
† This research is supported by DARPA/U.S. Army SMDC contract #DASG60-99-C-0081. Approved for Public Release; 
distribution unlimited. 
‡  Presently at Carnegie Mellon University. 
 

 
Abstract 

This paper presents an approach to automatic selection and 
modification of behavioral assemblage parameters for 
autonomous navigation tasks.  The goal of this research is to make 
obsolete the task of manual configuration of behavioral 
parameters, which often requires significant knowledge of robot 
behavior and extensive experimentation, and to increase the 
efficiency of robot navigation by automatically choosing and fine-
tuning the parameters that fit the robot task-environment well in 
real-time.  The method is based on the Case-Based Reasoning 
paradigm.  Derived from incoming sensor data, this approach 
computes spatial features of the environment. Based on the robot’s 
performance, temporal features of the environment are then 
computed. Both sets of features are then used to select and fine-
tune a set of parameters for an active behavioral assemblage. By 
continuously monitoring the sensor data and performance of the 
robot, the method reselects these parameters as necessary.  While 
a mapping from environmental features onto behavioral 
parameters, i.e., the cases, can be hard-coded, a method for 
learning new and optimizing existing cases is also presented. This 
completely automates the process of behavioral parameterization. 
The system was integrated within a hybrid robot architecture and 
extensively evaluated using simulations and indoor and outdoor 
real world robotic experiments in multiple environments and 
sensor modalities, clearly demonstrating the benefits of the 
approach. 
 
Index terms: Case-Based Reasoning, Behavior-Based Robotics, 
Reactive Robotics. 

I. INTRODUCTION 

Behavior-based control for robotics is known to 
provide good performance in unknown or dynamic 
environments.  Such robotic systems require little a priori 
knowledge and are very fast in response to changes in the 
environment, as they advocate a tight coupling of 
perceptual data to an action.  At any point in time a robot 
selects a subset of behaviors, called a behavioral 
assemblage, based on incoming sensory data from the set of 
predefined behaviors and then executes them. One of the 
problems of this approach, however, is that as the 
surrounding environment gradually changes, the 
parameterization of the selected behaviors should also be 
adjusted correspondingly. Using a constant, non-adaptive 

parameterization, for most non-trivial cases, results in the 
robot performance being far from optimal. Also, choosing 
the "right" set of parameters even in the case of constant 
parameterization is a difficult task requiring both 
knowledge of robot behaviors and a number of preliminary 
experiments. It is desirable to avoid this manual 
configuration of behavioral parameters in order to make 
mission specification as user-friendly and rapid as possible.  
It is also desirable to avoid the requirement of knowing 
when and which types of environments a robot will 
encounter during its mission.   

This paper presents a solution to these problems by 
incorporating Case-Based Reasoning into the behavior 
selection process.  Case-Based Reasoning is a form of 
learning in which specific instances or experiences are 
stored in a library of cases, and are later retrieved and 
adapted to similar situations when they occur [12].  The 
Case-Based Reasoning (CBR) module operates at the 
reactive level of the robot. Given a particular behavioral 
assemblage that the robot executes, the CBR module selects 
the set of parameters for the chosen behaviors that is best 
suited for the current environment. As the robot executes its 
mission, the CBR module controls the switching between 
different sets of behavioral parameters in response to 
changes in the environment. Each such set of parameters 
constitutes a case in the CBR library of cases and is indexed 
by spatial and temporal features of the environment. Spatial 
features are computed from the sensory data of the robot, 
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Figure 1.  Behavioral selection process with Case-Based 
Reasoning module incorporated. 



 

 

while temporal features are computed based on the robot’s 
performance. The adaptation step in Case-Based Reasoning 
subsequently fine-tunes the parameters to a specific type of 
environment, allowing the library of cases to be small. The 
overall control flow is shown in figure 1. Such a method 
permits automatic selection of optimal parameters at run-
time while the mission specification process no longer 
requires manual configuration of these values.  

While the library of cases that the CBR module 
uses can be manually supplied for a given robot, this paper 
also proposes an extension to the CBR module that allows it 
to create and optimize cases in the library automatically as 
the result of either experiments or actual mission 
executions.  In the learning mode, the module can start with 
either a completely empty, partially specified, or fully 
specified library. It will then add new cases as necessary 
and optimize the new and existing cases by performing a 
gradient descent search in the space of behavioral 
parameters for each of the cases in the library. Once the 
training is over and the robot exhibits good performance in 
the training session, the library can be "frozen". 

Case-Based Reasoning methodology is not new to 
the field of robotics.  It was successfully used to help in 
solving such problems as path planning based on past 
routes, high-level action-selection based on environmental 
similarities, low-level action-selection based on local sensor 
information, place learning, acceleration of complex 
problem solving based on past problem solutions and other 
problems [4, 5, 6, 7, 8, 14, 21].  Previous work has also 
been performed on the incorporation of Case-Based 
Reasoning in the selection of behavior parameters by our 
group [1, 2], on which this present research is partially 
based, and a few others (e.g., [13]). The approach described 
in this paper, however, differs significantly from these 
previous algorithms by introducing: a novel feature 
identification mechanism that produces spatial and temporal 
vectors describing the current environment; a notion of 
traversability vectors that measure the degree of 
traversability around a robot in a configurable number of 
directions; a randomization in the case selection process to 
allow for the exploration of cases; and a case switching 
decision tree to adaptively control case switching based on 
case performance.  This novel methodology results in very 
robust performance of the robot while allowing for an easy 
input and output vector space representation, 
straightforward extensions and modifications, and simple 
control of computational complexity depending on the 
available computational resources and precision of sensor 
data. Additionally, the work presented in this paper extends 
our previous work [1, 2] by incorporating the Case-Based 
Reasoning within a hybrid robot architecture and 
extensively evaluating the performance on both real and 
simulated robots.  

Extensive research has also been conducted on 
learning robot behaviors using other methods such as neural 
networks, genetic algorithms, Q-learning, and others [15, 
16, 17].  In contrast to some of these methods, this research 
concentrates on the automatic learning of an optimal 
parameterization of the behaviors rather than the behaviors 
themselves.  It also incorporates experiential knowledge 

using the Case-Based Reasoning methodology during 
learning and thus decreases the number of experiments 
required for obtaining a good behavioral parameterization 
function as defined by the use of a library of cases. 

 

II. ARCHITECTURAL CONSIDERATIONS 

The framework chosen for the integration of Case-
Based Reasoning for behavioral selection is the MissionLab 
system [9], which is a version of AuRA (Autonomous 
Robot Architecture) [10].  This hybrid architecture consists 
of a schema-based reactive system coupled with a high-
level deliberative planning system.  The reactive component 
consists of primitive behaviors called motor schemas [11] 
that are grouped into sets called behavioral assemblages.  
Each individual primitive behavior is driven by its 
perceptual input(s), a perceptual schema(s), producing its 
own motor response.  The vectorial responses from each of 
the active schemas are added together in the behavioral 
control module as shown in figure 3, resulting in the overall 
behavioral output. The weighted sum of the vectors, after 
normalization, defines the final vector that is sent to the 
actuators.  Hence, each motor schema affects the overall 
behavior of the robot. 

Within MissionLab, a finite state automaton defines 
the high-level plan of a robot’s mission.  Each state in the 
plan is one of the predefined behavioral assemblages 
chosen to achieve the goal of a robot at this state.  The 
transitions between states are triggered by perceptual inputs 
called triggers. 

