
† This research is supported by DARPA/U.S. Army SMDC contract #DASG60-99-C-0081. Approved for Public Release;
distribution unlimited.
‡ Presently at Carnegie Mellon University.

Abstract

This paper presents an approach to automatic selection and
modification of behavioral assemblage parameters for
autonomous navigation tasks. The goal of this research is to make
obsolete the task of manual configuration of behavioral
parameters, which often requires significant knowledge of robot
behavior and extensive experimentation, and to increase the
efficiency of robot navigation by automatically choosing and fine-
tuning the parameters that fit the robot task-environment well in
real-time. The method is based on the Case-Based Reasoning
paradigm. Derived from incoming sensor data, this approach
computes spatial features of the environment. Based on the robot’s
performance, temporal features of the environment are then
computed. Both sets of features are then used to select and fine-
tune a set of parameters for an active behavioral assemblage. By
continuously monitoring the sensor data and performance of the
robot, the method reselects these parameters as necessary. While
a mapping from environmental features onto behavioral
parameters, i.e., the cases, can be hard-coded, a method for
learning new and optimizing existing cases is also presented. This
completely automates the process of behavioral parameterization.
The system was integrated within a hybrid robot architecture and
extensively evaluated using simulations and indoor and outdoor
real world robotic experiments in multiple environments and
sensor modalities, clearly demonstrating the benefits of the
approach.

Index terms: Case-Based Reasoning, Behavior-Based Robotics,
Reactive Robotics.

I. INTRODUCTION

Behavior-based control for robotics is known to
provide good performance in unknown or dynamic
environments. Such robotic systems require little a priori
knowledge and are very fast in response to changes in the
environment, as they advocate a tight coupling of
perceptual data to an action. At any point in time a robot
selects a subset of behaviors, called a behavioral
assemblage, based on incoming sensory data from the set of
predefined behaviors and then executes them. One of the
problems of this approach, however, is that as the
surrounding environment gradually changes, the
parameterization of the selected behaviors should also be
adjusted correspondingly. Using a constant, non-adaptive

parameterization, for most non-trivial cases, results in the
robot performance being far from optimal. Also, choosing
the "right" set of parameters even in the case of constant
parameterization is a difficult task requiring both
knowledge of robot behaviors and a number of preliminary
experiments. It is desirable to avoid this manual
configuration of behavioral parameters in order to make
mission specification as user-friendly and rapid as possible.
It is also desirable to avoid the requirement of knowing
when and which types of environments a robot will
encounter during its mission.

This paper presents a solution to these problems by
incorporating Case-Based Reasoning into the behavior
selection process. Case-Based Reasoning is a form of
learning in which specific instances or experiences are
stored in a library of cases, and are later retrieved and
adapted to similar situations when they occur [12]. The
Case-Based Reasoning (CBR) module operates at the
reactive level of the robot. Given a particular behavioral
assemblage that the robot executes, the CBR module selects
the set of parameters for the chosen behaviors that is best
suited for the current environment. As the robot executes its
mission, the CBR module controls the switching between
different sets of behavioral parameters in response to
changes in the environment. Each such set of parameters
constitutes a case in the CBR library of cases and is indexed
by spatial and temporal features of the environment. Spatial
features are computed from the sensory data of the robot,

Maxim Likhachev‡, Michael Kaess, Zsolt Kira, and Ronald C. Arkin
 Mobile Robot Laboratory

 College of Computing, Georgia Institute of Technology
maxim+@cs.cmu.edu, kaess@cc.gatech.edu, zkira@cc.gatech.edu, arkin@cc.gatech.edu

Spatio-Temporal Case-Based Reasoning for
Efficient Reactive Robot Navigation†

Behavior 1

Behavior N

Behavior
corresponding
to the robot’s
current goal

1st Set
of Parms

Library of
Cases

Behavior roughly
adjusted

to the robot’s
current

environment

Adaptation
Process
of the

Selected Case

Behavior
fine tuned

to the robot’s
current

environment
KthSet
of Parms

Behavior 1

Behavior N

Behavior
corresponding
to the robot’s
current goal

1st Set
of Parms

Library of
Cases

Behavior roughly
adjusted

to the robot’s
current

environment

Adaptation
Process
of the

Selected Case

Behavior
fine tuned

to the robot’s
current

environment
KthSet
of Parms

Figure 1. Behavioral selection process with Case-Based
Reasoning module incorporated.

while temporal features are computed based on the robot’s
performance. The adaptation step in Case-Based Reasoning
subsequently fine-tunes the parameters to a specific type of
environment, allowing the library of cases to be small. The
overall control flow is shown in figure 1. Such a method
permits automatic selection of optimal parameters at run-
time while the mission specification process no longer
requires manual configuration of these values.

While the library of cases that the CBR module
uses can be manually supplied for a given robot, this paper
also proposes an extension to the CBR module that allows it
to create and optimize cases in the library automatically as
the result of either experiments or actual mission
executions. In the learning mode, the module can start with
either a completely empty, partially specified, or fully
specified library. It will then add new cases as necessary
and optimize the new and existing cases by performing a
gradient descent search in the space of behavioral
parameters for each of the cases in the library. Once the
training is over and the robot exhibits good performance in
the training session, the library can be "frozen".

Case-Based Reasoning methodology is not new to
the field of robotics. It was successfully used to help in
solving such problems as path planning based on past
routes, high-level action-selection based on environmental
similarities, low-level action-selection based on local sensor
information, place learning, acceleration of complex
problem solving based on past problem solutions and other
problems [4, 5, 6, 7, 8, 14, 21]. Previous work has also
been performed on the incorporation of Case-Based
Reasoning in the selection of behavior parameters by our
group [1, 2], on which this present research is partially
based, and a few others (e.g., [13]). The approach described
in this paper, however, differs significantly from these
previous algorithms by introducing: a novel feature
identification mechanism that produces spatial and temporal
vectors describing the current environment; a notion of
traversability vectors that measure the degree of
traversability around a robot in a configurable number of
directions; a randomization in the case selection process to
allow for the exploration of cases; and a case switching
decision tree to adaptively control case switching based on
case performance. This novel methodology results in very
robust performance of the robot while allowing for an easy
input and output vector space representation,
straightforward extensions and modifications, and simple
control of computational complexity depending on the
available computational resources and precision of sensor
data. Additionally, the work presented in this paper extends
our previous work [1, 2] by incorporating the Case-Based
Reasoning within a hybrid robot architecture and
extensively evaluating the performance on both real and
simulated robots.

Extensive research has also been conducted on
learning robot behaviors using other methods such as neural
networks, genetic algorithms, Q-learning, and others [15,
16, 17]. In contrast to some of these methods, this research
concentrates on the automatic learning of an optimal
parameterization of the behaviors rather than the behaviors
themselves. It also incorporates experiential knowledge

using the Case-Based Reasoning methodology during
learning and thus decreases the number of experiments
required for obtaining a good behavioral parameterization
function as defined by the use of a library of cases.

II. ARCHITECTURAL CONSIDERATIONS

The framework chosen for the integration of Case-
Based Reasoning for behavioral selection is the MissionLab
system [9], which is a version of AuRA (Autonomous
Robot Architecture) [10]. This hybrid architecture consists
of a schema-based reactive system coupled with a high-
level deliberative planning system. The reactive component
consists of primitive behaviors called motor schemas [11]
that are grouped into sets called behavioral assemblages.
Each individual primitive behavior is driven by its
perceptual input(s), a perceptual schema(s), producing its
own motor response. The vectorial responses from each of
the active schemas are added together in the behavioral
control module as shown in figure 3, resulting in the overall
behavioral output. The weighted sum of the vectors, after
normalization, defines the final vector that is sent to the
actuators. Hence, each motor schema affects the overall
behavior of the robot.

Within MissionLab, a finite state automaton defines
the high-level plan of a robot’s mission. Each state in the
plan is one of the predefined behavioral assemblages
chosen to achieve the goal of a robot at this state. The
transitions between states are triggered by perceptual inputs
called triggers.

Every behavioral assemblage (a state in a high-level
plan) is controlled by a set of parameters. Normally, these
parameters would be carefully chosen by a user to
correspond to the task-environment the robot is expected to
inhabit. If optimal behavior for the robot is desired, states
could be split into multiple alternative states with the same
behavioral assemblage but with different sets of internal
parameters, where each state is attuned to some particular
environmental characteristics. This method would also
require designing special perceptual triggers to detect
relevant changes in environment conditions. The methods
described in this article avoid this complexity by
introducing a Case-Based Reasoning module that for a
currently chosen behavioral assemblage, selects in real-time
the set of parameters that is best suited for the current
environment. As the type of environment might change

Figure 2. Integration of the case-base reasoning module within
the AuRA architecture.

