
  

 

Abstract— A key challenge in the automatic verification of robot 
mission software, especially critical mission software, is to be able to 
effectively model the performance of a human operator and factor that 
into the formal performance guarantees for the mission. We present a 
novel approach to modelling the skill level of the operator and 
integrating it into automatic verification using a linear Gaussians 
model parameterized by experimental calibration. Our approach 
allows us to model different skill levels directly in terms of the behavior 
of the lumped, robot plus operator, system.  

Using MissionLab and VIPARS (a behavior-based robot mission 
verification module), we present a comparison of our predicted 
performance guarantees for two missions in which a teleoperated 
quadrotor identifies a target for an autonomous ground robot to 
intercept: one mission in which the operator flies the quadrotor by line 
of sight to locate the target and one where the operator flies the 
quadrotor using its video feed. We demonstrate the effectiveness of our 
approach by comparing predicated performance to experimentally 
measured performance. 

I. INTRODUCTION 

Deploying an effective team of robots to search for, identify, 
and neutralize a hidden chemical, biological, or nuclear weapon 
of mass destruction will likely involve the use of multiple robots 
of different capabilities directed in some by human operators. 
Due to the great potential for loss of life in such a situation, it is 
important to be able to establish a-priori performance guarantees 
for the mission. A key challenge here is to model the 
performance of the human operator and factor this into the 
formal performance guarantees for the mission. 

While research in automatic verification of robot software 
has typically followed the methods used in general purpose 
software verification field [1], we have developed an novel 
approach to efficiently establish probabilistic performance 
guarantees for behavior-behavior based robot software operating 
in uncertain environments [2]. A software module based on the 
approach, VIPARS, has been used to establish probabilistic 
performance guarantees for multiple-robot missions [3], for 
missions with probabilistic obstacle information [4] as well as 
missions using probabilistic localization software [5]. We have 
also studied the usability of our system [6].  

In this paper, we address the challenge of establishing formal 
performance guarantees for a multirobot mission in which a 
quadrotor is piloted by a human operator to search an area for a 
target, and once it is found, a ground robot is automatically 
directed to acquire the target. We present a novel approach to 
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modelling the skill level of the operator and integrating it into 
automatic verification, and we present a comparison of our 
predicted guarantees with validation results calculated from 
experimental trials. 

The next section presents a literature review. Section III 
describes the multiple robot mission, the role of the operator in 
the mission, and the required performance guarantees. Section 
IV begins with a brief overview of the verification approach we 
have developed, and then presents our novel approach to 
operator modelling for formal verification. Section V compares 
predicted and measured performance using this approach. 
Section VI discusses these results. 

II. LITERATURE REVIEW 

The issues involved in how human operator direction or 
monitoring can be integrated with autonomy/semi-autonomy are 
a topic of much research. This problem becomes even more 
difficult if it is necessary to obtain formal performance 
guarantees for a system that includes a human in the loop (see 
[7] for review).  Much work in that area falls into the category of 
verifying the human-machine interface (e.g., for medical 
equipment); however, our work in this paper falls into the 
category of verifying properties of a system that includes a 
human operator component. Webster et al. [8] model a human 
patient that is the uncertain environment in which their Caro-O-
bot patient care robot works. Their principal concern is to 
formally guarantee the behavior of the robot with respect to its 
patient. In our application mission, the operator directly controls 
a quadrotor searching for the target. Thus, although there is 
uncertainty associated with the human operator’s actions, the 
operator is an integral part of the robot mission attempting to 
achieve mission goals, and the effect of the operator on the 
mission is what must be modeled. Bolton et al. [9] use a Task 
Analytic Model to model the possible actions of a human driver 
using cruise control. In our work, our focus is on representing 
not the possible action of the operator, but rather the skill level 
and resultant uncertainty with which the operator pilots the 
quadrotor.  As such a key element is collecting performance data 
on the operator; Driggs-Campbell et al. [10] describe a 
simulation testbed for collecting such operator performance date 
for vehicular applications. 