Every behavioral assemblage (a state in a high-level 
plan) is controlled by a set of parameters.  Normally, these 
parameters would be carefully chosen by a user to 
correspond to the task-environment the robot is expected to 
inhabit.  If optimal behavior for the robot is desired, states 
could be split into multiple alternative states with the same 
behavioral assemblage but with different sets of internal 
parameters, where each state is attuned to some particular 
environmental characteristics.  This method would also 
require designing special perceptual triggers to detect 
relevant changes in environment conditions.  The methods 
described in this article avoid this complexity by 
introducing a Case-Based Reasoning module that for a 
currently chosen behavioral assemblage, selects in real-time 
the set of parameters that is best suited for the current 
environment.  As the type of environment might change 

Figure 2.  Integration of the case-base reasoning module within 
the AuRA architecture. 
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unexpectedly, the CBR module continually monitors and 
re-selects and re-adapts the assemblage parameters as 
necessary, according to current conditions. 

A diagram of how the CBR module is integrated 
within MissionLab is shown in figure 2.  The sensor 
readings enter into both the high-level FSA-based planner 
and the CBR module.  Based on the perceptual input, the 
same or a new state is selected.  The chosen state defines a 
behavioral assemblage that is then passed into the 
behavioral control module.  The chosen state identifier is 
also passed into the CBR module along with relevant 
information about the current robot’s goal, such as the 
goal’s position.  If the CBR module supports the current 
state, then based on the perceptual input, goal information 
and the state, a set of parameters for the behavioral 
assemblage is selected from the case library and adapted to 
better fit the environment.  These parameters are passed 
into the behavioral control module, which applies them to 
the current behavioral assemblage.  After evaluating this 
assemblage, the motor vector is produced and supplied to 
the actuators for execution.  If the chosen state, however, is 
not supported by the CBR module, then the behavioral 
control module evaluates the behavioral assemblage with its 
default parameter values as defined in the finite state 
machine.  

Currently, the CBR module supports navigational 
states of type GOTO, which are used for goal-directed 
navigation. This particular assemblage contains the 
following four primitive motor schemas, as shown in figure 
3: MoveToGoal, Wander, AvoidObstacles and 
BiasMove. The MoveToGoal schema produces a vector 
directed towards a specified goal location from the robot's 
current position. The Wander schema generates a random 
direction vector, adding an exploration component to the 
robot's behavior. The AvoidObstacles schema produces a 
vector repelling the robot from all of the obstacles that lie 
within some given distance from the robot.  The BiasMove 
schema produces a vector in a certain direction in order to 
bias the motion behavior of the robot. The CBR module 
controls the following parameters: 

 
 

<Noise_Gain,   Noise_Persistence,    
  Obstacle_Sphere  Obstacle_Gain,  
  MoveToGoal_Gain,  Bias_Vector_Gain, 
  Bias_Vector_X,    Bias_Vector_Y > 
 
The gain parameters are the multiplicative weights of the 
corresponding active schemas. The Noise_Persistence 
parameter controls the frequency with which the random 
noise vector changes its direction. Obstacle_Sphere 
controls the distance within which the robot reacts to 
obstacles with the AvoidObstacles schema. Bias_Vector_X 
and Bias_Vector_Y specify the direction of the vector 
produced by the BiasMove schema. Thus, a case in the 
library consists of a set of values for the above parameters. 

III. SPATIO-TEMPORAL CASE-BASED REASONING 

     This section describes a CBR module that uses a hand-
coded library of cases.  Additional details on this method 
can be found in [3]. The next section provides a description 
of the changes required to make the CBR module learn new 
cases and its implementation. Additional details on these 
issues and the learning approach in general can be found in 
[19]. 

A. Overview 
The overall structure of the CBR module, shown in 

figure 4, is similar to a traditional non-learning Case-Based 
Reasoning system [12].  The sensor data and goal 
information is supplied to the Feature Identification sub-
module, which computes a spatial features vector 
representing the relevant spatial characteristics of the 
environment and a temporal features vector representing the 
relevant temporal characteristics.  Both vectors are passed 
forward for to the best matching case selection process.  

During the first stage of case selection, all the cases 
in the library are searched, and the distances between their 
spatial feature vectors and the current environmental spatial 
feature vector are computed.  These distances define the 
spatial similarities of cases with the environment.  The case 
with the highest spatial similarity is the best spatially 
matching case.  However, all the cases with a spatial 
similarity within some delta from the similarity of the best 
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Figure 3.  Interaction between the behavioral control module 
running a GOTO behavioral assemblage and the CBR 
module. 
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    Figure 4. High-level structure of the CBR module. 



 

 

spatially matching case are also selected for the next stage 
selection process.  These cases are called spatially matching 
cases.  At the second stage of selection, all the spatially 
matching cases are searched, and the distances between 
their temporal feature vectors and the computed 
environmental temporal feature vector are generated.  These 
distances define the temporal similarities of these cases 
with the environment.  The case with the highest temporal 
similarity is the best temporally matching case.  Again, all 
the cases with a temporal similarity within some delta from 
the similarity of the best temporally matching case are 
selected for the next stage of the selection process.  These 
cases are spatially and temporally matching cases and 
constitute all the cases with close spatial and temporal 
similarity to the current environment.  This set usually 
consists of only a few cases and is often just one case.  The 
set, however, can never be empty as the case most similar 
to the environment is always selected, independently of 
how dissimilar this case might be. 

The last phase of the selection stage is a uniformly 
random selection from the set of spatially and temporally 
matching cases.  The idea is that these cases are all close 
enough to the current environment.  Their output parameter 
vectors, however, might be very different.  One specific 
pair of temporal and spatial feature vectors does not 
necessarily map onto an optimal solution due to possible 
aliasing.  As a result, all of the cases found to be 
sufficiently similar to the current environment deserve at 
least a chance to be tried. 
 The case switching decision tree is then used to 
decide whether the currently applied case should still be 
applied or should be switched to the new case selected as 
the best matching one.  This protects against thrashing and 
overuse of cases.  If a new case is chosen to be applied, 
then it goes through the case adaptation and application 
steps.  At the adaptation step, a case is fine-tuned by 
slightly readjusting the behavioral assemblage parameters 
contained in the case to better fit the current environment.  
At the application step these parameters are passed on to the 
behavioral control module outside of the CBR module for 
execution. 

B. Technical Details 

1) Feature Identification Step 
In this step spatial and temporal feature vectors are 

produced based on current environment data.  This data 
includes sensor readings and the goal position.  The sensor 
data are distances to obstacles measured by the robot’s 
sonar or laser sensors. 

The spatial feature vector consists of two elements: a 
distance D from the robot to the goal and a sub-vector 
which represents an approximation of the obstacle density 
function around the robot and is computed as follows. The 
space around the robot is divided into K angular regions, as 
shown in figure 5.  The regions are always taken in such a 
way that the bisector of the 0th region is directed toward the 
goal of the robot.  Within each region the cluster of 
obstacles that obstructs the region most of all is found.  This 
can be done, for example, by sorting all obstacles within 

each region in the order of their obstruction angles and 
finding a single largest sequence of obstacles such that no 
space in between these obstacles is large enough for the 
robot to traverse through.  An obstacle density function 
approximation vector is then represented by K pairs <σ, r> 
where σ is the degree of obstruction of a region by the most 
obstructing cluster in this region, and r is the distance to 
this cluster. 

