
  

Abstract— We present a novel framework for learning cross-

sensory and sensorimotor correlations in order to detect and 

localize faults in mobile robots.  Unlike traditional fault 

detection and identification schemes, we do not use a priori 

models of fault states or system dynamics.  Instead, we utilize 

additional information and possible source of redundancy that 

mobile robots have available to them, namely a hierarchical 

graph representing stages of sensory processing at multiple 

levels of abstractions and their outputs.  We learn statistical 

models of correlations between elements in the hierarchy, in 

addition to the control signals, and use this to detect and 

identify changes in the capabilities of the robot.  The framework 

is instantiated using Self-Organizing Maps, a simple 

unsupervised learning algorithm.  Results indicate that the 

system can detect sensory and motor faults in a mobile robot 

and identify their cause, without using a priori models of the 

robot or its fault states. 

I. INTRODUCTION 

S mobile robots begin to be used for multiple complex  

tasks in different environments, adaptation to changes 

in the perceptual and motor capabilities of the robot becomes 

an increasingly important issue.  Applications where such 

adaptation is crucial include planetary exploration, search 

and rescue, and in general applications where robots are 

expected to perform tasks for long periods of time with 

limited assistance.  There exists a large body of literature on 

the topic of fault detection and identification for industrial 

processes [1] and manipulator robots [7-8], and a smaller but 

still substantial body of work for mobile robots [9]-[17].  

Although successful, these approaches have several 

limitations that have not been addressed fully, especially for 

problems particular to mobile robots in unknown 

environments and autonomous adaptation [10].  Some 

limitations include the requirement for faults to be 

encountered and fault modes modeled a priori, limited or no 

handling of multiple faults or faults that degrade slowly 

through time, and limited control system adaptation.   

We claim that some of these limitations can be 

ameliorated on a mobile robot by utilizing additional 

information available to the robot.  Specifically, robots 

usually have available to them a hierarchy of perceptual 

processing that solve a particular task.  Here we call them 

perceptual schemas; the definition of a schema used by 

researchers varies widely [18], but the aspect we are 

interested in is that perceptual schemas process sensor data 

(either raw or the result of lower perceptual schema) to 

gather knowledge relevant to motor schemas.  Unlike in 

industrial systems, this hierarchy can be made large with the 

abundant variety of sensors and sensor processing algorithms 

that have been devised in fields such as computer vision, 

sound and speech analysis, laser and sonar-based processing, 

etc.  In other words, these perceptual schemas encode 

processed sensor data that derive knowledge at multiple 

levels of abstraction useful for a particular task.  Figure 1 

depicts a simple example of perceptual schemas for one 

particular task, moving to a goal location.  An important 

aspect of this is that mobile robots typically have several 

heterogeneous sensors that measure different, but similar, 

aspects of the world.  The perceptual processing performed 

for a task already fuses the data from several sensors into 

similar representations. 

The main insight of our work is that this hierarchy can be 

utilized to detect, identify, and adapt to changes in the 

capabilities of the robot by creating models or mappings 

between different elements in the hierarchy.  Here, similarly 

to other works, we define a fault to be any abnormal 

behavior by the robot that results in a change in the pattern 

of sensing and acting data it receives.  For example, faults 

that are not borne out in the perceptual schema used by the 

robot for the current task will not be detected.  A particular 

task coupled with the perceptual processing performed for 

that task produces task-specific cross-sensory and 

sensorimotor correlations that can be modeled.  Such 

mappings will change whenever the capabilities of the robot 

changes.  For example, looking at the schemas in Figure 1, 

when a change occurs in its visual abilities the optical flow 

and visual obstacle detection will change.  The outputs of 

these schemas will differ from the other schemas measuring 

similar aspects of the world, namely obstacle detection and 

relative motion estimation.  The changes can be further 

identified because each schema is tied to a particular set of 

sensors or actuators.  Mappings between schemas that do not 

utilize the faulty sensor or actuator will not be changed, 

hence ruling out particular sensors or actuators.  In other 

words, sensor information from non-faulty sensors that 

measure similar aspects of the world can be used to localize 

the faulty sensor.  In the visual fault example, the schemas 
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common to vision will change, whereas others will not.  Note 

that the information measured does not have to be exactly of 

the same type, but only has to be statistically correlated.  

