed 
a unique combination of static analysis and Bayesian 
networks for efficient and automatic verification of 
performance guarantees for missions developed in the 
MissionLab [2] robot mission design toolkit, and 
demonstrated by experimental validation that the approach 
produced trustworthy results.  While that work detailed the 
foundation of the approach, it only addressed the single-robot 
scenario, and it assumed operation in an open space, with no 
unexpected obstacles. This paper leverages that prior work 
[1] to also address the challenges of automatic verification of 
performance guarantees for single and multi-robot missions 
in environments with uncertain geometry. 

Verification of robot software is related to general purpose 
software verification in its objective of taking a program as 
input and automatically determining whether that program 
achieves a desired objective or not [3]. It differs in that a robot 
program continually interacts with its uncertain and dynamic 
environment – which therefore must be included as part of 
the verification problem. In fact, this is rarely done in robot 
program verification and was one of the novel contributions 
of our prior work [1]; so, rather than addressing 
computational verification problems such as absence of 
deadlock or absence of run-time errors [4] [5] (important, but 
typically addressed in software verification), we have 
focused on establishing performance guarantees for the 
mission software with a complex and uncertain environment 
model. Also, like [6], we have focused on verification of 
behavior-based autonomous robots, a modular approach 
capable of robust performance in uncertain environments. 

One contribution of this paper is an approach to the 
problem of a-priori specification of uncertain environments 
for robot program verification, in particular, to specifying an 
environment which may or may not contain obstacles with 
locations specified probabilistically. A consequence of this 
environment model is that verification must consider variable 
values that result from the robot encountering an obstacle at 
some location with some probability and not encountering the 
obstacle there. Therefore, a second contribution is a novel 
method to extend the Bayesian Network formulation of [1] to 
reason about random variables with different subpopulations. 

We also apply our technique to a behavior-based robot 
program that includes probabilistic localization using the 
Adaptive MonteCarlo Localization algorithm (AMCL) 



running under ROS [7]. This the first time, to our knowledge, 
that a formal V&V method has been applied in this way. 
Verification of this application is challenging because it 
absolutely requires an environment model, separate from, 
and interacting with, the behavior-based software. The model 
has to include the physical location of the robot, the geometry 
of the map, and the relationship between these and the sensor 
measurements. A third contribution of the paper are models 
to include localization in the verification process: a high-
level, idealized model and a model for including specific 
localization (or any probabilistic) software.  

An important aspect of our work has been backing up our 
verification results by extensive, experimental validation. 
Rather than just presenting the results of verifying mission 
software for all the missions in this paper, we compare these 
verification results with performance statistics from 
experimental validation trials.  

The next section reviews the literature in verification of 
robot software. Section III is a sufficient review of the 
foundational material from [1] as a basis for the new 
contributions. Section IV addresses a multi-robot mission 
that may encounter obstacles, while Section V presents and 
compares two approaches to verifying a mission with 
probabilistic localization software. In each case, 
experimental validation is used to demonstrate that the 
verification results are consistent with real performance 
statistics. Section VI summarizes and discusses our novel 
contributions and future work. 

2 LITERATURE 

Formal verification can be used as a design tool to 
determine whether a piece of robot software will function as 
desired without having to execute the software physically. The 
field has made significant strides in recent years with the 
development of model-checking [3] and SMT engines [8]. 
However, formal verification can at best produce an 
approximation of robot performance, due to the undecidability 
of the underlying verification problem. A crucial issue in 
selecting a verification approach is to understand what aspects 
of the robot software problem to focus on and how to leverage 
these to yield efficient automatic verification tools. 

 Behavior-based robot programming is an important 
design approach in autonomous robotics because it yields 
programs that are robust to uncertainty about exactly what 
environment the robots will face during execution. For this 
reason, verification of behavior-based robot programs is being 
addressed by some researchers, e.g., [6] [9] [10], and we also 
focus on that approach here.  

Many robot software verification papers do not include 
any model of the environment in which the mission is carried 
out, verifying properties of the software itself such as absence 
of deadlock or run-time errors [4] [5]. Such an approach might 
verify that a robot never issues a collision velocity, but not that 
a robot might roll or be mistakenly pushed into an obstacle – 
actions that only take place within the environment model. Or 
it might verify that a bomb-disposal robot has snipped the 
power wire (the robot’s action), but not that the bomb itself 
has not exploded (a function of the separate state of the bomb). 

In some cases, the properties to be verified are used 
themselves to implicitly express the designer’s knowledge 
(or expectation) of environment dynamics [11]. A simple 
example of this is assuming that testing for a motor stall is 
the same as testing for a collision. This informal approach is 
an error-prone way to capture environment dynamics; a stall 
might be caused by factors other than a collision.   

Some of the most recent verification work does include 
environment models: The UK EPSRC-funded project on 
Trustworthy Robotic Assistants proposed representing 
unstructured environments using the Brahms [12] agent 
modeling language; however, while this does model 
environment dynamics, it does not address the crucial issues 
of motion and sensing uncertainty. These uncertainties can be 
the difference between success and failure for a critical 
mission. The latter was identified in [5] as one of the key 
‘lessons learned’ in applying standard formal techniques to 
robot missions. Fisher et al. [13] address the difficulty of 
specifying a-priori conditions by verifying the robot’s belief 
rather than its actual behavior. However, the robot’s belief 
may not correspond to what actually happens. In an alternate 
approach, Guo et al. [14] and Sarid et al. [15] both iteratively 
produce a correct by construction program as uncertain 
information becomes known. However, it’s not possible with 
that approach to verify the program in advance. 

A common approach to verification is to manually 
implement the algorithm to be verified in a formal framework. 
For example, in Proetzsch et al. [16] the robot software to be 
verified is written in the verification language Quartz. Kim et 
al. write their robot software to be verified in Esteral [11].  Of 
course, this reimplementation may not represent the actual 
software; Published descriptions, even for widely known 
algorithms, have been shown to contain errors [17]. It also 
means that verification requires a huge investment of expertise 
and manpower to rewrite existing robot software into the 
verification framework [11]. We take a different approach: 
Mission designers work directly in the MissionLab design 
toolkit, and their software can be automatically translated to 
PARS [18] for verification – they never have to deal with the 
formal framework themselves and just use their regular tools 
for robot mission construction.  

Kiekbusch et al. [6] address automatic verification of 
behavior-based software in their iB2C framework. As with our 
MissionLab approach, their software is automatically 
translated to a verification framework – a set of finite state 
automata for model-checking. They also provide some 
environment modelling in the form of scenarios which are 
specific configurations of the environment for testing 
purposes. However, due to the state explosion problems of 
their model-checking tool, they can only verify binary 
behavior activation conditions such as whether an obstacle 
avoidance behavior is active, rather than the actual motions of 
the robot in response to the obstacle. They do not represent 
uncertain information and simply list the scenarios they wish 
to test against. 

Generally-related work to ours also includes correct-by-
construction methods for teams of robots, and verification 
and validation of planning and scheduling systems. The 
former focus on automatic synthesis [19], not verification, of 



a program. In the latter, where a domain model is used to 
make a plan or schedule to achieve a high-level goal, 
“experience has shown that most errors are in domain 
models” [20] – which can only be checked if a separate 
environment model is included in verification. The work 
reported in this paper addresses verification using an explicit 
uncertain environment model. 

3 DESIGNING ROBOT MISSIONS WITH VERIFICATION 

This section briefly reviews the material from [1] as a basis 
for a standalone, self-contained presentation of the new 
contributions in this paper. The first subsection is an 
overview of the programming toolkit for designing robot 
mission software, MissionLab, and the way in which 
automatic verification is added to this toolkit. The next 
subsection introduces the formal framework PARS (Process 
Algebra for Robot Schemas) used in verification. The final 
subsection reviews the verification framework itself, a 
combination of static analysis and Bayesian networks.  