Figure 5 demonstrates an example computation of 
the obstacle density.  There are 12 sensors in this example, 
evenly spaced around the robot.  The large circle is centered 
on the robot and describes a clipping circle, beyond which 
all detected obstacles are ignored in the computation of the 
density function.  The encircled obstacles within each 
region define the most obstructing clusters within that 
region. Their corresponding degree of obstruction σ is then 
computed as the ratio of the angle that they obstruct within 
the region over the angle of the whole region.  Thus, σ is 
equal to 1.0 for region 1, indicating that the obstacles 
obstruct the region completely, whereas σ is equal to 2/3 
for the 0th and 3rd regions, as the obstacles leave 1/3 of the 
angle in those regions free for traversing.  Region 2 has σ 
equal to 0.0 since there are no obstacles detected within the 
region's clipping circle. Thus, this whole region is available 
for traversing. 

Figure 5 also shows the distance of the robot to the 
goal, D, which is the first element of the spatial feature 
vector.  The number of regions K is determined based on 
the desired computational complexity and the resolution of 
the sensor data.  If K is equal to the number of sensors on 
the robot, then the obstacle density function is the actual 
raw sensor data clipped by the clipping region.  Thus, in the 
above example setting K to more than four might not yield 
any benefit as there are only three sensors per region 
anyway.  On the other hand, setting K to a larger value 
might make sense if a robot uses a high resolution sensor 
such as a laser range finder.  

The temporal feature vector contains two scalar 
elements: a short-term relative motion Rs and a long-term 

Figure 5.  Computation of the spatial feature vector for K=4 
regions.  The robot is in the center of the circle.  Thick lines 
are obstacles as detected by 12 sensors evenly placed around 
the robot.  The circled clusters of obstacles within each 
region are the most obstructing clusters. 
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relative motion Rl.  The short- and long-term relative 
motion measures represent short- and long-term velocities 
of the robot, respectively, relative to the maximum possible 
velocity of the robot, and are computed as shown in 
formula (1).  The same formula is used for the computation 
of both relative motion measures.  However, the time 
window lengths used to compute average robot positions 
differ between long- and short-term relative motion 
computations as shown in the formula (2). 
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where N is the normalization constant, MaxVel is the 
maximum robot velocity, and Posi,longterm and Posi,shortterm are 
average positions of the robot over long- and short-term 
time windows, respectively, and are updated according to 
formula (2) every time the CBR module is called.  
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where NewPos is a new current position of the robot, and 
the filter coefficient a is dependent on whether Poss,shortterm, 
Poss,longterm, Posl,shortterm or  Posl,longterm is computed.  Thus, 
for example, as,shortterm is set to a coefficient with decay time 
of five time cycles, whereas al,longterm is set to a coefficient 
with decay time of 600 time cycles. 
  Formula (3) summarizes the form of the spatial 
and temporal vectors. 
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These two vectors define input features (indices) for cases 
and are passed in this form into the best matching case 
selection described next. 
 

2) Case Selection Process 
The best matching case selection is broken into three 

steps.  In the first step, a set of spatially matching cases is 
found.  All the cases in the library contain their own spatial 
and temporal feature vectors.  The similarity between the 
spatial feature vector for a case and an environment is used 
to assess the degree to which the case matches the 
environment spatially.  In order for spatial feature vectors to 
be comparable, however, they are first transformed into  
traversability vectors.  The traversability vector F 
eliminates actual distances by representing the degree to 
which each region can be traversed.  Formula (4) presents 
the transformation from a spatial vector into the 
traversability vector. 
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where D is the distance to the goal from equation (3), Dmin 
and Dmax are the minimum and maximum thresholds, 
respectively, for considering traversability in a region, and 
<σi, ri> are elements of Vspatial as defined in equation (3).  
The idea is that Df represents the circle of interest for 
traversability computation.  The goal distance D limits it on 
one hand, while Dmax also limits it if the goal is overly 
distant.  Dmin is just a minimum threshold to prevent zero 
radius circles.  The traversability measure fi ranges from 0 
to 1.  It is proportional to the degree of obstruction σi of the 
most obstructing cluster in the region and the distance ri at 
which this cluster is present in the region.  Thus, if a cluster 
of obstacles is extremely close to the robot and it obstructs 
the whole region, then the region’s traversability measure f 
becomes 0.  If, however, obstacles obstruct the region 
minimally, or they are all beyond the circle of interest with 
radius of Df, then the traversability measure f approaches 1.  

To avoid large changes in the traversability vector 
for environment Fenv due to noise in sensor data, the vector 
is passed through the smoothing filter given in formula (5).  
The coefficient b is chosen such as to have a decay time on 
the order of 5 to 10 sensor readings. 
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where fi is computed according to formula (4) based on the 
spatial vector for the current environment and fi

env,old is fi
env 

from the previous execution of the CBR module. 
As every case in the library is represented by a 

traversability vector F and the current environment is 
represented by a traversability vector Fenv, these vectors can 
be used to assess the spatial similarities between the cases 
and the environment.  The spatial similarity is computed as 
the weighted sum of squared errors between a case and the 
environment traversability vectors.  There is significantly 
more weight given to the regions directed more towards the 
goal.  This assures that, for example, if a case and an 
environment have clear-to-goal situations in the 0th region, 
then the environment is more similar to this case than to 
any other case that might have other very similar regions, 
but does not have the clear-to-goal situation in the 0th 
region. Formula (6) shows the computation of spatial 
similarity S. 

(6)                   
)(*

1
1

0

1

0

2

∑

∑
−

=

−

=

−
−=

K

i
i

K

i

env
iii

w

ffw
S  

where W is the vector of weights for each region, F is the 
traversability vector of a case, and Fenv is the traversability 
vector of the current environment.  Thus, the perfect match 
is represented by S equal to 1, and the maximum difference 
by S equal to 0. 
 After the spatially based case selection, the set of 
spatially matched cases contains all the cases with spatial 
similarity S within some delta from the spatial similarity of 
the best spatially matching case.  The best spatially 
matching case is defined as the case with the highest spatial 
matching similarity with the current environment. 



 

 

 Similarly, at the second selection step the temporal 
similarity with the current environment is computed for all 
the cases in the set of spatially matched cases according to 
formula (7). 
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where wl and ws are long- and short-term relative motion 
measure weights, < Rs,  Rl > is a temporal vector for a case, 
and < Rs

env, Rl
env > is a temporal vector for the current 

environment.  The long-term relative motion measure is 
given more weight indicating its greater importance in the 
assessment of temporal similarities. 
 The best temporally matching case is the case that 
has the highest temporal similarity with the environment. 
All cases with a temporal similarity within some delta from 
the temporal similarity of the best temporal matching case 
are selected from the set of spatially matched cases for the 
next selection stage.  Thus, after the temporal-based 
selection process, the set of matched cases contains the 
cases that are both spatially and temporally similar to the 
environment. 
 Finally, at the third and the last step of the case 
selection process, randomness is added to the selection 
process.  Namely, one case from the set of matched cases is 
selected uniformly at random.  This selected case is 
declared to be the best matching case with the current 
environment. 
 

3) Case Switching Decision Tree 
     At this step the decision is made as to whether the best 
matching case or the currently applied case should be used 
until the next call to the CBR module. This decision is 
based upon a number of characteristics describing the 
potential capabilities of the best matching case and the 
current case.  The decision tree is shown in figure 6. 