High-level plan
(FSA)

Behavioral Control
Unit

CBR Unit

Case Library

IndexCase

Behavioral Assemblage
Parameters

Behavioral
Assemblage

Current State,
Current Goal

Perceptual
Input

Motor
Vector

unexpectedly, the CBR module continually monitors and
re-selects and re-adapts the assemblage parameters as
necessary, according to current conditions.

A diagram of how the CBR module is integrated
within MissionLab is shown in figure 2. The sensor
readings enter into both the high-level FSA-based planner
and the CBR module. Based on the perceptual input, the
same or a new state is selected. The chosen state defines a
behavioral assemblage that is then passed into the
behavioral control module. The chosen state identifier is
also passed into the CBR module along with relevant
information about the current robot’s goal, such as the
goal’s position. If the CBR module supports the current
state, then based on the perceptual input, goal information
and the state, a set of parameters for the behavioral
assemblage is selected from the case library and adapted to
better fit the environment. These parameters are passed
into the behavioral control module, which applies them to
the current behavioral assemblage. After evaluating this
assemblage, the motor vector is produced and supplied to
the actuators for execution. If the chosen state, however, is
not supported by the CBR module, then the behavioral
control module evaluates the behavioral assemblage with its
default parameter values as defined in the finite state
machine.

Currently, the CBR module supports navigational
states of type GOTO, which are used for goal-directed
navigation. This particular assemblage contains the
following four primitive motor schemas, as shown in figure
3: MoveToGoal, Wander, AvoidObstacles and
BiasMove. The MoveToGoal schema produces a vector
directed towards a specified goal location from the robot's
current position. The Wander schema generates a random
direction vector, adding an exploration component to the
robot's behavior. The AvoidObstacles schema produces a
vector repelling the robot from all of the obstacles that lie
within some given distance from the robot. The BiasMove
schema produces a vector in a certain direction in order to
bias the motion behavior of the robot. The CBR module
controls the following parameters:

<Noise_Gain, Noise_Persistence,
 Obstacle_Sphere Obstacle_Gain,
 MoveToGoal_Gain, Bias_Vector_Gain,
 Bias_Vector_X, Bias_Vector_Y >

The gain parameters are the multiplicative weights of the
corresponding active schemas. The Noise_Persistence
parameter controls the frequency with which the random
noise vector changes its direction. Obstacle_Sphere
controls the distance within which the robot reacts to
obstacles with the AvoidObstacles schema. Bias_Vector_X
and Bias_Vector_Y specify the direction of the vector
produced by the BiasMove schema. Thus, a case in the
library consists of a set of values for the above parameters.

III. SPATIO-TEMPORAL CASE-BASED REASONING

 This section describes a CBR module that uses a hand-
coded library of cases. Additional details on this method
can be found in [3]. The next section provides a description
of the changes required to make the CBR module learn new
cases and its implementation. Additional details on these
issues and the learning approach in general can be found in
[19].

A. Overview
The overall structure of the CBR module, shown in

figure 4, is similar to a traditional non-learning Case-Based
Reasoning system [12]. The sensor data and goal
information is supplied to the Feature Identification sub-
module, which computes a spatial features vector
representing the relevant spatial characteristics of the
environment and a temporal features vector representing the
relevant temporal characteristics. Both vectors are passed
forward for to the best matching case selection process.

During the first stage of case selection, all the cases
in the library are searched, and the distances between their
spatial feature vectors and the current environmental spatial
feature vector are computed. These distances define the
spatial similarities of cases with the environment. The case
with the highest spatial similarity is the best spatially
matching case. However, all the cases with a spatial
similarity within some delta from the similarity of the best

MoveToGoal behavior

Behavioral Control Module

AvoidObstacles behavior

Wander behavior

V1

V2

V3

BiasMove behavior

Motor
VectorΣ

V4

CBR Module

Set of behavioral
parameters

Case Library
Index

Case

Sensor
Data

w4

w3

w2

w1

Figure 3. Interaction between the behavioral control module
running a GOTO behavioral assemblage and the CBR
module.

Current
environment

Feature
Identification

Spatial Features &
Temporal Features

vectors

Spatial Features Vector
Matching

(1st stage of Case Selection)

Temporal Features Vector
Matching

(2nd stage of Case Selection)

Set of
Spatially
Matching

cases

Set of
Spatially and Temporally

Matching cases

Case switching
Decision tree

Case
Adaptation

Case Library

All the cases
in the library

Best Matching or
currently used case

Case
Application

Case ready
for application

Case Output Parameters
(Behavioral Assemblage

Parameters)

CBR Module
Random Selection

Process
(3rd stage of Case Selection)

Best Matching
case

 Figure 4. High-level structure of the CBR module.

spatially matching case are also selected for the next stage
selection process. These cases are called spatially matching
cases. At the second stage of selection, all the spatially
matching cases are searched, and the distances between
their temporal feature vectors and the computed
environmental temporal feature vector are generated. These
distances define the temporal similarities of these cases
with the environment. The case with the highest temporal
similarity is the best temporally matching case. Again, all
the cases with a temporal similarity within some delta from
the similarity of the best temporally matching case are
selected for the next stage of the selection process. These
cases are spatially and temporally matching cases and
constitute all the cases with close spatial and temporal
similarity to the current environment. This set usually
consists of only a few cases and is often just one case. The
set, however, can never be empty as the case most similar
to the environment is always selected, independently of
how dissimilar this case might be.

The last phase of the selection stage is a uniformly
random selection from the set of spatially and temporally
matching cases. The idea is that these cases are all close
enough to the current environment. Their output parameter
vectors, however, might be very different. One specific
pair of temporal and spatial feature vectors does not
necessarily map onto an optimal solution due to possible
aliasing. As a result, all of the cases found to be
sufficiently similar to the current environment deserve at
least a chance to be tried.
 The case switching decision tree is then used to
decide whether the currently applied case should still be
applied or should be switched to the new case selected as
the best matching one. This protects against thrashing and
overuse of cases. If a new case is chosen to be applied,
then it goes through the case adaptation and application
steps. At the adaptation step, a case is fine-tuned by
slightly readjusting the behavioral assemblage parameters
contained in the case to better fit the current environment.
At the application step these parameters are passed on to the
behavioral control module outside of the CBR module for
execution.

B. Technical Details

1) Feature Identification Step
In this step spatial and temporal feature vectors are

produced based on current environment data. This data
includes sensor readings and the goal position. The sensor
data are distances to obstacles measured by the robot’s
sonar or laser sensors.

The spatial feature vector consists of two elements: a
distance D from the robot to the goal and a sub-vector
which represents an approximation of the obstacle density
function around the robot and is computed as follows. The
space around the robot is divided into K angular regions, as
shown in figure 5. The regions are always taken in such a
way that the bisector of the 0th region is directed toward the
goal of the robot. Within each region the cluster of
obstacles that obstructs the region most of all is found. This
can be done, for example, by sorting all obstacles within

each region in the order of their obstruction angles and
finding a single largest sequence of obstacles such that no
space in between these obstacles is large enough for the
robot to traverse through. An obstacle density function
approximation vector is then represented by K pairs <σ, r>
where σ is the degree of obstruction of a region by the most
obstructing cluster in this region, and r is the distance to
this cluster.

Figure 5 demonstrates an example computation of
the obstacle density. There are 12 sensors in this example,
evenly spaced around the robot. The large circle is centered
on the robot and describes a clipping circle, beyond which
all detected obstacles are ignored in the computation of the
density function. The encircled obstacles within each
region define the most obstructing clusters within that
region. Their corresponding degree of obstruction σ is then
computed as the ratio of the angle that they obstruct within
the region over the angle of the whole region. Thus, σ is
equal to 1.0 for region 1, indicating that the obstacles
obstruct the region completely, whereas σ is equal to 2/3
for the 0th and 3rd regions, as the obstacles leave 1/3 of the
angle in those regions free for traversing. Region 2 has σ
equal to 0.0 since there are no obstacles detected within the
region's clipping circle. Thus, this whole region is available
for traversing.

Figure 5 also shows the distance of the robot to the
goal, D, which is the first element of the spatial feature
vector. The number of regions K is determined based on
the desired computational complexity and the resolution of
the sensor data. If K is equal to the number of sensors on
the robot, then the obstacle density function is the actual
raw sensor data clipped by the clipping region. Thus, in the
above example setting K to more than four might not yield
any benefit as there are only three sensors per region
anyway. On the other hand, setting K to a larger value
might make sense if a robot uses a high resolution sensor
such as a laser range finder.