3.1 Mission Design 

MissionLab is a usability-tested [21] graphical programming 
toolkit for robot missions, including graphical editor, mission 
simulation and execution logging capabilities among others. 
The mission designer constructs the mission using 
MissionLab, as shown in Figure 1. 

 

Figure 1. MissionLab/VIPARS System Architecture. 

The VIPARS (Verification in PARS) [1] module is 
designed to work with MissionLab and provide a 
performance verification functionality. VIPARS module 
inputs include:   

• the mission program, as designed in MissionLab’s 
CfgEdit graphical interface;  

• a set of designer selected library models of the robot, 
and sensor systems;  

• the mission operating environment; and,  

• the mission performance criteria.  

A mission designer could, for example, construct a single-
robot, waypoint mission, indicate that it will take place in a 
moderately-cluttered warehouse environment, and that it will 
be performed by a Pioneer 3-AT robot equipped with sonar 
and gyroscope. She could then choose performance criteria 
that fit the mission (for example, that the robot moves within 

at least 0.1 meters of each waypoint and finishes all 
waypoints in under 100 seconds). She can then use VIPARS 
to verify whether or not the mission will always meet this 
performance criterion with some given threshold probability. 

Prior to the VIPARS module, the mission software is 
automatically translated to PARS [18] a formal, process-
algebra language. The library models of Pioneer 3-AT, sonar 
and gyroscope, and moderately cluttered indoor environment 
are then combined with the mission software to generate a 
single PARS system which will be analyzed for the 
performance guarantee. Our intent is that these robot, sensor 
and environment models are used, but not constructed, by the 
mission designer; they are built in PARS as probabilistic 
process models parameterized with robot and sensor 
calibration data and provided to a designer with the 
verification module.  

VIPARS verifies whether the mission software will 
achieve the specified performance criteria (typically spatial 
and temporal constraints) using the selected robot/sensors in 
the selected operating environment. It also generates 
predicted performance information that can be used by the 
designer to either improve the system performance or abort 
the mission to avert catastrophic failures. The verification 
component supports an iterative cycle for designing high-
performance robot behavior for critical missions.  

3.2 PARS 

PARS is a process-algebra designed for the purpose of 
representing robot software, and the robot, sensor and 
environment models with which the software interacts. The 
algebraic syntax facilitates developing static analysis 
algorithms (algorithms that analyze programs without 
executing them) to identify the interactions between the robot 
program and its environment. Although PARS was designed 
for representing robot programs, and in particular robot 
schemas style, behavior-based programs [22], in fact it shares 
many characteristics with other process algebras such as CSP 
[23] and LOTOS [24] and has an operational semantics 
defined using port automata [25]. As such it could be used to 
represent any programs, and any robot programming style. 
However, our more specific results are focused on behavior-
based programs because they have a structure that can be 
leveraged to address efficient verification. 

 
Figure 2: (a) PARS Process; (b) process network (from [1]). 

Figure 2 shows the PARS model of a process and process 
network. A process 𝑪 (Figure 2(a)) is written as: 

𝑪〈𝒖𝟏, … , 𝒖𝒏〉(𝒊𝟏, … , 𝒊𝒋)(𝒐𝟏, … , 𝒐𝒌)〈𝒗𝟏, … , 𝒗𝒎〉 (1) 

where u1,…,un are the (finitely many) initial variable values 
for the variables of the process, i1,…,ij and o1,…,ok are input 



and output port connections, respectively, and v1,…,vm are 
final result values generated by the process.  

Processes are either atomic or composite. A process is 

defined as a composition of other processes as follows: 

<processdef> ::= <process> ‘=’ <processexpr> 

<processexpr> ::= <processeq> ‘|’ <processeq>      | 

 <processeq> ‘#’ <processeq> 

<processeq> ::= <processexpr>‘;’<processexpr> | 

  ‘(‘ <processexpr> ’)’    | 

  <processname> 

Where ‘|’ denotes parallel composition (parallel max), ‘#’ 
disabling composition (parallel min), and ‘;’ denotes 
sequential composition, and where <process> and 
<processname> are a bolded capital letter or word. 

For example, the parallel composition: 

S = C(c1)(c2)   |  E(c2)(c1) 

specifies two parallel processes C and E as shown in Figure 
2(b), with the input and output ports connected 
correspondingly. The labels c1 and c2 are called port 
connection labels and their purpose is to specify the 
connection map between the ports of the parallel processes. 

Each process that terminates can terminate in either a stop 
or an abort condition. There is no separate ‘choice’ operator 
in PARS. However, a process that evaluates a condition c is 
defined to terminate in a stop status if c and in abort if not c. 

A sequential chain of processes, such as Eqx,y ; P, 
terminates for the first process in the chain that has a 

termination condition of abort (e.g., if xy, P is not reached 
because Eq aborts).  

Repetitive computation (e.g., loops) is modelled by a tail-
recursive (TR) process definitions, written for example: 

𝐏〈𝑥〉  = 𝐐〈𝑥〉〈𝑦〉 ; 𝐏〈𝑦〉 
(2) 

Eq. (2) defines a process P that repeats process Q until Q 
aborts, at which point P terminates, returning its results.  In 
this example, the process Q is the body of the TR process, 
similar to the body of a loop.  

A flow function fP(u1,u2,…,un)=(v1,v2,…,vm)  is associated 
with each 𝐏, mapping the values of the variables of 𝐏 at the 
start to those at the end. The flow-function for atomic 
processes are specified a-priori, and those for a composite 
process can be built up from the flow functions of its 
components, e.g., for 𝐓〈𝑥〉〈𝑧〉  = 𝐏〈𝑥〉〈𝑦〉 ; 𝐑〈𝑦〉〈𝑧〉  we can 
say fT(x)= fR  fP(x) if P does not abort. Static analysis 
algorithms to calculate flow functions play a key role in 
VIPARS verification. 

3.3 Verification in PARS (VIPARS) 

The robot mission software is converted to PARS [18] and 
combined with the PARS definitions for the robot, sensor and 
physical environment models (selected by the user) 
producing a parallel network Sys of communicating 
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processes. For example, a robot controller Ctr with variable 
r1, and an environment model2 Env with variable r2, would 
be written as: 

Sysr1,r2          =  Ctrr1(a)(b) |   Envr2(b)(a) (3) 

In the example of eq. (3), the input of Ctr (sensor signals) 
is connected to the output of Env, (a), and the input of Env 
is connected to the output (control signals) of Ctr, (b), similar 
to the process network in Figure 2(b). If eq. (3) were a 
sequential composition like eq. (2) then we could extract flow 
functions for the combined interaction of controller and 
environment and use this function as the basis for verifying 
all possible executions of the system. However, the addition 
of port communication complicates the relatively simple 
definition of flow functions! The flow function associated 
with a process no longer just depends on the variables of that 
process, but could depend in a complex way on variables and 
computations of other parallel processes. To address this, a 
constraint on the form of parallel compositions is leveraged, 
namely that all processes are written as tail-recursive (TR) 
processes. This does not restrict what can be computed but 
allows us to propose a special static analysis approach to 
efficiently verifying all possible executions of a behavior-
based systems. 

In behavior-based robot software, such as that produced 
by MissionLab, sensory information is continually being 
inspected to determine which behaviors should be activated 
and how to parameterize them. The software is looking for 
affordances in the environment that will further the objectives 
for the mission –  as a simple example:  moving towards goal 
locations, but away from obstacles. The intuition is that a 
behavior-based system has behavioral ‘states’ each with an 
associated set of sensory triggered responses.  

This is modeled here as a parallel composition of TR 

processes representing ongoing behaviors or the monitoring 

of affordances. When a behavior terminates or when an 

affordance is detected, additional behaviors or affordance 

monitoring may be added to the parallel composition.  

