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Abstract--Whenever a mobile robot has to deal with an environment that is totally or partially unknown or 

dynamically changing, local navigation strategies are very important for the robot to successfully achieve its goals. 

Unfortunately, local navigation algorithms that have been proposed in the literature offer poor performance (or even 

fail) whenever the geometry of the free space in which the robot is requested to operate increases its complexity. In 

this paper, we deal with a team composed of many robots, and we show how robots navigating within an unknown 

environment with local communication capabilities (only line-of-sight communication is allowed) can cooperate by 

helping each other to achieve their own goals.  

Keywords-- Navigation algorithms, multi-robot exploration, multi-robot cooperation. 

1 INTRODUCTION 

Whenever a mobile robot has to deal with an environment that is totally or partially unknown or dynamically 

changing, local navigation strategies are very important for the robot to successfully achieve its goals, whether it is 

requested to accomplish a complex mission or simply to survive in the environment. By local navigation strategies 

we mean algorithms that return, at each computation step, the best direction for the robot to move on the basis of its 

current goal and the current perception of its surroundings.  

Even if in many cases the robot has an approximate knowledge of the environment in which it is requested to 

operate and therefore hybrid solutions deliberative/reactive are possible [1][2], local strategies are important for the 

robot to react in real-time to unforeseen situations; e.g., in the case of Service Robotics applications [3][4], where 

robots are requested to execute repetitive tasks (e.g., carrying objects, escorting people) within a populated building 

such as a hospital, or a museum. Moreover, whenever the environment is totally unknown and the robot can rely only 

on its own perceptions to achieve its goals, the availability of effective, local strategies for exploring the environment 

becomes even more important in determining the successful accomplishment of a given mission. Consider, for 

example, high risk military applications where robots are deployed and requested to explore unknown buildings 

(possibly occupied by hostile robots/individuals) in order to search and report the existence of any hazardous 



material or to communicate to a remote station other kinds of information which will reduce the risk of losing human 

lives [5]. In the following, we will take this as our reference scenario. 

Unfortunately, local navigation algorithms that have been proposed in literature offer poor performance (or even 

fail) whenever the geometry of the free space in which the robot is requested to operate increases its complexity: 

artificial potential field based approaches have the tendency to lead the robot into local minima [6]; search 

algorithms [7] may require a long time for the robot to find a path to its goal, and are therefore inefficient whenever 

the time spent in exploring the environment is a factor that needs to be minimized. However, in many applications 

related to autonomous exploration, the use of a team of robots for maximizing the coverage of a given area is 

foreseen (as is the case of our high risk reference scenario). Thus, it is straightforward to try to improve the 

performance of each individual robot (which is given a sequence of navigation tasks and a local navigation algorithm 

with poor performance) by allowing teammates to cooperate by helping each other to achieve their own goals.  

In [8] a formal comparison between the use of explicit and implicit communication is presented, focusing on the 

improvement of performances of the whole system when more robots are allowed to share with each other their own 

goals or their own internal state. In our system we allow the use of explicit communication between robots; however 

we assume that the robots are allowed to communicate only when they are in sight of each other (that is, 

broadcasting information to all robots throughout the building is not allowed).  Limiting the system to line-of-sight 

communication is a natural consequence of the particular scenario we have chosen; in fact we want the robots to be 

able to operate in potentially hostile settings where standard radio communication may be impossible. However, as it 

will be shown in the following, this work does not focus on defining strategies for keeping robots in sight of each 

other during multi-robot exploration and coverage of the environment. Instead, we consider line-of-sight as a 

constraint of the problem. This line-of-sight constraint posed for communication seems to fit well with the 

local/reactive approach to the navigation problem: since the robots rely only on ‘local knowledge’ of the 

environment, they are assumed to allow only ‘local communication’.  

For example, in our reference scenario, we could imagine a situation as depicted in Figure 1: M robots are 

deployed in an unknown (or partially known) building with the purpose of exploring it and reporting to a base station 

what they have discovered. A possible strategy could be the following: one robot is given the task of patrolling the 

corridor, maintaining line-of-sight with the base station at the entrance of the building (everything must be reported 



to or through the base station) while watching for potential enemies, while other robots explore the rooms on both 

sides of the corridor. In the following, we will show how the robots can help each other while accomplishing their 

respective tasks.   
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Figure 1. One robot is given the task of patrolling the corridor; other robots explore the rooms on both 

sides of the corridor. 

2 THE NAVIGATION PROBLEM 

In the above scenario (autonomous navigation in an unknown, potentially hostile environment), we define a 

navigation problem for a robot Ri as follows: 

• Ri is given a starting point Starti and a set of goals <Gi1., …, GiN> to be reached in sequence. Goals can be both 

spatial location and interesting objects to be found, whose location is not necessarily known to Ri. When goal 

positions <Gi1., …, GiN> are known, they are expressed as x, y coordinates with respect to a relative reference frame Fi 

that is centered on Ri: we call Gik,i  the kth goal position with respect to Fi. The notations Ri, Starti, and Gik are used to 

indicate the corresponding quantities with respect to a hypothetical absolute reference frame common to all robots 

that is used for the sake of simplicity in the following explanation. This absolute reference frame is not known nor 

used by the robots themselves. Finally, during each interval [tik, tik+1] only one goal Gik is significant for the robot 

(we say that Gicurr = Gik), while the others are ignored. If at time tik+1 Ri reaches Gik, we set Gicurr = Gik+1. We say that, 

at time tik+1, Ri reaches Gik if dist(Ri , Gik)<ε, where ε is a positive number that establishes a tolerance margin. 