Finally, adaptation can potentially be performed by restoring 

the mappings between schemas that have become changed.  

For example, it may be possible to detect and correct for the 

optical flow vectors upon a camera rotation if the changes 

between the current mappings and previous mappings are 

established. 

There are several advantages to this approach.  A large 

majority of other approaches use all of the raw data from the 

sensors in order to diagnose particular sensors.  Such 

systems do not take advantage of the fact that certain tasks 

use sensors differently or not at all, or that other sensors that 

sense similar physical properties or are processed to obtain 

the same type of knowledge may provide useful cross-

checking information in diagnosis.  Our approach creates 

models between perceptual schemas in a hierarchy for a 

specific task; although the algorithms are not task-specific, it 

is assumed that the mappings are learned on a per-task basis.  

By using the notion of task-specificity, only the sensors that 

are used and the output of those sensors are considered.  

Furthermore, sensor values that are ignored in a particular 

perceptual schema will likewise be ignored when learning 

the models.  This limits computation time, but more 

importantly allows the learning algorithms to use more 

relevant data; i.e. data relevant to the task at hand.  Also, 

most of the approaches use a priori models of a limited set 

of fault states, hence making them brittle to unknown 

environments and faults as well as multiple interacting faults 

(again, see [10] for agreement on these limitations).   

By correlating perceptual schemas, the models can be 

learned in an unsupervised manner.  Furthermore, after one 

fault the mappings can be restored and represent normal 

functioning thereafter; hence, if there is another change in 

the capabilities afterwards the same process can be used.  In 

addition to brittleness, maintaining a discrete set of fault 

states makes more difficult the detection of gradual faults 

until those faults cause sufficient deviation from the models.  

Using correlations instead of modeled fault states presents 

the opportunity for non-discrete, gradual adaptation. Finally, 

the reconfiguration of control systems in order to adapt to the 

faults has not been addressed in most of the work [10].  We 

believe that modeling the interactions of perceptual schemas 

can form the basis of restoring normal functionality. 

In summary, the overarching research question is whether 

task-specific cross-sensory and sensorimotor correlations 

experienced by a mobile robot can be used to detect, 

localize, and adapt to multiple, unanticipated, time-varying 

sensing and motor capability changes.  This first paper seeks 

to address one small part of this question, namely whether 

faults can be detected and localized in an unsupervised 

manner by modeling cross-sensory and sensorimotor 

patterns.  We further address the question of whether 

mappings that are inherently inconsistent (e.g. between 

different sensors measuring independent attributes of the 

world) can be ruled out during training.  In future papers, we 

will attempt to answer the rest of the questions posed above, 

including whether faults can be identified in an automated 

fashion, whether our approach can detect classes of faults 

that have traditionally been unexplored (e.g. time-varying 

faults or multiple interacting faults), and whether our 

approach can add new adaptation capabilities (e.g. automatic 

control system reconfiguration). 

II. THEORETICAL FRAMEWORK 

We will now describe the general framework for our 

system.  Figure 2 shows the steps involved during training 

and testing of the system, and the following subsections 

expand upon each step. 

A. Input 

It is assumed that, as an input, a hierarchical structure of 

perceptual schemas is available.  Such information is already 

explicitly available in, for example, behavior-based systems 

but can also be easily available in robotic systems where 

modular programming practices have been followed.  

Specifically, a directed acyclic graph (DAG) P is provided, 

where each node represents the output of specific perceptual 

processing and the links represent inputs to the processing.  

