
Performance Verification for Robot Missions

in Uncertain Environments1

D. M. Lyons*, R. C. Arkin‡, S. Jiang‡, M. O’Brien‡, F. Tang*, P. Tang*

*Fordham University

New York USA

dlyons@fordham.edu

‡ College of Computing,

Georgia Institute of Technology

Atlanta GA USA

Abstract— Establishing a-priori mission performance

guarantees is crucial if autonomous robots are to be used with

confidence in missions where failure could incur high costs in

life and property damage. Automatic mission software

verification, in addition to simulation and experimental

benchmarking, is a key component of the solution for

establishing performance guarantees. This component requires

automatically verifying that the software constructed by the

mission designer when executed in a partially known

environment will adhere to the performance guarantee. In prior

work we developed VIPARS, a unique approach to verifying

performance guarantees for autonomous behavior-based robot

software based on a combination of static analysis and Bayesian

networks. While that approach produced fast and accurate

verification of single robot missions with robot motion

uncertainty, it did not address multiple-robot missions or any

form of uncertainty related to environment geometry.

This paper addresses the challenges involved in building a

software tool for verifying the behavior of a multi-robot

waypoint mission that includes uncertainly located obstacles

and uncertain environment geometry as well as uncertainty in

robot motion. An approach is presented to the problem of a-

priori specification of uncertain environments for robot

program verification. Two approaches to modeling probabilistic

localization for verification are presented: a high-level approach

and an approach that allows run-time localization code to be

embedded in verification. Verification and experimental

validation results are presented for several autonomous robot

missions, demonstrating the accuracy of verification and the

mission-specific benefit of localization.

Keywords-component; Probabilistic Verification, Validation,

Multi-robot Missions, Behavior-Based Robots.

1 INTRODUCTION

1It is crucial to be able to establish an a-priori guarantee of
mission success for robots deployed in critical missions such
as counter weapons of mass destruction (C-WMD) and other
missions where failure brings serious consequences to life
and property. In other, less critical applications it is highly
desirable to have a-priori guarantees of performance to
reduce overall mission costs. In prior work for the Defense
Threat Reduction Agency (DTRA) [1], we have developed
an approach to automatic verification of performance
guarantees for autonomous behavior-based robot mission

1 This research is supported by the Defense Threat Reduction

Agency, Basic Research Award #HDTRA1-11-1-0038

software operating in uncertain environments. We developed
a unique combination of static analysis and Bayesian
networks for efficient and automatic verification of
performance guarantees for missions developed in the
MissionLab [2] robot mission design toolkit, and
demonstrated by experimental validation that the approach
produced trustworthy results. While that work detailed the
foundation of the approach, it only addressed the single-robot
scenario, and it assumed operation in an open space, with no
unexpected obstacles. This paper leverages that prior work
[1] to also address the challenges of automatic verification of
performance guarantees for single and multi-robot missions
in environments with uncertain geometry.

Verification of robot software is related to general purpose
software verification in its objective of taking a program as
input and automatically determining whether that program
achieves a desired objective or not [3]. It differs in that a robot
program continually interacts with its uncertain and dynamic
environment – which therefore must be included as part of
the verification problem. In fact, this is rarely done in robot
program verification and was one of the novel contributions
of our prior work [1]; so, rather than addressing
computational verification problems such as absence of
deadlock or absence of run-time errors [4] [5] (important, but
typically addressed in software verification), we have
focused on establishing performance guarantees for the
mission software with a complex and uncertain environment
model. Also, like [6], we have focused on verification of
behavior-based autonomous robots, a modular approach
capable of robust performance in uncertain environments.

One contribution of this paper is an approach to the
problem of a-priori specification of uncertain environments
for robot program verification, in particular, to specifying an
environment which may or may not contain obstacles with
locations specified probabilistically. A consequence of this
environment model is that verification must consider variable
values that result from the robot encountering an obstacle at
some location with some probability and not encountering the
obstacle there. Therefore, a second contribution is a novel
method to extend the Bayesian Network formulation of [1] to
reason about random variables with different subpopulations.

We also apply our technique to a behavior-based robot
program that includes probabilistic localization using the
Adaptive MonteCarlo Localization algorithm (AMCL)

running under ROS [7]. This the first time, to our knowledge,
that a formal V&V method has been applied in this way.
Verification of this application is challenging because it
absolutely requires an environment model, separate from,
and interacting with, the behavior-based software. The model
has to include the physical location of the robot, the geometry
of the map, and the relationship between these and the sensor
measurements. A third contribution of the paper are models
to include localization in the verification process: a high-
level, idealized model and a model for including specific
localization (or any probabilistic) software.

An important aspect of our work has been backing up our
verification results by extensive, experimental validation.
Rather than just presenting the results of verifying mission
software for all the missions in this paper, we compare these
verification results with performance statistics from
experimental validation trials.

The next section reviews the literature in verification of
robot software. Section III is a sufficient review of the
foundational material from [1] as a basis for the new
contributions. Section IV addresses a multi-robot mission
that may encounter obstacles, while Section V presents and
compares two approaches to verifying a mission with
probabilistic localization software. In each case,
experimental validation is used to demonstrate that the
verification results are consistent with real performance
statistics. Section VI summarizes and discusses our novel
contributions and future work.

2 LITERATURE

Formal verification can be used as a design tool to
determine whether a piece of robot software will function as
desired without having to execute the software physically. The
field has made significant strides in recent years with the
development of model-checking [3] and SMT engines [8].
However, formal verification can at best produce an
approximation of robot performance, due to the undecidability
of the underlying verification problem. A crucial issue in
selecting a verification approach is to understand what aspects
of the robot software problem to focus on and how to leverage
these to yield efficient automatic verification tools.

 Behavior-based robot programming is an important
design approach in autonomous robotics because it yields
programs that are robust to uncertainty about exactly what
environment the robots will face during execution. For this
reason, verification of behavior-based robot programs is being
addressed by some researchers, e.g., [6] [9] [10], and we also
focus on that approach here.

Many robot software verification papers do not include
any model of the environment in which the mission is carried
out, verifying properties of the software itself such as absence
of deadlock or run-time errors [4] [5]. Such an approach might
verify that a robot never issues a collision velocity, but not that
a robot might roll or be mistakenly pushed into an obstacle –
actions that only take place within the environment model. Or
it might verify that a bomb-disposal robot has snipped the
power wire (the robot’s action), but not that the bomb itself
has not exploded (a function of the separate state of the bomb).

In some cases, the properties to be verified are used
themselves to implicitly express the designer’s knowledge
(or expectation) of environment dynamics [11]. A simple
example of this is assuming that testing for a motor stall is
the same as testing for a collision. This informal approach is
an error-prone way to capture environment dynamics; a stall
might be caused by factors other than a collision.

Some of the most recent verification work does include
environment models: The UK EPSRC-funded project on
Trustworthy Robotic Assistants proposed representing
unstructured environments using the Brahms [12] agent
modeling language; however, while this does model
environment dynamics, it does not address the crucial issues
of motion and sensing uncertainty. These uncertainties can be
the difference between success and failure for a critical
mission. The latter was identified in [5] as one of the key
‘lessons learned’ in applying standard formal techniques to
robot missions. Fisher et al. [13] address the difficulty of
specifying a-priori conditions by verifying the robot’s belief
rather than its actual behavior. However, the robot’s belief
may not correspond to what actually happens. In an alternate
approach, Guo et al. [14] and Sarid et al. [15] both iteratively
produce a correct by construction program as uncertain
information becomes known. However, it’s not possible with
that approach to verify the program in advance.

A common approach to verification is to manually
implement the algorithm to be verified in a formal framework.
For example, in Proetzsch et al. [16] the robot software to be
verified is written in the verification language Quartz. Kim et
al. write their robot software to be verified in Esteral [11]. Of
course, this reimplementation may not represent the actual
software; Published descriptions, even for widely known
algorithms, have been shown to contain errors [17]. It also
means that verification requires a huge investment of expertise
and manpower to rewrite existing robot software into the
verification framework [11]. We take a different approach:
Mission designers work directly in the MissionLab design
toolkit, and their software can be automatically translated to
PARS [18] for verification – they never have to deal with the
formal framework themselves and just use their regular tools
for robot mission construction.

Kiekbusch et al. [6] address automatic verification of
behavior-based software in their iB2C framework. As with our
MissionLab approach, their software is automatically
translated to a verification framework – a set of finite state
automata for model-checking. They also provide some
environment modelling in the form of scenarios which are
specific configurations of the environment for testing
purposes. However, due to the state explosion problems of
their model-checking tool, they can only verify binary
behavior activation conditions such as whether an obstacle
avoidance behavior is active, rather than the actual motions of
the robot in response to the obstacle. They do not represent
uncertain information and simply list the scenarios they wish
to test against.