Leveraging the TR structure, an interleaving theorem3 is 

presented in [1] to convert processes of the form of eq. (3) to 

a sequential form as shown in eq. (4) below. The intuition 

here is that the set of TR process bodies can be composed into 

a single system TR body called the system period, shown as 

the process Sys’ in eq. (4), and similar to the concept of a 

hyper-period4 in process scheduling.  

Sysr1,r2     
                    

=  Ctrr1(a)(b) |   Envr2(b)(a) 
=  Sys’r1,r2r’1,r’2  ; Sys r’1,r’2)  

 (4) 

fSys (r1,r2)  = ( fSys,r1 (r1,r2),  fSys,r2 (r1,r2)  )  

 = (r’1, r’2) 

(5) 

A static analysis algorithm Sysgen was developed based 

on this interleaving theorem to construct the system period, 

Sys’ in eq. (4), given the processes, connections and 

3 In process algebra, an interleaving theorem relates the sequential 

and parallel composition operations. 
4 The LCM of all the task periods in a scheduling problem. 



communications in Sys. This construction reduces the state 

explosion of all orders of a set of parallel processes to the 

single interleaving of the system period.  

Once Sysgen analysis is complete, a system flow function 

can be extracted from Sys’. In the small example of eqs. (3), 

(4) above, the function extracted is shown in eq. (5). This is 

a recurrent function that evaluates the new values for r1 and 

r2 as computed by the interactions between Ctr and Env in 

each execution of the system period Sys’. 
Process variables, such as r1, r2 in the example above, can 

be random or deterministic variables. Typically, mission 
software variables are deterministic. However, variables in 
robot, sensor and environment models can be random to 
represent uncertainty associated with their values. To include 
both random and deterministic cases, flow functions, which 
relate variable values at recursion step i of Sys’ to those at 
i+1, can be written as conditional probabilities, e.g.: 

fSys,r1 (r1,t ,r2,t ) = P(r1,t+1 |r1,t , r2,t ) 
 (6) 

In the final phase of VIPARS processing, extracted flow 

functions are converted to conditional probabilities. Random 

variables are represented as multivariate Mixtures of 

Gaussians, and operations on random variables are 

automatically translated by VIPARS into operations on 

distributions [26]. These are then the basis of a Dynamic 

Bayesian Network (DBN) [27] used to carry out forward 

propagation of probability distributions, to determine 

whether the combination of controller and environment will 

meet a performance specification.  

Although [1] discusses more complicated performance 

guarantees, we will typically restrict our attention to the 

guarantee that a mission will achieve some criterion on 

environment variables (usually a spatial accuracy for a 

waypoint goal and/or a temporal requirement for achieving 

the mission) with probability greater than a threshold before 

a time-limit. We demonstrated that this approach is fast and 

accurate when validated against physical executions (most 

recently [28]).  

4 MULTIROBOT MISSION WITH UNCERTAIN OBSTACLES 

Bounding overwatch is a military movement tactic used by 
units of infantry to advance forward when crossing dangerous 
areas [29]. In the first mission we will address, a team of two 
robots will use this strategy to move stealthily inside a 
building to search for biohazards which may be guarded by 
hostile forces and in which they may encounter obstacles 
along their route. 

Figure 3 shows the bounding overwatch mission where 
two robots coordinate their movements in a “leapfrogging” 
manner while advancing toward a biohazard. Robot2 begins 
by bounding toward O1, the first Overwatch position. When 
it reaches O1, a “Cleared” message is sent to Robot1 
indicating that it is safe to proceed. Robot1 then bounds to 
O2 and sends the “Cleared” message to Robot2, and so on. 
The mission ends with Robot2 at O7, near the biohazard. The 
operating environment of this mission includes some 
obstacles whose existence or exact locations are not known 

with certainty in advance; if they are present, the obstacles 
will be within the locations illustrated with dashed circles 
shown in Figure 3. This lack of a-priori certainty about the 
environment geometry is a challenge for verification in 
efficiently representing and checking all the potential 
obstacle-related motions of both the robots.  

 

 
 

 

Figure 3. Bounding Overwatch with Two Robots: 
Map (top), Operating Environment (bottom). 

4.1 Bounding Overwatch Mission 

The behaviors of Robot1 and Robot2 are specified 
graphically in MissionLab as behavioral finite state automata 
(FSAs). Each behavioral FSA consists of the following 
behaviors: 

• GoToGuarded: Move to a waypoint while avoiding 
obstacles; 

• NotifiedRobots: Send a “Cleared” message to the 
other team members; 

• Spin: rotate the robot; 

• Stop: mission concluded; 

• AtGoal: sensory trigger for arrival at location; 

• HasTurned: sensory trigger for arrival at orientation; 

• Notified: sensory trigger for “Cleared” message; 

• MessageSent: sensory trigger for message sent. 

The behavioral FSA of triggers and behaviors for Robot1 
is shown in Figure 4 and that for Robot2 is similar.  

The behavioral FSA is translated to a MissionLab internal 
language called CNL [2] and a translator from CNL to PARS 
[18] produces a process model of the program which includes 
detailed specifics of all the behaviors and triggers. The 



following performance criteria are used to evaluate this 
mission performance:  

Success = (r1≤Rmax) AND (r2≤Rmax) AND (t ≤Tmax) (7) 

Where r1 and r2 are Robot1’s and Robot2’s relative distances 
to their respective goal and t is the mission completion time, 
where Rmax is the success radius, and Tmax is the maximum 
allowable mission time. The bounding overwatch mission is 
only considered successful when both robots are within Rmax 
radius of their respective goal locations and when they 
complete the mission under Tmax seconds. 

 

 

Figure 4. Behavioral FSA for Robot1. 

4.2 Robot Motion Model 

In [1] we presented a PARS robot process model Robot 

with motion and position sensing uncertainty.  

Robotp, a, s   = ( Delay    #  Odop #  Atr1, p  ) ;                                
                                 ( Ind  h  #   Inv  s  ) ;   

                                      (Ranh z   | Ranv w   ) ; 

                                      Robotp+(h+z)*(s+w)* t,  a,  s . 

Odor               =  Ran  e   ; Out p, r+e   ;  Odor . 

Robot accepts a unit vector heading input on port d or a 

speed in the direction of the heading on port v. The process 

Atr1, p    represents robot r1 at location p. The process Odo 

(Odometry sensor) makes position information (with noise e 

~ ) available in a loop on port p until terminated by Delay. 

The new position of the robot is calculated as the old position 

p incremented by a speed s with added noise w in the direction 

of the commanded heading h with added noise z. The 

odometer position is the actual position with added noise e. 

The actuator and odometer noise (the variables z, w, and e) 

are characterized by the distributions for speed, heading and 

sensor noise, e.g., h = N(h,h), v = N(v,v), and  = 

N(m,m).  The flow function for the position variable of the 

robot model, with operations on random variables translated 

to operations on distributions, is 

pt+t = pt   ( h   ht+t )   ( st  v ) * t, 

where ‘’  denotes convolution.  

The robot model used in this paper follows this same 

structure but is more detailed in its representation of the 

motion uncertainty. The new robot position distribution pt+t 

is calculated as the old position distribution pt convolved with 

st+t ht+t t - a nominal change at speed st with heading unit 

vector ht for time t and a motion uncertainty term. The latter 

is a convolution of a translational TX, rotational TR and 

skitter TS uncertainty component: 

𝑇𝑋(𝑠𝑡+∆𝑡 , ℎ𝑡+∆𝑡) = 𝑋 ∙
𝑠𝑡+∆𝑡

𝑠𝑘
∙ 𝐻(𝑠𝑡+∆𝑡 − 1) ∙ 𝑅(ℎ𝑡+∆𝑡)  ∙ ∆𝑡 

𝑇𝑅(𝑠𝑡+∆𝑡 , ℎ𝑡 , ℎ𝑡+∆𝑡) = 𝑈 ∙ |ℎ𝑡 −  ℎ𝑡+∆𝑡| ∙            

   (2𝐻(𝜃𝑡 − 𝜃𝑡+∆𝑡) − 1) ∙ 𝑅(ℎ𝑡+∆𝑡) ∙ ∆𝑡  

𝑇𝑆(𝑠𝑡+∆𝑡 , ℎ𝑡 , ℎ𝑡+∆𝑡) = 𝑊 ∙ |ℎ𝑡 − ℎ𝑡+∆𝑡| ∙ 𝐻(1 − 𝑠𝑡+∆𝑡) ∙        

   (2𝐻(𝜃𝑡 − 𝜃𝑡+∆𝑡) − 1) ∙ 𝑅(ℎ𝑡+∆𝑡) ∙ ∆𝑡  

where 

• X, U and W are robot specific bivariate normal 

distributions calibrated by multiple measurements over a 

range of distances and angles for each robot at 

calibration speed sk
. 