At the root of the tree, the time the current case was 
applied is checked against some threshold CaseTime that is 
specific to each case in the library.  If the current case was 
applied for less time than the threshold, then the spatial 
similarity of the current case is checked against threshold 
Slow, and the difference between the new case's spatial 

similarity and the current case's spatial similarity is checked 
against some threshold Sdiff.  If the two conditions are 
satisfied, then the current case continues to be used.  The 
intent is that the current case should not be thrown away too 
soon, unless the environment became significantly different 
from what it was when the current case was initially 
selected. If one or both of the conditions are unsatisfied, or 
if the case was applied for longer than the suggested 
threshold, the decision-making proceeds to check the long-
term relative motion measure Rl. If it is larger than some 
threshold, then the case is more likely to be performing well 
and the short-term relative motion measure Rs should be 
compared against a low threshold Rs low. If the short-term 
relative measure is also higher than the low threshold, it 
suggests that the current case performs well and it is 
exchanged for the new one only if its spatial similarity is 
very different from the environment or a much more similar 
case is found.  Otherwise, the current case in use remains 
unchanged.  If, on the other hand, the short-term relative 
motion measure is less than the low threshold, then the case 
is switched to the new one. Going back to the long-term 
relative measure check, if it is smaller than the Rl threshold, 
then the case might not be performing well and, therefore, 
the short-term relative measure is compared against a 
stricter threshold Rs threshold.  If it falls below this 
threshold, then the new case is selected.  Otherwise, the 
case spatial similarity is compared against a strict threshold 
Shigh threshold.  If the similarity is less, then the new case is 
selected, otherwise the current case is given more time to 
exert itself. 
 

4) Case Adaptation 
If it is decided at the previous step to keep the 

current case, then this step (case adaptation) is not 
executed.  If it is decided, however, to apply a new case, 
then the new case needs to be fine-tuned to the current 
environment. 

The adaptation algorithm is very simple:  
 
X = (Rl adaptthreshold + Rs adaptthreshold) / (Rl + Rs); 
Y = Rl adaptthreshold / Rl ; 
Z = Rs adaptthreshold) / Rs; 
If (Rl < Rl adaptthreshold and Rs < Rs adaptthreshold) 
 Increase Noise_Gain proportionally to X; 
 Increase CaseTime proportionally to X; 
 Limit Noise_Gain and CaseTime from above; 
Else if (Rl < Rl adaptthreshold) 
 Increase Noise_Gain proportionally to Y; 
 Increase CaseTime proportionally to X; 
 Limit Noise_Gain and CaseTime from above; 
Else if (Rs < Rs adaptthreshold) 
 Increase Noise_Gain proportionally to Z; 
 Limit Noise_Gain from above; 
End; 
 

The adaptation algorithm looks at both the long-
term and short-term motion measures of the robot and 
increases the level of noise (random motion) in the robot’s 
behavior if any of the measures fall below the 
corresponding threshold.  The amount to which the noise is 
increased is proportional to how long the robot's progress 

Case Applied Time > CaseTime Threshold

Rl > Rl threshold

Rs > Rs low threshold

Scurrent > Slow threshold
and

Snew-Scurrent < Sdiff threshold

Current Case New Case

New Case

Rs > Rs threshold

Scurrent > Shigh threshold New Case

Current Case New Case

Scurrent > Slow threshold
and

Snew-Scurrent < Sdiff threshold

Current Case

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

No

No

No

No

No

Figure 6.  Case switching decision tree. 



 

 

was impeded as determined by the long- and short-term 
motion measures.  If the robot lacks progress for a 
sufficiently long time period enough, then the long-term 
motion measure Rl falls below its threshold and the 
CaseTime threshold is also increased to ensure that the new 
case is applied long enough given the current environment.  
 The adaptation of the case is followed by its 
application, which simply extracts the behavioral 
assemblage parameters from the case and passes them to 
the actively executing behavioral control module within the 
MissionLab system. 

C. An Example of Operation 

Figure 7 shows two runs of a simulated robot with 
and without the CBR module within MissionLab, which 
provides a simulator as well as logging capabilities, making 
the collection of the required statistical data easy. Black 
dots of various sizes represent obstacles and the curved line 
across the picture depicts the trajectory of the robot. The 
mission area is 350 by 350 meters. 

During the entire run the same behavioral 
assemblage is used.  However, as the environment changes 
from one type to another, the CBR module re-selects the set 
of parameters that control the behavioral assemblage.  As a 
result, a robot that does not use the CBR module requires a 
higher level of noise in its behavior in order to complete the 
mission (figure 7, top). If, however, the CBR module is 
enabled, then the Wander behavior is rarely used, and the 
distance traveled by the robot is 23.7% shorter, whereas the 

mission completion time is 23.4% less (figure 7, bottom).  
For example, during the part of the run before the local 
minimum produced by two obstacles is encountered (point 
A in figure 7, bottom) the robot uses case 1, called 
CLEARGOAL case (figure 8b, left).  In this case no noise 
is present in the robot behavior making the trajectory a 
straight line. When the robot approaches the two obstacles 
(point B in figure 7, bottom), it switches to case 2 called 
FRONTOBSTRUCTED_SHORTTERM   (figure 8b, right). 
In this case, the gains of the Wander and BiasMove 
schemas and Obstacle_Sphere are increased. This ensures 
that the robot quickly gets out of the local minima and then 
proceeds toward the goal, switching back to the 
CLEARGOAL case. 

IV. LEARNING BEHAVIORAL PARAMETERIZATION  

A. Technical Details 

This section provides an overview of the learning 
CBR module, as shown in figure 9, emphasizing the 
extensions that were made to the non-learning CBR 
algorithm described previously. First, as before, the sensor 

Point A 
Case 1 

f0=0.92

f1=0.58

f2=1.0

f3=0.68

f0=0.92

f1=0.58

f2=1.0

f3=0.68  

Point B 
Case 2 

f0=0.02

f1=0.22

f2=0.63

f3=0.02

f0=0.02

f1=0.22

f2=0.63

f3=0.02
 

Figure 7.  Robot runs in a simulated environment.  Top: without 
CBR module; Bottom: with CBR module.  The circles on the left 
show the values of the traversability vectors that correspond to 
the indicated points in the environment. 

Environment characteristics at A:
Spatial Vector:
D (goal distance) = 300
                   density    distance
Region 0:  σ0 = 0.31; r0 = 5.13
Region 1:  σ1 = 0.71; r1 = 2.83
Region 2:  σ2 = 0.36; r2 = 7.03
Region 3:  σ3 = 0.54; r3 = 2.80
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 1.000
LongTerm_Motion Rl = 0.931
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =0.92  f1 =0.58  f2 =1.00  f3=0.68

Environment characteristics at B:
Spatial Vector:
D (goal distance) = 275
                   density    distance
Region 0:  σ0 = 1.00; r0 = 0.11
Region 1:  σ1 = 0.79; r1 = 0.11
Region 2:  σ2 = 0.38; r2 = 0.12
Region 3:  σ3 = 1.00; r3 = 0.11
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 0.010
LongTerm_Motion Rl =  1.000
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =0.02  f1 =0.22  f2 =0.63  f3=0.02

Case 1 used at A:
CLEARGOAL
Spatial Vector:
D (goal distance) = 5
                   density    distance
Region 0:  σ0 = 0.00; r0 = 0.00
Region 1:  σ1 = 0.00; r1 = 0.00
Region 2:  σ2 = 0.00; r2 = 0.00
Region 3:  σ3 = 0.00; r3 = 0.00
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 1.000
LongTerm_Motion Rl = 0.700
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =1.00  f1 =1.00  f2 =1.00  f3=1.00
Case Output Parameters:
MoveToGoal_Gain = 2.00
Noise_Gain             = 0.00
Noise_Persistence   = 10
Obstacle_Gain        = 2.00
Obstacle_Sphere     = 0.50
Bias_Vector_X        = 0.00
Bias_Vector_Y         = 0.00
Bias_Vector_Gain   = 0.00
CaseTime = 3.0

Case 2 used at B:
FRONTOBSTRUCTED_SHORTTERM
Spatial Vector:
D (goal distance) = 5
                   density    distance
Region 0:  σ0 = 1.00; r0 = 1.00
Region 1:  σ1 = 0.80; r1 = 1.00
Region 2:  σ2 = 0.00; r2 = 1.00
Region 3:  σ3 = 0.80; r3 = 1.00
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 0.000
LongTerm_Motion Rl = 0.600
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =0.14  f1 =0.32  f2 =1.00  f3=0.32
Case Output Parameters:
MoveToGoal_Gain = 0.10
Noise_Gain             = 0.02
Noise_Persistence   = 10
Obstacle_Gain        = 0.80
Obstacle_Sphere     = 1.50
Bias_Vector_X        = -1.00
Bias_Vector_Y        = 0.70
Bias_Vector_Gain   = 0.70
CaseTime = 2.0

a) 

b) 

Figure 8. a) Environment features at points A (left) and B 
(right);  b) Cases used at point A (left) and point B (right). 
 