III. QUADROTOR/GROUND-ROBOT MISSION 

To illustrate the effectiveness of our proposed verification 
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system in providing performance guarantees for missions 

involving heterogeneous human-robot systems (Figure 3.1), we 

developed a simple biohazard search mission where the human-

robot team is tasked to search and locate a biohazard within a 

given environment. 

 

Figure 3.1: The Human-Robot System 

This mission with air and ground robots introduces beneficial 

heterogeneity into the WMD (e.g., biohazard) search missions 

we have addressed in our prior work [4]. Quadrotors have 

excellent speed and mobility, making ideal platforms for 

searching. Their small payload, however, means they are unable 

to carry counter-measures. In contrast, ground robots can easily 

carry counter-measures, but take significantly longer to survey 

an area. By utilizing these systems together, the search time can 

be drastically decreased, and the ground robot limited to 

travelling directly to the target. Our previous work has verified 

both search based missions and multi-agent missions. The 

primary research question for this mission is to see if we can 

extend the verification techniques developed to heterogeneous 

human-robot systems. 

 
Figure 3.2: FSA for the Ground Robot 

The biohazard search mission can be broken down into three 

steps. First, the quadrotor launches, piloted by a human operator, 

to search for the target. During this period, the ground robot 

tracks the quadrotor via a camera. Once an operator locates a 

target, they will fly the quadrotor directly over it. One of the 

cameras on board faces downward and can detect the biohazard 

bucket used as the target in our implementation. Once the 

operator/quadrotor detects that the target is underneath, a 

message is sent to the ground robot, signaling that the target is 

located. In our approach to verification, mission designers first 

code their mission using the graphical editing tools of 

MissionLab [11]. This is then translated to VIPARS for 

automated verification. 

When the ground robot receives the notification from the 

quadrotor that a target has been located, the ground robot then 

uses the current quadrotor’s position as an estimate of the target’s 

position. As the quadrotor exits its task by flying back to home 

base piloted by the human operator, the ground robot will move 

towards the target location. The MissionLab FSA of the ground 

robot is shown in Figure 3.2. The GoToTarget behavior moves 

the robot toward a target and stops at a distance (Rmax ) from the 

target; and the input to the behavior is the estimated location of 

the target. 

IV. FORMAL VERIFICATION OF HUMAN IN THE LOOP 

A brief introduction to our approach to formal verification is 
presented first to set the context for our proposed human 
operator model. In prior work [4] [2] [12], Lyons et al. designed 
a framework for verifying the performance of autonomous 
behavior-based robot missions in uncertain environments. 
MissionLab [11] mission software is autotranslated [12] to a 
process-algebra notation PARS (Process Algebra for Robot 
Schemas) for analysis. The interaction of the mission software 
with an environment model is analyzed to determine if the 
software will meet a performance criterion. 

A. Automatic Verification with VIPARS 

A behavior-based program and its environment are modeled in 
PARS as a set of interconnected processes, where a process 𝑷 
is written as: 

𝑷〈𝒖𝟏, … , 𝒖𝒏〉(𝒊𝟏, … , 𝒊𝒋)(𝒐𝟏, … , 𝒐𝒌)〈𝒗𝟏, … , 𝒗𝒎〉 
(4-1) 

where u1,…,un are the initial values for the process variables, 
i1,…,ij and o1,…,ok are input and output port connections, and 
v1,…,vm are final result values of the process variables. 
Processes compute result values from initial values, and this 
computation may be influenced by any communications that 
occur over port connections.  Processes can be defined as 
combinations of other processes using composition operators: 
parallel (‘|’), disabling (‘#’) and sequential (‘;’).  