• Ri is provided with a local navigation algorithm A which returns, at each computation step t, what is considered 

as the best choice for reaching the goal Gicurr. The algorithm fails whenever it is not able to guide the robot to its 

current goal Gicurr (or to prove the non-existence of a path) in a finite time. 
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Figure 2. V(Ri(t)) is the visibility region of Ri (t). 

• 
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Suppose now that the free space F is a simply connected set with polygonal boundaries. The boundary of F is a 

finite set of closed, piecewise-smooth curves with only a finite number of non-smooth points. For any R (that 

is, for any configuration in the free space that R

Fti ∈)(

F∈i can assume), let V(Ri(t)) denote the set of all points V  such 

that the line segment that joins Ri(t) and V does not intersect the boundary of F. We call V(Ri(t)) the visibility region 

(Figure 2). In the following we assume that each robot Ri(t) is given omnidirectional visibility, and the corresponding 

visibility region V(Ri(t)) is contained within a circular area of bounded radius. Moreover, we say that robot Ri can 

see Rj (another robot) or G (a goal) if Rj or G∈ . Remember that, in our definition, a goal G can be either an 

interesting object or a location in free space.  

)( iRV

Whenever Ri can see its current goal Gicurr, it starts heading towards it, by suppressing the output of algorithm 

A.  

In the following we consider only the case in which the robot’s goals coincide with a set of targets spatially 

located in the environment, whilst we ignore the case (very frequent especially in high risk, hostile environments) in 

which the goal coincides with a particular object (or person) to be found and identified. Thus, in our case, robots 

need to have some kind of approximate knowledge about the environment, since they know approximately the areas 

of the environment that must be explored, even if they do not know the topology of the free-space and, therefore, are 

incapable of planning a path. However, if we want to explore the environment to search for something, it is sufficient 



to substitute algorithm A (which determines the motion strategy of the robot and has been introduced in the second 

point) with an algorithm for autonomous exploration (even a random-motion algorithm) without affecting the general 

strategy that will be proposed for multi-robot cooperation. About the fourth point, notice that Ri chooses what he 

thinks to be the fastest path to the goal (this is guaranteed in a static environment) by following a straight line, no 

matter if A proposes a different motion strategy.  

3 AGENTS COMMUNICATING THEIR OWN GOALS: COMMUNICATION IS PERCEPTION. 

Let us consider a team composed of 2 robots. We introduce a very simple strategy that allows robots to obtain the 

benefit of line-of-sight communication improving each robot’s behavior. Suppose for the moment that R1 is the only 

robot that is given a navigation problem and is therefore freely moving in the environment, while R2 remains in a 

fixed position. Whenever R1 comes in sight of R2 (i.e.  and ): ))(()( 12 tRVtR ∈ ))(()( 21 tRVtR ∈

1. Share my goal: R1 communicates to  its current goal G)( 12 RVR ∈ 1curr. 

2. Check visibility: If R2 knows G1curr, it checks its visibility ( G ). It then communicates the result 

to R

))(( 21 tRVcurr ∈

1.  

3. Head to goal: If  and  we let R))(( 21 tRVG curr ∈ ))(()( 12 tRVtR ∈ 1 infer that G ; that is, we are 

introducing a transitive property in the definition of the visibility function V(R). According to point 4 of the previous 

section, whenever R

))(( 11 tRVcurr ∈

1 can see its goal it starts heading towards it, by suppressing the output of the navigation 

algorithm A. However, since R1 perceives its goal through R2, it sets G1curr= R2 and consequently heads towards R2 

until it is eventually able to directly perceive its own goal (this is guaranteed in a static environment). Obviously, this 

is not always possible if the robots are real and therefore they can obstruct the visibility of each other. Suppose for 

example that G1curr is inside a room and R2 is blocking the door: in this case, R1 and R2 should implement some sort of 

coordination strategy in order to make possible for R1 to directly perceive its target once it has joined R2. 

Notice that the behavior of R1 (heading towards the robot that declares to be able to see its goal) can be described 

by interpreting R2 as a mirror that reflects the image of R1’s goal. We can imagine that R1 heads towards the reflected 

image (thinking that it is the real one) until it is able to directly perceive its goal, thereby recognizing the illusion.  

On one side, this metaphor allows us to emphasize the parallelism between local perception/communication which 



motivates the approach: the mirror can be thought as a very simple communication device, a signal repeater that 

changes the direction of the visual signal: but for an external observer, what is the difference between perceiving the 

imagined goal reflected on the mirror and the real goal? From the other side, it allows us to easily explain the 

behavior of R1 when G1curr is neither directly perceived by R1 nor by R2, but it can be seen by a jth robot Rj which 

shares this information with Rj-1 and so on until the fact is eventually bounced to R2 and finally to R1 (see Figure 3). 

We can imagine robots R2 to Rj as reflecting mirrors that transmit to R1 the image of its goal. R1 starts heading 

towards the only goal that it can perceive (the one reflected in R2), but as soon as another image is available which 

guarantees a shorter path to the goal (in the sense of the path traveled by light from G1curr to R1: this concept will be 

clarified in the following), it changes its target and heads towards it until it is eventually able to directly perceive its 

own goal. In order to distinguish these concepts (visibility-through-reflection) from traditional visibility V(Ri(t)), we 

will use a different function VR(Ri(t)) that we call reflected visibility. 
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Figure 3. The behavior of R1 when it can see its goal (a) reflected by R2 or (b) reflected by R2 and R3. 