Generally-related work to ours also includes correct-by-
construction methods for teams of robots, and verification
and validation of planning and scheduling systems. The
former focus on automatic synthesis [19], not verification, of

a program. In the latter, where a domain model is used to
make a plan or schedule to achieve a high-level goal,
“experience has shown that most errors are in domain
models” [20] – which can only be checked if a separate
environment model is included in verification. The work
reported in this paper addresses verification using an explicit
uncertain environment model.

3 DESIGNING ROBOT MISSIONS WITH VERIFICATION

This section briefly reviews the material from [1] as a basis
for a standalone, self-contained presentation of the new
contributions in this paper. The first subsection is an
overview of the programming toolkit for designing robot
mission software, MissionLab, and the way in which
automatic verification is added to this toolkit. The next
subsection introduces the formal framework PARS (Process
Algebra for Robot Schemas) used in verification. The final
subsection reviews the verification framework itself, a
combination of static analysis and Bayesian networks.

3.1 Mission Design

MissionLab is a usability-tested [21] graphical programming
toolkit for robot missions, including graphical editor, mission
simulation and execution logging capabilities among others.
The mission designer constructs the mission using
MissionLab, as shown in Figure 1.

Figure 1. MissionLab/VIPARS System Architecture.

The VIPARS (Verification in PARS) [1] module is
designed to work with MissionLab and provide a
performance verification functionality. VIPARS module
inputs include:

• the mission program, as designed in MissionLab’s
CfgEdit graphical interface;

• a set of designer selected library models of the robot,
and sensor systems;

• the mission operating environment; and,

• the mission performance criteria.

A mission designer could, for example, construct a single-
robot, waypoint mission, indicate that it will take place in a
moderately-cluttered warehouse environment, and that it will
be performed by a Pioneer 3-AT robot equipped with sonar
and gyroscope. She could then choose performance criteria
that fit the mission (for example, that the robot moves within

at least 0.1 meters of each waypoint and finishes all
waypoints in under 100 seconds). She can then use VIPARS
to verify whether or not the mission will always meet this
performance criterion with some given threshold probability.

Prior to the VIPARS module, the mission software is
automatically translated to PARS [18] a formal, process-
algebra language. The library models of Pioneer 3-AT, sonar
and gyroscope, and moderately cluttered indoor environment
are then combined with the mission software to generate a
single PARS system which will be analyzed for the
performance guarantee. Our intent is that these robot, sensor
and environment models are used, but not constructed, by the
mission designer; they are built in PARS as probabilistic
process models parameterized with robot and sensor
calibration data and provided to a designer with the
verification module.

VIPARS verifies whether the mission software will
achieve the specified performance criteria (typically spatial
and temporal constraints) using the selected robot/sensors in
the selected operating environment. It also generates
predicted performance information that can be used by the
designer to either improve the system performance or abort
the mission to avert catastrophic failures. The verification
component supports an iterative cycle for designing high-
performance robot behavior for critical missions.

3.2 PARS

PARS is a process-algebra designed for the purpose of
representing robot software, and the robot, sensor and
environment models with which the software interacts. The
algebraic syntax facilitates developing static analysis
algorithms (algorithms that analyze programs without
executing them) to identify the interactions between the robot
program and its environment. Although PARS was designed
for representing robot programs, and in particular robot
schemas style, behavior-based programs [22], in fact it shares
many characteristics with other process algebras such as CSP
[23] and LOTOS [24] and has an operational semantics
defined using port automata [25]. As such it could be used to
represent any programs, and any robot programming style.
However, our more specific results are focused on behavior-
based programs because they have a structure that can be
leveraged to address efficient verification.

Figure 2: (a) PARS Process; (b) process network (from [1]).

Figure 2 shows the PARS model of a process and process
network. A process 𝑪 (Figure 2(a)) is written as:

𝑪〈𝒖𝟏, … , 𝒖𝒏〉(𝒊𝟏, … , 𝒊𝒋)(𝒐𝟏, … , 𝒐𝒌)〈𝒗𝟏, … , 𝒗𝒎〉 (1)

where u1,…,un are the (finitely many) initial variable values
for the variables of the process, i1,…,ij and o1,…,ok are input

and output port connections, respectively, and v1,…,vm are
final result values generated by the process.

Processes are either atomic or composite. A process is

defined as a composition of other processes as follows:

<processdef> ::= <process> ‘=’ <processexpr>

<processexpr> ::= <processeq> ‘|’ <processeq> |

 <processeq> ‘#’ <processeq>

<processeq> ::= <processexpr>‘;’<processexpr> |

 ‘(‘ <processexpr> ’)’ |

 <processname>

Where ‘|’ denotes parallel composition (parallel max), ‘#’
disabling composition (parallel min), and ‘;’ denotes
sequential composition, and where <process> and
<processname> are a bolded capital letter or word.

For example, the parallel composition:

S = C(c1)(c2) | E(c2)(c1)

specifies two parallel processes C and E as shown in Figure
2(b), with the input and output ports connected
correspondingly. The labels c1 and c2 are called port
connection labels and their purpose is to specify the
connection map between the ports of the parallel processes.

Each process that terminates can terminate in either a stop
or an abort condition. There is no separate ‘choice’ operator
in PARS. However, a process that evaluates a condition c is
defined to terminate in a stop status if c and in abort if not c.

A sequential chain of processes, such as Eqx,y ; P,
terminates for the first process in the chain that has a

termination condition of abort (e.g., if xy, P is not reached
because Eq aborts).

Repetitive computation (e.g., loops) is modelled by a tail-
recursive (TR) process definitions, written for example:

𝐏〈𝑥〉 = 𝐐〈𝑥〉〈𝑦〉 ; 𝐏〈𝑦〉
(2)

Eq. (2) defines a process P that repeats process Q until Q
aborts, at which point P terminates, returning its results. In
this example, the process Q is the body of the TR process,
similar to the body of a loop.

A flow function fP(u1,u2,…,un)=(v1,v2,…,vm) is associated
with each 𝐏, mapping the values of the variables of 𝐏 at the
start to those at the end. The flow-function for atomic
processes are specified a-priori, and those for a composite
process can be built up from the flow functions of its
components, e.g., for 𝐓〈𝑥〉〈𝑧〉 = 𝐏〈𝑥〉〈𝑦〉 ; 𝐑〈𝑦〉〈𝑧〉 we can
say fT(x)= fR  fP(x) if P does not abort. Static analysis
algorithms to calculate flow functions play a key role in
VIPARS verification.

3.3 Verification in PARS (VIPARS)

The robot mission software is converted to PARS [18] and
combined with the PARS definitions for the robot, sensor and
physical environment models (selected by the user)
producing a parallel network Sys of communicating

2As a verbal shortcut, we will include the models of the robot, and

sensors in the term environment model.

processes. For example, a robot controller Ctr with variable
r1, and an environment model2 Env with variable r2, would
be written as:

Sysr1,r2 = Ctrr1(a)(b) | Envr2(b)(a) (3)

In the example of eq. (3), the input of Ctr (sensor signals)
is connected to the output of Env, (a), and the input of Env
is connected to the output (control signals) of Ctr, (b), similar
to the process network in Figure 2(b). If eq. (3) were a
sequential composition like eq. (2) then we could extract flow
functions for the combined interaction of controller and
environment and use this function as the basis for verifying
all possible executions of the system. However, the addition
of port communication complicates the relatively simple
definition of flow functions! The flow function associated
with a process no longer just depends on the variables of that
process, but could depend in a complex way on variables and
computations of other parallel processes. To address this, a
constraint on the form of parallel compositions is leveraged,
namely that all processes are written as tail-recursive (TR)
processes. This does not restrict what can be computed but
allows us to propose a special static analysis approach to
efficiently verifying all possible executions of a behavior-
based systems.

In behavior-based robot software, such as that produced
by MissionLab, sensory information is continually being
inspected to determine which behaviors should be activated
and how to parameterize them. The software is looking for
affordances in the environment that will further the objectives
for the mission – as a simple example: moving towards goal
locations, but away from obstacles. The intuition is that a
behavior-based system has behavioral ‘states’ each with an
associated set of sensory triggered responses.

This is modeled here as a parallel composition of TR

processes representing ongoing behaviors or the monitoring

of affordances. When a behavior terminates or when an

affordance is detected, additional behaviors or affordance

monitoring may be added to the parallel composition.

