

Abstract— We present a novel framework for learning cross-

sensory and sensorimotor correlations in order to detect and

localize faults in mobile robots. Unlike traditional fault

detection and identification schemes, we do not use a priori

models of fault states or system dynamics. Instead, we utilize

additional information and possible source of redundancy that

mobile robots have available to them, namely a hierarchical

graph representing stages of sensory processing at multiple

levels of abstractions and their outputs. We learn statistical

models of correlations between elements in the hierarchy, in

addition to the control signals, and use this to detect and

identify changes in the capabilities of the robot. The framework

is instantiated using Self-Organizing Maps, a simple

unsupervised learning algorithm. Results indicate that the

system can detect sensory and motor faults in a mobile robot

and identify their cause, without using a priori models of the

robot or its fault states.

I. INTRODUCTION

S mobile robots begin to be used for multiple complex

tasks in different environments, adaptation to changes

in the perceptual and motor capabilities of the robot becomes

an increasingly important issue. Applications where such

adaptation is crucial include planetary exploration, search

and rescue, and in general applications where robots are

expected to perform tasks for long periods of time with

limited assistance. There exists a large body of literature on

the topic of fault detection and identification for industrial

processes [1] and manipulator robots [7-8], and a smaller but

still substantial body of work for mobile robots [9]-[17].

Although successful, these approaches have several

limitations that have not been addressed fully, especially for

problems particular to mobile robots in unknown

environments and autonomous adaptation [10]. Some

limitations include the requirement for faults to be

encountered and fault modes modeled a priori, limited or no

handling of multiple faults or faults that degrade slowly

through time, and limited control system adaptation.

We claim that some of these limitations can be

ameliorated on a mobile robot by utilizing additional

information available to the robot. Specifically, robots

usually have available to them a hierarchy of perceptual

processing that solve a particular task. Here we call them

perceptual schemas; the definition of a schema used by

researchers varies widely [18], but the aspect we are

interested in is that perceptual schemas process sensor data

(either raw or the result of lower perceptual schema) to

gather knowledge relevant to motor schemas. Unlike in

industrial systems, this hierarchy can be made large with the

abundant variety of sensors and sensor processing algorithms

that have been devised in fields such as computer vision,

sound and speech analysis, laser and sonar-based processing,

etc. In other words, these perceptual schemas encode

processed sensor data that derive knowledge at multiple

levels of abstraction useful for a particular task. Figure 1

depicts a simple example of perceptual schemas for one

particular task, moving to a goal location. An important

aspect of this is that mobile robots typically have several

heterogeneous sensors that measure different, but similar,

aspects of the world. The perceptual processing performed

for a task already fuses the data from several sensors into

similar representations.

The main insight of our work is that this hierarchy can be

utilized to detect, identify, and adapt to changes in the

capabilities of the robot by creating models or mappings

between different elements in the hierarchy. Here, similarly

to other works, we define a fault to be any abnormal

behavior by the robot that results in a change in the pattern

of sensing and acting data it receives. For example, faults

that are not borne out in the perceptual schema used by the

robot for the current task will not be detected. A particular

task coupled with the perceptual processing performed for

that task produces task-specific cross-sensory and

sensorimotor correlations that can be modeled. Such

mappings will change whenever the capabilities of the robot

changes. For example, looking at the schemas in Figure 1,

when a change occurs in its visual abilities the optical flow

and visual obstacle detection will change. The outputs of

these schemas will differ from the other schemas measuring

similar aspects of the world, namely obstacle detection and

relative motion estimation. The changes can be further

identified because each schema is tied to a particular set of

sensors or actuators. Mappings between schemas that do not

utilize the faulty sensor or actuator will not be changed,

hence ruling out particular sensors or actuators. In other

words, sensor information from non-faulty sensors that

measure similar aspects of the world can be used to localize

the faulty sensor. In the visual fault example, the schemas

Zsolt Kira

College of Computing,

Georgia Institute of Technology

Atlanta, GA, 30332, U.S.A.