The root nodes of the DAG are the raw sensors available to 

the robot (e.g. vision, laser, etc).  The specific type and 

amount of processing that warrants a new node is up to the 

programmer; however, presumably in general the deeper a 

node of the graph is, the more abstract the knowledge it 

represents becomes since it is processed more and utilizes 

more sensors than lower levels.  The goal of this research is 

to eventually provide guidelines for the type of information 

that would be useful, in terms of the amount of independence 

between the schemas and other properties, as well as 

desirable properties of the graph.  For now, we arbitrarily 

pick the processing points at which nodes lie. 

B. Construction and Learning of Correlation Graph 

The input graph P is subsequently transformed into a fully 

connected undirected graph G, with the perceptual schemas 

Figure 1 – Example of a motor schema and its associated 

hierarchy of perceptual schemas. 



  

and the output of the motor schema (i.e. the control signal) as 

nodes.  The links in this graph represent functional mappings 

between the two perceptual schemas, i.e. the predicted value 

of the output of one schema given the output of the other.  In 

general it can represent any functional mapping, and we call 

this graph the correlation graph. 

There are several alternatives to initializing the graph as 

fully connected.  For example, connections between two 

perceptual schemas that feed into one another will probably 

not lead to useful correlations, as they come from the same 

sources.  In general, there may be algorithms analyzing the 

transformation from the hierarchy P to the graph G. 

Once the graph G has been created, the functions 

represented by the edges must be learned.  Through training 

data obtained during normal functioning of the robot, a 

model is created between each pair of cross-sensory (two 

perceptual schema) or sensorimotor (a perceptual schema 

and the motor output) connections.  Models can be simple or 

complicated statistical models, or even sensor-specific 

models (e.g. if a motion model is known).   

Although many representations are possible, there are 

several properties that are desirable for functionality and 

practicality.  Specifically, that: 

1. The representation can be learned for a given task and 

environment in an unsupervised manner, without a priori 

fault models. 

2. The representation can detect which sensorimotor and 

cross-sensory mappings are valid; that is, useful for detecting 

and adapting to faults.  Mappings that are inconsistent during 

normal operation can be ruled out. 

3.   In order to detect unanticipated faults, only data 

during normal operation is assumed to be available. The 

representation can be used to detect and identify faulty 

sensing or motion.  

4. The representation can be used to adapt the control 

system after the fault. 

5. The representation can be used to detect and adapt to 

multiple faults occurring after each other. 

6. The representation can detect and adapt to faults 

occurring at different time-scales (e.g. slow-varying faults 

such as tires losing air). 

C. Removal of Inconsistent Mappings 

Once the models are learned, a further training step 

involves removing inherently inconsistent links.  Some 

perceptual schemas during a task, for example odometry and 

sound-based sensors, reflect inherently independent aspects 

of the world.  Hence, modeling their interaction will not be 

useful.  In order to do this, a metric for consistency is 

required for a given representation in order to rule out 

inconsistent mappings a priori.  

D. Detection of Changes 

Once consistent models have been found and learned, the 

stability of the mappings can be monitored.  Again, a metric 

or set of metrics must be provided to determine whether a 

mapping is stable or not.  These metrics can be the same as, 

or different from, the metric used to remove inconsistent 

mappings.  It is hypothesized that changes or faults in the 

perceptual or motor capabilities of the robot will lead to 

instability in one or more mappings.  Of course, smoothing  

and other techniques must be performed in order to deal with 

noise and other factors. 

E. Identification of Source of Change 

Finally, given a graph with connected perceptual and 

motor schemas, along with a set of mappings that are 

inconsistent, the source of the fault can be traced back. 

Figure 2 – Steps involved in the detection and identification of changes in the 

perceptual and motor capabilities of a robot in our system. 
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Figure 3 – Diagram depicting 

connection between three schemas.  