 

 

data and goal information are provided to the Feature 
Identification sub-module that operates identically to its 
non-learning CBR module counterpart. The resulting spatial 
and temporal feature vectors are then passed to the best 
matching case selection process.  

 
1) Case Selection 

As before, at the spatial case selection step the 
spatial similarity between each case in the library and the 
current environment is computed as the weighted Euclidean 
distance between the case and environmental traversability 
vectors.  Now, however, instead of selecting all the cases 
that have a spatial similarity within some delta from the 
similarity of the best spatially matching case, the cases are 
selected at random, with their probability of being selected 
proportional (according to an exponential function) to the 
difference between their spatial similarity and the spatial 
similarity of the best spatially matching case. Figure 10 
illustrates this case selection process. Case C1 is the best 
spatially matching case and has a 100 percent probability of 
being selected to the set of spatially matching cases. Cases 
C2 and C4 are also selected as a result of random case 
selection biased by their spatial similarities. The idea 
behind adding such randomness to the case selection 
process is to bias the exploration of cases by their 
similarities with the environment. Similarly, at the temporal 
case selection stage, the cases that were selected as spatially 
matching cases go through the random selection process 
with the probability of being selected biased by the 
differences between their temporal similarity and the 
temporal similarity of the best temporally matching case. 
Thus, in the example in figure 10, case C4 is the best 
temporally matching case and therefore is selected for the 
next selection step. Case C1 is also selected at random for 
the next selection step whereas C2 is not. The cases that 
pass these two selection stages are also called spatially and 
temporally matching cases and are forwarded to the last 
case selection stage. 

At the last selection step just one case is selected at 
random with a probability of being selected proportional to 
the weighted sum of case spatial similarity, temporal 
similarity, and case success. The case success is a scalar 
value that reflects the performance of the case, and is 
described below. Thus, for the example shown in figure 10, 
C1 has a higher weighted sum of spatial and temporal 
similarities and success, and therefore has a higher chance 

of being selected than C4. In this particular example, C1 is 
indeed selected as the best matching case. 

Once the case is selected, as before, the case 
switching decision tree decides whether to continue to use 
the currently applied case or switch onto the selected best 
matching case. If the switching decision tree says that the 
currently applied case should remain active, then nothing 
else needs to be done in this cycle of the CBR module.  
Otherwise, the CBR module continues its execution with 
the evaluation of the currently applied case performance as 
described below. 

  
2) Old Case Performance Evaluation 

The velocity of the robot relative to the goal, that 
is the speed with which the robot is approaching its goal, is 
used as the main criteria for the evaluation of case 
performance. The pseudo code for the performance 
evaluation of a case C follows: 

  
Compute velocity V(C) according to Equation (8) 
If (V(C) ≤ 0 and C was applied last) 
     //delayed reinforcement 

Postpone the evaluation of C until another K-1 cases 
are applied or C is selected for application (whichever 
comes first) 

else 
     if (V(C)> µ⋅Vmax(C) and V(C)>0)  //µ=0.9 
           I(C) = max(1, I(C) + 1); 
     else 
            I(C) = I(C) – 1; 
     end 
     I(C)=min(Imax, I(C));  //limit I(C);Imax=100    
     Update Vmax(C) according to Equation (2) 
     if(C was applied last) 
           if(V(C)> µ⋅Vmax(C) and V(C)>0) 
                 Increase S(C) by ∆ proportional to I(C); 
           else 
                 Decrease S(C) by ∆; 
           end 
     else 
           if (Robot advanced towards its goal) 
                 Increase S(C) by ∆ proportional to I(C); 
           else 
                 Decrease S(C) by ∆; 
           end 
     end 
end 
 
Since for some cases the task is to get the robot 

closer to the goal, while for other cases the task is to get the 
robot out of local minima such as “box canyons” created by 
obstacles, the robot's velocity relative to the goal may not 
always be the best evaluation function for case 
performance.  Instead, a delayed evaluation of the case 
performance may be necessary. For this reason the 
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     Figure 10. Case selection process. 
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        Figure 9.  High-level structure of the learning CBR module. 



 

 

information on the last K applied cases is kept. K defines a 
learning horizon and in this work is chosen to be 2. Thus, 
when a new case is about to be applied, the performance 
evaluation function is called on each of the following cases: 
the case that was applied last; the case that was applied K 
cases ago and was not yet evaluated because the evaluation 
was postponed; and the case that was applied some time 
previously that was not yet evaluated and is the case 
selected for a new application. At the very beginning of the 
performance evaluation a check is done: if a case C was just 
applied and the robot did not advance towards its goal as a 
result of the case application, then the case performance 
evaluation is postponed. The robot did not advance if its 
average velocity V(C) relative to its goal from the time just 
before case C was applied up until the current time is not 
positive.  Otherwise, the performance evaluation proceeds 
further. 

Each case has a number of variables that represent 
the recent performance of the case and need to be updated 
in the performance evaluation routine.  The average 
velocity V(C) of the robot relative to the goal for case C is 
computed as follows: 

)(
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tCt currb

−

−
=                    (8) 

 
where tb(C) is the time before the application of case C, tcurr 
is the current time and gt is the distance to the goal at time t.  
One of the variables maintained by each case describing 
case performance is Vmax(C): the maximum average velocity 
of the robot relative to the goal as a result of the application 
of case C.  This velocity is updated after every performance 
evaluation of case C.  Equation 9 is a form of “maximum 
tracker” in which Vmax(C) very slowly decreases whenever 
it is larger than V(C) and instantaneously jumps to V(C) 
whenever Vmax(C) is smaller than V(C): 
 

))()1()(  ),( max()( maxmax CVCVCVCV ⋅−+⋅= ηη      (9) 

 
where η is a large time constant, here chosen to be 0.99. 

However, before Vmax(C) is updated, a decision is 
made on whether the case resulted in performance 
improvement or not.  The performance is considered to 
improve if V(C)>µ⋅Vmax(C) and V(C)>0, where µ is close to 
1.  Thus, the case performance is considered to be an 
improvement not only when the velocity is higher than it 
has ever been before, but also when the high velocity is 
reasonably sustained as a result of the case's application.  
The variable I(C) maintains the number of the last case 
performance improvements and is used in the adaptation 
step to search for the adaptation vector direction. 