Zsolt.Kira@cc.gatech.edu

Modeling Cross-Sensory and Sensorimotor Correlations to

Detect and Localize Faults in Mobile Robots

A

common to vision will change, whereas others will not. Note

that the information measured does not have to be exactly of

the same type, but only has to be statistically correlated.

Finally, adaptation can potentially be performed by restoring

the mappings between schemas that have become changed.

For example, it may be possible to detect and correct for the

optical flow vectors upon a camera rotation if the changes

between the current mappings and previous mappings are

established.

There are several advantages to this approach. A large

majority of other approaches use all of the raw data from the

sensors in order to diagnose particular sensors. Such

systems do not take advantage of the fact that certain tasks

use sensors differently or not at all, or that other sensors that

sense similar physical properties or are processed to obtain

the same type of knowledge may provide useful cross-

checking information in diagnosis. Our approach creates

models between perceptual schemas in a hierarchy for a

specific task; although the algorithms are not task-specific, it

is assumed that the mappings are learned on a per-task basis.

By using the notion of task-specificity, only the sensors that

are used and the output of those sensors are considered.

Furthermore, sensor values that are ignored in a particular

perceptual schema will likewise be ignored when learning

the models. This limits computation time, but more

importantly allows the learning algorithms to use more

relevant data; i.e. data relevant to the task at hand. Also,

most of the approaches use a priori models of a limited set

of fault states, hence making them brittle to unknown

environments and faults as well as multiple interacting faults

(again, see [10] for agreement on these limitations).

By correlating perceptual schemas, the models can be

learned in an unsupervised manner. Furthermore, after one

fault the mappings can be restored and represent normal

functioning thereafter; hence, if there is another change in

the capabilities afterwards the same process can be used. In

addition to brittleness, maintaining a discrete set of fault

states makes more difficult the detection of gradual faults

until those faults cause sufficient deviation from the models.

Using correlations instead of modeled fault states presents

the opportunity for non-discrete, gradual adaptation. Finally,

the reconfiguration of control systems in order to adapt to the

faults has not been addressed in most of the work [10]. We

believe that modeling the interactions of perceptual schemas

can form the basis of restoring normal functionality.

In summary, the overarching research question is whether

task-specific cross-sensory and sensorimotor correlations

experienced by a mobile robot can be used to detect,

localize, and adapt to multiple, unanticipated, time-varying

sensing and motor capability changes. This first paper seeks

to address one small part of this question, namely whether

faults can be detected and localized in an unsupervised

manner by modeling cross-sensory and sensorimotor

patterns. We further address the question of whether

mappings that are inherently inconsistent (e.g. between

different sensors measuring independent attributes of the

world) can be ruled out during training. In future papers, we

will attempt to answer the rest of the questions posed above,

including whether faults can be identified in an automated

fashion, whether our approach can detect classes of faults

that have traditionally been unexplored (e.g. time-varying

faults or multiple interacting faults), and whether our

approach can add new adaptation capabilities (e.g. automatic

control system reconfiguration).

II. THEORETICAL FRAMEWORK

We will now describe the general framework for our

system. Figure 2 shows the steps involved during training

and testing of the system, and the following subsections

expand upon each step.

A. Input

It is assumed that, as an input, a hierarchical structure of

perceptual schemas is available. Such information is already

explicitly available in, for example, behavior-based systems

but can also be easily available in robotic systems where

modular programming practices have been followed.

Specifically, a directed acyclic graph (DAG) P is provided,

where each node represents the output of specific perceptual

processing and the links represent inputs to the processing.

The root nodes of the DAG are the raw sensors available to

the robot (e.g. vision, laser, etc). The specific type and

amount of processing that warrants a new node is up to the

programmer; however, presumably in general the deeper a

node of the graph is, the more abstract the knowledge it

represents becomes since it is processed more and utilizes

more sensors than lower levels. The goal of this research is

to eventually provide guidelines for the type of information

that would be useful, in terms of the amount of independence

between the schemas and other properties, as well as

desirable properties of the graph. For now, we arbitrarily

pick the processing points at which nodes lie.