The temporal feature vector contains two scalar
elements: a short-term relative motion Rs and a long-term

Figure 5. Computation of the spatial feature vector for K=4
regions. The robot is in the center of the circle. Thick lines
are obstacles as detected by 12 sensors evenly placed around
the robot. The circled clusters of obstacles within each
region are the most obstructing clusters.

D

<σ3=2/3; r3>

Region 0

Region 3

Region 2

Region 1

r3

<σ2=0; r2=0>

<σ1=1; r1>

r1

<σ0=2/3; r0> Goal

Clipping Circle

relative motion Rl. The short- and long-term relative
motion measures represent short- and long-term velocities
of the robot, respectively, relative to the maximum possible
velocity of the robot, and are computed as shown in
formula (1). The same formula is used for the computation
of both relative motion measures. However, the time
window lengths used to compute average robot positions
differ between long- and short-term relative motion
computations as shown in the formula (2).

(1) ,for ,
*

,,
lsi

MaxVelN

PosPos
R

shorttermilongtermi

i =
−

=

where N is the normalization constant, MaxVel is the
maximum robot velocity, and Posi,longterm and Posi,shortterm are
average positions of the robot over long- and short-term
time windows, respectively, and are updated according to
formula (2) every time the CBR module is called.

longtermshorttermjlsi

NewPosaPosaPos ji
old

jijiji

, and ,for

(2) *)1(* ,,,,

==

−+=

where NewPos is a new current position of the robot, and
the filter coefficient a is dependent on whether Poss,shortterm,
Poss,longterm, Posl,shortterm or Posl,longterm is computed. Thus,
for example, as,shortterm is set to a coefficient with decay time
of five time cycles, whereas al,longterm is set to a coefficient
with decay time of 600 time cycles.
 Formula (3) summarizes the form of the spatial
and temporal vectors.

(3)

 ,

 ,

11

00

=

=

−−

l

s

temporal

KK

spatial R

R
V

r

r
D

V

σ

σ
M

These two vectors define input features (indices) for cases
and are passed in this form into the best matching case
selection described next.

2) Case Selection Process
The best matching case selection is broken into three

steps. In the first step, a set of spatially matching cases is
found. All the cases in the library contain their own spatial
and temporal feature vectors. The similarity between the
spatial feature vector for a case and an environment is used
to assess the degree to which the case matches the
environment spatially. In order for spatial feature vectors to
be comparable, however, they are first transformed into
traversability vectors. The traversability vector F
eliminates actual distances by representing the degree to
which each region can be traversed. Formula (4) presents
the transformation from a spatial vector into the
traversability vector.

)) ,min(,max(

(4)),*1 ,1min(,

maxmin

1

0

DDDD

D

rD
f

f

f

F

f

f

if
ii

k

=

−
−=

=

−

σM

where D is the distance to the goal from equation (3), Dmin
and Dmax are the minimum and maximum thresholds,
respectively, for considering traversability in a region, and
<σi, ri> are elements of Vspatial as defined in equation (3).
The idea is that Df represents the circle of interest for
traversability computation. The goal distance D limits it on
one hand, while Dmax also limits it if the goal is overly
distant. Dmin is just a minimum threshold to prevent zero
radius circles. The traversability measure fi ranges from 0
to 1. It is proportional to the degree of obstruction σi of the
most obstructing cluster in the region and the distance ri at
which this cluster is present in the region. Thus, if a cluster
of obstacles is extremely close to the robot and it obstructs
the whole region, then the region’s traversability measure f
becomes 0. If, however, obstacles obstruct the region
minimally, or they are all beyond the circle of interest with
radius of Df, then the traversability measure f approaches 1.

To avoid large changes in the traversability vector
for environment Fenv due to noise in sensor data, the vector
is passed through the smoothing filter given in formula (5).
The coefficient b is chosen such as to have a decay time on
the order of 5 to 10 sensor readings.

(5) *)1(* ,oldenv
ii

env
i fbfbf −+=

where fi is computed according to formula (4) based on the
spatial vector for the current environment and fi

env,old is fi
env

from the previous execution of the CBR module.
As every case in the library is represented by a

traversability vector F and the current environment is
represented by a traversability vector Fenv, these vectors can
be used to assess the spatial similarities between the cases
and the environment. The spatial similarity is computed as
the weighted sum of squared errors between a case and the
environment traversability vectors. There is significantly
more weight given to the regions directed more towards the
goal. This assures that, for example, if a case and an
environment have clear-to-goal situations in the 0th region,
then the environment is more similar to this case than to
any other case that might have other very similar regions,
but does not have the clear-to-goal situation in the 0th
region. Formula (6) shows the computation of spatial
similarity S.

(6)
)(*

1
1

0

1

0

2

∑

∑
−

=

−

=

−
−=

K

i
i

K

i

env
iii

w

ffw
S

where W is the vector of weights for each region, F is the
traversability vector of a case, and Fenv is the traversability
vector of the current environment. Thus, the perfect match
is represented by S equal to 1, and the maximum difference
by S equal to 0.
 After the spatially based case selection, the set of
spatially matched cases contains all the cases with spatial
similarity S within some delta from the spatial similarity of
the best spatially matching case. The best spatially
matching case is defined as the case with the highest spatial
matching similarity with the current environment.

 Similarly, at the second selection step the temporal
similarity with the current environment is computed for all
the cases in the set of spatially matched cases according to
formula (7).

(7)
)(*)(*

1
22

sl

env
sss

env
lll

ww

RRwRRw
S

+
−+−

−=

where wl and ws are long- and short-term relative motion
measure weights, < Rs, Rl > is a temporal vector for a case,
and < Rs

env, Rl
env > is a temporal vector for the current

environment. The long-term relative motion measure is
given more weight indicating its greater importance in the
assessment of temporal similarities.
 The best temporally matching case is the case that
has the highest temporal similarity with the environment.
All cases with a temporal similarity within some delta from
the temporal similarity of the best temporal matching case
are selected from the set of spatially matched cases for the
next selection stage. Thus, after the temporal-based
selection process, the set of matched cases contains the
cases that are both spatially and temporally similar to the
environment.
 Finally, at the third and the last step of the case
selection process, randomness is added to the selection
process. Namely, one case from the set of matched cases is
selected uniformly at random. This selected case is
declared to be the best matching case with the current
environment.

3) Case Switching Decision Tree
 At this step the decision is made as to whether the best
matching case or the currently applied case should be used
until the next call to the CBR module. This decision is
based upon a number of characteristics describing the
potential capabilities of the best matching case and the
current case. The decision tree is shown in figure 6.

At the root of the tree, the time the current case was
applied is checked against some threshold CaseTime that is
specific to each case in the library. If the current case was
applied for less time than the threshold, then the spatial
similarity of the current case is checked against threshold
Slow, and the difference between the new case's spatial

similarity and the current case's spatial similarity is checked
against some threshold Sdiff. If the two conditions are
satisfied, then the current case continues to be used. The
intent is that the current case should not be thrown away too
soon, unless the environment became significantly different
from what it was when the current case was initially
selected. If one or both of the conditions are unsatisfied, or
if the case was applied for longer than the suggested
threshold, the decision-making proceeds to check the long-
term relative motion measure Rl. If it is larger than some
threshold, then the case is more likely to be performing well
and the short-term relative motion measure Rs should be
compared against a low threshold Rs low. If the short-term
relative measure is also higher than the low threshold, it
suggests that the current case performs well and it is
exchanged for the new one only if its spatial similarity is
very different from the environment or a much more similar
case is found. Otherwise, the current case in use remains
unchanged. If, on the other hand, the short-term relative
motion measure is less than the low threshold, then the case
is switched to the new one. Going back to the long-term
relative measure check, if it is smaller than the Rl threshold,
then the case might not be performing well and, therefore,
the short-term relative measure is compared against a
stricter threshold Rs threshold. If it falls below this
threshold, then the new case is selected. Otherwise, the
case spatial similarity is compared against a strict threshold
Shigh threshold. If the similarity is less, then the new case is
selected, otherwise the current case is given more time to
exert itself.

4) Case Adaptation
If it is decided at the previous step to keep the

current case, then this step (case adaptation) is not
executed. If it is decided, however, to apply a new case,
then the new case needs to be fine-tuned to the current
environment.