In a static environment, this strategy will guarantee R1 to finally reach its goal; however the trajectory generated is 

not optimum in terms of the distance that the robot has to travel. It is obviously possible to try to optimize the length 

of the path by considering the robots’ visibility region and the geometry of the environment. However the simple 

behavior proposed offers another advantage: it allows the moving robot to keep its ‘focus of attention’ on the still 

robot from which it is receiving help. In many cases, this allows making visual processing faster and consequently 

increases the reactivity of the whole (the role played by attention in simplifying visual processing in human beings 

has been deeply investigated [9] [10]). 



For a generic group composed of M robots, the rules for the behavior of each robot can be generalized as follows 

(once again we assume that R1 is the only moving robot, whilst robots R2 to RM are stationary robots). 

1. Share my goal: R1 communicates to each robot  its current goal G)( 1RVRi ∈ 1curr. 

2. Share other robots’ goals: If Ri knows G1curr, it communicates the information to each robot  )( ij RVR ∈

3. Check visibility: If Ri knows G1curr it checks its visibility ( G ).  It communicates the result to each 

robot R . 

)(1 icurr RV∈

)( ij RV∈

4. Reflect visibility: If G  and  we let R))((1 tRV iRcurr ∈ ))(()( tRVtR ji ∈ j infer that G ; this is 

now a consequence of the transitivity of V

))((1 tRV jRcurr ∈

R(R). 

5. Head to goal: Once again, if G  and , then R))((1 tRV iRcurr ∈ ))(()( 1 tRVtRi ∈ 1 sets G1curr= Ri and consequently 

starts heading towards Ri until it is eventually able to perceive directly its own goal (guaranteed in a static 

environment). These rules will now be described in detail. 

3.1 Rules 1 and 2: share goals with other robots 

 Since we ask the robots to share geometric information, we have to deal with the problem associated with the 

absence of a common reference frame (remember we are considering the case in which Ri’s goals <G,i1., …, GiN> 

correspond to known Cartesian coordinates in the free space F). It is usual in many multi-robot applications to 

assume that the robots share some kind of global reference frame, in which all the geometrical information 

exchanged between robots (if any) is computed (even in reactive approaches [11]). This assumption is indeed a very 

strong one, since the use of a global reference frame requires robots to be aware of their position and orientation in 

the world with high accuracy, at least if we want the information exchanged to have the same meaning for all the 

robots involved in the communication process. In the following, we describe a possible solution to this problem: 

similar solutions have been already presented in literature: see for example [12] (while robots move, one of them 

remains stationary thus acting as a landmark for the teammates) and [13] (a visual pattern is used in order to retrieve 

distance and orientation of teammate robots through visual sensing).   

It is easy to show that, because of the line-of-sight communication constraint, the global reference frame 

assumption is not required. More precisely, suppose that the two robots R1 and R2 use different relative reference 



frames F1 and F2. Suppose also that, at time t, R1 needs to communicate to R2 its goal G1curr,1 . In order for robots to 

share meaningful information, R2 needs to know the transformation matrix T21(t) that permits the mapping of  points 

between F1 and F2,  as  in computing G1curr,2 = T21(t) G1curr,1. Notice that T21(t) is different from time to time, since 

robots are moving in the environment. Notice also that, for R2 to compute T21(t), it should be able to recognize R1 's 

position and orientation with respect to its own reference frame F2; however, while recognizing the position of a 

known object is a quite simple task (especially if the object to be recognized is designed in such a way as to be easily 

detected) the same is not necessarily true for its orientation. Moreover, it is well known that a wrong estimate of the 

rotational component of T21(t) can be a source of significant errors. 

The task is much simpler if we allow R1 and R2 to cooperate in computing T21(t) (and T12(t) ). In fact, if R1 is able 

to perceive R2’s position (x and y coordinates with respect to F1) and R2 is able to perceive R1’s position (x and y 

coordinates with respect to F2), both robots are allowed to compute very accurately T21(t) and T12(t) by sharing 

information about the direction in which they see each other (see Figure 4a: α 21 measures the direction in which R1 

sees R2,α 12 the direction in which R2 sees R1). From geometrical considerations (Figure 4b), it is straightforward to 

see that R1 is allowed to compute θ21 (orientation of R2 with respect to F1) as 180+α 21-α 12 and R2 is allowed to 

compute θ12 (orientation of R1 with respect to F2) as 180+α 12-α 21.  
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Figure 4. Robots cooperate to compute the transformation matrices T21(t) and T12(t). 

Notice that, since the robots do not use a global reference frame, only R1 is responsible for knowing with accuracy 

its own position with respect to the place where it needs to go. Even if R2 is completely lost in the environment, it is 

still fully functional in helping R1 to reach its target if R1 asks it the right question (roughly speaking, we can imagine 

R1 asking R2: can you see my goal? It should be two meters on your left…). Thus, whenever robot R1 communicates 

G1curr to Ri, it sends the following data: 



1. The goal position G1curr,1 with respect to F1 

2. The angle α 2i, corresponding to the direction in which R1 sees Ri 

3. Id1k = k*M, an identifier which unequivocally identifies R1’s kth goal. 
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Figure 5. R4 receives multiple reports of G1k (from R2 and R3), and discards the one with the lower 

value of Idk. 

The identifier is required since G1curr changes with time: whenever robot Ri receives G1curr, it stores the goal (after 

having computed its position with respect to Fi) together with its identifier Id1k. Next, when communicating it to 

another robot Rj, it marks G1curr with Id1k -1. Rj is thus aware of the fact that it has not received G1curr directly from 

R1, but from another robot that directly communicates with R1. Notice that  the identifier received by Rj still identifies 

unequivocally R1’s kth goal (since k = 1 + (Id1k -1) / M) but, on the other side, it also provides an estimate of the 

quality of the information, since it measures the number of robots by which the information has been manipulated. 