B. Construction and Learning of Correlation Graph

The input graph P is subsequently transformed into a fully

connected undirected graph G, with the perceptual schemas

Figure 1 – Example of a motor schema and its associated

hierarchy of perceptual schemas.

and the output of the motor schema (i.e. the control signal) as

nodes. The links in this graph represent functional mappings

between the two perceptual schemas, i.e. the predicted value

of the output of one schema given the output of the other. In

general it can represent any functional mapping, and we call

this graph the correlation graph.

There are several alternatives to initializing the graph as

fully connected. For example, connections between two

perceptual schemas that feed into one another will probably

not lead to useful correlations, as they come from the same

sources. In general, there may be algorithms analyzing the

transformation from the hierarchy P to the graph G.

Once the graph G has been created, the functions

represented by the edges must be learned. Through training

data obtained during normal functioning of the robot, a

model is created between each pair of cross-sensory (two

perceptual schema) or sensorimotor (a perceptual schema

and the motor output) connections. Models can be simple or

complicated statistical models, or even sensor-specific

models (e.g. if a motion model is known).

Although many representations are possible, there are

several properties that are desirable for functionality and

practicality. Specifically, that:

1. The representation can be learned for a given task and

environment in an unsupervised manner, without a priori

fault models.

2. The representation can detect which sensorimotor and

cross-sensory mappings are valid; that is, useful for detecting

and adapting to faults. Mappings that are inconsistent during

normal operation can be ruled out.

3. In order to detect unanticipated faults, only data

during normal operation is assumed to be available. The

representation can be used to detect and identify faulty

sensing or motion.

4. The representation can be used to adapt the control

system after the fault.

5. The representation can be used to detect and adapt to

multiple faults occurring after each other.

6. The representation can detect and adapt to faults

occurring at different time-scales (e.g. slow-varying faults

such as tires losing air).

C. Removal of Inconsistent Mappings

Once the models are learned, a further training step

involves removing inherently inconsistent links. Some

perceptual schemas during a task, for example odometry and

sound-based sensors, reflect inherently independent aspects

of the world. Hence, modeling their interaction will not be

useful. In order to do this, a metric for consistency is

required for a given representation in order to rule out

inconsistent mappings a priori.

D. Detection of Changes

Once consistent models have been found and learned, the

stability of the mappings can be monitored. Again, a metric

or set of metrics must be provided to determine whether a

mapping is stable or not. These metrics can be the same as,

or different from, the metric used to remove inconsistent

mappings. It is hypothesized that changes or faults in the

perceptual or motor capabilities of the robot will lead to

instability in one or more mappings. Of course, smoothing

and other techniques must be performed in order to deal with

noise and other factors.

E. Identification of Source of Change

Finally, given a graph with connected perceptual and

motor schemas, along with a set of mappings that are

inconsistent, the source of the fault can be traced back.

Figure 2 – Steps involved in the detection and identification of changes in the

perceptual and motor capabilities of a robot in our system.

PS4

ES1

ES2

ES3

PS1

PS2

PS3

PS2

Motor Schema

1. Input

Output Vector

PS1

PS3

PS4

Output Vector

2. Learning of

Mappings
3. Removal of
Inconsistent Mappings

PS4

ES1

ES2

ES3

PS1

PS2

PS3

Output Vector

4. Fault Detection5. Fault Identification

PS2

PS1

PS3

PS4

Output Vector

PS2

PS1

PS3

PS4

Output Vector

ES

PS Perceptual Schema

Key

Environmental Sensor

Training Phase

Testing Phase

Mapping

Faulty Mapping

Figure 3 – Diagram depicting

connection between three schemas.