• R(h) is an operator that rotates a bivariate distribution by 

the unit vector h. 

• H(x) is the Heaviside step function. 

• t is the angle of heading unit vector ht. 

In summary, the flow function for the position distribution 

𝑝𝑡+∆𝑡  is now: 

𝑝𝑡+∆𝑡 = 𝑝𝑡 ∙ (𝑠𝑡ℎ𝑡+∆𝑡∆𝑡) ∙ (𝑇𝑋 ∙  𝑇𝑅 ∙  𝑇𝑆) (8) 

4.3 Multiple Robots 

This mission uses two robots, and the two robots interact 

directly to synchronize their motion (Figure 4) and indirectly 

as physical obstacles to each other. Multiple robots are added 

to the environment model by creating extra instances of the 

Robot process, each with unique X, U and W calibration 

distributions measured by calibration experiments on a 

physical robot. Each robot process has its own input and 

output ports through which the mission software can 

communicate. No extension to the process algebra model was 

required to handle the multiple robot case. 

The direct communication between the robots is modelled 

for verification by a simple, centralized communication 

structure. The Notify and MessageSent behaviors map to port 

read and write commands from the PARS translation of 

Figure 4 (and its equivalent for Robot2) to a single 

communication process Comm. No message transmission 

latency or error was modelled for this example. 

4.4 Uncertain Geometry Model 

Since the geometry of the environment is not completely 
known in advance, we construct a probabilistic model that 
includes whatever a-priori information there is. One way to 
generate such a model is as shown in Figure 5: Several spatial 
locations along the mission are annotated a-priori as being 



potential obstacles; this is the approach we will take in this 
mission. Another approach would be to use the map output 
from probabilistic mapping software that has been used to 
measure the environment – we will take that approach in a 
later section. Of course, both approaches could be combined. 

For this mission, the physical environment is modeled as a 
collection of isotropic bivariate Gaussian mixtures: Figure 
5(a) shows a mixture of 8 members modelling a rectangular 
2D obstacle. Figure 5(b) shows the model with 16 members.  

(a) (b) 
Figure 5. Modelling geometry with bivariate Gaussian mixtures. 

The GoToGuarded behavior in MisssionLab is translated 
to the process network shown in (9) which implements its 
behavior: 

Coop 1,1,1 (vg, vo, vn)(v)          | 

Move_to PO,G3 (pR)(vg)       | 

Noise ns (pR)(vn)         | 

Avoid_Obstacles r (pR,obR)(vo) 

       (9)  

The Avoid_Obstacles process inputs robot position (through 
connection pR) and any sensed obstacles (on obR) and 
generates a potential-field based avoidance velocity output 
(vo) [22]. Move_to generates a velocity towards a waypoint 
G3 (vg) and Noise generates a small velocity perturbation to 
escape potential minima (vn). The Coop process combines all 
three vectors into a single command velocity (v) with equal 
weights (1,1,1). 

In execution, the input and output of these processes 
correspond to the connections of GoToGuarded with the real 
robot and its sensors, and through these, with the actual 
execution environment. However, in verification, this 
information is provided instead by robot, sensor and physical 
environment models selected by the user. For this mission, 
these are shown below: 

RobotP0, ∆𝒕, 𝝋  (v)(pR)           | 

SensorsS0, sr, sn (pR, pE)(s)   | 

GeometryE (pR, pR2)(pE) 

(10) 

The Robot process takes a velocity command (on v) and 
generates a new position distribution (on pR) according to (8) 
and where 𝑝𝑡 , 𝑣𝑡  ~ 𝑀𝐺(𝑀𝑝) are modeled as mixtures of 

bivariate Gaussians representing the 2-D location and 
velocity of the robot. The Sensors process calculates what 
obstacle locations will be sensed by the robot, implemented 
as follows: 

SensorsS0,sr,sn (pR,pE)(obR) = 

      InpRp ; InpEe ;  

      ( Gtr d(p,e), srp1 ; OutobR, p1 |  

         Lte d(p,e), srp2 ; OutobR, sn+p2  );  

(11) 

      SensorsS0, sr, sn . 

The robot position (on p) and geometry (on e) are inputs 
from whatever Sensors has been connected to - in this case, 
the Robot process and the Geometry process. Geometry 
continually adds the latest position distributions for both 
robots to the static geometry distribution (obstacles) and 
transmits this to the Sensors process (e). This approach 
handle the indirect interaction between robots, and it 
generalizes linearly to any number of robots. 

The distance function d(p,E) calculates what portion of the 
environment is within the sensor range (sr). The procedure 
for determining potential collisions and sensor feedback 
involves computing the Bhattacharyya Coefficient [30] 
between robot position and the geometry distribution.  This 
coefficient measures the amount of overlap between two 
multivariate normal distributions as follows: 

𝑩𝑪(𝑵(𝝁𝟎, 𝚺𝟎), 𝑵(𝝁𝟏, 𝚺𝟏)) 

 = 𝐞𝐱𝐩 (−
𝟏

𝟖
(𝝁𝟎 − 𝝁𝟏)𝑻𝚺−𝟏(𝝁𝟎 − 𝝁𝟏)) √

√|𝚺𝟎||𝚺𝟏|

|𝚺|
  

𝒘𝒉𝒆𝒓𝒆 𝚺 =  
|𝚺𝟎||𝚺𝟏|

𝟐


(12) 

d(p,e) generates a bivariate distribution with members 
corresponding to the joint probabilities between the members 
of the p and e variables. The result of sensing (obR) is this 
distribution (convolved with a sensor noise distribution (sn)). 

4.5 Conlicting Hypothesis Histories 

The flow functions automatically extracted by VIPARS 
from the GoToGuarded network (9) connected to the 
environment model (10) include the effects of condition 
processes (such as Gtr and Lte) and can be written in terms 
of the Heaviside step function H(.) and unit vector u(.). 
Operations on variables (e.g., addition) are translated to 
equivalent operations on distributions (e.g., convolution). 
The following are among the flow functions extracted and 
just come from the definition of the GoToGuarded behavior: 

fvo(s, p) = r - H(r – sot )sot, 

fvg(p, g) = u( pt – g )somax 

fv(vo,vg, vn) = vo· vg·  vn 

(13) 

The obstacle velocity (vo in (9)) is specified by fvo as linearly 
proportional to the distance to the obstacle r – sot but at most 
r if there are obstacles seen. The goal velocity fvf is a fixed 
velocity smax in the direction of the goal u( pt – g ). (In fact, 
there is a ramp-down to the goal, omitted here for simplicity.) 
The final velocity is just the convolution of the noise, obstacle 
and goal velocities (the result of Coop in (9)). 

 
 

(a)  
 

(b) 
Figure 6. Example of Obstacle Avoidance. 

pt 

sot 

 

 

g pt+t 



Consider the example shown in Figure 6: At some time t, 
the position (pt, a single member distribution) is close enough 
to a sensed obstacle sot that an obstacle repulsive velocity 
(vo) is generated in addition to the velocity towards the goal 
(vg) (Figure 6(a)). The portion of the position distribution that 
resulted in no obstacle detection (p1 in (11)) should be 
convolved with just a forward velocity; the portion that had 
obstacle detection (p2) should be convolved with both 
forward and repulsion (Figure 6(b)), capturing both potential 
outcomes. 