This is important because the computation of the transformation matrix is affected by noise in reality, and it is thus 

possible that Rj checks the position of G1curr in the wrong place. To reduce the effects of noise, each robot will prefer 

to receive G1curr directly from R1 whenever possible. The number of coordinates transformations that have been 

performed on G1curr before the information reached Rj can be computed as Nrik = (Id1k - (k - 1)*M), where Nrik = M 

only if the goal has been directly communicated by R1, and Nrik = 1 if the information has been manipulated by all 

the robots before reaching Ri. If Ri receives multiple reports about G1curr, it accepts the new goal as a valid one only if 

its identifier is greater than or equal to the one that had been previously stored for that robot’s goal (Figure 5a). That 



is, if the goal is more recent (updated information) or if it comes from a robot which is closer to R1 (better quality 

information).   

3.2 Rules 3 and 4: check goals’ visibility and reflect visibility.  

Each robot Ri that knows G1curr checks its visibility (G ); furthermore, it communicates the result to each 

robot R . Specifically, when R

)(1 icurr RV∈

)( ij RV∈ i sees G1curr it transmits the following information: 

1. Id1k = the identifier of the goal that it has seen (which can differ from R1’s current goal because of delays in 

inter-robot communication). 

2. D1i, the Euclidean distance between Ri and G1curr. 

We have stated that, if G  and , we let R))((1 tRV icurr ∈ ))(()( tRVtR ji ∈ j infer that G . However, 

when R

))((1 tRV jRcurr ∈

j wants to communicate to another robot that it can see R1’s goal, it computes its distance to G1curr as D1j = 

dist (Ri, Rj) + D1i which is clearly larger that the distance computed by Ri, the robot that can directly perceive the 

goal.  
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R2

G1

Start1

Figure 6. R1’s trajectory is shown (in simulation) when it receives information about its goal from R2, 

R3, and R4 

More generally when Rj receives information from different robots, each declaring to see G1curr, it listens only to 

the robot that guarantees the shortest path to the goal, thus avoiding loops in communication (see Figure 5b). Next, 

when re-transmitting the information, it computes its distance to the goal according to the previous rule. Finally, R1 



accepts only the information that is associated with the shortest distance and discards the others, therefore heading 

towards the robot that provides the shortest path to its goal (guaranteed if the environment is static). 

As a consequence, if suddenly R1 perceives its own goal directly, it starts heading toward it since no other 

information can have a lower value as it is guaranteed to be the shortest distance. Figure 6 shows the behavior of the 

system for a very simple simulated case. 

4 MOVING ROBOTS AND ‘GHOST ROBOTS’. 

Up to now we suppose a team of M robots of which only R1 was given a navigation problem and therefore 

requested to move in the environment, while the other robots (R2 to RM) were stationary. One could try to compute, 

for a given environment, the minimum number of fixed support robots that is required to guarantee, for each pair of 

points in the environment (say R1 and G1curr), that the following expression is true: G . The problem 

seems very similar to coverage problems that have been deeply studied in the literature: art gallery problems [14] or 

the pursuit-evasion problem [15]. However, neither of these approaches fits very well into the motivation of our 

research. First of all, we aim at designing cooperation strategies for robots that have a very limited knowledge (or no 

knowledge at all) of the environment and therefore rely on local navigation algorithms to find their way to the target. 

Since the environment is unknown, it is not possible to compute the minimum number of fixed support robot that are 

required to fully cover the environment, nor to determine a motion strategy that allows in different times to displace 

M-1 support robots such as to make R

))(( 11 tRVRcurr ∈

1’s current goal visible from R1’s current position. Furthermore, even if 

computable, this number could be very high, and it appears to waste resources by using those robots only to help one 

robot to safely carry out its tasks.  

Thus, we choose a different approach, and let all robots move in the environment while carrying out their own 

activities; that is, instead of determining a motion strategy or a spatial distribution that allow robots to help each 

other, we focus our attention on finding a strategy that allows them to do their best in helping each other whenever 

they have a chance. However, if we let the robots move without coordinating them, it is intuitive that the probability 

for the expression G to be true becomes very low (and depends on the complexity of the 

environment, the number of robots involved, and the task of each robot). Thus, we choose to introduce a new 

visibility function, which we call delayed visibility V

))(( 11 tRVRcurr ∈

D(R). We wish to anticipate that, because of the following 



extension, we lose one of the properties of the previous approach, which was purely reactive in the sense that it did 

not require memory except for storing the two values Idik and Di (the identifier of the goal and the length of the path), 

both required only for arbitrating between different solutions and choosing the optimum one. While previously we 

could imagine that at time t, R1 perceived its own goal reflected by R2, in the following this will no longer be true: R1 

still behaves as if it can see its own goal reflected in another robot which has seen its goal, but it is no longer 

guaranteed, even in a static environment, to reach its goal while following a finite set of straight trajectories. The 

algorithm can be described as follows (Rules 1 to 5 are the same as the previous case; we just need substituting 

VR(R) with the new function VD(R)): 

4.1 Rules 1 and 2: share goals with other robots.   

Once again, when a generic robot R1 shares its own kth goal, it marks it with a unique identifier Id1k, whose value 

is computed as in the previous case. Each robot Rj accepts G1k as a valid goal only if its identifier Id1k is greater than 

or equal to the one that it had been previously stored for R1. Notice that now each robot needs to remember many 

different goals (a maximum of M-1 goals) while it is moving in the environment towards its own goal, while 

previously this was not needed since each robot received continuously updated information from all the robots that it 

could see. However this appears not to be a major problem, at least from the computational complexity and the 

memory requirements (both being linear with respect to the number of robots). 