The adaptation algorithm is very simple:

X = (Rl adaptthreshold + Rs adaptthreshold) / (Rl + Rs);
Y = Rl adaptthreshold / Rl ;
Z = Rs adaptthreshold) / Rs;
If (Rl < Rl adaptthreshold and Rs < Rs adaptthreshold)
 Increase Noise_Gain proportionally to X;
 Increase CaseTime proportionally to X;
 Limit Noise_Gain and CaseTime from above;
Else if (Rl < Rl adaptthreshold)
 Increase Noise_Gain proportionally to Y;
 Increase CaseTime proportionally to X;
 Limit Noise_Gain and CaseTime from above;
Else if (Rs < Rs adaptthreshold)
 Increase Noise_Gain proportionally to Z;
 Limit Noise_Gain from above;
End;

The adaptation algorithm looks at both the long-
term and short-term motion measures of the robot and
increases the level of noise (random motion) in the robot’s
behavior if any of the measures fall below the
corresponding threshold. The amount to which the noise is
increased is proportional to how long the robot's progress

Case Applied Time > CaseTime Threshold

Rl > Rl threshold

Rs > Rs low threshold

Scurrent > Slow threshold
and

Snew-Scurrent < Sdiff threshold

Current Case New Case

New Case

Rs > Rs threshold

Scurrent > Shigh threshold New Case

Current Case New Case

Scurrent > Slow threshold
and

Snew-Scurrent < Sdiff threshold

Current Case

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

No

No

No

No

No

Figure 6. Case switching decision tree.

was impeded as determined by the long- and short-term
motion measures. If the robot lacks progress for a
sufficiently long time period enough, then the long-term
motion measure Rl falls below its threshold and the
CaseTime threshold is also increased to ensure that the new
case is applied long enough given the current environment.
 The adaptation of the case is followed by its
application, which simply extracts the behavioral
assemblage parameters from the case and passes them to
the actively executing behavioral control module within the
MissionLab system.

C. An Example of Operation

Figure 7 shows two runs of a simulated robot with
and without the CBR module within MissionLab, which
provides a simulator as well as logging capabilities, making
the collection of the required statistical data easy. Black
dots of various sizes represent obstacles and the curved line
across the picture depicts the trajectory of the robot. The
mission area is 350 by 350 meters.

During the entire run the same behavioral
assemblage is used. However, as the environment changes
from one type to another, the CBR module re-selects the set
of parameters that control the behavioral assemblage. As a
result, a robot that does not use the CBR module requires a
higher level of noise in its behavior in order to complete the
mission (figure 7, top). If, however, the CBR module is
enabled, then the Wander behavior is rarely used, and the
distance traveled by the robot is 23.7% shorter, whereas the

mission completion time is 23.4% less (figure 7, bottom).
For example, during the part of the run before the local
minimum produced by two obstacles is encountered (point
A in figure 7, bottom) the robot uses case 1, called
CLEARGOAL case (figure 8b, left). In this case no noise
is present in the robot behavior making the trajectory a
straight line. When the robot approaches the two obstacles
(point B in figure 7, bottom), it switches to case 2 called
FRONTOBSTRUCTED_SHORTTERM (figure 8b, right).
In this case, the gains of the Wander and BiasMove
schemas and Obstacle_Sphere are increased. This ensures
that the robot quickly gets out of the local minima and then
proceeds toward the goal, switching back to the
CLEARGOAL case.

IV. LEARNING BEHAVIORAL PARAMETERIZATION

A. Technical Details

This section provides an overview of the learning
CBR module, as shown in figure 9, emphasizing the
extensions that were made to the non-learning CBR
algorithm described previously. First, as before, the sensor

Point A
Case 1

f0=0.92

f1=0.58

f2=1.0

f3=0.68

f0=0.92

f1=0.58

f2=1.0

f3=0.68

Point B
Case 2

f0=0.02

f1=0.22

f2=0.63

f3=0.02

f0=0.02

f1=0.22

f2=0.63

f3=0.02

Figure 7. Robot runs in a simulated environment. Top: without
CBR module; Bottom: with CBR module. The circles on the left
show the values of the traversability vectors that correspond to
the indicated points in the environment.

Environment characteristics at A:
Spatial Vector:
D (goal distance) = 300
 density distance
Region 0: σ0 = 0.31; r0 = 5.13
Region 1: σ1 = 0.71; r1 = 2.83
Region 2: σ2 = 0.36; r2 = 7.03
Region 3: σ3 = 0.54; r3 = 2.80
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 1.000
LongTerm_Motion Rl = 0.931
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =0.92 f1 =0.58 f2 =1.00 f3=0.68

Environment characteristics at B:
Spatial Vector:
D (goal distance) = 275
 density distance
Region 0: σ0 = 1.00; r0 = 0.11
Region 1: σ1 = 0.79; r1 = 0.11
Region 2: σ2 = 0.38; r2 = 0.12
Region 3: σ3 = 1.00; r3 = 0.11
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 0.010
LongTerm_Motion Rl = 1.000
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =0.02 f1 =0.22 f2 =0.63 f3=0.02

Case 1 used at A:
CLEARGOAL
Spatial Vector:
D (goal distance) = 5
 density distance
Region 0: σ0 = 0.00; r0 = 0.00
Region 1: σ1 = 0.00; r1 = 0.00
Region 2: σ2 = 0.00; r2 = 0.00
Region 3: σ3 = 0.00; r3 = 0.00
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 1.000
LongTerm_Motion Rl = 0.700
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =1.00 f1 =1.00 f2 =1.00 f3=1.00
Case Output Parameters:
MoveToGoal_Gain = 2.00
Noise_Gain = 0.00
Noise_Persistence = 10
Obstacle_Gain = 2.00
Obstacle_Sphere = 0.50
Bias_Vector_X = 0.00
Bias_Vector_Y = 0.00
Bias_Vector_Gain = 0.00
CaseTime = 3.0

Case 2 used at B:
FRONTOBSTRUCTED_SHORTTERM
Spatial Vector:
D (goal distance) = 5
 density distance
Region 0: σ0 = 1.00; r0 = 1.00
Region 1: σ1 = 0.80; r1 = 1.00
Region 2: σ2 = 0.00; r2 = 1.00
Region 3: σ3 = 0.80; r3 = 1.00
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 0.000
LongTerm_Motion Rl = 0.600
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =0.14 f1 =0.32 f2 =1.00 f3=0.32
Case Output Parameters:
MoveToGoal_Gain = 0.10
Noise_Gain = 0.02
Noise_Persistence = 10
Obstacle_Gain = 0.80
Obstacle_Sphere = 1.50
Bias_Vector_X = -1.00
Bias_Vector_Y = 0.70
Bias_Vector_Gain = 0.70
CaseTime = 2.0

a)

b)

Figure 8. a) Environment features at points A (left) and B
(right); b) Cases used at point A (left) and point B (right).

data and goal information are provided to the Feature
Identification sub-module that operates identically to its
non-learning CBR module counterpart. The resulting spatial
and temporal feature vectors are then passed to the best
matching case selection process.

1) Case Selection

As before, at the spatial case selection step the
spatial similarity between each case in the library and the
current environment is computed as the weighted Euclidean
distance between the case and environmental traversability
vectors. Now, however, instead of selecting all the cases
that have a spatial similarity within some delta from the
similarity of the best spatially matching case, the cases are
selected at random, with their probability of being selected
proportional (according to an exponential function) to the
difference between their spatial similarity and the spatial
similarity of the best spatially matching case. Figure 10
illustrates this case selection process. Case C1 is the best
spatially matching case and has a 100 percent probability of
being selected to the set of spatially matching cases. Cases
C2 and C4 are also selected as a result of random case
selection biased by their spatial similarities. The idea
behind adding such randomness to the case selection
process is to bias the exploration of cases by their
similarities with the environment. Similarly, at the temporal
case selection stage, the cases that were selected as spatially
matching cases go through the random selection process
with the probability of being selected biased by the
differences between their temporal similarity and the
temporal similarity of the best temporally matching case.
Thus, in the example in figure 10, case C4 is the best
temporally matching case and therefore is selected for the
next selection step. Case C1 is also selected at random for
the next selection step whereas C2 is not. The cases that
pass these two selection stages are also called spatially and
temporally matching cases and are forwarded to the last
case selection stage.

At the last selection step just one case is selected at
random with a probability of being selected proportional to
the weighted sum of case spatial similarity, temporal
similarity, and case success. The case success is a scalar
value that reflects the performance of the case, and is
described below. Thus, for the example shown in figure 10,
C1 has a higher weighted sum of spatial and temporal
similarities and success, and therefore has a higher chance

of being selected than C4. In this particular example, C1 is
indeed selected as the best matching case.