Leveraging the TR structure, an interleaving theorem3 is

presented in [1] to convert processes of the form of eq. (3) to

a sequential form as shown in eq. (4) below. The intuition

here is that the set of TR process bodies can be composed into

a single system TR body called the system period, shown as

the process Sys’ in eq. (4), and similar to the concept of a

hyper-period4 in process scheduling.

Sysr1,r2

= Ctrr1(a)(b) | Envr2(b)(a)
= Sys’r1,r2r’1,r’2 ; Sys r’1,r’2)

 (4)

fSys (r1,r2) = (fSys,r1 (r1,r2), fSys,r2 (r1,r2))

 = (r’1, r’2)

(5)

A static analysis algorithm Sysgen was developed based

on this interleaving theorem to construct the system period,

Sys’ in eq. (4), given the processes, connections and

3 In process algebra, an interleaving theorem relates the sequential

and parallel composition operations.
4 The LCM of all the task periods in a scheduling problem.

communications in Sys. This construction reduces the state

explosion of all orders of a set of parallel processes to the

single interleaving of the system period.

Once Sysgen analysis is complete, a system flow function

can be extracted from Sys’. In the small example of eqs. (3),

(4) above, the function extracted is shown in eq. (5). This is

a recurrent function that evaluates the new values for r1 and

r2 as computed by the interactions between Ctr and Env in

each execution of the system period Sys’.
Process variables, such as r1, r2 in the example above, can

be random or deterministic variables. Typically, mission
software variables are deterministic. However, variables in
robot, sensor and environment models can be random to
represent uncertainty associated with their values. To include
both random and deterministic cases, flow functions, which
relate variable values at recursion step i of Sys’ to those at
i+1, can be written as conditional probabilities, e.g.:

fSys,r1 (r1,t ,r2,t) = P(r1,t+1 |r1,t , r2,t)
 (6)

In the final phase of VIPARS processing, extracted flow

functions are converted to conditional probabilities. Random

variables are represented as multivariate Mixtures of

Gaussians, and operations on random variables are

automatically translated by VIPARS into operations on

distributions [26]. These are then the basis of a Dynamic

Bayesian Network (DBN) [27] used to carry out forward

propagation of probability distributions, to determine

whether the combination of controller and environment will

meet a performance specification.

Although [1] discusses more complicated performance

guarantees, we will typically restrict our attention to the

guarantee that a mission will achieve some criterion on

environment variables (usually a spatial accuracy for a

waypoint goal and/or a temporal requirement for achieving

the mission) with probability greater than a threshold before

a time-limit. We demonstrated that this approach is fast and

accurate when validated against physical executions (most

recently [28]).

4 MULTIROBOT MISSION WITH UNCERTAIN OBSTACLES

Bounding overwatch is a military movement tactic used by
units of infantry to advance forward when crossing dangerous
areas [29]. In the first mission we will address, a team of two
robots will use this strategy to move stealthily inside a
building to search for biohazards which may be guarded by
hostile forces and in which they may encounter obstacles
along their route.

Figure 3 shows the bounding overwatch mission where
two robots coordinate their movements in a “leapfrogging”
manner while advancing toward a biohazard. Robot2 begins
by bounding toward O1, the first Overwatch position. When
it reaches O1, a “Cleared” message is sent to Robot1
indicating that it is safe to proceed. Robot1 then bounds to
O2 and sends the “Cleared” message to Robot2, and so on.
The mission ends with Robot2 at O7, near the biohazard. The
operating environment of this mission includes some
obstacles whose existence or exact locations are not known

with certainty in advance; if they are present, the obstacles
will be within the locations illustrated with dashed circles
shown in Figure 3. This lack of a-priori certainty about the
environment geometry is a challenge for verification in
efficiently representing and checking all the potential
obstacle-related motions of both the robots.

Figure 3. Bounding Overwatch with Two Robots:
Map (top), Operating Environment (bottom).

4.1 Bounding Overwatch Mission

The behaviors of Robot1 and Robot2 are specified
graphically in MissionLab as behavioral finite state automata
(FSAs). Each behavioral FSA consists of the following
behaviors:

• GoToGuarded: Move to a waypoint while avoiding
obstacles;

• NotifiedRobots: Send a “Cleared” message to the
other team members;

• Spin: rotate the robot;

• Stop: mission concluded;

• AtGoal: sensory trigger for arrival at location;

• HasTurned: sensory trigger for arrival at orientation;

• Notified: sensory trigger for “Cleared” message;

• MessageSent: sensory trigger for message sent.

The behavioral FSA of triggers and behaviors for Robot1
is shown in Figure 4 and that for Robot2 is similar.

The behavioral FSA is translated to a MissionLab internal
language called CNL [2] and a translator from CNL to PARS
[18] produces a process model of the program which includes
detailed specifics of all the behaviors and triggers. The

following performance criteria are used to evaluate this
mission performance:

Success = (r1≤Rmax) AND (r2≤Rmax) AND (t ≤Tmax) (7)

Where r1 and r2 are Robot1’s and Robot2’s relative distances
to their respective goal and t is the mission completion time,
where Rmax is the success radius, and Tmax is the maximum
allowable mission time. The bounding overwatch mission is
only considered successful when both robots are within Rmax
radius of their respective goal locations and when they
complete the mission under Tmax seconds.

Figure 4. Behavioral FSA for Robot1.

4.2 Robot Motion Model

In [1] we presented a PARS robot process model Robot

with motion and position sensing uncertainty.

Robotp, a, s  = (Delay  # Odop # Atr1, p ) ;
 (Ind  h  # Inv  s ) ;

 (Ranh z  | Ranv w ) ;

 Robotp+(h+z)*(s+w)* t, a, s .

Odor  = Ran  e  ; Out p, r+e ; Odor .

Robot accepts a unit vector heading input on port d or a

speed in the direction of the heading on port v. The process

Atr1, p  represents robot r1 at location p. The process Odo

(Odometry sensor) makes position information (with noise e

~ ) available in a loop on port p until terminated by Delay.

The new position of the robot is calculated as the old position

p incremented by a speed s with added noise w in the direction

of the commanded heading h with added noise z. The

odometer position is the actual position with added noise e.

The actuator and odometer noise (the variables z, w, and e)

are characterized by the distributions for speed, heading and

sensor noise, e.g., h = N(h,h), v = N(v,v), and  =

N(m,m). The flow function for the position variable of the

robot model, with operations on random variables translated

to operations on distributions, is

pt+t = pt  (h  ht+t)  (st  v) * t,

where ‘’ denotes convolution.

The robot model used in this paper follows this same

structure but is more detailed in its representation of the

motion uncertainty. The new robot position distribution pt+t

is calculated as the old position distribution pt convolved with

st+t ht+t t - a nominal change at speed st with heading unit

vector ht for time t and a motion uncertainty term. The latter

is a convolution of a translational TX, rotational TR and

skitter TS uncertainty component:

𝑇𝑋(𝑠𝑡+∆𝑡 , ℎ𝑡+∆𝑡) = 𝑋 ∙
𝑠𝑡+∆𝑡

𝑠𝑘
∙ 𝐻(𝑠𝑡+∆𝑡 − 1) ∙ 𝑅(ℎ𝑡+∆𝑡) ∙ ∆𝑡

𝑇𝑅(𝑠𝑡+∆𝑡 , ℎ𝑡 , ℎ𝑡+∆𝑡) = 𝑈 ∙ |ℎ𝑡 − ℎ𝑡+∆𝑡| ∙

 (2𝐻(𝜃𝑡 − 𝜃𝑡+∆𝑡) − 1) ∙ 𝑅(ℎ𝑡+∆𝑡) ∙ ∆𝑡

𝑇𝑆(𝑠𝑡+∆𝑡 , ℎ𝑡 , ℎ𝑡+∆𝑡) = 𝑊 ∙ |ℎ𝑡 − ℎ𝑡+∆𝑡| ∙ 𝐻(1 − 𝑠𝑡+∆𝑡) ∙

 (2𝐻(𝜃𝑡 − 𝜃𝑡+∆𝑡) − 1) ∙ 𝑅(ℎ𝑡+∆𝑡) ∙ ∆𝑡

where

• X, U and W are robot specific bivariate normal

distributions calibrated by multiple measurements over a

range of distances and angles for each robot at

calibration speed sk
.

• R(h) is an operator that rotates a bivariate distribution by

the unit vector h.

• H(x) is the Heaviside step function.

• t is the angle of heading unit vector ht.