Assuming that there are 

several perceptual 

schema measuring 

similar aspects of the 

world, some of the links 

will remain consistent 

allowing the robot to 

rule out certain sensors.  

Hence, reasoning upon 

this graph can be used 

to trace back to the fault.  Note that if there is not enough 

redundancy in the type of knowledge the robot has from 

several sensors, there may be ambiguity as to the cause of the 

fault.  In general, the more sensors and sensor processing 

there is, the better the fault identification will be.  

III. FRAMEWORK IMPLEMENTATION 

The preceding section described a general framework for 

cross-sensory and sensorimotor integration in order to detect 

changes in capabilities.  We have implemented a simple 

instantiation of the framework in order to test the proposed 

methods and see whether unsupervised learning can be used 

to detect and identify faults using training data, with 

perceptual processing at different abstraction levels, obtained 

during normal operation.  In order to instantiate the 

framework, the following have to be defined: 1) 

Preprocessing algorithm for transforming P into G (i.e. 

whether G is fully connected or heuristics and other 

knowledge is used to remove some links a priori), 2) 

Representation R used to define the links in graph G, 3) A 

consistency metric for R to rule out inconsistent mappings, 4) 

A metric for determining when a mapping has changed 

during operation (can be the same as the consistency metric), 

and 5) An algorithm to identify the source of the change 

through analysis of the two graphs P and G, and the locations 

of the changed mappings. 

In our case, we do not preprocess the transformation from 

G to P, i.e. we do not rule out any connections and leave G 

fully connected. The model or representation used to link the 

schemas is a simple unsupervised method, namely Self-

Organizing Maps (SOM) [20]. A SOM is an artificial neural 

network that has been used for classification or clustering of 

input spaces in an unsupervised manner. The network 

consists of a lattice of nodes or cells, usually configured in a 

rectangular or hexagonal shape. Each node has associated 

with it a weight vector, whose dimensionality equals the 

dimensionality of the input. For each input to the network, 

the output is the node or weight associated with it inside the 

actual network (alternatively, arbitrary vectors can be 

associated with each node and that can be the output). 

Initially, these weight vectors are initialized randomly.  

Training occurs in the following manner. For each input 

vector, the winner node is obtained. The winner node is 

defined as the node whose weight vector is most similar to 

the input vector (similarity can be arbitrarily defined, but is 

usually just Euclidean distance). The weight vector of the 

winning node is then modified. In addition, the weight vector 

of nodes that are within a certain neighborhood of the 

winning node is also modified. The update rule can be 

expressed as follows:  

 
where wi(t) is the weight vector of node i at time t, a(t) is the 

learning rate, x(t) is the input at time t, and Nc(t) is the 

neighborhood function. 

Figure 3 depicts the implementation with two perceptual 

schemas and a motor schema.  We aim to show that this 

representation fulfills the first three requirements listed 

previously, namely it is unsupervised, can provide a 

consistency measure, and can be used to detect and identify 

faults in motor and perceptual capabilities using only data 

gathered from normal operation.  For each pair of perceptual 

schemas or motor schemas, a Self-Organizing Map with a 

vector corresponding to both percepts or motor output was 

created.  During the training phase, these SOMs were trained 

on data from a normally functioning robot.  This reduced the 

dimensionality of the data and utilized the property of SOMs 

that enables them to represent parts of the sensory space that 

occur more frequently with more nodes.  In other words, the 

SOM will represent pairs of percept values that occur more 

frequently using more nodes than pairs of percept values that 

occur less frequently. 

The consistency metric used to identify stable mappings is 

quantization error, that is the average error (i.e. distance) 

between the winner node and the data for a separate training 

set that is gathered during normal functioning.  If the 

quantization error differences between the training data 

(measuring baseline noise in the data itself) and the normal 

testing data is statistically significant, then the mapping is 

determined to be unstable. 