Finally, the case success S(C) is also updated.  If 
the performance evaluation is not postponed, then the case 
success is increased if the case performance improved, 
where the performance improvement is defined by the same 
formula as before, and is decreased otherwise.  If, however, 
the case evaluation was postponed, then the case success is 
increased if the robot advanced sufficiently towards its goal 
after the case was applied and is decreased if the robot has 

not advanced at all.  In either case the increase in the case 
success is proportional to the number of times the 
application of the case resulted in its performance 
improvement I(C).  This adds momentum to the 
convergence of case success.  The more there are recent 
case improvements, the faster the case success approaches 
its maximum value of 1.0, indicating full convergence of 
the case.  The case success is used in case selection to bias 
the selection process, and in case adaptation to control the 
magnitude of the adaptation vector. It will be discussed 
further below. 

 
3) Case Creation Decision 

At this step, a decision is made whether to create a 
new case or keep and adapt the case that was selected for 
the application.  This decision is made based on the 
weighted sum of the temporal and spatial similarities of the 
selected case with the environment and on the success of 
the selected case.  If the success of the selected case is high 
then it needs to be very similar to the environment, mainly 
spatially, in order for this case to be adapted and applied.  
This prevents making the case success diverge based on 
environments that do not correspond to the case.  If the case 
success is low, then the case similarity need not be very 
close to the environment and still the case is adapted and 
applied.  In any event, the size of the library is limited (for 
this work a limit of 10 cases was used) and therefore if the 
library is already full then the selected case is adapted and 
applied. 

If it is decided that a new case should be created, 
then the new case is initialized with the same output 
parameters (behavioral parameters) as the selected case but 
input parameters (spatial and temporal feature vectors) are 
initialized to the spatial and temporal feature vectors of the 
current environment.  The new case is saved to the library 
and then passed to the adaptation step.  If no new case is 
created then the selected case is passed directly to the 
adaptation step. 
 

4) Case Adaptation 
Independent of whether the case to be applied is an 

old case or was newly created, the case still goes through 
the adaptation process.  Every case C in the library also 
maintains an adaptation vector A(C) that was last used to 
adapt the case output parameters.  If the case was just 
created then the adaptation vector is set to a randomly 
generated vector.  The adaptation of a case happens in two 
steps.  First, based on the case's recent performance, the 
adaptation vector is used to adapt the case C output 
parameter vector O(C) as follows: 

 
if (I(C) ≤ 0) 
     //change the adaptation direction 
     A(C) =  – λ⋅ A(C) + ν⋅ R;  
end 
//adapt 
O(C) = O(C) + A(C); 

 
If the case improvement I(C) does not show 

evidence that the case was improved by the last series of 
adaptations, then the adaptation vector direction is reversed, 



 

 

decreased by a constant λ and a randomly generated normal 
vector R scaled by a constant ν is added to assure 
exploration in the search for optimal parameters. 
 At the second adaptation step, the output 
parameters are altered based on the short- and long-term 
relative velocities of the robot, which are elements of the 
temporal features vector. This adaptation step is similar to 
the adaptation step performed in the non-learning CBR 
module (section III.B.4) and, in short, increases the 
Noise_Gain and Noise_Persistence behavioral parameters 
inverse proportionally to the short- and long-term relative 
velocities of the robot. The idea is that these two parameters 
are increased more and more if the robot is stuck longer and 
longer at one place, as can be the case with difficult “box 
canyons” when using purely reactive methods. 
 Finally, the behavioral parameters of the case are 
limited by their corresponding bounds. Also, 
Obstacle_Gain is limited from below by the sum of 
Noise_Gain, MoveToGoal_Gain and Bias_Vector_Gain. 
This ensures that in any event the robot does not collide 
with obstacles. 

The adaptation of the case is followed by its 
application, which simply extracts the behavioral 

assemblage parameters from the case and passes them to 
the behavioral control module within the MissionLab 
system for execution. 

B. An Example of Operation 

Figures 11 and 12 demonstrate the runs of a 
simulated robot that uses the learning CBR module to learn 
a library of cases. In figure 11 the training is done on 
heterogeneous environments, where the obstacle density 
and pattern change within the same robot mission, whereas 
in figure 12 the training is done on homogeneous 
environments, where the obstacle density and pattern 
remain constant throughout a mission.  These were two 
separate training instances resulting in two different learned 
libraries.  The top figures in figures 11 and 12 show 
screenshots of MissionLab during the very first robot runs.  
At the beginning of both runs the libraries do not contain 
any cases and are created as the robot proceeds with its 
mission.  In figure 11 the mission area is 350 by 350 
meters, whereas in figure 12 it is 150 by 150 meters.  Since 
the library is being created from scratch, the performance of 
the robot in these initial runs is very poor.  The search for 
an optimal parameterization has just started, and thus the 

 

Figure 11.  Screenshots of training runs in a heterogeneous 
environment.  Top: initial run that starts off with an empty library; 
Bottom: a run after fifty-four training runs.  

 
 
Figure 12.  Screenshots of training runs in a homogeneous 
environment.  Top: initial run that starts off with an empty library; 
Bottom: a run after fifty training runs.  
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Figure 14.  Mission completion rate of a simulated robot in 
heterogeneous environments. 

robot behavior is very noisy.  In contrast, after about fifty 
training runs for both heterogeneous and homogeneous 
environments, the robot successfully learned improved 
parameterizations and therefore the robot trajectory in the 
final runs (figures 11 and 12 bottom) is far better. 

A good example of learning an efficient 
parameterization can be found in the last, rightmost grid of 
small obstacles in the heterogeneous environment.  In order 
for a robot to traverse such a dense but highly ordered 
obstacle environment the robot has to apply what is called a 
“squeezing” strategy.  In this strategy Obstacle_Sphere is 
decreased to its minimum while MoveToGoal_Gain has to 
prevail over Noise_Gain.  This makes the robot squeeze 
between obstacles towards its goal.  In the first run this 
strategy is not known to the robot, and it takes a long time 
for the robot to traverse this area.  By contrast, in figure 11 
bottom, the robot successfully “squeezes” through this area 
along a straight line.  The log files indicate that the robot 
trajectory in the final run in the heterogeneous environment 
is 36 percent shorter than in the initial run, while in the 
homogenous environment the final run is 23 percent shorter 
than the initial run. 

It is important to note, however, that not all of the 
cases converge.  In particular, the cases created for large 
“box canyon” environments do not usually converge.  
Instead, they seem to maintain aggressive adaptation 
vectors together with the large Noise_Gain values.  In most 
cases this appears to be sufficient for good performance of 
the robot.  On the other hand, most of the cases that 
correspond to the “squeezing” strategy, for example, 
converge, showing that the robot successfully learns to 

discriminate between these two scenarios based on the 
spatial and temporal features of the environment. 

V. SIMULATION RESULTS 

Figures 13 through 16 depict statistical data 
gathered from the simulations.  Three systems were 
evaluated: (1) a non-adaptive system which did not use the 
CBR module but instead used manually hard-coded 
behavioral parameters; a non-learning CBR system that 
employed the non-learning CBR module for the selection 
and adaptation of behavioral parameters given a manually 
specified library of cases; and a learning CBR system that 
started out with an empty library and trained it using the 
learning CBR module.  Cases for the non-learning CBR 
module were created manually by running preliminary 
experiments on a few heterogeneous environments.  Three 
libraries for the learning CBR system were created 
automatically by running about 250 training runs on 
training data consisting of homogeneous, heterogeneous 
and even empty environments.  All three libraries were 
evaluated and the average values are shown in the graph.  
For the runs with the non-adaptive system, the optimal set 
of parameters was chosen for a given average obstacle 
density, which is equivalent to a user specifying the 
parameters for a given mission.   