In summary, the flow function for the position distribution

𝑝𝑡+∆𝑡 is now:

𝑝𝑡+∆𝑡 = 𝑝𝑡 ∙ (𝑠𝑡ℎ𝑡+∆𝑡∆𝑡) ∙ (𝑇𝑋 ∙ 𝑇𝑅 ∙ 𝑇𝑆) (8)

4.3 Multiple Robots

This mission uses two robots, and the two robots interact

directly to synchronize their motion (Figure 4) and indirectly

as physical obstacles to each other. Multiple robots are added

to the environment model by creating extra instances of the

Robot process, each with unique X, U and W calibration

distributions measured by calibration experiments on a

physical robot. Each robot process has its own input and

output ports through which the mission software can

communicate. No extension to the process algebra model was

required to handle the multiple robot case.

The direct communication between the robots is modelled

for verification by a simple, centralized communication

structure. The Notify and MessageSent behaviors map to port

read and write commands from the PARS translation of

Figure 4 (and its equivalent for Robot2) to a single

communication process Comm. No message transmission

latency or error was modelled for this example.

4.4 Uncertain Geometry Model

Since the geometry of the environment is not completely
known in advance, we construct a probabilistic model that
includes whatever a-priori information there is. One way to
generate such a model is as shown in Figure 5: Several spatial
locations along the mission are annotated a-priori as being

potential obstacles; this is the approach we will take in this
mission. Another approach would be to use the map output
from probabilistic mapping software that has been used to
measure the environment – we will take that approach in a
later section. Of course, both approaches could be combined.

For this mission, the physical environment is modeled as a
collection of isotropic bivariate Gaussian mixtures: Figure
5(a) shows a mixture of 8 members modelling a rectangular
2D obstacle. Figure 5(b) shows the model with 16 members.

(a) (b)
Figure 5. Modelling geometry with bivariate Gaussian mixtures.

The GoToGuarded behavior in MisssionLab is translated
to the process network shown in (9) which implements its
behavior:

Coop 1,1,1 (vg, vo, vn)(v) |

Move_to PO,G3 (pR)(vg) |

Noise ns (pR)(vn) |

Avoid_Obstacles r (pR,obR)(vo)

 (9)

The Avoid_Obstacles process inputs robot position (through
connection pR) and any sensed obstacles (on obR) and
generates a potential-field based avoidance velocity output
(vo) [22]. Move_to generates a velocity towards a waypoint
G3 (vg) and Noise generates a small velocity perturbation to
escape potential minima (vn). The Coop process combines all
three vectors into a single command velocity (v) with equal
weights (1,1,1).

In execution, the input and output of these processes
correspond to the connections of GoToGuarded with the real
robot and its sensors, and through these, with the actual
execution environment. However, in verification, this
information is provided instead by robot, sensor and physical
environment models selected by the user. For this mission,
these are shown below:

RobotP0, ∆𝒕, 𝝋  (v)(pR) |

SensorsS0, sr, sn (pR, pE)(s) |

GeometryE (pR, pR2)(pE)

(10)

The Robot process takes a velocity command (on v) and
generates a new position distribution (on pR) according to (8)
and where 𝑝𝑡 , 𝑣𝑡 ~ 𝑀𝐺(𝑀𝑝) are modeled as mixtures of

bivariate Gaussians representing the 2-D location and
velocity of the robot. The Sensors process calculates what
obstacle locations will be sensed by the robot, implemented
as follows:

SensorsS0,sr,sn (pR,pE)(obR) =

 InpRp ; InpEe ;

 (Gtr d(p,e), srp1 ; OutobR, p1 |

 Lte d(p,e), srp2 ; OutobR, sn+p2 );

(11)

 SensorsS0, sr, sn .

The robot position (on p) and geometry (on e) are inputs
from whatever Sensors has been connected to - in this case,
the Robot process and the Geometry process. Geometry
continually adds the latest position distributions for both
robots to the static geometry distribution (obstacles) and
transmits this to the Sensors process (e). This approach
handle the indirect interaction between robots, and it
generalizes linearly to any number of robots.

The distance function d(p,E) calculates what portion of the
environment is within the sensor range (sr). The procedure
for determining potential collisions and sensor feedback
involves computing the Bhattacharyya Coefficient [30]
between robot position and the geometry distribution. This
coefficient measures the amount of overlap between two
multivariate normal distributions as follows:

𝑩𝑪(𝑵(𝝁𝟎, 𝚺𝟎), 𝑵(𝝁𝟏, 𝚺𝟏))

 = 𝐞𝐱𝐩 (−
𝟏

𝟖
(𝝁𝟎 − 𝝁𝟏)𝑻𝚺−𝟏(𝝁𝟎 − 𝝁𝟏)) √

√|𝚺𝟎||𝚺𝟏|

|𝚺|

𝒘𝒉𝒆𝒓𝒆 𝚺 =
|𝚺𝟎||𝚺𝟏|

𝟐


(12)

d(p,e) generates a bivariate distribution with members
corresponding to the joint probabilities between the members
of the p and e variables. The result of sensing (obR) is this
distribution (convolved with a sensor noise distribution (sn)).

4.5 Conlicting Hypothesis Histories

The flow functions automatically extracted by VIPARS
from the GoToGuarded network (9) connected to the
environment model (10) include the effects of condition
processes (such as Gtr and Lte) and can be written in terms
of the Heaviside step function H(.) and unit vector u(.).
Operations on variables (e.g., addition) are translated to
equivalent operations on distributions (e.g., convolution).
The following are among the flow functions extracted and
just come from the definition of the GoToGuarded behavior:

fvo(s, p) = r - H(r – sot)sot,

fvg(p, g) = u(pt – g)somax

fv(vo,vg, vn) = vo· vg· vn

(13)

The obstacle velocity (vo in (9)) is specified by fvo as linearly
proportional to the distance to the obstacle r – sot but at most
r if there are obstacles seen. The goal velocity fvf is a fixed
velocity smax in the direction of the goal u(pt – g). (In fact,
there is a ramp-down to the goal, omitted here for simplicity.)
The final velocity is just the convolution of the noise, obstacle
and goal velocities (the result of Coop in (9)).

(a)

(b)
Figure 6. Example of Obstacle Avoidance.

pt

sot

g pt+t

Consider the example shown in Figure 6: At some time t,
the position (pt, a single member distribution) is close enough
to a sensed obstacle sot that an obstacle repulsive velocity
(vo) is generated in addition to the velocity towards the goal
(vg) (Figure 6(a)). The portion of the position distribution that
resulted in no obstacle detection (p1 in (11)) should be
convolved with just a forward velocity; the portion that had
obstacle detection (p2) should be convolved with both
forward and repulsion (Figure 6(b)), capturing both potential
outcomes.

In fact, however, there is insufficient information in the
random variable model used by VIPARS to correctly
represent this situation. During forward propagation of
probability by the DBN, the information of sensor returns
where collisions are predicted becomes separated from the
information about which robot locations generated those
returns. Informally: the pt mixture could be considered as a
weighted collection of (Normal distribution) hypotheses for
the robot position. The sensory data is generated from this
list, but the correspondence between a sensory data mixture
member, which originates from sot, and the hypotheses in pt
that generated the member can be complicated:

1) If the geometry g is a multimodal distribution (almost
certainly would be), then each member of pt will
generate at least many modes within sot due to (11).

2) The conditional nature of fvo (i.e., the step-function)
means that not every member of sot generates a
repulsive velocity (e.g., because it’s too far away).

3) The final, convolution for fv in (13) will apply goal
and repulsion velocities to all position modes, not
just the ones as shown in Figure 6.

4.6 Colored Mixture of Gaussians (CMG).

The solution to this dilemma is to allow subpopulations of the
location variable to be tagged, and for this tag to be
propagated to the sensing distribution, so that it becomes
clear how the sensing relates to position. The mixture
representation for random variable is extended as follows.

Definition. A colored mixture of Gaussians (CMG) is a
mixture of Gaussians distribution in which each mixture
member (mode) is tagged with a color label. If a ~ CMG(CM),

for CM={(i, i, wi, ci) | i  1…m} the set of the mixture
parameters (means, variances weights, and colors

respectively), then ai will refer to N(i, i,), w(ai)=wi and
c(ai)=ci. The mixture size is written | a | = m. A CMG is
evaluated at a point x in the usual way as CMG(x ; CM):

𝑪𝑴𝑮(𝒙; {(𝝁𝒊, 𝚺𝒊, 𝒘𝒊, 𝒄𝒊) | 𝒊 ∈ 𝟏, … , 𝒎}) =

 ∑ 𝒘𝒊 𝑵(𝒙; 𝝁𝒊, 𝚺𝒊),𝒎
𝒊=𝟏 ∑ 𝒘𝒊

𝒎
𝒊=𝟏 = 𝟏

(14)

The color tags allow related subpopulations of the CMG to
be similarly transformed. Operations on random variable can
now be converted to color-respecting operations. A color-
respecting convolution operation in fv of (13) can be defined:

Definition. The color respecting convolution r = p q, r,
p, q ~ CMG is defined using the notation of the CMG

definition as: ri = pj * qk  c(pj) = c(qk) with weights w(ri)
adjusted accordingly.