In order to use the system in testing mode to detect and 

identify faults, perceptual and motor data coming from the 

robot are processed through the SOM, and the average 

quantization error is calculated.  This is the metric used to 

identify mappings that have changed.  Quantization errors 

that are significantly different that those obtained during 

testing in normal operation are assumed to indicate a fault.  

In order to identify the source of the problem, we use a 

simple algorithm that identifies the node for which all of the 

links have changed.  Note that this is a simple algorithm used 

to show that the framework is feasible; in order to detect 

different types of faults more complicated analysis must be 

instantiated. 

IV. EXPERIMENTAL DESIGN 

In order to test whether it is feasible to detect and identify 

faults, the robot was teleoperated along similar paths for the 

following conditions: 1) Normal operation for training (10 



  

runs) 2) Normal operation for elimination of mappings (10 

runs) 3) Operation with a camera that has been hit and 

rotated approximately 30 degrees (10 runs).  4) Operation 

with faulty wheels that are loose (6 runs). The perceptual 

data available included odometry, proprioception (the 

velocity commands sent to the robot), raw sonar data, raw 

visual data (reduced to 5x5 images), and optical flow 

processed on the vision input.  Training was done using data 

from normal operation. Testing consisted of running the 

trained system through the data obtained during faulty 

operation.  

During testing, it is hypothesized that for the first fault 

(rotated camera), the mappings between odometry and 

optical flow and proprioception and optical flow would 

produce the most errors.  This is because the rotated camera 

would change the correlation between the flow and actual 

motion, as well as the correlation between the flow and 

odometry.  The correlation between odometry and optical 

flow should remain unchanged.  This pattern of errors allows 

one to identify the fault as being in the visual system.  

It is hypothesized that for the second fault (loose wheel), 

the mappings between odometry and proprioception and 

proprioception and optical flow would produce the most 

errors.  This is because despite the wheel fault, the odometry 

and the optical flow percepts measure similar aspects of the 

world (relative motion), and hence the fact that the robot did 

not move as commanded would not affect this mapping.  

This pattern of errors allows one to identify the fault as being 

in the motion of the robot.   

The robot used to gather the data was a Pioneer 2DX with 

an onboard Dell Latitude 100L laptop, with a 2.66GHZ 

Mobile Intel Pentium 4 CPU and 1GB of memory.  Sampling 

was done asynchronously when gathering, and was later 

synchronized through software.  SOMPAK, a Matlab 

implementation of Self-Organizing Maps, was used with the 

following parameters: map size of 10x10, initial radius of 5, 

an initial alpha of 0.5, a Gaussian neighborhood function, 

and 10 epochs during training. 

V. RESULTS AND DISCUSSION 

The first interesting thing to look at in the results is to see 

which mappings of the graph G of perceptual schemas have 

been determined to be stable during training.  Figure 4 shows 

these mappings in solid lines, while mapping that have been 

ruled out are dotted.  In this case, all of the mappings have 

been determined to be stable except for the raw reduced 

vision data.  Unlike the raw visual data, raw sonar data did 

produce stable mappings.  Although it may seem raw sonar 

data would not provide correlations with control and other 

perception, in this case they may have because the data was 

sparse and the teleoperation was very repetitive.  For other 

tasks that are more varied, this will likely not be the case.  

This shows that for different tasks, different data or 

mappings will be deemed useful and the system only utilizes 

those which are useful for the current task. 

 Figure 5 displays the broken linkages, as determined by 

significantly different quantization errors from the normal 

testing data, in graphical form for each of the two faults 

described previously.  Figure 6 displays the results in terms 

of average quantization errors for all mappings during 

normal and faulty operation.  The quantization errors during 

operation with a faulty camera validates the first hypothesis: 

the quantization errors for the mappings involving optical 

flow are significantly higher, whereas they are the same for 

other mappings.  Unexpectedly, the mapping between optical 

flow and odometry differed as well.  This could be due to the 

simple learning method used, as a change in the distribution 

of optical flow would change the model learned. Note that, 

as intended, this can be used to identify where the fault has 

occurred.  One can detect which mappings contained errors, 

and localize the fault to the common node: In this case, 

between optical flow and the other sensors. 