In fact, however, there is insufficient information in the 
random variable model used by VIPARS to correctly 
represent this situation. During forward propagation of 
probability by the DBN, the information of sensor returns 
where collisions are predicted becomes separated from the 
information about which robot locations generated those 
returns. Informally: the pt mixture could be considered as a 
weighted collection of (Normal distribution) hypotheses for 
the robot position. The sensory data is generated from this 
list, but the correspondence between a sensory data mixture 
member, which originates from sot, and the hypotheses in pt 
that generated the member can be complicated: 

1) If the geometry g is a multimodal distribution (almost 
certainly would be), then each member of pt will 
generate at least many modes within sot due to (11). 

2) The conditional nature of fvo (i.e., the step-function) 
means that not every member of sot generates a 
repulsive velocity (e.g., because it’s too far away). 

3) The final, convolution for fv in (13) will apply goal 
and repulsion velocities to all position modes, not 
just the ones as shown in Figure 6. 

4.6 Colored Mixture of Gaussians (CMG).  

The solution to this dilemma is to allow subpopulations of the 
location variable to be tagged, and for this tag to be 
propagated to the sensing distribution, so that it becomes 
clear how the sensing relates to position. The mixture 
representation for random variable is extended as follows.  

Definition. A colored mixture of Gaussians (CMG) is a 
mixture of Gaussians distribution in which each mixture 
member (mode) is tagged with a color label. If a ~ CMG(CM), 

for CM={(i, i, wi, ci) | i  1…m} the set of the mixture 
parameters (means, variances weights, and colors 

respectively), then ai will refer to  N(i, i,), w(ai)=wi and 
c(ai)=ci. The mixture size is written | a | = m. A CMG is 
evaluated at a point x in the usual way as CMG(x ; CM): 

𝑪𝑴𝑮(𝒙; {(𝝁𝒊, 𝚺𝒊, 𝒘𝒊, 𝒄𝒊) | 𝒊 ∈ 𝟏, … , 𝒎}) = 

         ∑ 𝒘𝒊 𝑵(𝒙; 𝝁𝒊, 𝚺𝒊),𝒎
𝒊=𝟏        ∑ 𝒘𝒊

𝒎
𝒊=𝟏 = 𝟏  

(14) 

The color tags allow related subpopulations of the CMG to 
be similarly transformed. Operations on random variable can 
now be converted to color-respecting operations. A color-
respecting convolution operation in fv of (13) can be defined: 

Definition. The color respecting convolution r = p  q, r, 
p, q ~ CMG is defined using the notation of the CMG 

definition as: ri = pj * qk  c(pj) = c(qk) with weights w(ri) 
adjusted accordingly. 

As an example, let pt have two members, p1 and p2, and if 
there are two members of the geometry distribution, o1 and 
o2, then sot will have four members, two with c(p1) and two 
with c(p2) transformed by the (unimodal) sensor uncertainty 
distribution (sn). The color respecting convolution operation 
in fv (13) will result in four velocity members: one for vg and 
one for the sum of vg for p1 plus the sum of the two vo with 
color(p1), and two similarly for p2. If the step function in fvo 
trims members from sot, the members of vo and vg can still be 
correctly matched by color.  

With this modification to the random variable framework 
of VIPARS – namely, the addition of color tags to the 
multivariate mixture model, and the extension of random 
variable operations (not just convolution) to respect color – 
the uncertain geometry model can be used to verify 
multirobot missions that include obstacle avoidance 
strategies. The next section presents evidence for this. 

4.7 Verification and Validation 

The Overwatch mission presented in Subsection A is verified 
using the modified CMG filtering and the verification results 
experimentally validated in this section. In the interest of 
providing more than just a binary verification result, VIPARS 
produces a graph of the probability of mission success versus 
time (Time Criterion graph) and graph of the probability of 
final positional accuracy (Spatial Criterion Graph). 

4.7.1 Mission Validation 
Each validation run consists of real robots carrying out the 

Overwatch mission. The operating environment of the 
mission is an indoor lab environment with tile floor. The 
biohazard is represented by a red bucket marked with the 
biohazard symbol. The obstacles are green trashcans with 
radii of approximately 0.25m. The dashed circles in Figure 3 
represent the potential locations of the obstacles. The number 
of obstacles (i.e., 1 to 3) and their locations are varied for each 
validation run, to reflect the uncertainty of their presence in 
the environment. At the end of each validation run, the 
following measurements relating to the performance criteria 
Rmax and Tmax are recorded:  

1. r1 – Robot1’s relative distance to its goal location;  

2. r2 – Robot2’s relative distance to its goal location; 

3. t – Mission completion time. 

The complete validation experiment consists of 100 trials 
(calculated to cover all obstacle locations uniformly). The 
result of the validation experiment is compared to the 
verification result in the following subsection. These two 
results were generated without knowledge of each other and 
only compared after each was completed. 

4.7.2 Comparison of verification and validation results 
Besides generating accurate results, how to present 
verification results (i.e., performance guarantees) to the 
mission designer is also an important research question. We 
present a preliminary representation that consists of two 
steps: 1) define performance guarantee as the probability of 
success (i.e., the probability of meeting a performance 
criterion) and 2) divide the success probability into 
confidence regions.  



Figure 7 shows the verification and validation spatial 
criteria for this mission as the probability that both robots are 
within Rmax radius of their respective goal locations 
P(r1≤Rmax, r2≤Rmax) versus Rmax. The graph has three regions 
based on VIPARS verification: 1) High Confidence 
(Unsuccessful), 2) Uncertain, and 3) High Confidence 
(Successful). The High Confidence (Unsuccessful) region is 
where VIPARS predicts a zero probability of success, 
informing the operator that she should abort the mission or 
modify mission parameters (e.g., use different robots) if the 
verification result is in this region. The High Confidence 
(Successful) region is where VIPARS guarantees success 
with probability 1.0. 

 

 

Figure 7. Verification vs. Validation of Spatial Criterion 
P(r1≤Rmax,r2≤ Rmax). 

 

Figure 8: Verification vs. Validation of Time Criterion P(t≤Tmax). 

The mission operator has a special interest in this region 
since she expects the robots would get it right the first time 
for mission requirements (e.g., Rmax) within this region. The 
region between High Confidence (Unsuccessful) and High 
Confidence (Successful) is defined as the Uncertain region, 
which corresponds to the region where the values of the 
VIPARS’s mission success probability are between 0 and 1.0. 
In this region, the robots are not guaranteed to get it right the 
first time. Although both verification and validation curves 
are shown on Figures 7 and 8, only the verification curve is 
used to define these regions. 

Figure 8 shows the verification and validation (performed 
over 100 trials as described) for the time criterion as a graph 
of the probability that the mission completes by t, P(t≤Tmax) 
versus t. The graph is again divided into the three confidence 

regions. We observed that most of the discrepancies between 
verification and validation are within the Uncertain region. 
The region is relatively small, and both validation and 
verification curves rise sharply, indicating that the boundary 
of 0% successful and 100% successful is relatively sharp. 

We also observed some discrepancies outside the 
Uncertain region, near its boundaries. Ideally, all the errors 
should be within the Uncertain region. However, the errors 
between the verification and validation success probabilities 

outside the Uncertain region are actually 0.01 (i.e., within 
~1.01% error). At the boundary between Uncertain and High 
Confidence regions, VIPARS predicts a success probability 
of 1.0 while the actual experimental validation had a success 
probability of 0.9901, which resulted in a verification error of 
0.0099. So, it is still justified to have a high confidence of 
mission success in the uncertain region since the 
experimental validation has a success probability of 0.99 and 
higher. 

  
a) Experimental Validation b) VIPARS Verification 

Figure 9: Validation (a) and Verification (b) of  
Overall Mission Success P(r1≤ Rmax, r2≤ Rmax, t≤ Tmax). 