As an example, let pt have two members, p1 and p2, and if
there are two members of the geometry distribution, o1 and
o2, then sot will have four members, two with c(p1) and two
with c(p2) transformed by the (unimodal) sensor uncertainty
distribution (sn). The color respecting convolution operation
in fv (13) will result in four velocity members: one for vg and
one for the sum of vg for p1 plus the sum of the two vo with
color(p1), and two similarly for p2. If the step function in fvo
trims members from sot, the members of vo and vg can still be
correctly matched by color.

With this modification to the random variable framework
of VIPARS – namely, the addition of color tags to the
multivariate mixture model, and the extension of random
variable operations (not just convolution) to respect color –
the uncertain geometry model can be used to verify
multirobot missions that include obstacle avoidance
strategies. The next section presents evidence for this.

4.7 Verification and Validation

The Overwatch mission presented in Subsection A is verified
using the modified CMG filtering and the verification results
experimentally validated in this section. In the interest of
providing more than just a binary verification result, VIPARS
produces a graph of the probability of mission success versus
time (Time Criterion graph) and graph of the probability of
final positional accuracy (Spatial Criterion Graph).

4.7.1 Mission Validation
Each validation run consists of real robots carrying out the

Overwatch mission. The operating environment of the
mission is an indoor lab environment with tile floor. The
biohazard is represented by a red bucket marked with the
biohazard symbol. The obstacles are green trashcans with
radii of approximately 0.25m. The dashed circles in Figure 3
represent the potential locations of the obstacles. The number
of obstacles (i.e., 1 to 3) and their locations are varied for each
validation run, to reflect the uncertainty of their presence in
the environment. At the end of each validation run, the
following measurements relating to the performance criteria
Rmax and Tmax are recorded:

1. r1 – Robot1’s relative distance to its goal location;

2. r2 – Robot2’s relative distance to its goal location;

3. t – Mission completion time.

The complete validation experiment consists of 100 trials
(calculated to cover all obstacle locations uniformly). The
result of the validation experiment is compared to the
verification result in the following subsection. These two
results were generated without knowledge of each other and
only compared after each was completed.

4.7.2 Comparison of verification and validation results
Besides generating accurate results, how to present
verification results (i.e., performance guarantees) to the
mission designer is also an important research question. We
present a preliminary representation that consists of two
steps: 1) define performance guarantee as the probability of
success (i.e., the probability of meeting a performance
criterion) and 2) divide the success probability into
confidence regions.

Figure 7 shows the verification and validation spatial
criteria for this mission as the probability that both robots are
within Rmax radius of their respective goal locations
P(r1≤Rmax, r2≤Rmax) versus Rmax. The graph has three regions
based on VIPARS verification: 1) High Confidence
(Unsuccessful), 2) Uncertain, and 3) High Confidence
(Successful). The High Confidence (Unsuccessful) region is
where VIPARS predicts a zero probability of success,
informing the operator that she should abort the mission or
modify mission parameters (e.g., use different robots) if the
verification result is in this region. The High Confidence
(Successful) region is where VIPARS guarantees success
with probability 1.0.

Figure 7. Verification vs. Validation of Spatial Criterion
P(r1≤Rmax,r2≤ Rmax).

Figure 8: Verification vs. Validation of Time Criterion P(t≤Tmax).

The mission operator has a special interest in this region
since she expects the robots would get it right the first time
for mission requirements (e.g., Rmax) within this region. The
region between High Confidence (Unsuccessful) and High
Confidence (Successful) is defined as the Uncertain region,
which corresponds to the region where the values of the
VIPARS’s mission success probability are between 0 and 1.0.
In this region, the robots are not guaranteed to get it right the
first time. Although both verification and validation curves
are shown on Figures 7 and 8, only the verification curve is
used to define these regions.

Figure 8 shows the verification and validation (performed
over 100 trials as described) for the time criterion as a graph
of the probability that the mission completes by t, P(t≤Tmax)
versus t. The graph is again divided into the three confidence

regions. We observed that most of the discrepancies between
verification and validation are within the Uncertain region.
The region is relatively small, and both validation and
verification curves rise sharply, indicating that the boundary
of 0% successful and 100% successful is relatively sharp.

We also observed some discrepancies outside the
Uncertain region, near its boundaries. Ideally, all the errors
should be within the Uncertain region. However, the errors
between the verification and validation success probabilities

outside the Uncertain region are actually 0.01 (i.e., within
~1.01% error). At the boundary between Uncertain and High
Confidence regions, VIPARS predicts a success probability
of 1.0 while the actual experimental validation had a success
probability of 0.9901, which resulted in a verification error of
0.0099. So, it is still justified to have a high confidence of
mission success in the uncertain region since the
experimental validation has a success probability of 0.99 and
higher.

a) Experimental Validation b) VIPARS Verification

Figure 9: Validation (a) and Verification (b) of
Overall Mission Success P(r1≤ Rmax, r2≤ Rmax, t≤ Tmax).

We have examined individual performance criterion
separately thus far. However, the overall mission success was
defined in terms of both spatial and time criteria. Figure 9
shows the verification and validation of the performance
guarantee for the overall mission success, P(r1≤Rmax, r2≤Rmax,
t≤Tmax), the probability that the bounding overwatch mission
is completed under the time limit Tmax and both robots are
within Rmax radius of their respective goal position. The effect
of different combinations of performance criteria values is
further examined in Figures 10-11. Figure 10 shows the
verification and validation of the time criterion, P(t≤Tmax), at
various fixed values of the spatial criterion, Rmax. We
observed that Rmax in both high confidence regions (i.e., Rmax≤
0.5m and Rmax≥2.0m, Figure 6) has no effect on P(t ≤ Tmax).
However, Rmax in the Uncertain region (e.g., Rmax= 0.8m,
1.0m, 1.2m) has significant impact on P(t≤Tmax). Specifically,
P(t≤Tmax) plateaus at different probability values for different
Rmax’s in the Uncertain region. For instance, for Rmax of 1.2m,
P(t≤Tmax) plateaus at 0.5228, which is the value of P(r1≤1.2,
r2≤1.2) for the spatial criterion in Figure 7.

There is a significant discrepancy between verification
and validation of P(t≤Tmax) when Rmax’s are in the Uncertain
region (max 400 mm). Similar observations are made in
Figure 11 for P(r1≤Rmax, r2≤Rmax) at various values of the time
criterion, Tmax. These observations reinforced our view that
performance criteria within the Uncertain region should be
avoided, or be moved into the High Confidence (Successful)
region by modifying mission parameters such as modifying
the mission velocity limits or use different robots or sensors.

(m)
(m) (m)

For this paper, no attempt was made to manually or
automatically modify mission parameters to improve mission
performance based on verification results; the focus here was
on the initial comparison of verification and validation.

Figure 10: Verification and Validation of Time Criterion P(t≤Tmax)

at various Rmax.

Figure 11: Verification and Validation of Spatial Criterion

P(r1≤Rmax, r2≤Rmax) at various Tmax.

5 VERIFYING MISSIONS WITH LOCALIZATION

To assess the effectiveness of verification in providing
performance guarantees for probabilistic robot behaviors, we
analyze two waypoint missions, where in each a robot is
tasked to navigate through a series of waypoints toward a goal
with behaviors that are based on probabilistic localization
algorithms. VIPARS is used to investigate two approaches to
modeling localization and the results compared to
experimental validation.

5.1 Localization Missions-A and B

Both missions proceed with a robot starting at (2, 2) in Figure
12 and following a series of waypoints to the goal locations at
(11.7, 12.5) and (1.0, 7.3) respectively for Mission-A and
Mission-B (respectively). The behavior of the robot for
Mission-B (Figure 12(a)) is shown in Figure 13, which was
created in MissionLab in the form of a behavioral FSA. The
robot FSA consists of a series of GoToGuarded and Spin
behaviors, whose transitions are prompted by AtGoal and
HasTurned triggers. The behavioral FSA for Mission-A is like
the one shown in Figure 13, and is omitted for brevity.