Figures 13 and 14 illustrate the performance of a 
simulated robot on a navigational task in heterogeneous 
environments, such as the one shown in figure 11.  Overall, 
the test results for 37 missions in different heterogeneous 
environments were gathered.  The performance of a robot is 
represented by the time steps it takes the robot to complete 
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Figure 13.  Average number of time steps of a simulated robot 
in heterogeneous environments. 

non-learning CBR
learning CBR

Non-adaptive

15% Obstacle density

20% Obstacle density
0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

Adaptation algorithm

Figure 15. Average number of time steps of a simulated 
robot in homogeneous environments. 
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Figure 16.  Mission completion rate of a simulated robot in 
homogeneous environments. 



 

 

its mission, as well as the percentage of completed 
missions.  Thus, the amount of time, on average, it takes the 
learning CBR system to complete a mission is better than 
for a non-adaptive system while worse than for a non-
learning one.  This result is expected as the library for the 
non-learning CBR system was manually optimized on the 
set of heterogeneous environments used for training.  The 
mission completion rate shown in figure 14 is 
approximately equal for both non-learning and learning 
CBR systems.  The non-adaptive system has the lowest 
mission success rate. 

Figures 15 and 16 report the results of tests in 
homogeneous environments such as the one shown in figure 
12.  In each of the figures, the front row represents an 
environment with a 15% obstacle density and the back row 
an environment with 20% obstacle density.  For each 
environment, fifty runs were conducted for each algorithm 
to establish statistical significance of the results.  In these 
tests, a system that employs learning CBR outperforms 
even the non-learning CBR system not to mention the non-
adaptive one.  This is true in terms of both criteria: the 
average mission execution time and mission success rate.  
The reason for this is that even though the non-learning 
CBR system performs very well in homogeneous 
environments it was manually optimized using 
heterogeneous environments as training data.  As a result, 
the learning CBR had an opportunity to learn cases that 
were better suited for the homogeneous environments than 
the ones that were in the library of the non-learning CBR 
module.  Non-adaptive, on the other hand, performs far 
from optimally on these environments and even more 

importantly exhibits only 46 percent mission completion 
rate for denser environments (figure 16, 20% density). 

Figure 17 presents the results of a separate 
experiment that demonstrates how the performance of the 
non-learning CBR system depends on the obstacle density 
of an environment. The performance represented by 
traveled distance and time steps was measured as a function 
of obstacle density.  Just as in figure 11, the robot had to 
travel through different types of environments, but the 
average density varied between trials.  Note that for the 
runs without the CBR module, the optimal set of parameters 
was chosen for a given average obstacle density.  This was 
equivalent to a user specifying the optimal parameters for a 
particular mission.  Even larger improvement could be 
expected if the parameters were chosen to be constant 
throughout all the trials.  As shown in figure 17, if the 
average obstacle density is very small (below 12%), then 
the improvement is insignificant.  This is due to the fact that 
in an environment that is almost obstacle-free, where really 
only one case is applied all the time.  The same set of 
parameters can be easily chosen manually for the robot 
without the CBR module.  As the obstacle density 
increases, however, the cases are switched more and more 
often leading to a significant improvement in performance 
due to the use of multiple cases in different situations. 

VI. ROBOT EXPERIMENTS 

We performed both indoor experiments using a Nomad 150 
robot (figure 18 left) and outdoor experiments using an 
ATRV-Jr robot (figure 18 right).  The first section below 
describes the evaluation of the CBR-based navigation 
system without learning (non-learning CBR).  The next 
section describes extensive evaluation of CBR-based 
navigation with learning (learning CBR) using robotic 
hardware. 

A. Spatio-Temporal CBR without learning 

1) Indoor Navigation 
The system was first tested on a Nomad 150 series 

mobile robot performing indoor navigation. It used 12 sonar 
sensors evenly distributed around it.  The data from these 
sensors was the only perceptual input driving the behavior 
of the robot in this experiment.  The MissionLab system 
provides support for real robotic systems including the 
Nomad 150 and ATRV-Jr robots.  Thus, for the real robot 
experiments the exact same experimental framework as for 
the simulations was utilized. 

The environment for the real robot experiments is 
shown in figure 19.  The chairs were used to introduce 
additional obstacles in the environment.  The plant in the 
white vase by the couch shown in the back of the picture 
represents the goal location for the robot.  

Figure 19a shows the start of a robot run.  The path 
is clear and the traversability vector indicates that the 0th 
region directed toward the goal is fully traversable.  This 
corresponds to the CLEARGOAL case (figure 8b left) with 
a Wander schema gain of zero, and the robot therefore 
moves straight towards its goal.  As it reaches the small box 
canyon constructed by the three chairs (figure 19b), the 
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Figure 17.  The performance improvement of a simulated robot 
induced by the non-learning CBR module over the non-adaptive 
system as a function of obstacle density. 

  

Figure 18.  Left: Nomad 150 used for indoor experiments; 
Right: ATRV-Jr used for outdoor experiments. 



 

 

traversability vector now indicates very low traversability 
in the 0th region and a high traversability in other regions.  
The new case FRONTOBSTRUCTED_SHORTTERM 
(figure 8b right) is applied with a greater gain for the 
Wander schema, a larger sphere of influence for obstacle 
avoidance and some gain for the BiasMove schema 
directing the robot away from the chairs.  As a result, the 
robot comes quickly out of the canyon.  In figure 19c the 
robot is again clear to its goal, and a case with no Wander 
behavior is selected that makes the robot go straight to the 
goal. 

Ten runs were conducted with the non-learning CBR 
module and ten without the module.  Each pair of runs was 
done on exactly the same environment.  Just as in 
simulations, the trials ranged from very low obstacle 
density environment to a quite large obstacle density.  The 
collected data is shown in figure 20.  The numbers correlate 
well with the simulation-based data, also showing that as 
the average obstacle density increases, the benefits from the 
CBR module also increase. 

 
2) Outdoor Navigation 

 Outdoor experiments were done with an ATRV-Jr 
robot (figure 18, right), using two SICK LMS200 laser 
scanners as sensors, one in the front and one in the rear, 
allowing for a 360 degree view.  The behavioral parameters 
for the system without the CBR module (the non-adaptive 
system) were chosen manually to produce the best results 
for the given environment.  The library of cases for the 
CBR module was also manually hard-coded.  The library 
had to be different from the one used in simulations since 
there are important differences in size and movement 
capabilities of simulated and physical robots.  Therefore, 
while the library of cases used for simulations was 
optimized as a result of numerous experiments, the library 
of cases for the real robot was only based on a few robot 
experiments and the simulated robot experiments due to the 
larger time scale for collecting data on real robots versus 
simulated one.  As a result, the library of cases was not 
necessarily close to optimal.  
 The robot’s mission during the outdoor 
experiments was to navigate first a small area filled with 
trees and a few artificial obstacles to increase the difficulty 
of the environment (figure 21a), creating larger local 
minima,  and then to traverse a relatively clear area until it 
reaches a goal.  The straight-line distance from the start 
position to the goal was about 47 meters. 

Figure 21b shows a trajectory of a typical run by 
the non-adaptive system.  In order to be able to efficiently 
navigate the area with trees, the robot needs to employ a 
sufficiently large amount of noise and a small sphere of 
influence for obstacle avoidance.  However, since the 
parameterization is constant (i.e., non-adaptive), the robot’s 
trajectory continues to be noisy even after the tree region is 
passed and the environment is clear of obstacles.  In 
contrast, the non-learning CBR system first chooses a case 
that permitted the robot to squeeze between the trees and to 
quickly extricate itself from local minima of this type, and 
then switched to the CLEARGOAL case that resulted in a 
straight trajectory directly towards the goal (figure 21c).  
The trajectory of the robot that used the non-learning CBR 

 

Figure 20.  Improvement in the efficiency of Nomad 150 indoor 
navigation when using the non-learning CBR module. 

a) 
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Figure 19. Indoor experiments: chairs are used as obstacles; the 
plant in the rear near the couch is the goal of the robot. 