4.2 Rules 3 and 4: check goals’ visibility and reflect visibility. 

When Rj communicates to Ri that )(1 jDcurr RVG ∈ , it transmits the identifier of the goal Id1k together with D1j 

(however, because of the introduction of VD(R), the estimate of the distance to G1curr is now different; it will be 

described in the following paragraph). Thus Ri estimates its distance to the goal as D1i = dist(Ri, Rj) + D1j and stores 

this value in its memory. If at a given time a third robot Rk comes in sight and communicates that , R)(1 kDcurr RVG ∈ i 

compares the stored distance D1i with dist(Ri, Rk) + D1k and attends to the new information only if it guarantees a 

shorter path to the goal. Finally, R1 accepts only the information that is associated to the shortest distance and 

discards the rest, heading towards the robot that provides the shortest path to its goal.  



However, the same rule is now true even when the information G  is communicated by the same robot 

R

)(1 iDcurr RV∈

i, but at two different times (which happens frequently since robots are navigating in the environment towards their 

own goals). Suppose that at time t1 robot R2 provides a path with distance D12(t1) (Figure 7). R1 stores in its memory 

D11(t1)=dist(R1(t1),R2(t1))+ D12(t1). If at time t2 (t2 > t1) R2 is farther both from the goal and from R1, it provides a path 

which is given a score D12(t2) such that dist(R1(t2),R2(t2))+ D12(t2) > D11(t1). As a consequence, R1 continues to head 

toward the location in which R2 was at time t1, even if R2 is no more there. We can imagine that it continues to head 

toward a ‘ghost robot’ that provides the shortest path to the goal (as an aside: the ancient Greeks used the same word 

for ‘ghost’ and ‘mirror’, eidolon). Notice that this reduces the reactivity of the system, since R1 now needs to 

remember the position R2(t1) in which R2 was located when it promised the best path, instead of being purely 

controlled by its own sensory inputs. This seems to be necessary whenever we allow robots to move, since otherwise 

R1 would have the tendency to follow R2 even if it is heading in the opposite direction with respect to G1curr. 

Moreover, if R1 is able to distinguish some interesting features in the environment and to use such cues for 

navigating towards R2(t1) , the consideration regarding keeping the focus of attention are still valid.  

R1 
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R2(t1) 

 

D12(t1) = dist(R2 (t1), G1k) 
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D12(t3) = D12(t2) 
+dist(R2 (t3), R2 (t2)) 

Attractive vector  
towards R2(t2) 

Figure 7. R2(t2) provides a shorter path than R2(t3). As a consequence, R1 continues to head toward the 

location in which R2 was at time t2, even if R2 is no longer there. 

Finally notice that, since R1 heads towards R2 even if R2 is not currently seeing G1curr , R1 is no longer guaranteed 

to perceive the goal (or finding further help for reaching the goal) when it has reached R2’s position. To the contrary, 

in most cases, it will have to start again to explore the environment by relying on its own navigation algorithm A, 



possibly from a ‘better position’. We will attempt to demonstrate experimentally that this position is really a better 

one.   

G1k

R2(t1)

D12 (t1) = dist(R2 (t1), G1k)

D12 (t2) = D12 (t1)+dist(R2 (t2), R2 (t1))

R2(ti)

R2(t2)

D12 (ti) = D12 (t1)+ D12 (t2)+dist(R2 (ti), R2 (t2))

Figure 8. Computation of the distance to the goal when R2 is moving. 

4.3 Computation of the distance from the goal 

Since Ri is moving, and not constantly in sight of G1curr, we need to explain how it computes the distance D1i when 

it communicates G . When R)(1 iDcurr RV∈

)( 1i tR ∈

i directly perceives G1curr (i.e., G ), D)(1 icurr RV∈ 1i is computed at each time 

step as dist(Ri, G1curr) as usual; however, when G1curr is no longer visible Ri recalls the last position Ri(t1) from which 

G1curr was visible and computes D1i(t1) = dist(Ri(t1), G1curr) and stores the result in memory (Figure 8). In the 

following, Ri checks if  and computes D)( iRV 1i as D1i(t1) +dist(Ri, Ri(t1)).  We can again imagine a ‘ghost 

robot’ Ri(t1) which sees the goal and transmits the location to Ri, which can then estimate its own distance to the goal 

(Figure 8). If, at time t2 (t2 > t1) a Ri(t1) is also no longer visible, Ri(t1) and D1i(t1) are substituted in memory with 

Ri(t2) and D1i(t2), and Ri computes D1i as D1i(t2) +dist(Ri, Ri(t2)).  

4.4 Complexity of the algorithm 

If we consider a team composed of M robots, each robot Rj needs to remember a maximum of M goals or ‘ghost 

robots’ together with the associated Idik and Dij (corresponding to Rj’s goal plus the goals of all the robots that it has 

seen) and to periodically check their visibility. This guarantees linear complexity and memory occupancy for the 

algorithm.  



Whenever two robots meet, a communication mechanism with a bandwidth of order O(M) is needed since each of 

the two robots communicates a maximum of M terms (Gik, α, Idik) and a maximum of M pairs (Idik, Dik). If M robots 

are in sight and communicate with each other at the same time, the bandwidth required is O(M2).  