Assuming that there are

several perceptual

schema measuring

similar aspects of the

world, some of the links

will remain consistent

allowing the robot to

rule out certain sensors.

Hence, reasoning upon

this graph can be used

to trace back to the fault. Note that if there is not enough

redundancy in the type of knowledge the robot has from

several sensors, there may be ambiguity as to the cause of the

fault. In general, the more sensors and sensor processing

there is, the better the fault identification will be.

III. FRAMEWORK IMPLEMENTATION

The preceding section described a general framework for

cross-sensory and sensorimotor integration in order to detect

changes in capabilities. We have implemented a simple

instantiation of the framework in order to test the proposed

methods and see whether unsupervised learning can be used

to detect and identify faults using training data, with

perceptual processing at different abstraction levels, obtained

during normal operation. In order to instantiate the

framework, the following have to be defined: 1)

Preprocessing algorithm for transforming P into G (i.e.

whether G is fully connected or heuristics and other

knowledge is used to remove some links a priori), 2)

Representation R used to define the links in graph G, 3) A

consistency metric for R to rule out inconsistent mappings, 4)

A metric for determining when a mapping has changed

during operation (can be the same as the consistency metric),

and 5) An algorithm to identify the source of the change

through analysis of the two graphs P and G, and the locations

of the changed mappings.

In our case, we do not preprocess the transformation from

G to P, i.e. we do not rule out any connections and leave G

fully connected. The model or representation used to link the

schemas is a simple unsupervised method, namely Self-

Organizing Maps (SOM) [20]. A SOM is an artificial neural

network that has been used for classification or clustering of

input spaces in an unsupervised manner. The network

consists of a lattice of nodes or cells, usually configured in a

rectangular or hexagonal shape. Each node has associated

with it a weight vector, whose dimensionality equals the

dimensionality of the input. For each input to the network,

the output is the node or weight associated with it inside the

actual network (alternatively, arbitrary vectors can be

associated with each node and that can be the output).

Initially, these weight vectors are initialized randomly.

Training occurs in the following manner. For each input

vector, the winner node is obtained. The winner node is

defined as the node whose weight vector is most similar to

the input vector (similarity can be arbitrarily defined, but is

usually just Euclidean distance). The weight vector of the

winning node is then modified. In addition, the weight vector

of nodes that are within a certain neighborhood of the

winning node is also modified. The update rule can be

expressed as follows:

where wi(t) is the weight vector of node i at time t, a(t) is the

learning rate, x(t) is the input at time t, and Nc(t) is the

neighborhood function.

Figure 3 depicts the implementation with two perceptual

schemas and a motor schema. We aim to show that this

representation fulfills the first three requirements listed

previously, namely it is unsupervised, can provide a

consistency measure, and can be used to detect and identify

faults in motor and perceptual capabilities using only data

gathered from normal operation. For each pair of perceptual

schemas or motor schemas, a Self-Organizing Map with a

vector corresponding to both percepts or motor output was

created. During the training phase, these SOMs were trained

on data from a normally functioning robot. This reduced the

dimensionality of the data and utilized the property of SOMs

that enables them to represent parts of the sensory space that

occur more frequently with more nodes. In other words, the

SOM will represent pairs of percept values that occur more

frequently using more nodes than pairs of percept values that

occur less frequently.

The consistency metric used to identify stable mappings is

quantization error, that is the average error (i.e. distance)

between the winner node and the data for a separate training

set that is gathered during normal functioning. If the

quantization error differences between the training data

(measuring baseline noise in the data itself) and the normal

testing data is statistically significant, then the mapping is

determined to be unstable.

In order to use the system in testing mode to detect and

identify faults, perceptual and motor data coming from the

robot are processed through the SOM, and the average

quantization error is calculated. This is the metric used to

identify mappings that have changed. Quantization errors

that are significantly different that those obtained during

testing in normal operation are assumed to indicate a fault.