The perceptual schemas of MoveToGuarded and
AvoidObstacles, two of the constituent primitive behaviors of
the high-level GoToGuarded behavior, are augmented with a

SLAM-based spatial map [7]. The MoveToGuarded primitive
behavior drives the robot to a specified goal.

a. Waypoints Mission A b. Waypoints Mission B

Figure 12: (top) Example Operating Environment Images for

Localization missions; (bottom a, b) Two Waypoint Missions for

Verification and Validation.

Figure 13: Behavioral FSA for Mission-B.

Instead of using odometry for localization, the perceptual
schema of MoveToGuarded is replaced by an Adaptive Monte
Carlo Localization (AMCL) algorithm [31]. This probabilistic
localization algorithm takes the robot odometry and an a-
priori acquired map as inputs, and outputs an estimated pose
of the robot along with a covariance matrix representing the
uncertainty of the estimated pose. Furthermore, the
AvoidObstacles behavior uses the spatial map, instead of
using direct sensory reading from the laser scanner, to
generate repulsion vectors. The perceptual schema of the

(m)

AvoidObstacles is modified to turn the spatial map into pseudo
laser scans of the environment through beam tracing within
the occupancy map. As a result, the GoToGuarded behavior
utilizes perceptual information (i.e., robot pose and obstacles)
generated by probabilistic algorithms to generate motor
response while navigating through the waypoints.

The performance criteria for both missions are similar:

Success = (r ≤ Rmax) AND (t ≤ Tmax) (15)

Where Rmax is maximum radius of spatial deviation allowed

from the goal and Tmax is the maximum allowable mission

completion time, and where 𝑟 is the robot’s relative distance

to its goal location and t is the time the robot to finish a

mission.

5.2 Localization Mission System Process

The input to VIPARS is the system process composed of

the behavior FSA from MissionLab converted to PARS and

combined with the PARS models for the robot, sensors and

environment. The system process Sys for the localization

mission is shown in eq. (16).

 Sys = (Mission (clp, clh, cl)(cv) |
 Mapsysmap()(cm) |
 LocalizationD0(cp,co,ch,cl,cm)(clp,clh) |
 MB_Laserms, mo ,lo(cm,cp,ch)(cl)) |

 RobotP0,H0(cv)(cp, ch, co) . (16)

The Mission process is the translation of the waypoint

mission and is fundamentally similar to all prior waypoint

missions we have verified and validated. It has inputs clp

(position), clh (heading) and cl (laser readings); and output

cv (velocity). Robot is the environment model, capturing the

motion and odometry error and interactions with obstacles, as

before. PO, HO are initial position and heading, inputs cv

(velocity) and outputs cp, ch (odometry position and heading)

and co (real position distribution, i.e., without sensing noise

– only used for performance estimation and high-level

localization model).
However, there are three new processes: In the behavior-

based localization approach [7], the obstacle avoidance sensor
gets its information from the map, rather than directly from
measuring sensory input. Map makes mapping information
(from the a-priori generated sysmap) available on its output
cm; MB_Laser uses the map to generate map-based laser data
on its output cl. Localization implements a localization
method using the map cm, laser cl, and robot cp, co, ch inputs.
D0 is the initial position uncertainty. The output of
Localization, clp, is the localized position (and heading clh)
used by the Mission process.

5.3 Map Representation

A key difference between this localization mission and our
prior missions including bounding overwatch is the map and
the role it plays in the obstacle avoidance behavior and in
localization. The Map process in eq. (16) contains a map data
structure. Recall that variables in a PARS process definition
can be random variables represented as colored mixtures of
Gaussians distributions (CMG).

Map information – the locations and geometry of
obstacles, walls and other physical aspects of the mission
environment – can be directly represented using this model.
The interactions of the map with the robot and map-based
sensor is analyzed in VIPARS by measuring the overlap
between random variable distributions, eq. (12). The
advantage of this approach to representing physical geometry
is that there is no restriction on the spatial location or extent
of obstacles, and finer precision of modeling can be obtained
at the cost of adding more mixture members (Figure 14).

Definition. An indexed mixture of Gaussians is a mixture of
Gaussians distribution a ~ CMG(CM) together with an index
set I. The mixture is restricted as follows:

• a[x]  ai where (ai) = x  I, i 1…m.

• (ai)  I, for all i 1…m; a only contains members

indexed by I.

• For any x I, |{a[x]}|  1; a has at most one

member for each index.

A map is defined as an indexed bivariate mixture of

Gaussians where I=[0…X][0..Y] and where each member is

a Gaussian kernel with covariance [x, y] = m
2 I, and where

m represents the map resolution. This corresponds somewhat
intuitively with an occupancy grid representation [32], where
w[x,y] is related to probability of occupancy for the location
(x,y).

During verification, the location random variable (the
connection cp in eq. (16)) represents the location of the robot
for all possible executions. It’s relevant to compare this with
the representation of robot location in a localization algorithm:
the representation there may also be a random variable, but the
interpretation is different. In any single execution, the robot
can really only be at a single physical location; the localization
distribution is an estimate of this. In verification, the objective
is not to find the single most likely location, but to propagate
the effects of being at all locations. Rather than using a ray
trace algorithm to determine how each location is supported
by sensor readings and refining the position estimate based on
that, the ray trace algorithm is used by the MB_Laser process
to gather all possible sensor readings that can arise due to the
robot location distribution.

Figure 14: Example VIPARS Map Representation.

5.4 Modeling Localization

The first approach involves modeling localization at a high
level: modeling not the actual collection of sensory data that
produces improved position estimates, but just position
estimates that improve with time according to some
parameterization. This has the advantage that different
localization algorithms can be ‘modeled’ in verification by
just changing the parameterization, not requiring as many
hours of expert effort as implementing a new localization
algorithm directly in the formal framework. It has the
disadvantage that it decouples the localization from predicted
sensor measurements, and may miss the effect of
measurements that greatly improve or degrade the localization
estimate.

The second approach involves the incorporation of
existing localization code directly into the VIPARS
verification algorithm. Localization code, like any program,
when executed, will yield once possible trace of a robot
mission, whereas VIPARS needs to use that code to
probabilistically reason about all executions that are possible
given the a-priori environment model information. Our
approach considers the embedded code to be capable of
transforming a sample from a PARS random variable, and we
define a framework for sampling and reconstructing variable
distributions. This approach has the advantage of verifying the
actual preexisting, localization code that will get executed by
the robot at run-time for the mission. It has the disadvantage
of potentially lengthening verification times, since multiple
samples need to be evaluated for a representative result.

5.4.1 High-level Model Approach
Localization starts with the odometry estimate of position

at time step t, q(t) ~ MG. Through comparisons of sensory
returns and the map, it refines the odometry estimate, bringing
it closer to the actual position of the robot at time t, p(t) ~ MG.
At any time, therefore the localization position is some
combination of the odometry and the actual position:

ℓ(t) = (1-k(t)) p(t) + k(t) q(t) (17)

where k(t) [0,1] is a time varying gain with k(t0)=1.0, forcing
localization to start with just the odometry estimate. The
improvement of localization with time is modeled by a
monotonic-decreasing dynamics for k:

k(t+t)= tc k(t) (18)

For time constant, tc [0,1], determined from calibration
measurements of the localization algorithm to be verified.

5.4.2 Sampling Approach
Consider that a preexisting C++ program we want to include
in a mission is P. A PARS process wrapper for P is built, so

the code behaves like a ‘black box’ process Pxy. Then, like
every PARS process, it has an associated flow function
fP(x)=(y) which is calculated by VIPARS. However, when P
is called, it will map one input value x to an output, y; only
one possible execution of P, whereas verification has to check
all possible executions. So, this approach to embedding P
doesn’t work, but, embedded code can only be called in this
way.

Our approach is to define an extension to the flow function
fP from the process/program P: the mixture extended flow
function FP takes a random variable x as input and produces a

random variable y as output. It samples the input distribution
x and calls fP on the samples, and reconstructs the output
distribution mixture p(y | x)= FP(x) from the result.

Definition. Let fP(x)=y be the flow-function for the code to

be embedded in verification, defined only by executing that

code. Let x, y ~MG(CM) be random variables over the type

of the variables x, y which we denote T. The mixture extended

flow function (MEF) FP is defined as follows.

• fP: TT, where y=fP(x), for x, yT,

• FP: MGMG, where y = FP(x), for x, yMG (where
MG is the set of all MG), and

• where we define y=x

• except (yi) = fP((xi)) for all xi in x, and

• where (yi) is calculated as follows:

o 'j = fP(si) for si a sample of the input xi

o (yi)= ∑ 𝑁(𝑠𝑗 ;(x𝑖),(x𝑖)) ((𝜇′𝑗 − (y𝑖))
2

)𝑘
𝑗=1

The MEF preserves number of members (|y|=|x|). Each mean

is transformed directly (yi) = fP((xi)), requiring multiple

executions of the embedded code. Finally, each variance is

calculated by carrying out further sample executions for each

member 'j = fP(si).