 Figure 5 and 6 also display the results that confirm most of 

the second hypothesis.  Again, the mappings can be used to 

identify where the fault has occurred by tracing the common 

node into which mappings are faulty, namely the 

proprioception or the relation between motor commands and 

the perceptual result.  Note that unexpectedly, the mapping 

between optical flow and proprioception stayed the same, 

although with a larger confidence interval.  Hence, it could 

be that the sensor (optical flow) is too noisy to measure 

changes in the correlations in this case.  In addition, the 

mapping between odometry and raw sonar differed as well, 

possibly due to the fact that due to the mechanical failure, 

the robot was not teleoperated along the same route resulting 

in different sonar readings for different odometry values.  

 In order to evaluate the system with two co-occurring 

faults, an additional artificial fault was created by zeroing 

out one column of the sonar sensor, with and without the 

faulty camera.  Figure 7 shows a diagram representation of 

the mappings and Figure 8 shows the raw quantization 

errors.  As can be seen, with a sonar fault two mappings with 

sonar are significantly different, with a camera fault three 

mappings with optical flow are significantly different, and 

with both faults the union of those mappings are significantly 

different.  However, when training on data obtained with 

broken sonar (T2), it is as if only the camera sensor is 

broken.  This shows that once a fault is detected, training can 

be performed in order to assign it as “normal”.  Although 

this feature is conferred by other data-driven methods, in this 

Figure 4  – Undirected graph for the host of sensors and 

motor output used for the experiments.  The solid lines 

represent stable mappings as determined during training, 

while the dotted lines represent mappings that have been 

ruled out during training. 

 



  

system only a small subset of mappings or data have to be 

retrained, resulting in time savings. If a model-based method 

is used, then models for the system with both faults must be 

derived a priori, which is difficult to obtain. 

VI. RELATED WORK 

The literature for fault detection and identification in the 

context of industrial processes and industrial robotics is 

extremely large in scale.  Surveys and books include [1], [3], 

[4], [5], and [6].  Besides numerous approaches that use 

physically redundant sensing , by far the dominant approach 

involves analytic redundancy whereby models of the 

dynamics and interactions of the system are created and 

differences between the predicted values and sensed values 

are used to detect and identify faults [2].  Often residuals, 

functions of the data and model differences that are sensitive 

to specified faults, are created [4].  Most of the approaches 

using this concept utilize a priori models of the system itself, 

be it the chemical processes being monitored or the 

kinematics of the manipulator robot [8].  They also rely on 

pre-determined fault states for which residuals can be 

derived.  Some approaches use virtual sensors that are 

learned models of properties related to the faults [11].  

Again, this requires knowledge of the faults beforehand. 

There are also knowledge-based methods that employ more 

qualitative models [1].  If robots are to perform tasks and 

survive for long periods of time unassisted, such anticipation 

of faults would be an undue burden.   

Data-driven methods include multivariate statistical 

techniques such as principal component analysis (PCA) or 

fisher discriminant analysis (FDA) [1].  Such methods 

transform the data into subspaces that minimize variance 

(PCA) or are optimal for discriminating known classes 

(FDA).  Again, some of these methods require classes of 

faults that are determined a priori.  Other methods minimize 

metrics such as variance, but it is not clear that such a 

subspace will be good for detecting faults.  Furthermore, 

they do not provide models of the interaction between the 

variables explicitly, and hence cannot be used to restore the 

correlations in order to adapt, nor do they discard irrelevant 

data before processing.  