Once the case is selected, as before, the case
switching decision tree decides whether to continue to use
the currently applied case or switch onto the selected best
matching case. If the switching decision tree says that the
currently applied case should remain active, then nothing
else needs to be done in this cycle of the CBR module.
Otherwise, the CBR module continues its execution with
the evaluation of the currently applied case performance as
described below.

2) Old Case Performance Evaluation

The velocity of the robot relative to the goal, that
is the speed with which the robot is approaching its goal, is
used as the main criteria for the evaluation of case
performance. The pseudo code for the performance
evaluation of a case C follows:

Compute velocity V(C) according to Equation (8)
If (V(C) ≤ 0 and C was applied last)
 //delayed reinforcement

Postpone the evaluation of C until another K-1 cases
are applied or C is selected for application (whichever
comes first)

else
 if (V(C)> µ⋅Vmax(C) and V(C)>0) //µ=0.9
 I(C) = max(1, I(C) + 1);
 else
 I(C) = I(C) – 1;
 end
 I(C)=min(Imax, I(C)); //limit I(C);Imax=100
 Update Vmax(C) according to Equation (2)
 if(C was applied last)
 if(V(C)> µ⋅Vmax(C) and V(C)>0)
 Increase S(C) by ∆ proportional to I(C);
 else
 Decrease S(C) by ∆;
 end
 else
 if (Robot advanced towards its goal)
 Increase S(C) by ∆ proportional to I(C);
 else
 Decrease S(C) by ∆;
 end
 end
end

Since for some cases the task is to get the robot

closer to the goal, while for other cases the task is to get the
robot out of local minima such as “box canyons” created by
obstacles, the robot's velocity relative to the goal may not
always be the best evaluation function for case
performance. Instead, a delayed evaluation of the case
performance may be necessary. For this reason the

set of spatially
& temporally

matching
cases:

{C1,,C4}

C1

spatial similarity

1.0
0.0

1.0
P(selection)

C2C4 C3C5

set of spatially
matching

cases:
{C1, C2, C4}

temporal similarity

1.0
0.0

1.0
P(selection)

C1 C4C2

weighted sum of spatial and temporal
similarities and case success

0.0

1.0
P(selection)

C1C4

best
matching

case:
C1

set of spatially
& temporally

matching
cases:

{C1,,C4}

C1

spatial similarity

1.0
0.0

1.0
P(selection)

C2C4 C3C5 C1

spatial similarity

1.0
0.0

1.0
P(selection)

C2C4 C3C5

set of spatially
matching

cases:
{C1, C2, C4}

set of spatially
matching

cases:
{C1, C2, C4}

temporal similarity

1.0
0.0

1.0
P(selection)

C1 C4C2

1.0
0.0

1.0
P(selection)

C1 C4C2

weighted sum of spatial and temporal
similarities and case success

0.0

1.0
P(selection)

C1C4

best
matching

case:
C1

 Figure 10. Case selection process.

Current
Environment

Feature
Identification

Spatial & Temporal
Feature Vectors

Spatial Features
Vector Matching

Temporal Features
Vector Matching

Set of Spatially
Matching cases

Set of
Spatially & Temporally

Matching cases

Random Selection
biased by case success

and
spatial and temporal

similarities

Best Matching
case

Case Switching
Decision Tree

Case Memory

Old Case
Performance
Evaluation

Best Matching
case

Case
Adaptation

Case
Application

Case
ready
for

application

Behavioral
Assemblage
parameters

All the cases in the library

Last
K cases

Last
K cases

with adjusted
performance

history

New case creation
if needed

Best
Matching

case

New or
Best

Matching
case

Learning
CBR Module

Current
Environment

Feature
Identification

Spatial & Temporal
Feature Vectors

Spatial Features
Vector Matching

Temporal Features
Vector Matching

Set of Spatially
Matching cases

Set of
Spatially & Temporally

Matching cases

Random Selection
biased by case success

and
spatial and temporal

similarities

Best Matching
case

Case Switching
Decision Tree

Case Memory

Old Case
Performance
Evaluation

Best Matching
case

Case
Adaptation

Case
Application

Case
ready
for

application

Behavioral
Assemblage
parameters

All the cases in the library

Last
K cases

Last
K cases

with adjusted
performance

history

New case creation
if needed

Best
Matching

case

New or
Best

Matching
case

Learning
CBR Module

 Figure 9. High-level structure of the learning CBR module.

information on the last K applied cases is kept. K defines a
learning horizon and in this work is chosen to be 2. Thus,
when a new case is about to be applied, the performance
evaluation function is called on each of the following cases:
the case that was applied last; the case that was applied K
cases ago and was not yet evaluated because the evaluation
was postponed; and the case that was applied some time
previously that was not yet evaluated and is the case
selected for a new application. At the very beginning of the
performance evaluation a check is done: if a case C was just
applied and the robot did not advance towards its goal as a
result of the case application, then the case performance
evaluation is postponed. The robot did not advance if its
average velocity V(C) relative to its goal from the time just
before case C was applied up until the current time is not
positive. Otherwise, the performance evaluation proceeds
further.

Each case has a number of variables that represent
the recent performance of the case and need to be updated
in the performance evaluation routine. The average
velocity V(C) of the robot relative to the goal for case C is
computed as follows:

)(
)(

)(

Ctt

gg
CV

bcurr

tCt currb

−

−
= (8)

where tb(C) is the time before the application of case C, tcurr
is the current time and gt is the distance to the goal at time t.
One of the variables maintained by each case describing
case performance is Vmax(C): the maximum average velocity
of the robot relative to the goal as a result of the application
of case C. This velocity is updated after every performance
evaluation of case C. Equation 9 is a form of “maximum
tracker” in which Vmax(C) very slowly decreases whenever
it is larger than V(C) and instantaneously jumps to V(C)
whenever Vmax(C) is smaller than V(C):

))()1()(),(max()(maxmax CVCVCVCV ⋅−+⋅= ηη (9)

where η is a large time constant, here chosen to be 0.99.

However, before Vmax(C) is updated, a decision is
made on whether the case resulted in performance
improvement or not. The performance is considered to
improve if V(C)>µ⋅Vmax(C) and V(C)>0, where µ is close to
1. Thus, the case performance is considered to be an
improvement not only when the velocity is higher than it
has ever been before, but also when the high velocity is
reasonably sustained as a result of the case's application.
The variable I(C) maintains the number of the last case
performance improvements and is used in the adaptation
step to search for the adaptation vector direction.

Finally, the case success S(C) is also updated. If
the performance evaluation is not postponed, then the case
success is increased if the case performance improved,
where the performance improvement is defined by the same
formula as before, and is decreased otherwise. If, however,
the case evaluation was postponed, then the case success is
increased if the robot advanced sufficiently towards its goal
after the case was applied and is decreased if the robot has

not advanced at all. In either case the increase in the case
success is proportional to the number of times the
application of the case resulted in its performance
improvement I(C). This adds momentum to the
convergence of case success. The more there are recent
case improvements, the faster the case success approaches
its maximum value of 1.0, indicating full convergence of
the case. The case success is used in case selection to bias
the selection process, and in case adaptation to control the
magnitude of the adaptation vector. It will be discussed
further below.

3) Case Creation Decision

At this step, a decision is made whether to create a
new case or keep and adapt the case that was selected for
the application. This decision is made based on the
weighted sum of the temporal and spatial similarities of the
selected case with the environment and on the success of
the selected case. If the success of the selected case is high
then it needs to be very similar to the environment, mainly
spatially, in order for this case to be adapted and applied.
This prevents making the case success diverge based on
environments that do not correspond to the case. If the case
success is low, then the case similarity need not be very
close to the environment and still the case is adapted and
applied. In any event, the size of the library is limited (for
this work a limit of 10 cases was used) and therefore if the
library is already full then the selected case is adapted and
applied.

If it is decided that a new case should be created,
then the new case is initialized with the same output
parameters (behavioral parameters) as the selected case but
input parameters (spatial and temporal feature vectors) are
initialized to the spatial and temporal feature vectors of the
current environment. The new case is saved to the library
and then passed to the adaptation step. If no new case is
created then the selected case is passed directly to the
adaptation step.