In order to identify the source of the problem, we use a

simple algorithm that identifies the node for which all of the

links have changed. Note that this is a simple algorithm used

to show that the framework is feasible; in order to detect

different types of faults more complicated analysis must be

instantiated.

IV. EXPERIMENTAL DESIGN

In order to test whether it is feasible to detect and identify

faults, the robot was teleoperated along similar paths for the

following conditions: 1) Normal operation for training (10

runs) 2) Normal operation for elimination of mappings (10

runs) 3) Operation with a camera that has been hit and

rotated approximately 30 degrees (10 runs). 4) Operation

with faulty wheels that are loose (6 runs). The perceptual

data available included odometry, proprioception (the

velocity commands sent to the robot), raw sonar data, raw

visual data (reduced to 5x5 images), and optical flow

processed on the vision input. Training was done using data

from normal operation. Testing consisted of running the

trained system through the data obtained during faulty

operation.

During testing, it is hypothesized that for the first fault

(rotated camera), the mappings between odometry and

optical flow and proprioception and optical flow would

produce the most errors. This is because the rotated camera

would change the correlation between the flow and actual

motion, as well as the correlation between the flow and

odometry. The correlation between odometry and optical

flow should remain unchanged. This pattern of errors allows

one to identify the fault as being in the visual system.

It is hypothesized that for the second fault (loose wheel),

the mappings between odometry and proprioception and

proprioception and optical flow would produce the most

errors. This is because despite the wheel fault, the odometry

and the optical flow percepts measure similar aspects of the

world (relative motion), and hence the fact that the robot did

not move as commanded would not affect this mapping.

This pattern of errors allows one to identify the fault as being

in the motion of the robot.

The robot used to gather the data was a Pioneer 2DX with

an onboard Dell Latitude 100L laptop, with a 2.66GHZ

Mobile Intel Pentium 4 CPU and 1GB of memory. Sampling

was done asynchronously when gathering, and was later

synchronized through software. SOMPAK, a Matlab

implementation of Self-Organizing Maps, was used with the

following parameters: map size of 10x10, initial radius of 5,

an initial alpha of 0.5, a Gaussian neighborhood function,

and 10 epochs during training.

V. RESULTS AND DISCUSSION

The first interesting thing to look at in the results is to see

which mappings of the graph G of perceptual schemas have

been determined to be stable during training. Figure 4 shows

these mappings in solid lines, while mapping that have been

ruled out are dotted. In this case, all of the mappings have

been determined to be stable except for the raw reduced

vision data. Unlike the raw visual data, raw sonar data did

produce stable mappings. Although it may seem raw sonar

data would not provide correlations with control and other

perception, in this case they may have because the data was

sparse and the teleoperation was very repetitive. For other

tasks that are more varied, this will likely not be the case.

This shows that for different tasks, different data or

mappings will be deemed useful and the system only utilizes

those which are useful for the current task.

 Figure 5 displays the broken linkages, as determined by

significantly different quantization errors from the normal

testing data, in graphical form for each of the two faults

described previously. Figure 6 displays the results in terms

of average quantization errors for all mappings during

normal and faulty operation. The quantization errors during

operation with a faulty camera validates the first hypothesis:

the quantization errors for the mappings involving optical

flow are significantly higher, whereas they are the same for

other mappings. Unexpectedly, the mapping between optical

flow and odometry differed as well. This could be due to the

simple learning method used, as a change in the distribution

of optical flow would change the model learned. Note that,

as intended, this can be used to identify where the fault has

occurred. One can detect which mappings contained errors,

and localize the fault to the common node: In this case,

between optical flow and the other sensors.

 Figure 5 and 6 also display the results that confirm most of

the second hypothesis. Again, the mappings can be used to

identify where the fault has occurred by tracing the common

node into which mappings are faulty, namely the

proprioception or the relation between motor commands and

the perceptual result. Note that unexpectedly, the mapping

between optical flow and proprioception stayed the same,

although with a larger confidence interval. Hence, it could

be that the sensor (optical flow) is too noisy to measure

changes in the correlations in this case. In addition, the

mapping between odometry and raw sonar differed as well,

possibly due to the fact that due to the mechanical failure,

the robot was not teleoperated along the same route resulting

in different sonar readings for different odometry values.