5 AGENTS COMMUNICATING THEIR INTERNAL STATE. 

In [8] a formal analysis is presented regarding the benefits provided by different types of communication in 

improving agents’ behavior in different multi-agent scenarios. More specifically, agents explicitly sharing their goals 

and internal state are compared with agents making use only of implicit communication in three basic tasks 

(foraging, consuming, and grazing) that can be taken as the basis for building more general and complex tasks. One 

motivation is to provide a guide for the design of multi-agent systems, and to verify if the use of a more complex and 

therefore expensive language (required for sharing goals) is really more effective than communicating only one bit of 

information to encode the internal state, (analogous to what biologists call display behavior) or by avoiding any 

explicit communication altogether. Following these design guidelines, we provide robots with another mechanism 

for helping each other to achieve their own goal, which relies on the communication of their internal states encoded 

through a single bit of information. We want to verify if it is possible to use this different mechanism (the 

communication of the internal state) to help robots succeed in the cases where the previous mechanism fails and, 

more generally, to improve the overall performance of the system.  

G11

R1

R2(t3)R2 R2(t2)

R2(t1)

Figure 9. Once R1 has reached R2(t3), it is not in a better position for finding a path to its goal, and gets 

trapped again in the local minimum. 



A typical case where the goal-sharing mechanism, presented earlier in this paper, fails appears in Figure 9. R1’s 

goal is to reach G11 , while R2 is simply patrolling the area. Since R2 has seen G11 when in R2(t1), R1 heads towards 

R2(t3). However, once R1 has reached R2(t3), it is no longer in a better position for finding a path to its goal, and gets 

trapped into the local minimum. 

The new mechanism proposed is not dependent on the local algorithm A that each robot uses for finding a path to 

the goal. Instead, the following strategy works with all generic algorithms A for which it is possible to define an 

estimate of its performance in conducting the robot to the goal. In a simple potential field approach, for example, it is 

easy for the robot to evaluate its progress to the goal and to realize when it is stuck in a local minimum (although it is 

not that simple to provide the robot with a strategy for escaping the local minimum!).  Obviously, depending on the 

particular algorithm adopted, different metrics can be chosen for synthesizing the concept of ‘being in trouble’. 

However, a very simple one can be chosen independently from the navigational algorithm adopted: if the robot is 

taking too much time in reaching its goal, it is very likely that the robot is having ‘serious trouble’ in achieving its 

mission.  

With respect to the previous case, the rules required for robot cooperation are even simpler: 

1. Evaluate my progress: Each robot stores a Boolean variable Tri: Tri is false if the robot thinks that it is 

progressing well towards the goal (the robot is ‘not in trouble’), true if it realizes that it is not making progress (the 

robot is ‘in trouble’). 

2. Share state: Each robot Ri communicates to each robot  its current state Tr)( ij RVR ∈ i. 

3. Head to helper: If robot Ri is ‘in trouble’ and R  is ‘not in trouble’, R)( ij RV∈ j temporarily becomes Ri goal; 

that is, Ri starts heading towards Rj until it realizes that it is no longer ‘in trouble’ or it is eventually able to perceive 

its own goal. 

Once again, Ri believes temporarily that Rj is in a better area of the environment for reaching its own goal, and 

therefore heads towards Rj to increase its own performance. Obviously, the fact Rj is making progress towards its 

own goal does not imply following Rj will help Ri to reach a better position. However, if Rj is a support robot that 

patrols the environment, experiments confirm that the previous assertion is true in many cases (an example is shown 

in Figure 10: it will be described in details in the following).  



Particular attention should be paid to the updating rule of the variable Tri, which defines the state of the ith robot. 

In order to update Tri , each robot stores in memory a pair of variables 

1. Pri, which increases at each computation step of the algorithm if the robot is not making progress towards the 

goal; it decreases otherwise.  

2. Cri, which establishes an upper limit on the value of Pri. 

Tri changes to true when Pri = Cri and changes back to false when Pri =0. Moreover, each time that Tri changes to 

false, we increment a third value Nti (whose initial value is 1), which counts the number of transitions between the 

state ‘in trouble’ and the state ‘not in trouble’ that have taken place in the robot. When the robot is not making 

progress towards the goal, Pri is increased by Nti; when the robot is progressing towards the goal, Pri is decreased by 

1. Finally the upper bound to the value of Pri is set to Nti Cri.  

This allows the behavior depicted in Figure 10 (in a simulated environment). Since it has no direct means (in this 

case) of coming out of the local minimum, R1 remains stuck in its start position Start1 (we have seen that, even if it 

communicates its goal G11 to R2, this does not provide any help). While R1 is stuck, the value of Pri increases by 

Nti=1 at each computation step until it reaches the maximum value Cri; when R2 (which is progressing towards its 

goal G22) comes in sight, R1 starts heading towards it since Tr1 = true and Tr2 = false. However, since R1 is now 

progressing towards its goal (by setting Gicurr=R2), Pr1 decreases to zero, and Tr1 changes to false; R1 stops following 

R2 and gets again trapped in the local minimum while heading towards G11.  

Start1

G11

Start2
G21

G22 G23

G24G24Start2

Start1

G11

G22
G23

G21

R1

R2 R2R1

a) b)

Figure 10. Thanks to the help of R2, R1 finally manages to find a path to the goal. 



When R2 comes in sight again, Pri probably has a higher value, since it has been incremented with a higher delta 

(Nti =2) and the upper bound is set to a higher value (2 Cri). This time R1 follows R2 for a longer time before heading 

again towards its own goal. After several attempts, it can be seen that R1 finally manages to make its path to the goal 

(Figure 10). 