4) Case Adaptation
Independent of whether the case to be applied is an

old case or was newly created, the case still goes through
the adaptation process. Every case C in the library also
maintains an adaptation vector A(C) that was last used to
adapt the case output parameters. If the case was just
created then the adaptation vector is set to a randomly
generated vector. The adaptation of a case happens in two
steps. First, based on the case's recent performance, the
adaptation vector is used to adapt the case C output
parameter vector O(C) as follows:

if (I(C) ≤ 0)
 //change the adaptation direction
 A(C) = – λ⋅ A(C) + ν⋅ R;
end
//adapt
O(C) = O(C) + A(C);

If the case improvement I(C) does not show

evidence that the case was improved by the last series of
adaptations, then the adaptation vector direction is reversed,

decreased by a constant λ and a randomly generated normal
vector R scaled by a constant ν is added to assure
exploration in the search for optimal parameters.
 At the second adaptation step, the output
parameters are altered based on the short- and long-term
relative velocities of the robot, which are elements of the
temporal features vector. This adaptation step is similar to
the adaptation step performed in the non-learning CBR
module (section III.B.4) and, in short, increases the
Noise_Gain and Noise_Persistence behavioral parameters
inverse proportionally to the short- and long-term relative
velocities of the robot. The idea is that these two parameters
are increased more and more if the robot is stuck longer and
longer at one place, as can be the case with difficult “box
canyons” when using purely reactive methods.
 Finally, the behavioral parameters of the case are
limited by their corresponding bounds. Also,
Obstacle_Gain is limited from below by the sum of
Noise_Gain, MoveToGoal_Gain and Bias_Vector_Gain.
This ensures that in any event the robot does not collide
with obstacles.

The adaptation of the case is followed by its
application, which simply extracts the behavioral

assemblage parameters from the case and passes them to
the behavioral control module within the MissionLab
system for execution.

B. An Example of Operation

Figures 11 and 12 demonstrate the runs of a
simulated robot that uses the learning CBR module to learn
a library of cases. In figure 11 the training is done on
heterogeneous environments, where the obstacle density
and pattern change within the same robot mission, whereas
in figure 12 the training is done on homogeneous
environments, where the obstacle density and pattern
remain constant throughout a mission. These were two
separate training instances resulting in two different learned
libraries. The top figures in figures 11 and 12 show
screenshots of MissionLab during the very first robot runs.
At the beginning of both runs the libraries do not contain
any cases and are created as the robot proceeds with its
mission. In figure 11 the mission area is 350 by 350
meters, whereas in figure 12 it is 150 by 150 meters. Since
the library is being created from scratch, the performance of
the robot in these initial runs is very poor. The search for
an optimal parameterization has just started, and thus the

Figure 11. Screenshots of training runs in a heterogeneous
environment. Top: initial run that starts off with an empty library;
Bottom: a run after fifty-four training runs.

Figure 12. Screenshots of training runs in a homogeneous
environment. Top: initial run that starts off with an empty library;
Bottom: a run after fifty training runs.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

non-learning CBR learning CBR Non-adaptive

Adaptation algorithm

Figure 14. Mission completion rate of a simulated robot in
heterogeneous environments.

robot behavior is very noisy. In contrast, after about fifty
training runs for both heterogeneous and homogeneous
environments, the robot successfully learned improved
parameterizations and therefore the robot trajectory in the
final runs (figures 11 and 12 bottom) is far better.

A good example of learning an efficient
parameterization can be found in the last, rightmost grid of
small obstacles in the heterogeneous environment. In order
for a robot to traverse such a dense but highly ordered
obstacle environment the robot has to apply what is called a
“squeezing” strategy. In this strategy Obstacle_Sphere is
decreased to its minimum while MoveToGoal_Gain has to
prevail over Noise_Gain. This makes the robot squeeze
between obstacles towards its goal. In the first run this
strategy is not known to the robot, and it takes a long time
for the robot to traverse this area. By contrast, in figure 11
bottom, the robot successfully “squeezes” through this area
along a straight line. The log files indicate that the robot
trajectory in the final run in the heterogeneous environment
is 36 percent shorter than in the initial run, while in the
homogenous environment the final run is 23 percent shorter
than the initial run.

It is important to note, however, that not all of the
cases converge. In particular, the cases created for large
“box canyon” environments do not usually converge.
Instead, they seem to maintain aggressive adaptation
vectors together with the large Noise_Gain values. In most
cases this appears to be sufficient for good performance of
the robot. On the other hand, most of the cases that
correspond to the “squeezing” strategy, for example,
converge, showing that the robot successfully learns to

discriminate between these two scenarios based on the
spatial and temporal features of the environment.

V. SIMULATION RESULTS

Figures 13 through 16 depict statistical data
gathered from the simulations. Three systems were
evaluated: (1) a non-adaptive system which did not use the
CBR module but instead used manually hard-coded
behavioral parameters; a non-learning CBR system that
employed the non-learning CBR module for the selection
and adaptation of behavioral parameters given a manually
specified library of cases; and a learning CBR system that
started out with an empty library and trained it using the
learning CBR module. Cases for the non-learning CBR
module were created manually by running preliminary
experiments on a few heterogeneous environments. Three
libraries for the learning CBR system were created
automatically by running about 250 training runs on
training data consisting of homogeneous, heterogeneous
and even empty environments. All three libraries were
evaluated and the average values are shown in the graph.
For the runs with the non-adaptive system, the optimal set
of parameters was chosen for a given average obstacle
density, which is equivalent to a user specifying the
parameters for a given mission.

Figures 13 and 14 illustrate the performance of a
simulated robot on a navigational task in heterogeneous
environments, such as the one shown in figure 11. Overall,
the test results for 37 missions in different heterogeneous
environments were gathered. The performance of a robot is
represented by the time steps it takes the robot to complete

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

non-learning CBR learning CBR Non-adaptive

Adaptation algorithm

Figure 13. Average number of time steps of a simulated robot
in heterogeneous environments.

non-learning CBR
learning CBR

Non-adaptive

15% Obstacle density

20% Obstacle density
0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

Adaptation algorithm

Figure 15. Average number of time steps of a simulated
robot in homogeneous environments.

non-learning CBR
learning CBR

Non-adaptive

15% Obstacle density

20% Obstacle density
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Adaptation algorithm

Figure 16. Mission completion rate of a simulated robot in
homogeneous environments.

its mission, as well as the percentage of completed
missions. Thus, the amount of time, on average, it takes the
learning CBR system to complete a mission is better than
for a non-adaptive system while worse than for a non-
learning one. This result is expected as the library for the
non-learning CBR system was manually optimized on the
set of heterogeneous environments used for training. The
mission completion rate shown in figure 14 is
approximately equal for both non-learning and learning
CBR systems. The non-adaptive system has the lowest
mission success rate.

Figures 15 and 16 report the results of tests in
homogeneous environments such as the one shown in figure
12. In each of the figures, the front row represents an
environment with a 15% obstacle density and the back row
an environment with 20% obstacle density. For each
environment, fifty runs were conducted for each algorithm
to establish statistical significance of the results. In these
tests, a system that employs learning CBR outperforms
even the non-learning CBR system not to mention the non-
adaptive one. This is true in terms of both criteria: the
average mission execution time and mission success rate.
The reason for this is that even though the non-learning
CBR system performs very well in homogeneous
environments it was manually optimized using
heterogeneous environments as training data. As a result,
the learning CBR had an opportunity to learn cases that
were better suited for the homogeneous environments than
the ones that were in the library of the non-learning CBR
module. Non-adaptive, on the other hand, performs far
from optimally on these environments and even more

importantly exhibits only 46 percent mission completion
rate for denser environments (figure 16, 20% density).

Figure 17 presents the results of a separate
experiment that demonstrates how the performance of the
non-learning CBR system depends on the obstacle density
of an environment. The performance represented by
traveled distance and time steps was measured as a function
of obstacle density. Just as in figure 11, the robot had to
travel through different types of environments, but the
average density varied between trials. Note that for the
runs without the CBR module, the optimal set of parameters
was chosen for a given average obstacle density. This was
equivalent to a user specifying the optimal parameters for a
particular mission. Even larger improvement could be
expected if the parameters were chosen to be constant
throughout all the trials. As shown in figure 17, if the
average obstacle density is very small (below 12%), then
the improvement is insignificant. This is due to the fact that
in an environment that is almost obstacle-free, where really
only one case is applied all the time. The same set of
parameters can be easily chosen manually for the robot
without the CBR module. As the obstacle density
increases, however, the cases are switched more and more
often leading to a significant improvement in performance
due to the use of multiple cases in different situations.