We have examined individual performance criterion 
separately thus far. However, the overall mission success was 
defined in terms of both spatial and time criteria. Figure 9 
shows the verification and validation of the performance 
guarantee for the overall mission success, P(r1≤Rmax, r2≤Rmax, 
t≤Tmax), the probability that the bounding overwatch mission 
is completed under the time limit Tmax and  both robots are 
within Rmax radius of their respective goal position. The effect 
of different combinations of performance criteria values is 
further examined in Figures 10-11. Figure 10 shows the 
verification and validation of the time criterion, P(t≤Tmax), at 
various fixed values of the spatial criterion, Rmax. We 
observed that Rmax in both high confidence regions (i.e., Rmax≤ 
0.5m and Rmax≥2.0m, Figure 6) has no effect on P(t ≤ Tmax). 
However, Rmax in the Uncertain region (e.g., Rmax= 0.8m, 
1.0m, 1.2m) has significant impact on P(t≤Tmax). Specifically, 
P(t≤Tmax) plateaus at different probability values for different 
Rmax’s in the Uncertain region. For instance, for Rmax of 1.2m, 
P(t≤Tmax) plateaus at 0.5228, which is the value of P(r1≤1.2, 
r2≤1.2) for the spatial criterion in Figure 7. 

There is a significant discrepancy between verification 
and validation of P(t≤Tmax) when Rmax’s are in the Uncertain 
region (max 400 mm). Similar observations are made in 
Figure 11 for P(r1≤Rmax, r2≤Rmax) at various values of the time 
criterion, Tmax. These observations reinforced our view that 
performance criteria within the Uncertain region should be 
avoided, or be moved into the High Confidence (Successful) 
region by modifying mission parameters such as modifying 
the mission velocity limits or use different robots or sensors. 

(m) 
(m) (m) 



For this paper, no attempt was made to manually or 
automatically modify mission parameters to improve mission 
performance based on verification results; the focus here was 
on the initial comparison of verification and validation. 

 
Figure 10: Verification and Validation of Time Criterion P(t≤Tmax) 

at various Rmax. 

 

 
Figure 11: Verification and Validation of Spatial Criterion 

P(r1≤Rmax, r2≤Rmax) at various Tmax. 

5 VERIFYING MISSIONS WITH LOCALIZATION 

To assess the effectiveness of verification in providing 
performance guarantees for probabilistic robot behaviors, we 
analyze two waypoint missions, where in each a robot is 
tasked to navigate through a series of waypoints toward a goal 
with behaviors that are based on probabilistic localization 
algorithms. VIPARS is used to investigate two approaches to 
modeling localization and the results compared to 
experimental validation. 

5.1 Localization Missions-A and B 

Both missions proceed with a robot starting at (2, 2) in Figure 
12 and following a series of waypoints to the goal locations at 
(11.7, 12.5) and (1.0, 7.3) respectively for Mission-A and 
Mission-B (respectively). The behavior of the robot for 
Mission-B (Figure 12(a)) is shown in Figure 13, which was 
created in MissionLab in the form of a behavioral FSA. The 
robot FSA consists of a series of GoToGuarded and Spin 
behaviors, whose transitions are prompted by AtGoal and 
HasTurned triggers. The behavioral FSA for Mission-A is like 
the one shown in Figure 13, and is omitted for brevity. 

The perceptual schemas of MoveToGuarded and 
AvoidObstacles, two of the constituent primitive behaviors of 
the high-level GoToGuarded behavior, are augmented with a 

SLAM-based spatial map [7]. The MoveToGuarded primitive 
behavior drives the robot to a specified goal.  

  

 
 

  
a. Waypoints Mission A b. Waypoints Mission B 

Figure 12: (top) Example Operating Environment Images for 

Localization missions; (bottom a, b) Two Waypoint Missions for 

Verification and Validation.  

 
 

Figure 13: Behavioral FSA for Mission-B. 

Instead of using odometry for localization, the perceptual 
schema of MoveToGuarded is replaced by an Adaptive Monte 
Carlo Localization (AMCL) algorithm [31]. This probabilistic 
localization algorithm takes the robot odometry and an a-
priori acquired map as inputs, and outputs an estimated pose 
of the robot along with a covariance matrix representing the 
uncertainty of the estimated pose. Furthermore, the 
AvoidObstacles behavior uses the spatial map, instead of 
using direct sensory reading from the laser scanner, to 
generate repulsion vectors. The perceptual schema of the 

(m) 



AvoidObstacles is modified to turn the spatial map into pseudo 
laser scans of the environment through beam tracing within 
the occupancy map. As a result, the GoToGuarded behavior 
utilizes perceptual information (i.e., robot pose and obstacles) 
generated by probabilistic algorithms to generate motor 
response while navigating through the waypoints. 

The performance criteria for both missions are similar:  

Success = (r ≤ Rmax) AND (t  ≤ Tmax) (15) 

Where Rmax is maximum radius of spatial deviation allowed 

from the goal and Tmax is the maximum allowable mission 

completion time, and where 𝑟 is the robot’s relative distance 

to its goal location and t is the time the robot to finish a 

mission. 

5.2 Localization Mission System Process 

The input to VIPARS is the system process composed of 

the behavior FSA from MissionLab converted to PARS and 

combined with the PARS models for the robot, sensors and 

environment. The system process Sys for the localization 

mission is shown in eq. (16). 

   Sys =  ( Mission (clp, clh, cl)(cv)   | 
     Mapsysmap()(cm)       | 
     LocalizationD0(cp,co,ch,cl,cm)(clp,clh) | 
     MB_Laserms, mo ,lo(cm,cp,ch)(cl) )  | 

         RobotP0,H0(cv)(cp, ch, co) .        (16) 

The Mission process is the translation of the waypoint 

mission and is fundamentally similar to all prior waypoint 

missions we have verified and validated. It has inputs clp 

(position), clh (heading) and cl (laser readings); and output 

cv (velocity).  Robot is the environment model, capturing the 

motion and odometry error and interactions with obstacles, as 

before. PO, HO are initial position and heading, inputs cv 

(velocity) and outputs cp, ch (odometry position and heading) 

and co (real position distribution, i.e., without sensing noise 

– only used for performance estimation and high-level 

localization model). 
However, there are three new processes: In the behavior-

based localization approach [7], the obstacle avoidance sensor 
gets its information from the map, rather than directly from 
measuring sensory input. Map makes mapping information 
(from the a-priori generated sysmap) available on its output 
cm; MB_Laser uses the map to generate map-based laser data 
on its output cl. Localization implements a localization 
method using the map cm, laser cl, and robot cp, co, ch inputs. 
D0 is the initial position uncertainty. The output of 
Localization, clp, is the localized position (and heading clh) 
used by the Mission process.  

5.3 Map Representation 

A key difference between this localization mission and our 
prior missions including bounding overwatch is the map and 
the role it plays in the obstacle avoidance behavior and in 
localization. The Map process in eq. (16) contains a map data 
structure. Recall that variables in a PARS process definition 
can be random variables represented as colored mixtures of 
Gaussians distributions (CMG). 

Map information – the locations and geometry of 
obstacles, walls and other physical aspects of the mission 
environment – can be directly represented using this model. 
The interactions of the map with the robot and map-based 
sensor is analyzed in VIPARS by measuring the overlap 
between random variable distributions, eq. (12). The 
advantage of this approach to representing physical geometry 
is that there is no restriction on the spatial location or extent 
of obstacles, and finer precision of modeling can be obtained 
at the cost of adding more mixture members (Figure 14).  

Definition. An indexed mixture of Gaussians is a mixture of 
Gaussians distribution a ~ CMG(CM) together with an index 
set I. The mixture is restricted as follows: 

• a[x]  ai where (ai) = x  I,  i 1…m. 