 In order to evaluate the system with two co-occurring

faults, an additional artificial fault was created by zeroing

out one column of the sonar sensor, with and without the

faulty camera. Figure 7 shows a diagram representation of

the mappings and Figure 8 shows the raw quantization

errors. As can be seen, with a sonar fault two mappings with

sonar are significantly different, with a camera fault three

mappings with optical flow are significantly different, and

with both faults the union of those mappings are significantly

different. However, when training on data obtained with

broken sonar (T2), it is as if only the camera sensor is

broken. This shows that once a fault is detected, training can

be performed in order to assign it as “normal”. Although

this feature is conferred by other data-driven methods, in this

Figure 4 – Undirected graph for the host of sensors and

motor output used for the experiments. The solid lines

represent stable mappings as determined during training,

while the dotted lines represent mappings that have been

ruled out during training.

system only a small subset of mappings or data have to be

retrained, resulting in time savings. If a model-based method

is used, then models for the system with both faults must be

derived a priori, which is difficult to obtain.

VI. RELATED WORK

The literature for fault detection and identification in the

context of industrial processes and industrial robotics is

extremely large in scale. Surveys and books include [1], [3],

[4], [5], and [6]. Besides numerous approaches that use

physically redundant sensing , by far the dominant approach

involves analytic redundancy whereby models of the

dynamics and interactions of the system are created and

differences between the predicted values and sensed values

are used to detect and identify faults [2]. Often residuals,

functions of the data and model differences that are sensitive

to specified faults, are created [4]. Most of the approaches

using this concept utilize a priori models of the system itself,

be it the chemical processes being monitored or the

kinematics of the manipulator robot [8]. They also rely on

pre-determined fault states for which residuals can be

derived. Some approaches use virtual sensors that are

learned models of properties related to the faults [11].

Again, this requires knowledge of the faults beforehand.

There are also knowledge-based methods that employ more

qualitative models [1]. If robots are to perform tasks and

survive for long periods of time unassisted, such anticipation

of faults would be an undue burden.

Data-driven methods include multivariate statistical

techniques such as principal component analysis (PCA) or

fisher discriminant analysis (FDA) [1]. Such methods

transform the data into subspaces that minimize variance

(PCA) or are optimal for discriminating known classes

(FDA). Again, some of these methods require classes of

faults that are determined a priori. Other methods minimize

metrics such as variance, but it is not clear that such a

subspace will be good for detecting faults. Furthermore,

they do not provide models of the interaction between the

variables explicitly, and hence cannot be used to restore the

correlations in order to adapt, nor do they discard irrelevant

data before processing.

 A key difference between fault detection and

identification in these domains and in mobile robotics is that

in the industrial environments data from sensors such as

temperatures, pressures, etc. represent physical states that

cannot be processed further in multiple ways. In contrast,

mobile robotics utilizes rich sensors such as vision, laser,

and sound that can be processed in multiple ways to obtain

different types of information. There are huge bodies of

literature in the fields of vision, acoustics, and perception

that have devised many algorithms for processing the sensor

data. The hierarchy that describes the flow of this processing

(i.e. which sensors are used, etc.) can be utilized to provide a

further form of redundancy. It makes sense to create

methods that automatically correlate such data and detect

faults through changes in these correlations.

Although there are an increasingly large number of papers

on fault detection and identification in the mobile robotics

community, most of the approaches follow their predecessors

in industrial applications in using concepts such as state

estimation and analytic redundancy. For example, there have

been specialized particle filtering algorithms designed to be

risk-sensitive or with variable resolution [13].