6 EXPERIMENTAL RESULTS 

The system has been extensively tested in the simulated MissionLab [16] environment. Experiments have been 

performed in two different scenarios (Figures 11 and 13). Both scenarios represent typical office-like indoor 

environment of different complexity:  R1 is given an exploration task (it has to reach target positions which are 

located in the middle of the rooms) whilst other robots are deployed in the environment with the purpose of 

patrolling the corridors and supporting R1 in its task. In particular: 

• 

• 

R1 is assigned exploration tasks, each corresponding to a set of 200 randomly chosen targets to be reached in 

sequence. The same task is executed by providing R1 with different navigation algorithms A: 1) a standard 

potential field algorithm, 2) a potential field algorithm to which the Avoid Past schema  [17]  has been added, and 

3) the VisBug21 algorithm [7]. Moreover, each navigation algorithm is used to execute 5 exploration tasks, by 

randomly choosing different sets of targets to be reached. This allows us to compute the average number of 

motion steps required by R1 to explore the environment with a given navigation algorithm together with its 

standard deviation. 

In order to test the coordination mechanism, the average number of motion steps required is first computed when 

no external help is available; next, the same exploration task is executed by adding an increasing number of 

supporting robots (R2, R3, and R4 ) into the environment with the purpose of helping R1 to accomplish its mission 

Notice that all the navigation algorithms considered are local algorithms, i.e. they do not rely on global a-priori 

information about the environment. In particular: 1) does not guarantee the robot to reach its target without the help 

of other robots because of the presence of local minima in the potential fields, 2) proves to be effective to help the 

robot to explore the environment and 3) is guaranteed to find a path to the goal (whenever it exists) even when no 

helping robots are present. Thus, in the case of 1), the graphs in Figures 12 and 14, do not show any result when only 

R1 is present. For analogous reasons, in the case of 1) we implement both the state-sharing strategy described in the 



previous section and the goal-sharing strategy described in sections II to IV. On the opposite, in the case of 2) and 3) 

only the goal-sharing mechanism is required. Finally notice that, at each motion step, the distance traveled by the 

simulated robots is fixed, since only the direction of motion changes: as a consequence, the number of motion steps 

required to execute an exploration task is directly proportional to the length of the path followed during the task. 

Figure 11.  First simulated experimental scenario. 
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Figure 12. The results of the experiments performed in the first scenario. 

In the two graphs in Figures 12 and 14 the average number of motion steps required by R1 to complete exploration 

tasks is plotted versus the number of robot present in the environment: each curve corresponds to the different 

navigation algorithm. Notice that, in all cases, the performance significantly increases as we add more helping 

robots. In particular, in Figure 12 it can be seen that the number of motion steps required by the VisBug algorithm 



reduces from more than 800 to about 300 when adding just one support robot. Next, it decreases to about 250 when 

all three helping robots have been added. As regard to the other algorithms (potential field and Avoid Past), the 

improvement in performance is less evident in this very simple scenario: the number of computation steps decreases 

from about 550 to about 250 for Avoid Past and from about 630 to about 230 for the potential field algorithm. Table 

1 shows in details the same results in fig. 12, by reporting the standard deviation corresponding to each value shown 

in the graph (standard deviation is expressed as a percentage of the average number of motion steps and provides a 

measure of  the significance of the data).  

Av.Past. R1 R1,2 R1,2,3 R1,2,3,4
Av. Steps 554,2 426,2 302,0 257,2 
St.Dev.  11,7% 8,1% 14,2% 5,6% 
VisBug     
Av. Steps 840,6 294,0 255,4 201,2 
St.Dev.  7,6% 6,6% 6,1% 3,7% 
Pot. Fields     
Av. Steps  618,6 310,0 235,2 
St.Dev.   3,6% 10,0% 5,4% 

Table 1. Results of the experiments performed in the first scenario. 

Finally notice that, in this scenario, the performance of the system seems not to depend on the particular algorithm 

adopted when we add more than two robots (the curves in fig.12 becomes very similar when N. of Robots>=3); since 

the environment is very simple, the trajectory followed by R1 depends more on the  paths suggested by R2 R3, and R4  

than on the algorithm A.  



Figure 13.  Second simulated experimental scenarios. 

The situation is different in the second, more complex scenario, as it can be seen in Figure 14. Even when three 

helping robots are present, the influence of the navigation algorithm A is still important in determining the path 

followed by R1, and consequently the number of computation steps required is different in the three cases. In 

particular, it can be noticed that VisBug is more efficient to find a path to the goal: the corresponding curve stays 

always below the two other curves, independently from the number of support robots which have been deployed in 

the environment. However, we are not interested in comparing the three algorithms, since their performance depends 

on the environment chosen and the tuning of some parameters. Instead, we want to show that the performance of a 

given algorithm improve when adding support robots: in this scenario, the number of steps required by VisBug 

decrease from about 500 to about 370, the steps required by Avoid Past decrease from about 1130 to about 680, and 

the steps required by the potential fields algorithm decrease from about 1250 to about 900. Table 2 shows in details 

the same results in fig. 14, by reporting the standard deviation corresponding to each value shown in the graph  
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Figure 14. The results of the experiments performed in the second scenario. 

Av.Past. R1 R1,2 R1,2,3 R1,2,3,4 
Av. Steps 1132,2 953,6 731,8 682,6 
St.Dev.  4,5% 6,4% 7,9% 6,9% 
VisBug     
Av. Steps 513,6 441,8 397,4 373,4 
St.Dev.  10,5% 12,0% 9,0% 10,3% 
Pot. Fields     
Av. Steps  1246,4 1130,4 913,6 
St.Dev.   5,9% 6,7% 4,7% 

Table 2 Results of the experiments performed in the second scenario. 

In general, experiments show that the efficiency of all the algorithms is significantly improved when adding the 

simple coordination mechanism that has been presented in the previous Sections. 