     A key difference between fault detection and 

identification in these domains and in mobile robotics is that 

in the industrial environments data from sensors such as 

temperatures, pressures, etc. represent physical states that 

cannot be processed further in multiple ways.  In contrast, 

mobile robotics utilizes rich sensors such as vision, laser, 

and sound that can be processed in multiple ways to obtain 

different types of information.  There are huge bodies of 

literature in the fields of vision, acoustics, and perception 

that have devised many algorithms for processing the sensor 

data.  The hierarchy that describes the flow of this processing 

(i.e. which sensors are used, etc.) can be utilized to provide a 

further form of redundancy.  It makes sense to create 

methods that automatically correlate such data and detect 

faults through changes in these correlations. 

Although there are an increasingly large number of papers 

on fault detection and identification in the mobile robotics 

community, most of the approaches follow their predecessors 

in industrial applications in using concepts such as state 

estimation and analytic redundancy.  For example, there have 

been specialized particle filtering  algorithms designed to be 

risk-sensitive or with variable resolution [13]. 

In other words, there have been few systems that utilize 

the richness of the sensors and the redundancy they can 

provide.  One notable exception is [14], whereby redundant 

position information obtained at multiple levels of 

abstraction were used.  However, in that case the difference 

between the two position estimates were fed to a Kalman 

filter state estimator.  As a result, a priori models were used 

in that instances as well, and the information obtained from 

the two sensors were identical.  In our system, we model the 

correlations between different information obtained from 

sensors, allowing for richer relationships.  Furthermore, there 

has not been a general framework created for exploiting the 

redundancy provided by multiple levels of representation, to 

the best of our knowledge. 

In this work, the framework creates models of various 

levels of perceptual processing independent of what they are 

used for.  Modeling the statistics of raw sensory data is not 

unheard of; for example, pattern theory [19] attempts to 

describe statistical patterns in, for example, natural scene 

images.  Finally, sensorimotor correlations have been 

explored in areas such as developmental robotics [21]; 

however, there is no demonstration or focus on fault 

detection and adaptation.  The main contribution of this work 

is to create a general framework for exploiting the 

Figure 5 – Mappings during camera (left) and wheel (right) 

faults.  Solid lines indicate mappings that have remained 

stable despite the faults, and dotted lines indicate mappings 

that have not. 
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redundancy provided by the rich hierarchical sensory 

processing available on mobile robots today.  

V.  CONCLUSIONS 

 In summary, we have proposed a novel task-based 

approach that utilizes cross-sensory and sensorimotor 

correlations to detect, localize, and adapt to faults.  In this 

paper we have demonstrated that given an input hierarchy of 

the perceptual processing performed on a robot, correlations 

between elements of the hierarchy can be learned in an 

unsupervised manner.  We showed that unstable mappings 

can be identified during training and ignored, and that the 

remaining stable correlations can be used to detect and 

identify both motor and perceptual changes in the 

capabilities of the robot without a priori models of system 

dynamics or pre-specified faults. 

 The results shown here are preliminary and have only 

answered a few of the questions we have posed.  There is a 

great deal of future work in implementing the framework 

completely, replacing some of the simple blocks we have 

substituted with more grounded and robust algorithms.  After 

this, the system will be tested with a larger and more realistic 

perceptual processing graph, with several vision, laser, and 

sound processing algorithms. 

 There is then future work in order to demonstrate the 

efficacy, scalability, and robustness of the architecture.  We 

will attempt to answer the rest of the questions posed, 

including whether our approach can detect classes of faults 

that have been relatively unexplored (e.g. time-varying 

faults).  An important area for future research is to see 

whether the mappings learned here can form a basis for 

adaptation capabilities, by restoring old mappings that are no 

longer stable. 
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Figure 7 - Mappings with multiple co-occurring faults (both 

camera and sonar faults).  Left: Mappings after training on 

normal data. Right: Mappings after training after only the 

sonar fault, hence isolating the camera fault. 
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Figure 8 - Average quantization error with multiple co-

occurring faults, for each mapping.  T1 indicates training with 

normal data, and T2 indicates training with only faulty data.  