 

 

module is 11% shorter than the one with the non-adaptive 
system. 
 Figure 22 summarizes the results from these 
experiments.  It shows the traveled distance and the number 
of time steps averaged over ten runs for each of the systems 
for both the non-adaptive system and the system that used 

the non-learning CBR module.  An individual run was 
considered a failure if the robot ran for ten minutes without 
reaching its goal. Runs during which the robot became 
disoriented, that is the robot thought it was facing a 
different direction than it really was, were discarded, justly 
isolating and eliminating data points resulting from 
hardware failures.  The non-adaptive system had more of 
such failures than the non-learning CBR system since the 
former had a tendency to get stuck for short periods of time 
in box-canyons, producing greater odometric error, and thus 
having a longer mission runtime on average. 

The results illustrate that the average time for 
mission completion by the robot that used a non-learning 
CBR module was 26.5% smaller than the average time of 
the non-adaptive system.  Similarly, the traveled distance 
for the non-learning CBR system was also 10.5% shorter. 

B. Spatio-Temporal CBR with learning 

The Learning CBR system was also tested on an 
ATRV-Jr in outdoor experiments.  Just as in the previous 
experiments, the robot was equipped with two SICK laser 
range finders allowing for a full 360 degree laser profile 
(figure 23b).  Placing them on the top of the robot 
eliminated blind spots and problems with uneven terrain 
and was well suited for environments with large scale 
obstacles such as buildings and trees.  These experiments, 
however, were conducted in a larger environment making 
each run substantially longer.  To deal with the localization 
errors the robot was equipped with a three-axis gyro, 
odometry sensors and an electronic compass.  The position 
of the robot was tracked by fusing sensor information from 
these sensors, which was automatically taken care of by 
MissionLab. 

The outdoor environment, seen in figure 23a, 
consisted of a grassy field with surrounding buildings, trees, 
and bushes.  In addition, a large box canyon was placed 
near the beginning of the course and various obstacles in 
the form of large trash cans were placed throughout the 
environment.  The layout of the testing and training 
environments can be seen in figure 24.  Both environments 
were of the same size: 52 meters from start to goal, with the 
largest obstacle field being 20 meters wide and 8 meters 
long. 

Three different systems were compared: a purely 
reactive navigation (NAdapt), a purely reactive navigation 
with swirl behavior (Swirl), and learning CBR, also using 
swirl.  Swirl is a modified GOTO behavior, where obstacle 
avoidance vectors circulate around the obstacles.  This 
usually leads to a better performance than a purely reactive 

Traveled Time
Distance Steps

Non-adaptive 76 1348
Non-learning CBR 68 991
Improvement (%) 10.5 26.5  

Figure 22.  Comparison of ATRV-Jr outdoor navigation 
efficiency with and without the non-learning CBR module. 

a) 
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Figure 21. Outdoor experiments:  a) ATRV-Jr during one of its 
test runs.  b) The traveled trajectory of the robot using the non-
adaptive system.  c) The traveled trajectory of the robot using 
the non-learning CBR system (11% percent shorter). 



 

 

system.  The Learning CBR module controls the following 
parameters: 
<Noise_Gain,   Noise_Persistence,    
  Obstacle_Sphere,   MoveToGoal_Gain>  

The training phase consisted of 131 runs during 
which a full case library was learned.  Training started with 
an empty library, with the size restricted to a maximum of 
ten cases.  The library reached the maximum size towards 
the end of the training, with two of the cases converged to a 
high success rate (figure 25).  The first one is a “clear to 
goal” case representing the situation where no obstacles in 
the direction of the goal are present.  The second converged 
case represents the situation where obstacles appear ahead 
of the robot.  This case increases the obstacle sphere 
slightly.  As in the previous experiments, some training was 
conducted in an empty environment.  A few runs were 
omitted due to communications or robot firmware failures; 
it was verified that the failures were not caused by our 
software and hence should not have affected the results. 

During the testing phase, each system was tested 
18 times on a modified novel environment.  As can be seen 
in figure 24b, the box canyon has a different shape, the 
sequence of the two obstacle fields is reversed, and their 
relative positions as well as their densities are changed.  
The results, as measured by distance and time traveled, are 
shown in figure 26.  All differences are statistically 

significant except for the difference between the distance 
traveled by Swirl and NAdapt.  Using learning CBR, the 
robot completed the missions much faster than when using 
the simple reactive avoidance system with hand-tuned 
parameters.  The CBR version traveled further because it 
tended to go around the obstacle field, allowing it to drive 
faster and hence perform well in terms of time taken to 
complete the missions.  This behavior can be seen in figure 
24, which portrays a typical path of the robot during testing.  
The robot escaped the box canyon easily, passed through 
the middle of the first line of obstacles, and 
circumnavigated the obstacle field.  CBR can also achieve 
performance that is close to the hand-tuned Swirl system, 
which was tuned to the test environment, in terms of 
running time.  This demonstrates that the cases learned in 
the training environment were general enough to be useful 
in the different testing environment.  Also, the CBR and 

a) 

 
b) 

  

Figure 23.  Outdoor experiments with the learning CBR:  a) the 
field used for experimental testing of Learning CBR.  b) the 
ATRV-Jr robot navigating within the field.   

a) Training environment 

 
b) Testing environment 

 

Figure 24. The training (a) and testing (b) environments for 
outdoor experiments with learning CBR.  The figure in (a) also 
shows the path of the robot that uses the learning CBR module 
during one of the testing trials (note that the path is uncorrected 
odometry).  In this trial, the robot escaped from the box canyon 
easily and went around the larger obstacle field. 
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Figure 25.  Evolution of the case success for the two converged 
cases during the training process. 



 

 

Swirl systems both completed 100% of the test missions, 
while the simple avoidance system only completed 
approximately 44% of the test missions. 

VII. DISCUSSION AND CONCLUSIONS 

This paper presented a method for automatic 
selection and modification of behavioral assemblage 
parameters for autonomous navigation tasks.  This method 
can make obsolete the manual configuration of behavioral 
parameters, making the process of mission specification 
easier and more robust and making the robot perform its 
tasks more efficiently.  The method was extensively tested 
both in simulations and indoor and outdoor experiments on 
real robots, and the results supported the claims.  
Furthermore, the results have been shown to hold for 
multiple environments and multiple sensor types. 

One of the current limitations of the work presented 
in this paper is that cases can only be learned and are never 
forgotten.  In particular, this may present a problem if a 
training environment does not capture all the characteristics 
of the actual environment used for mission executions.  The 
work in [20] investigates this issue and proposes few easy-
to-implement, yet successful metrics for forgetting of cases.  
Additionally, there has also been some work on integrating 
the CBR module within a larger framework of learning 
algorithms such as Learning Momentum within MissionLab 
[18]. 
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Figure 26.  Comparison of outdoor navigation efficiency with the ATRV-Jr in three configurations: CBR – 
using the learning CBR; Swirl – non-adaptive with the swirl behavior; NAdapt – non-adaptive without the 
swirl behavior.  All differences, with the exception of the one between the distance traveled by Swirl and 
Nadapt, are statistically significant. 
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