5.5 Embedding ROS AMCL Localization

The localization algorithm used in this paper was Adaptive
Monte Carlo Sampling (AMCL) [33] as implemented in ROS.
In the sampling approach, the DBN filtering engine of
VIPARS issued requests to a ROS-based AMCL server to
evaluate the MEF function for Localization. The interaction
is shown in Fig. 15: Whenever the flow function for the

Figure 15: VIPARS-ROS Architecture.

Localization process needed to be evaluated on a position
random variable, the position variable was sent from the DBN
filtering engine (Top, Fig. 15) via a pipe to a concurrently
running ROS system (Bottom, Fig. 15). The STDR simulator
node was instructed to move and rotate (“move and spin” in
Figure 15) the robot to the appropriate position, and
localization data collected from the AMCL node. For
simplicity, the MEF function was restricted to single member
variables, and rather than calculating the variance by
evaluating multiple samples, only the mean value was
transformed and the variance calculated by convolving the

mean with a zero-mean distribution N(0, s). This simplified
the hysteresis issue with calling AMCL.

5.6 Verification

Both verification approaches were applied to both
waypoint missions. For the high-level approach, Localization
in eq. (16) implemented eqs. (17), (18) with the gain
parameter tc = 0.99. This value was empirically determined
from experimentation running ROS AMCL on a Pioneer 3-
AT robot, carrying out a series of short waypoint missions.

a. Robot moving toward

1st waypoint

b. Robot moving toward

2nd waypoint

d. Robot moving toward

goal location

c. Robot after turning a

corner
Figure 16: Snapshots of Validation for Mission-B.

The sample-based approach implemented the architecture
of Figure 15 using ROS version Indigo. A third, odometry-
only version of the mission was also run through VIPARS for
comparing with both localization methods, and determining
whether localization was really necessary for mission success.
No additional validation was done on the odometry-only
version since that just replicates our prior work [1].

The results of carrying out verification using both
approaches with both waypoint missions was a set of
performance graphs showing the predicted performance of the
missions with respect to the performance criteria.

5.6.1 Validation
The robot used for the experimental trials is the Pioneer 3-

AT, a four-wheeled skid-steered mobile robot. The robot is
also equipped with a forward-facing SICK laser scanner. The
complete validation experiment consists of 50 trial runs for
each waypoint mission respectively, which resulted in a total
of 100 trial runs. Snapshots of the waypoint mission B are

shown in Figure 16. For each trial, mission completion time
and relative distance to goal on completion were measured.

a. Mission A Spatial Criterion

P(r≤Rmax)

b. Mission A Time Criterion

P(t≤Tmax)

c. Mission B Spatial Criterion

P(r≤Rmax)

d. Mission B Time Criterion

P(t≤Tmax)

Figure 17: Results of VIPARS Verification and Experimental
Validation of Spatial and Time Performance Criteria for Waypoint
Missions A and B. Figures 17a & 17b show the V&V results of
spatial and time performance respectively for Mission-A, where the
results are divided into three regions based the performance
guarantees: High Confidence (Unsuccessful), Uncertain, and High
Confidence (Successful). Figures 17c and 17d show the V&V results
for Mission-B.

5.6.2 Comparison of verification and validation results
Figure 17 shows the validation results of the performance

guarantees for the two waypoint missions. These results are
obtained with the sampling-based model of probabilistic
localization. Figures 17a and 17c show the V&V results for
the spatial criteria P(r≤Rmax), the probability that the robot
arrives within Rmax radius of its goal location. Figures 17b and
17d show the comparisons for the time criteria 𝑃(𝑡 ≤ 𝑇𝑚𝑎𝑥),
the probability that the waypoint mission is completed under
the time limit, Tmax. The results illustrate that the VIPARS
verification of performance guarantees are consistent with the
outcomes from experimental validation. The V&V results can
be divided into three regions for further interpretation as
before: High Confidence (Unsuccessful), Uncertain, and High
Confidence (Successful) region. Consequently, the mission
operator’s decision for robot deployment can be based on
which region of the mission criteria fall into. For instance, if
the specified performance criterion falls within the
Unsuccessful region (e.g., Rmax=0.5m), the operator can either
abort the mission or modify mission parameters and
reevaluate. The overall mission success, eq. (15), is defined in
terms of both spatial and time criteria. Thus, we examined
further in Figures 18 and 19 the effects of various
combinations of spatial and time criteria (Rmax and Tmax) on the

mission success and verification error. The results can also be
used to answer queries regarding the performance guarantee
for a specific combination of Tmax and Rmax. Figure 18 shows
the effects of the time criterion Tmax on the V&V results of the
spatial criterion P(r≤Rmax) for Mission A. While the Tmax’s in
both of its high confidence regions (Fig. 17b) have no effect
on the verification error for P(r ≤ Rmax), Tmax’s that are in the
Uncertain region (e.g., Tmax= 415 sec) incur significant
verification errors. For instance, for Tmax=415 sec, VIPARS
predicted a success probability of 0.18, while the robot was
actually successful 76% of the time in experimental trials.
Figure 19 shows the effects of the spatial criterion Rmax on the
V&V results of the time criterion P(t≤Tmax). While similar
observations can be made here as in Figure 18, in this case,
Rmax’s have much less impact on the verification error of
P(t≤Tmax) due to VIPARS’s accuracy in predicting the spatial
performance of mission even in the uncertain region (as
shown in Fig. 17a). Nonetheless, our conclusion is that
missions with performance criteria in the Uncertain regions
should generally be avoided.

Figure 18: V&V of Spatial Criterion at various Tmax for Mission A

Figure. 19: V&V of Time Criterion at various Rmax for Mission A

Lastly, we have also examined the different verification
results of VIPARS based on how the probabilistic localization
mechanism is modeled: sampling-based and high-level
model-based. These results are also compared in Mission A to
the verification result for the case when only odometry
information is used for localization. These verification results

are shown in Figures 20-21 along with the validation result for
Mission-A. While the verification results for different
localization modeling approaches are comparable for the time
criterion (Fig. 20), the performance based on the sampling-
based model is more closely aligned with the validation result
for both spatial and time criteria. If only high-probability
results are of interest, then the simpler and faster, model-based
localization produces acceptable results.

 The odometry-only Mission B was 100% unsuccessful
during verification due to collisions. However, with the final
waypoints moved just 15 cm, the odometry-only mission
finishes successfully. Because a small modification enables
the odometry-only mission to be potentially successful, it is
also clear that localization is not always required for mission
success. A contribution of our approach is that it is now
possible to answer whether localization is of mission benefit
using the performance graphs below in conjunction with the
specific performance values of Rmax and Tmax. Being able to
omit software modules (such as localization) can yield lighter
and faster mission code.

Figure 20: V&V of Time Criterion and Models of

Localization

Figure 21: V&V of Spatial Criterion and Models of Localization

6 CONCLUSIONS

If teams of autonomous robots are to undertake critical
missions such as C-WMD missions, then it is vital to be able
to establish performance guarantees for them. This paper
addresses the challenge of verifying mission software for

autonomous robots that will operate in partially known
environments. The approach taken in this paper, and its
predecessor [1], differs from common approaches to robotic
software verification in two important ways: it emphasizes
the roles of a separate but communicating environment
model, and it eschews an explicit exploration of the state
space of the system combined mission software and
environment model for reasons of avoiding state-space
explosion. This paper significantly expands [1], which
addressed uncertainty in robot motion and sensing, by
addressing uncertain geometry in the environment model.

Two classes of mission were investigated: a mission
where a team of two robots executes a coordinated set of
motions during which they may encounter obstacles whose
existence and location is uncertainly known in advance; and
a robot mission in which the robot navigates a series of
waypoints leveraging probabilistic localization. Approaches
to representing and analyzing both mission classes were
presented. In addition, separately collected experimental
validation results were presented for both classes of mission
and were compared to the results from verification.

The comparison of experimental validation and the output
of the verification software show the effectiveness of the
verification framework in providing performance guarantees
for multi-robot missions operating in an uncertain
environment. Some of the noted discrepancies between
verification and validation may be due to calibration
inaccuracies but also the precision limitation from pruning
CMG variables.

The colored mixtures developed here may have wider
applications. Algorithms that selectively modify mixture
members (e.g., image background update [34], in addition to
those discussed here) can thus easily propagate
subpopulations of one or more members identified for later
processing. With respect to complexity and scaling: The
computation of s(t)~CMG just increases linearly with each
additional obstacle (and robot), but each robot must evaluate
its own copy. The number of members increase exponentially
with each filtering step. In this paper, they were pruned on
weight to a maximum number (here 10).