• (ai)  I, for all i 1…m; a only contains members 

indexed by I. 

• For any x I, |{a[x]}|  1; a has at most one 

member for each index. 

A map is defined as an indexed bivariate mixture of 

Gaussians where I=[0…X][0..Y] and where each member is 

a Gaussian kernel with covariance [x, y] = m
2 I, and where 

m represents the map resolution. This corresponds somewhat 
intuitively with an occupancy grid representation [32], where 
w[x,y] is related to probability of occupancy for the location 
(x,y). 

During verification, the location random variable (the 
connection cp in eq. (16)) represents the location of the robot 
for all possible executions. It’s relevant to compare this with 
the representation of robot location in a localization algorithm: 
the representation there may also be a random variable, but the 
interpretation is different. In any single execution, the robot 
can really only be at a single physical location; the localization 
distribution is an estimate of this. In verification, the objective 
is not to find the single most likely location, but to propagate 
the effects of being at all locations. Rather than using a ray 
trace algorithm to determine how each location is supported 
by sensor readings and refining the position estimate based on 
that, the ray trace algorithm is used by the MB_Laser process 
to gather all possible sensor readings that can arise due to the 
robot location distribution. 

 
Figure 14: Example VIPARS Map Representation. 



5.4 Modeling Localization 

The first approach involves modeling localization at a high 
level: modeling not the actual collection of sensory data that 
produces improved position estimates, but just position 
estimates that improve with time according to some 
parameterization. This has the advantage that different 
localization algorithms can be ‘modeled’ in verification by 
just changing the parameterization, not requiring as many 
hours of expert effort as implementing a new localization 
algorithm directly in the formal framework. It has the 
disadvantage that it decouples the localization from predicted 
sensor measurements, and may miss the effect of 
measurements that greatly improve or degrade the localization 
estimate. 

The second approach involves the incorporation of 
existing localization code directly into the VIPARS 
verification algorithm. Localization code, like any program, 
when executed, will yield once possible trace of a robot 
mission, whereas VIPARS needs to use that code to 
probabilistically reason about all executions that are possible 
given the a-priori environment model information. Our 
approach considers the embedded code to be capable of 
transforming a sample from a PARS random variable, and we 
define a framework for sampling and reconstructing variable 
distributions. This approach has the advantage of verifying the 
actual preexisting, localization code that will get executed by 
the robot at run-time for the mission. It has the disadvantage 
of potentially lengthening verification times, since multiple 
samples need to be evaluated for a representative result. 

5.4.1 High-level Model Approach 
Localization starts with the odometry estimate of position 

at time step t, q(t) ~ MG. Through comparisons of sensory 
returns and the map, it refines the odometry estimate, bringing 
it closer to the actual position of the robot at time t, p(t) ~ MG.  
At any time, therefore the localization position is some 
combination of the odometry and the actual position: 

ℓ(t) = (1-k(t)) p(t) + k(t) q(t) (17) 

where k(t) [0,1] is a time varying gain with k(t0)=1.0, forcing 
localization to start with just the odometry estimate. The 
improvement of localization with time is modeled by a 
monotonic-decreasing dynamics for k: 

k(t+t)= tc k(t) (18) 

For time constant, tc [0,1], determined from calibration 
measurements of the localization algorithm to be verified. 

5.4.2 Sampling Approach 
Consider that a preexisting C++ program we want to include 
in a mission is P. A PARS process wrapper for P is built, so 

the code behaves like a ‘black box’ process Pxy. Then, like 
every PARS process, it has an associated flow function 
fP(x)=(y) which is calculated by VIPARS. However, when P 
is called, it will map one input value x to an output, y; only 
one possible execution of P, whereas verification has to check 
all possible executions. So, this approach to embedding P 
doesn’t work, but, embedded code can only be called in this 
way. 

Our approach is to define an extension to the flow function 
fP from the process/program P: the mixture extended flow 
function FP takes a random variable x as input and produces a 

random variable y as output. It samples the input distribution 
x and calls fP on the samples, and reconstructs the output 
distribution mixture p( y | x )= FP(x)  from the result. 

Definition. Let fP(x)=y be the flow-function for the code to 

be embedded in verification, defined only by executing that 

code. Let x, y ~MG(CM) be random variables over the type 

of the variables x, y which we denote T. The mixture extended 

flow function (MEF) FP is defined as follows. 

• fP: TT, where y=fP(x), for x, yT, 

• FP: MGMG, where y = FP(x), for x, yMG (where 
MG is the set of all MG), and  

• where we define y=x  

• except (yi) = fP((xi)) for all xi in x, and 

• where (yi)  is calculated as follows: 

o 'j = fP(si) for si a sample of the input xi 

o (yi)= ∑ 𝑁(𝑠𝑗 ;(x𝑖),(x𝑖)) ((𝜇′𝑗 − (y𝑖))
2

)𝑘
𝑗=1  

The MEF preserves number of members (|y|=|x|). Each mean 

is transformed directly (yi) = fP((xi)), requiring multiple 

executions of the embedded code. Finally, each variance is 

calculated by carrying out further sample executions for each 

member 'j = fP(si).  

5.5 Embedding ROS AMCL Localization 

The localization algorithm used in this paper was Adaptive 
Monte Carlo Sampling (AMCL) [33] as implemented in ROS. 
In the sampling approach, the DBN filtering engine of 
VIPARS issued requests to a ROS-based AMCL server to 
evaluate the MEF function for Localization. The interaction 
is shown in Fig. 15: Whenever the flow function for the 

 
Figure 15: VIPARS-ROS Architecture. 



Localization process needed to be evaluated on a position 
random variable, the position variable was sent from the DBN 
filtering engine (Top, Fig. 15) via a pipe to a concurrently 
running ROS system (Bottom, Fig. 15). The STDR simulator 
node was instructed to move and rotate (“move and spin” in 
Figure 15) the robot to the appropriate position, and 
localization data collected from the AMCL node. For 
simplicity, the MEF function was restricted to single member 
variables, and rather than calculating the variance by 
evaluating multiple samples, only the mean value was 
transformed and the variance calculated by convolving the 

mean with a zero-mean distribution N(0, s). This simplified 
the hysteresis issue with calling AMCL. 

5.6 Verification  

Both verification approaches were applied to both 
waypoint missions. For the high-level approach, Localization 
in eq. (16) implemented eqs. (17), (18) with the gain 
parameter tc = 0.99. This value was empirically determined 
from experimentation running ROS AMCL on a Pioneer 3-
AT robot, carrying out a series of short waypoint missions. 

  
a. Robot moving toward 

1st waypoint 

b. Robot moving toward 

2nd waypoint 

  
d. Robot moving toward 

goal location 

c. Robot after turning a 

corner 
Figure 16: Snapshots of Validation for Mission-B. 

The sample-based approach implemented the architecture 
of Figure 15 using ROS version Indigo. A third, odometry-
only version of the mission was also run through VIPARS for 
comparing with both localization methods, and determining 
whether localization was really necessary for mission success. 
No additional validation was done on the odometry-only 
version since that just replicates our prior work [1].  

The results of carrying out verification using both 
approaches with both waypoint missions was a set of 
performance graphs showing the predicted performance of the 
missions with respect to the performance criteria. 

5.6.1 Validation 
The robot used for the experimental trials is the Pioneer 3-

AT, a four-wheeled skid-steered mobile robot. The robot is 
also equipped with a forward-facing SICK laser scanner. The 
complete validation experiment consists of 50 trial runs for 
each waypoint mission respectively, which resulted in a total 
of 100 trial runs. Snapshots of the waypoint mission B are 

shown in Figure 16. For each trial, mission completion time 
and relative distance to goal on completion were measured. 