6.1 Adding noise to simulations 

Up to now, we showed the performance of a system with perfect sensing and navigation capabilities: however, in a 

realistic implementation, it is required to deal with the problem of uncertain information. In general, we devise two 

main possible sources of uncertainty:  

1. uncertainty in localization, i.e. each robot has only an approximate estimate of its position in the world 

2. uncertainty in sensing, i.e. each robot has only an approximate estimate of the position of other robots which 

are in line-of-sight. 

As regard to point 1, it should be noticed that uncertainty in localization is a general problem for navigation, and 

not a specific problem of the presented approach. Obviously, if robot R1 wants to reach a target location in the 

environment, it has to know with a certain degree of accuracy its own position in the world with respect to a absolute 



reference frame; otherwise, it will reach a wrong location or, even, it will not be able to reach its target at all. The 

presented approach is not an exception. However, as it has been already explained in section III.A, only R1 is 

responsible for knowing with accuracy the place where it needs to go; other robots, even if they are completely lost 

in the environment, are still fully functional in helping R1 , since they do never rely on the absolute reference frame to 

retrieve information about R1’s goal visibility.  

Thus, localization plays a role in the system only when robot R1 is heading towards a ‘ghost robot’ (see Figure 7): 

if at time t > t2 R1 is heading towards the position which was occupied by R2 at time t2 (and, in the meanwhile, R2 has 

moved), R1 must rely on its own positioning system to reach R2(t2). However, R1 path is by definition a straight one, 

whose length is upper bounded by the radius of R1’s visibility area. Since the visibility radius is small in most indoor 

applications and the path is a straight one, we assume odometry to be adequate to guarantee R2(t2) reachability. As a 

consequence of all this considerations, we choose to ignore localization uncertainty in our experiments.  

As regard to point 2, we assume that each robot is equipped with a vision system, and it is therefore able to detect 

teammate robots in the environment (to make this task easier, one could put a well identifiable marker on each robot) 

and to retrieve teammates’ positions by means, for example, of a inverse perspective mapping algorithm. Given this 

assumptions, uncertainty in  sensing could be the consequence of two major causes: bad lighting conditions or partial 

occlusions. Since the effects of lighting conditions on a vision system are very complex to be modeled, we focus on 

the occlusion problem. In particular, when robot R1 sees R2 , we assume that R2’s position with respect to F1 (see 

Section III.A) is first computed in polar coordinates. Given R2’s real distance dr and angle αr, we define the 

perceived distance dp and angle αp  

noiserrp dddd +=   (1)  

noise
r

rp d
robotsize ααα )

2
(tan 1−+=   (2) 

dnoise is stochastic variable with a uniform distribution in the interval [-errmax; +errmax], which introduces an error in 

the perceived distance: we assume that the maximum error in dp depends on the real distance dr, i.e. the farther is the 

robot, the bigger is the error. αp is a stochastic variable with a uniform distribution in the interval [-1; +1]: notice 



that, since we assume that all errors are due to partial occlusions, we are allowed to put an upper bound on the 

maximum error on αp (as defined in equation 2 and shown in Figure 15).  
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Figure 15. Because of a partial occlusion, R2’s angle αp differs from the real angle αr. 

The experiments described in Figures 11 to 14 have been performed again after adding noise to the simulated vision 

sensor: Figures 16 and 17 correspond, respectively, to the environments in Figures. 11 and 13. The graphs show the 

average number of motion steps required by R1 to reach its goals plotted versus errmax (when all the supporting robots 

R2 , R3, and R4 are present). Finally, the rightmost value of each plot corresponds to the case in which no supporting 

robots are present.  

Notice that, when errmax increases, the performance of the system decreases for every navigation algorithm.  

However, in Figure 16, even when errmax = 0.4 (corresponding to a maximum error which is about half the real 

distance dr) the average number of steps required by R1 to reach its goal is still lower than the case in which no 

supporting robots are present. On the opposite, in Figure 17 (corresponding to a more complex environment) it can 

be noticed that, when errmax increases, support robots become very soon almost useless. In particular, the 

performance of VisBug when errmax increases are even worse than the “R1 alone” case. 
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Figure 16. The results of the experiments performed in the first scenario (noise added) 
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Figure 17. The results of the experiments performed in the second scenario (noise added) 

7 CONCLUSIONS. 

The work described in this paper deals with the problem of autonomous navigation and exploration in unknown 

indoor/outdoor scenarios (e.g. for high risk military applications). In this kind of scenario, a team of robots is 

deployed in order to minimize the time required for exploration and to maximize the coverage of a given area. In 

particular, we assume that each robot is assigned a set of goals to be achieved: goals, in our definition, can be both 

spatial location in the environment to be reached or particular objects to be found. The paper describes a simple (but 

effective) approach to the problem that allows robots to help each other in achieving their own goals when only line-

of-sight communication is possible. The two strategies that have been implemented can be roughly summarized as 

follows: 



1. goal-sharing: a robot is attracted by teammates that ‘can see’ or ‘have seen’ its goal. 

2. state-sharing: a robot ‘in trouble’ is attracted by teammates that are ‘not in trouble’. 

Different experiments have been carried out in simulated environments, showing that individual robots increase 

their performance when allowed to cooperate with minimal communication/memory requirements. However, the 

experiments carried out up to the present time take into account only a subclass of the exploration problem as it has 

been defined at the beginning of this paper: i.e., we considered only the case in which goals correspond with spatial 

location to be reached, thus ignoring the case in which robots are looking for objects whose location is unknown. 

Finally, notice that performance increase more if we assign some robot the role of supporting other robot in their 

tasks. Each support robot can help more robots at the same time and that, as we pointed out in the introduction, 

patrolling robots are often required for different tasks, such as watching for the presence of possible intruders or 

maintaining line-of-sight communication with a fixed station located at one end of the corridor for transmission to 

the outside world. 
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