The multiple robot synchronization in this paper involved
direct and indirect (i.e., through the environment model)
interactions. The robots directly exchanged synchronization
messages as they completed each mission bound. Although no
communication latency or error was modelled here, it is a
straightforward extension to model for example, WiFi
limitations. The indirect interaction was limited to the robots
being able to view each other as obstacles. While this
generalizes easily to any number of robots (the principal
complexity is just evaluating eq. (12)) it does not model
physical interaction between the robots such as one pushing
the other or both physically collaborating in a task.

The paper also addressed verification of missions with
probabilistic localization. Two approaches to modeling
localization were presented and evaluated: a high-level
approach in which only position estimate improvement is
modeled, and a sample-based approach, in which the run-time
localization code is embedded in verification. Extensive
experimental validation is reported for two different waypoint

missions using localization. The sample-based approach
yields the more accurate estimate, even for the sampling
simplification made in this paper. While there is support for
the intuition that localization is an asset to mission
performance (100% failure of the non-odometry mission;
Mission B of Section V.F); a minor modification of 15cm will
allow the mission to be verified successful, indicating that the
need for localization is mission-specific.

A verification tool is only as effective as its usability [35].
Therefore, a key future direction for this work is the challenge
of presenting verification results to the mission designer in an
intuitive and effective way. A second thrust of continuing
work is the extension and evaluation of this approach for
missions that include a human in the loop element.

REFERENCES

[1] D. Lyons, R. Arkin, S. Jiang, T.-L. Liu and P. Nirmal,

"Performance Verification for Behavior-based Robot

Missions," IEEE Trans. on Robotics, vol. 31, no. 3, 2015.

[2] D. MacKenzie, R. Arkin and R. Cameron, "Multiagent

Mission Specification and Execution," Autonomous Robots,

vol. 4, no. 1, pp. 29-52, 1997.

[3] R. Jhala and R. Majumdar, "Software Model Checking," ACM

Computing Surveys, vol. 41, no. 4, 2009.

[4] P. Trojanek and K. Eder, "Verification and testing of mobile

robot navigation algorithms," in IEEE/RSJ Int. Conf on

Intelligent Robots and Systems (IROS, Chicago, 2014.

[5] D. Walter, H. Taubig and C. Luth, "Experiences in Applying

Formal Verification in Robotics," in 29th International

Conference on Computer Safety, Reliability and Security,

Vienna Austria, 2010.

[6] L. Kiekbusch, C. Armbrust and K. Berns, "Formal

Verification of Behavior Networks including Sensor

Failures," Robotics and Autonomous Systems, vol. 74, pp.

331-339, 2015.

[7] S. Jiang and R. Arkin, "SLAM-Based Spatial Memory for

Behavior-Based Robots," in 11th IFAC Symposium on Robot

Control (SYROCO), Salvador, Brazil, 2015.

[8] L. DeMoura and N. Bjorner, "Satisfiability Modulo Theories:

Introduction and applications," CACM, vol. 54, no. 9, pp. 54-

67, 2012.

[9] A. Cowley and C. Taylor, "Towards Language-Based

Verification of Robot Behaviors," IEEE/RSJ Int. Conference

on Int. Robots and Systems (IROS), 2011.

[10] Ropertz, T. and R. Berns., "Verification of behavior-based

networks-using satisfiability modulo theories," in

ISR/Robotik 2014; 41st Int. Symposium on Robotics, 2014.

[11] M. Kim, K.-C. Kang and H. Lee, "Formal Verification of

Robot Movements - a Case Study on Home Service Robot

SHR100," in IEEE Int. Conf. Rob. & Aut., 2005.

[12] M. Webster, C. Dixon, M. Fischer, M. Salem, J. Saunders, K.-

L. Koay and K. Dautenhahn, "Formal Verification of an

Autonomous Personal Robotic Assistant," in AAAI 2014

Symposioum Modeling in Human-machine Systems:

Challenges for Formal verification, Stanford CA, 2014.

[13] M. Fisher, L. Dennis and M. Webster, "Verifying

Autonomous Systems," CACM, vol. 56, no. 9, pp. 84-93,

2013.

[14] M. Guo, K. Johansson and D. Dimarogonas, "Revising

Motion Planning Under temporal Logic Specifications in

Partially Known Workspaces," IEEE. int. Conf. Rob. & Aut.,

2013.

[15] S. Sarid, B. Xu and H. Kress-Gazit, "Guaranteeing High

Level Behaviors while Exploring Partially Known Maps," in

Rob. Sc. & Sys., 2013, 2008.

[16] M. Proetzsch, K. Berns, T. Schuele and K. Schneider,

"FORMAL VERIFICATION OF SAFETY BEHAVIOURS

OF THE OUTDOOR ROBOT RAVON," in 4th Int. Conf. on

Informatics, Aut. and Control ., Dortmund, Germany, 2007.

[17] A. Zaks and R. Joshi, "Verifying Multi-threaded C programs

with SPIN," in 15th International SPIN Workshop, Los

Angeles CA, 2008.

[18] M. O'Brien, R. Arkin, D. Harrington, D. Lyons and S. Jiang,

"Automatic Verification of Autonomous Robot Missions," in

4th Int. Conf. on Simulation, Modelling and Prog. for Aut.

Robots, Bergamo, Italy, 2014.

[19] H. Kress-Gazit and G. Pappas, "Automatic Synthesis of Robot

Controllers for Tasks with Locative Prepositions.," in IEEE

Int. Conf. on Rob. & Aut., Anchorage, Alaska, 2010.

[20] S. Bensalem, K. Havelund and A. Orlandini, "Verification

and validation meet planning and scheduling.," Int. Journal

on Software Tools for Technology Transfer., vol. 16, no. 1,

pp. 1-12, 2014.

[21] D. MacKenzie and R. Arkin, "Evaluating the Usability of

Robot Programming Toolsets," Int. Journal of Robotics

Research, vol. 4, no. 7, pp. 381-401, 1998.

[22] R. C. Arkin, Behavior-Based Robots, Cambridge MA: MIT

Press, 1998.

[23] A. Roscoe, The theory and practice of concurrency, Prentice-

Hall, 1997.

[24] T. Bolognesi and E. Brinksma, "Introduction to the ISO

Specification Language LOTOS," Computer Networks &

ISDN Sys, vol. 14, no. 1, pp. 25-59, 1987.

[25] M. Steenstrup, M. Arbib and E. Manes, "Port Automata and

the Algebra of Concurrent Processes," JCSS, vol. 27, no. 1,

pp. 29-50, 1983.

[26] D. Lyons, R. Arkin, T.-L. Liu, S. Jiang and P. Nirmal,

"Verifying Performance for Autonomous Robot Missions

with Uncertainty," in IFAC Intelligent Vehicle Symposium,

Gold Coast Australia, 2013.

[27] S. Russel and P. Norvig, Artificial Intelligence, Prentice-Hall,

2010.

[28] D. Lyons, R. Arkin, S. Jiang, D. Harrington, F. Tang and P.

Tang, "Probabilistic Verification of Multi-Robot Missions in

Uncertain Environments," in IEEE Int. Conf. on Tools with

AI, Vietro sul Mare, Italy, 2015.

[29] R. Szczerba and B. Collier, "Bounding overwatch operations

for robotic and semi-robotic ground vehicles," in SPIE

Aerospace Conference on Guidance and Navigation, 1998.

[30] A. Bhattacharyya, "On a measure of divergence between two

statistical populations defined by their probability

distributions," Bulletin of the Calcutta Mathematical Society,

no. 35, pp. 99-109, 1943.

[31] F. Dellaert, D. Fox, W. Burgard and S. Thrun, " Monte Carlo

localization for mobile robots," in IEEE Int. Conf. on Rob. &

Aut., Detroit, 1999.

[32] A. Elfes, "Using Occupancy Grids for Mobile Robot

Perception and Navigation," Computer, pp. 48-57, April

1989.

[33] D. Fox, "KLD–Sampling: Adaptive Particle Filters," in

Neural Information Processing Systems 14 (NIPS),

Vancouver Canada, 2001.

[34] C. Stauffer and W. Grimson, " Adaptive background mixture

models," in CVPR, 1999.

[35] M. O'Brien and R. Arkin, "An Analysis of Displays for

Probabilistic Robotic Mission Verification Results," in 7th

International Conference on Applied Human Factors and

Ergonomics, Las Vegas NV, 2016.