In other words, there have been few systems that utilize

the richness of the sensors and the redundancy they can

provide. One notable exception is [14], whereby redundant

position information obtained at multiple levels of

abstraction were used. However, in that case the difference

between the two position estimates were fed to a Kalman

filter state estimator. As a result, a priori models were used

in that instances as well, and the information obtained from

the two sensors were identical. In our system, we model the

correlations between different information obtained from

sensors, allowing for richer relationships. Furthermore, there

has not been a general framework created for exploiting the

redundancy provided by multiple levels of representation, to

the best of our knowledge.

In this work, the framework creates models of various

levels of perceptual processing independent of what they are

used for. Modeling the statistics of raw sensory data is not

unheard of; for example, pattern theory [19] attempts to

describe statistical patterns in, for example, natural scene

images. Finally, sensorimotor correlations have been

explored in areas such as developmental robotics [21];

however, there is no demonstration or focus on fault

detection and adaptation. The main contribution of this work

is to create a general framework for exploiting the

Figure 5 – Mappings during camera (left) and wheel (right)

faults. Solid lines indicate mappings that have remained

stable despite the faults, and dotted lines indicate mappings

that have not.

Average Error during Normal and Faulty Operation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Cont -> Odom Cont -> OpFl Cont -> Sonr Odom -> OpFl Odom -> Sonr OpFl -> Sonr

Mapping

A
v

e
ra

g
e

 Q
u

a
n

ti
z
a

ti
o

n
 E

rr
o

r

Normal

Broken Camera

Broken Wheel

Figure 6 - Average quantization error with wheel and

camera faults, for each mapping.

redundancy provided by the rich hierarchical sensory

processing available on mobile robots today.

V. CONCLUSIONS

 In summary, we have proposed a novel task-based

approach that utilizes cross-sensory and sensorimotor

correlations to detect, localize, and adapt to faults. In this

paper we have demonstrated that given an input hierarchy of

the perceptual processing performed on a robot, correlations

between elements of the hierarchy can be learned in an

unsupervised manner. We showed that unstable mappings

can be identified during training and ignored, and that the

remaining stable correlations can be used to detect and

identify both motor and perceptual changes in the

capabilities of the robot without a priori models of system

dynamics or pre-specified faults.

 The results shown here are preliminary and have only

answered a few of the questions we have posed. There is a

great deal of future work in implementing the framework

completely, replacing some of the simple blocks we have

substituted with more grounded and robust algorithms. After

this, the system will be tested with a larger and more realistic

perceptual processing graph, with several vision, laser, and

sound processing algorithms.

 There is then future work in order to demonstrate the

efficacy, scalability, and robustness of the architecture. We

will attempt to answer the rest of the questions posed,

including whether our approach can detect classes of faults

that have been relatively unexplored (e.g. time-varying

faults). An important area for future research is to see

whether the mappings learned here can form a basis for

adaptation capabilities, by restoring old mappings that are no

longer stable.

ACKNOWLEDGMENT

I wish to thank SAIC for their generous research support.

REFERENCES

[1] L.H. Chiang, E.L. Russell, and R.D. Braatz, Fault Detection and

Diagnosis in Industrial Systems.”, Heidelberg:Springer, 2001.

[2] E. Chow and A. Willsky, “Analytical redundancy and the design of

robust failure detection systems,” IEEE Transactions on Automatic

Control, 29, 603-614, 1984.

[3] P.M. Frank, “Fault Diagnosis in Dynamic Systems Using Analytical

and Knowledge-based Redundancy-A Survey and Some New Results,”

Automatica, Vol. 26, No. 3, pp. 459-474, 1990.

[4] Frank, P. and X. Ding, “Survey of robust residual generation and

evaluation methods in observer-based fault detection systems”, Journal

of Process Control, 7, 403-424, 1997.

[5] A. Willsky, "A survey of design methods for failure detection in

dynamic systems," Automatica, no. 12, pp. 601--611, 1976.

[6] Gertler, J. Fault detection and diagnosis in engineering systems. New

York: Marcel Dekker, 1998.