VI. ROBOT EXPERIMENTS

We performed both indoor experiments using a Nomad 150
robot (figure 18 left) and outdoor experiments using an
ATRV-Jr robot (figure 18 right). The first section below
describes the evaluation of the CBR-based navigation
system without learning (non-learning CBR). The next
section describes extensive evaluation of CBR-based
navigation with learning (learning CBR) using robotic
hardware.

A. Spatio-Temporal CBR without learning

1) Indoor Navigation
The system was first tested on a Nomad 150 series

mobile robot performing indoor navigation. It used 12 sonar
sensors evenly distributed around it. The data from these
sensors was the only perceptual input driving the behavior
of the robot in this experiment. The MissionLab system
provides support for real robotic systems including the
Nomad 150 and ATRV-Jr robots. Thus, for the real robot
experiments the exact same experimental framework as for
the simulations was utilized.

The environment for the real robot experiments is
shown in figure 19. The chairs were used to introduce
additional obstacles in the environment. The plant in the
white vase by the couch shown in the back of the picture
represents the goal location for the robot.

Figure 19a shows the start of a robot run. The path
is clear and the traversability vector indicates that the 0th
region directed toward the goal is fully traversable. This
corresponds to the CLEARGOAL case (figure 8b left) with
a Wander schema gain of zero, and the robot therefore
moves straight towards its goal. As it reaches the small box
canyon constructed by the three chairs (figure 19b), the

Performance Improvement Using CBR

0.00

5.00

10.00

15.00

20.00

25.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Obstacle Density

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Traveled
Distance
Improvement

Time Steps
Improvement

Figure 17. The performance improvement of a simulated robot
induced by the non-learning CBR module over the non-adaptive
system as a function of obstacle density.

Figure 18. Left: Nomad 150 used for indoor experiments;
Right: ATRV-Jr used for outdoor experiments.

traversability vector now indicates very low traversability
in the 0th region and a high traversability in other regions.
The new case FRONTOBSTRUCTED_SHORTTERM
(figure 8b right) is applied with a greater gain for the
Wander schema, a larger sphere of influence for obstacle
avoidance and some gain for the BiasMove schema
directing the robot away from the chairs. As a result, the
robot comes quickly out of the canyon. In figure 19c the
robot is again clear to its goal, and a case with no Wander
behavior is selected that makes the robot go straight to the
goal.

Ten runs were conducted with the non-learning CBR
module and ten without the module. Each pair of runs was
done on exactly the same environment. Just as in
simulations, the trials ranged from very low obstacle
density environment to a quite large obstacle density. The
collected data is shown in figure 20. The numbers correlate
well with the simulation-based data, also showing that as
the average obstacle density increases, the benefits from the
CBR module also increase.

2) Outdoor Navigation

 Outdoor experiments were done with an ATRV-Jr
robot (figure 18, right), using two SICK LMS200 laser
scanners as sensors, one in the front and one in the rear,
allowing for a 360 degree view. The behavioral parameters
for the system without the CBR module (the non-adaptive
system) were chosen manually to produce the best results
for the given environment. The library of cases for the
CBR module was also manually hard-coded. The library
had to be different from the one used in simulations since
there are important differences in size and movement
capabilities of simulated and physical robots. Therefore,
while the library of cases used for simulations was
optimized as a result of numerous experiments, the library
of cases for the real robot was only based on a few robot
experiments and the simulated robot experiments due to the
larger time scale for collecting data on real robots versus
simulated one. As a result, the library of cases was not
necessarily close to optimal.
 The robot’s mission during the outdoor
experiments was to navigate first a small area filled with
trees and a few artificial obstacles to increase the difficulty
of the environment (figure 21a), creating larger local
minima, and then to traverse a relatively clear area until it
reaches a goal. The straight-line distance from the start
position to the goal was about 47 meters.

Figure 21b shows a trajectory of a typical run by
the non-adaptive system. In order to be able to efficiently
navigate the area with trees, the robot needs to employ a
sufficiently large amount of noise and a small sphere of
influence for obstacle avoidance. However, since the
parameterization is constant (i.e., non-adaptive), the robot’s
trajectory continues to be noisy even after the tree region is
passed and the environment is clear of obstacles. In
contrast, the non-learning CBR system first chooses a case
that permitted the robot to squeeze between the trees and to
quickly extricate itself from local minima of this type, and
then switched to the CLEARGOAL case that resulted in a
straight trajectory directly towards the goal (figure 21c).
The trajectory of the robot that used the non-learning CBR

Figure 20. Improvement in the efficiency of Nomad 150 indoor
navigation when using the non-learning CBR module.

a)

b)

c)

Figure 19. Indoor experiments: chairs are used as obstacles; the
plant in the rear near the couch is the goal of the robot.

module is 11% shorter than the one with the non-adaptive
system.
 Figure 22 summarizes the results from these
experiments. It shows the traveled distance and the number
of time steps averaged over ten runs for each of the systems
for both the non-adaptive system and the system that used

the non-learning CBR module. An individual run was
considered a failure if the robot ran for ten minutes without
reaching its goal. Runs during which the robot became
disoriented, that is the robot thought it was facing a
different direction than it really was, were discarded, justly
isolating and eliminating data points resulting from
hardware failures. The non-adaptive system had more of
such failures than the non-learning CBR system since the
former had a tendency to get stuck for short periods of time
in box-canyons, producing greater odometric error, and thus
having a longer mission runtime on average.

The results illustrate that the average time for
mission completion by the robot that used a non-learning
CBR module was 26.5% smaller than the average time of
the non-adaptive system. Similarly, the traveled distance
for the non-learning CBR system was also 10.5% shorter.

B. Spatio-Temporal CBR with learning

The Learning CBR system was also tested on an
ATRV-Jr in outdoor experiments. Just as in the previous
experiments, the robot was equipped with two SICK laser
range finders allowing for a full 360 degree laser profile
(figure 23b). Placing them on the top of the robot
eliminated blind spots and problems with uneven terrain
and was well suited for environments with large scale
obstacles such as buildings and trees. These experiments,
however, were conducted in a larger environment making
each run substantially longer. To deal with the localization
errors the robot was equipped with a three-axis gyro,
odometry sensors and an electronic compass. The position
of the robot was tracked by fusing sensor information from
these sensors, which was automatically taken care of by
MissionLab.

The outdoor environment, seen in figure 23a,
consisted of a grassy field with surrounding buildings, trees,
and bushes. In addition, a large box canyon was placed
near the beginning of the course and various obstacles in
the form of large trash cans were placed throughout the
environment. The layout of the testing and training
environments can be seen in figure 24. Both environments
were of the same size: 52 meters from start to goal, with the
largest obstacle field being 20 meters wide and 8 meters
long.

Three different systems were compared: a purely
reactive navigation (NAdapt), a purely reactive navigation
with swirl behavior (Swirl), and learning CBR, also using
swirl. Swirl is a modified GOTO behavior, where obstacle
avoidance vectors circulate around the obstacles. This
usually leads to a better performance than a purely reactive

Traveled Time
Distance Steps

Non-adaptive 76 1348
Non-learning CBR 68 991
Improvement (%) 10.5 26.5

Figure 22. Comparison of ATRV-Jr outdoor navigation
efficiency with and without the non-learning CBR module.

a)

b)

c)

Figure 21. Outdoor experiments: a) ATRV-Jr during one of its
test runs. b) The traveled trajectory of the robot using the non-
adaptive system. c) The traveled trajectory of the robot using
the non-learning CBR system (11% percent shorter).

system. The Learning CBR module controls the following
parameters:
<Noise_Gain, Noise_Persistence,
 Obstacle_Sphere, MoveToGoal_Gain>

The training phase consisted of 131 runs during
which a full case library was learned. Training started with
an empty library, with the size restricted to a maximum of
ten cases. The library reached the maximum size towards
the end of the training, with two of the cases converged to a
high success rate (figure 25). The first one is a “clear to
goal” case representing the situation where no obstacles in
the direction of the goal are present. The second converged
case represents the situation where obstacles appear ahead
of the robot. This case increases the obstacle sphere
slightly. As in the previous experiments, some training was
conducted in an empty environment. A few runs were
omitted due to communications or robot firmware failures;
it was verified that the failures were not caused by our
software and hence should not have affected the results.