 

  
a. Mission A Spatial Criterion 

P(r≤Rmax) 

b. Mission A Time Criterion 

P(t≤Tmax) 

  
c. Mission B Spatial Criterion 

P(r≤Rmax) 

d. Mission B Time Criterion 

P(t≤Tmax) 

Figure 17: Results of VIPARS Verification and Experimental 
Validation of Spatial and Time Performance Criteria for Waypoint 
Missions A and B. Figures 17a & 17b show the V&V results of 
spatial and time performance respectively for Mission-A, where the 
results are divided into three regions based the performance 
guarantees: High Confidence (Unsuccessful), Uncertain, and High 
Confidence (Successful). Figures 17c and 17d show the V&V results 
for Mission-B. 
 

5.6.2 Comparison of verification and validation results 
Figure 17 shows the validation results of the performance 

guarantees for the two waypoint missions. These results are 
obtained with the sampling-based model of probabilistic 
localization. Figures 17a and 17c show the V&V results for 
the spatial criteria P(r≤Rmax), the probability that the robot 
arrives within Rmax radius of its goal location. Figures 17b and 
17d show the comparisons for the time criteria 𝑃(𝑡 ≤ 𝑇𝑚𝑎𝑥), 
the probability that the waypoint mission is completed under 
the time limit, Tmax. The results illustrate that the VIPARS 
verification of performance guarantees are consistent with the 
outcomes from experimental validation. The V&V results can 
be divided into three regions for further interpretation as 
before: High Confidence (Unsuccessful), Uncertain, and High 
Confidence (Successful) region. Consequently, the mission 
operator’s decision for robot deployment can be based on 
which region of the mission criteria fall into. For instance, if 
the specified performance criterion falls within the 
Unsuccessful region (e.g., Rmax=0.5m), the operator can either 
abort the mission or modify mission parameters and 
reevaluate. The overall mission success, eq. (15), is defined in 
terms of both spatial and time criteria. Thus, we examined 
further in Figures 18 and 19 the effects of various 
combinations of spatial and time criteria (Rmax and Tmax) on the 



mission success and verification error. The results can also be 
used to answer queries regarding the performance guarantee 
for a specific combination of Tmax and Rmax. Figure 18 shows 
the effects of the time criterion Tmax on the V&V results of the 
spatial criterion P(r≤Rmax) for Mission A. While the Tmax’s in 
both of its high confidence regions (Fig. 17b) have no effect 
on the verification error for P(r ≤ Rmax), Tmax’s that are in the 
Uncertain region (e.g., Tmax= 415 sec) incur significant 
verification errors. For instance, for Tmax=415 sec, VIPARS 
predicted a success probability of 0.18, while the robot was 
actually successful 76% of the time in experimental trials. 
Figure 19 shows the effects of the spatial criterion Rmax on the 
V&V results of the time criterion P(t≤Tmax). While similar 
observations can be made here as in Figure 18, in this case, 
Rmax’s have much less impact on the verification error of 
P(t≤Tmax) due to VIPARS’s accuracy in predicting the spatial 
performance of mission even in the uncertain region (as 
shown in Fig. 17a). Nonetheless, our conclusion is that 
missions with performance criteria in the Uncertain regions 
should generally be avoided. 

 

 
Figure 18: V&V of Spatial Criterion at various Tmax for Mission A 

 

Figure. 19: V&V of Time Criterion at various Rmax for Mission A 

Lastly, we have also examined the different verification 
results of VIPARS based on how the probabilistic localization 
mechanism is modeled: sampling-based and high-level 
model-based. These results are also compared in Mission A to 
the verification result for the case when only odometry 
information is used for localization. These verification results 

are shown in Figures 20-21 along with the validation result for 
Mission-A. While the verification results for different 
localization modeling approaches are comparable for the time 
criterion (Fig. 20), the performance based on the sampling-
based model is more closely aligned with the validation result 
for both spatial and time criteria. If only high-probability 
results are of interest, then the simpler and faster, model-based 
localization produces acceptable results. 

 The odometry-only Mission B was 100% unsuccessful 
during verification due to collisions. However, with the final 
waypoints moved just 15 cm, the odometry-only mission 
finishes successfully. Because a small modification enables 
the odometry-only mission to be potentially successful, it is 
also clear that localization is not always required for mission 
success. A contribution of our approach is that it is now 
possible to answer whether localization is of mission benefit 
using the performance graphs below in conjunction with the 
specific performance values of Rmax and Tmax. Being able to 
omit software modules (such as localization) can yield lighter 
and faster mission code.  

 
Figure 20: V&V of Time Criterion and Models of 

Localization 

 
Figure 21: V&V of Spatial Criterion and Models of Localization 

6 CONCLUSIONS 

If teams of autonomous robots are to undertake critical 
missions such as C-WMD missions, then it is vital to be able 
to establish performance guarantees for them. This paper 
addresses the challenge of verifying mission software for 



autonomous robots that will operate in partially known 
environments. The approach taken in this paper, and its 
predecessor [1], differs from common approaches to robotic 
software verification in two important ways: it emphasizes 
the roles of a separate but communicating environment 
model, and it eschews an explicit exploration of the state 
space of the system combined mission software and 
environment model for reasons of avoiding state-space 
explosion. This paper significantly expands [1], which 
addressed uncertainty in robot motion and sensing, by 
addressing uncertain geometry in the environment model.  

Two classes of mission were investigated: a mission 
where a team of two robots executes a coordinated set of 
motions during which they may encounter obstacles whose 
existence and location is uncertainly known in advance; and 
a robot mission in which the robot navigates a series of 
waypoints leveraging probabilistic localization. Approaches 
to representing and analyzing both mission classes were 
presented. In addition, separately collected experimental 
validation results were presented for both classes of mission 
and were compared to the results from verification. 

The comparison of experimental validation and the output 
of the verification software show the effectiveness of the 
verification framework in providing performance guarantees 
for multi-robot missions operating in an uncertain 
environment. Some of the noted discrepancies between 
verification and validation may be due to calibration 
inaccuracies but also the precision limitation from pruning 
CMG variables.  

The colored mixtures developed here may have wider 
applications. Algorithms that selectively modify mixture 
members (e.g., image background update [34], in addition to 
those discussed here) can thus easily propagate 
subpopulations of one or more members identified for later 
processing. With respect to complexity and scaling: The 
computation of s(t)~CMG just increases linearly with each 
additional obstacle (and robot), but each robot must evaluate 
its own copy. The number of members increase exponentially 
with each filtering step. In this paper, they were pruned on 
weight to a maximum number (here 10).  

The multiple robot synchronization in this paper involved 
direct and indirect (i.e., through the environment model) 
interactions. The robots directly exchanged synchronization 
messages as they completed each mission bound. Although no 
communication latency or error was modelled here, it is a 
straightforward extension to model for example, WiFi 
limitations. The indirect interaction was limited to the robots 
being able to view each other as obstacles. While this 
generalizes easily to any number of robots (the principal 
complexity is just evaluating eq. (12)) it does not model 
physical interaction between the robots such as one pushing 
the other or both physically collaborating in a task. 

The paper also addressed verification of missions with 
probabilistic localization. Two approaches to modeling 
localization were presented and evaluated: a high-level 
approach in which only position estimate improvement is 
modeled, and a sample-based approach, in which the run-time 
localization code is embedded in verification. Extensive 
experimental validation is reported for two different waypoint 

missions using localization. The sample-based approach 
yields the more accurate estimate, even for the sampling 
simplification made in this paper. While there is support for 
the intuition that localization is an asset to mission 
performance (100% failure of the non-odometry mission; 
Mission B of Section V.F); a minor modification of 15cm will 
allow the mission to be verified successful, indicating that the 
need for localization is mission-specific. 

A verification tool is only as effective as its usability [35]. 
Therefore, a key future direction for this work is the challenge 
of presenting verification results to the mission designer in an 
intuitive and effective way. A second thrust of continuing 
work is the extension and evaluation of this approach for 
missions that include a human in the loop element. 
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