[7] M. Mufti, V. Ramani, George J. Vachtsevanos: ""Fuzzy Wavelets for

Feature Extraction and Failure Classification,"" in Fuzzy Hardware,

Architectures, and Applications, edited by A. Kandel and G. Langholz,

Kluwer Academic Publishers, pp. 311-344, 1998.

[8] Fault diagnosis and fault tolerance for mechatronic systems : recent

advances / Fabrizio Caccavale, Luigi Villani, (eds.), 2003.

[9] M. Visinsky, Fault Detection and Fault Tolerance Methods for

Robotics, Masters Thesis, (December 1991).

[10] D. Zhuo-hua, C. Zi-xing, and Y. Jin-xia, “Fault Diagnosis and Fault

Tolerant Control for Wheeled Mobile Robots under Unknown

Environments: A Survey”, Proceedings of the IEEE International

Conference on Robotics and Automation, April 2005.

[11] C. Ferrell. Failure recognition and fault tolerance of an autonomous

robot. Adaptive Behavior , 2(4):375-398, 1994.

[12] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey. “Fault detection

and identification in a mobile robot using multiple-model estimation”,

In Proc. 1998 IEEE International Conference on Robotics and

Automation, pages 2223--2228, May 1998.

[13] Vandi Verma, Geoff Gordon, Reid Simmons, and Sebastian Thrun,

“Particle Filters for Rover Fault Diagnosis”, IEEE Robotics &

Automation Magazine special issue on Human Centered Robotics and

Dependability, June 2004.

[14] P. Sundvall and P. Jensfelt, “Fault detection for mobile robots using

redundant positioning systems”, Proceedings of the IEEE International

Conference on Robotics and Automation, April 2005.

[15] Dixon, W.E.; Walker, I.D.; Dawson, D.M.; "Fault detection for

wheeled mobile robots with parametric uncertainty," in Proc.

IEEE/ASME Int'l Conf. Advanced Intelligent Mechatronics, 2001, pp.

1245 - 1250.

[16] V. Verma, J. Langford, and R. Simmons, “Non-Parametric Fault

Identification for Space Rovers,” International Symposium on Artificial

Intelligence and Robotics in Space (iSAIRAS), 2001.

[17] R. R. Murphy, and D. Hershberger, “Handling sensing failures in

autonomous mobile robots,” International Journal of Robotics

Research, vol. 18, no. 4, pp. 382-400, 1999.

[18] R.C. Arkin, Behavior-Based Robotics. MIT Press, 1998.

[19] D. Mumford, Pattern Theory: The Mathematics of Perception, in

Proceedings of ICM 2002, Beijing, vol. 1, 2002.

[20] Kohonen, T. 1990. “The self-organizing map”, Proceedings of IEEE,

78:1464–1480.

[21] Y. Yoshikawa, H. Kawanish, M. Asada, and K. Hosoda, “Body

scheme acquisition by cross map learning among tactile, image, and

proprioceptive spaces,” in Proceedings of the 2nd International

Workshop on Epigenetic Robotics, pp. 181-184, 2002.

Figure 7 - Mappings with multiple co-occurring faults (both

camera and sonar faults). Left: Mappings after training on

normal data. Right: Mappings after training after only the

sonar fault, hence isolating the camera fault.

Average Error during Normal and Faulty Operation,

with Multiple Co-occuring Faults

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Cont -> Odom Cont -> OpFl Cont -> Sonr Odom -> OpFl Odom -> Sonr OpFl -> Sonr

Mapping

A
v

e
ra

g
e

 Q
u

a
n

ti
z
a

ti
o

n
 E

rr
o

r

Normal

Broken Sonar

Broken Camera & Sonar (T2)

Broken Camera & Sonar (T1)

Figure 8 - Average quantization error with multiple co-

occurring faults, for each mapping. T1 indicates training with

normal data, and T2 indicates training with only faulty data.