During the testing phase, each system was tested
18 times on a modified novel environment. As can be seen
in figure 24b, the box canyon has a different shape, the
sequence of the two obstacle fields is reversed, and their
relative positions as well as their densities are changed.
The results, as measured by distance and time traveled, are
shown in figure 26. All differences are statistically

significant except for the difference between the distance
traveled by Swirl and NAdapt. Using learning CBR, the
robot completed the missions much faster than when using
the simple reactive avoidance system with hand-tuned
parameters. The CBR version traveled further because it
tended to go around the obstacle field, allowing it to drive
faster and hence perform well in terms of time taken to
complete the missions. This behavior can be seen in figure
24, which portrays a typical path of the robot during testing.
The robot escaped the box canyon easily, passed through
the middle of the first line of obstacles, and
circumnavigated the obstacle field. CBR can also achieve
performance that is close to the hand-tuned Swirl system,
which was tuned to the test environment, in terms of
running time. This demonstrates that the cases learned in
the training environment were general enough to be useful
in the different testing environment. Also, the CBR and

a)

b)

Figure 23. Outdoor experiments with the learning CBR: a) the
field used for experimental testing of Learning CBR. b) the
ATRV-Jr robot navigating within the field.

a) Training environment

b) Testing environment

Figure 24. The training (a) and testing (b) environments for
outdoor experiments with learning CBR. The figure in (a) also
shows the path of the robot that uses the learning CBR module
during one of the testing trials (note that the path is uncorrected
odometry). In this trial, the robot escaped from the box canyon
easily and went around the larger obstacle field.

Cases Success During Training

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101 111 121 131

Training Run Number

C
as

e
S

u
cc

es
s

“Clear to goal” case

“Obstacles on
one side” case

Figure 25. Evolution of the case success for the two converged
cases during the training process.

Swirl systems both completed 100% of the test missions,
while the simple avoidance system only completed
approximately 44% of the test missions.

VII. DISCUSSION AND CONCLUSIONS

This paper presented a method for automatic
selection and modification of behavioral assemblage
parameters for autonomous navigation tasks. This method
can make obsolete the manual configuration of behavioral
parameters, making the process of mission specification
easier and more robust and making the robot perform its
tasks more efficiently. The method was extensively tested
both in simulations and indoor and outdoor experiments on
real robots, and the results supported the claims.
Furthermore, the results have been shown to hold for
multiple environments and multiple sensor types.

One of the current limitations of the work presented
in this paper is that cases can only be learned and are never
forgotten. In particular, this may present a problem if a
training environment does not capture all the characteristics
of the actual environment used for mission executions. The
work in [20] investigates this issue and proposes few easy-
to-implement, yet successful metrics for forgetting of cases.
Additionally, there has also been some work on integrating
the CBR module within a larger framework of learning
algorithms such as Learning Momentum within MissionLab
[18].

VIII. ACKNOWLEDGMENTS

The authors of the paper would like to thank the following
people who were invaluable in the work with MissionLab
and in conducting the experiments: Dr. Douglas
MacKenzie, Yoichiro Endo, William C. Halliburton, Mike
Cramer, J. Brian Lee, Alexander Stoytchev, and Dr. Tom
Collins.

REFERENCES
[1] A. Ram, R. C. Arkin, K. Moorman, and R. J. Clark, “Case-based

Reactive Navigation: a Method for On-line Selection and Adaptation
of Reactive Robotic Control Parameters,” IEEE Transactions on
Systems, Man and Cybernetics - B, 27(30), pp. 376-394, 1997.

[2] A. Ram, J. C. Santamaria, R. S. Michalski and G. Tecuci, “A
Multistrategy Case-based and Reinforcement Learning Approach to
Self-improving Reactive Control Systems for Autonomous Robotic
Navigation,” Proceedings of the Second International Workshop on
Multistrategy Learning, pp. 259-275, 1993.

[3] M. Likhachev and R. C. Arkin, “Spatio-Temporal Case-Based
Reasoning for Behavioral Selection,” Proceedings of the 2001 IEEE
International Conference on Robotics and Automation, 2, pp. 1627-
1634, 2001.

[4] C. Vasudevan and K. Ganesan, “Case-based Path Planning for
Autonomous Underwater Vehicles,” Autonomous Robots, 3(2-3), pp.
79-89, 1996.

[5] M. Kruusmaa and B. Svensson, “A Low-risk Approach to Mobile
Robot Path Planning,” Proceedings of the 11th International
Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, 2, pp. 132-141, 1998.

[6] P. Gugenberger, J. Wendler, K. Schroter, H. D. Burkhard, M.
Asada, and H. Kitano, “AT Humboldt in RoboCup-98 (team
description),” Proceedings of the RoboCup-98, pp. 358-363, 1999.

[7] M. M. Veloso and J. G. Carbonell, “Derivational Analogy in
PRODIGY: Automating Case Acquisition, Storage, and Utilization,”
Machine Learning, 10(3), pp. 249-278, 1993.

[8] S. Pandya and S. Hutchinson, “A Case-based Approach to Robot
Motion Planning,” 1992 IEEE International Conference on Systems,
Man and Cybernetics, 1, pp. 492-497, 1992.

[9] D. Mackenzie, R. C. Arkin, and J. Cameron, "Multiagent Mission
Specification and Execution," Autonomous Robots, 4(1), pp. 29-57,
1997.

[10] R. C. Arkin and T. Balch, "AuRA: Principles and Practice in
Review," Journal of Experimental and Theoretical Artificial
Intelligence, 9(2), pp. 175-189, 1997.

[11] R. C. Arkin, "Motor-Schema based Mobile Robot Navigation,"
International Journal of Robotics Research, 8(4), pp. 92-112, 1989.

[12] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann
Publishers, San Mateo, 1993.

[13] N. Chalmique Chagas and J. Hallam, “A Learning Mobile Robot:
Theory, Simulation and Practice,” Proceedings of the Sixth Learning
European Workshop, pp.142-154, 1998.

[14] P. Langley, K. Pfleger, A. Prieditis, and S. Russel, “Case-based
Acquisition of Place Knowledge,” Proceedings of the Twelfth
International Conference on Machine Learning, pp. 344-352, 1995.

[15] R.P.N. Rao and O. Fuentes, "Hierarchical Learning of
Navigational Behaviors in an Autonomous Robot using a Predictive
Sparse Distributed Memory," Autonomous Robots, 5, pp. 297-316,
1998.

[16] A. Ram, R. C. Arkin, G. Boone, and M. Pearce, "Using Genetic
Algorithms to Learn Reactive Control Parameters for Autonomous
Robotic Navigation," Journal of Adaptive Behavior, 2(3), pp. 277-
305, 1994.

[17] S. Mahadevan and J. Connell, "Automatic Programming of
Behavior-Based Robots Using Reinforcement Learning,"
Proceedings of the Ninth National Conference of Artificial
Intelligence, pp. 768-773, 1991.

[18] J. B. Lee, M. Likhachev, and R.C. Arkin, “Selection of
Behavioral Parameters: Integration of Discontinuous Switching via

Comparison of Time Traveled

0

50

100

150

200

250

300

350

CBR Swirl NAdapt

Adaptation Algorithm

A
ve

ra
g

e
T

im
e

T
ra

ve
le

d

(s
ec

)

Comparison of Distance Traveled

0
20

40
60
80

100
120

140
160

CBR Swirl NAdapt

Adaptation Algorithm

A
ve

ra
g

e
D

is
ta

n
ce

 T
ra

ve
le

d

(m
)

Figure 26. Comparison of outdoor navigation efficiency with the ATRV-Jr in three configurations: CBR –
using the learning CBR; Swirl – non-adaptive with the swirl behavior; NAdapt – non-adaptive without the
swirl behavior. All differences, with the exception of the one between the distance traveled by Swirl and
Nadapt, are statistically significant.

Case-Based Reasoning with Continuous Adaptation via Learning
Momentum,” Proceedings of the 2002 IEEE International
Conference on Robotics and Automation, 2, pp. 1275-1281, 2002.

[19] M. Likhachev, M. Kaess and R. C. Arkin, “Learning Behavioral
Parameterization Using Spatio-Temporal Case-Based Reasoning,”
Proceedings of the 2002 IEEE International Conference on Robotics
and Automation, 2, pp. 1282-1289, 2002.

[20] Z. Kira and R. C. Arkin, “Forgetting Bad Behavior: Memory
Management for Case-Based Navigation,” Proceedings of the 2004
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3145-3152, 2004.

[21] C. Urdiales, J. Vázquez-Salceda, E.J. Perez, M. Sànchez-Marrè
and F. Sandoval, "A CBR based pure reactive layer for autonomous
robot navigation," Proceedings of the 7th IASTED International
Conference on Artificial Intelligence and Soft Computing, pp. 99-
104, 2003.