Bounded recursion is captured using tail-recursive process 
definitions, e.g., 

𝐏〈𝑥〉  = 𝐐〈𝑥〉〈𝑦〉 ; 𝐏〈𝑦〉 
(4-2) 

Process P first activates process Q with input value x. Q then 
delivers output value y, which is then used to recur P. A variable 
flow function fP relates the values of variables at the start of each 
recursive step of P to those at the end. The flow-function for 
atomic processes are specified a-priori; those for composite 
process, those defined as compositions of other processes, e.g., 
(4-2), are composed from the flow functions of the component 
processes. This can be automated to generate flow functions 
given a set of processes [2] with complexity linear in the number 
of processes. Since any execution of eq. (4-2) is modeled by 

fP
n(x0) for n1 and initial parameter value x0, we have a straight-

forward verification method. Unfortunately, not all processes 
are defined in this form. 

The system to be verified is expressed as the parallel, 
communicating process composition (e.g., Sys below) of a robot 
controller (e.g., Ctr with variable r1), and an environment 
model, (e.g., Env with variable r2), written: 

Sysr1,r2     
                    

=  Ctrr1(a)(b) |   Envr2(b)(a) 
=  Sys’r1,r2 ; Sys fSys(r1,r2)  

(4-3)  

(4-4) 

fSys (r1,r2)  = ( fSys,r1 (r1,r2),  fSys,r2 (r1,r2)  ) (4-5) 

In eq. (4-3), the input of Ctr is connected to the output of Env, 
(a), and the input of Env is connected to the output of Ctr, (b). 
If only (4-3) were a sequential composition like (4-2) then we 



  

could extract flow functions for the combined interaction of 
controller and environment. So, in [2] a static analysis algorithm 
Sysgen was developed to rewrite parallel compositions of the 
form (4-3) into a sequential composition (4-4) where Sys’ is 
referred to as the system period. Once Sysgen analysis is 
complete, a system flow function can be extracted from Sys’.  

Random variables e.g., r1, r2, are represented as multivariate 
mixtures of Gaussians, and operations on random variables are 
automatically translated by VIPARS into operations on 
distributions [13]. Flow functions relate variable values at 
recursion step t of Sys’ to those at t+1. In the final phase of 
VIPARS processing, extracted flow functions are converted to 
conditional probabilities. These are then the basis of a Dynamic 
Bayesian Network used to carry out forward propagation of 
probability distributions, to determine whether the combination 
of controller and environment will meet a performance 
specification. We demonstrated that this approach is fast and 
accurate when validated against physical executions (most 
recently [4]).  

B. Modeling a Human Operator  

The combination of a specific human operator, with a specific 
skill level, guiding the quadrotor while searching for a target 
object, and the quadrotor motion to the target location, will be 
modelled as a single, lumped environment process. This is part 
of the environment model in verification because both the 
quadrotor and the human operator represent an external 
environment to which control signals are sent (the quadrotor) 
and from which input is taken (sensor input and the signal that 
the target has been found). The skill level of the operator can 
then be reflected in the quality of that result.  
 The environment model in PARS is 

Env = Geometry | LumpedQH | 
              Robot     | Laser     | Time. 

(4-6) 

Other than the lumped quadrotor/operator model LumpedQH 
and the global time process Time, this environment is very like 
those we have used in prior work [5]. The Geometry process 
includes the probabilistic model of the space in which the 
mission is carried out, including any map information or 
knowledge of obstacles. The Robot and Laser processes are the 
experimentally calibrated models for the ground robot and laser 
sensor used in the mission. (The port connections and variable 
initializations have been omitted here for clarity.) 

The lumped model LumpedQH encapsulates the behavior of 
the operator in locating the target, and its output is a signal to 
the ground robot to proceed to the target.  If H is the set of such 

operator/quadrotor lumped models, and if h H is one model, 
corresponding to a specific operator and quadrotor, then the 
lumped model captures the accuracy with which that operator 
eventually identifies the target, p, and the time it takes that 
operator to identify the target, t, as the set 

LUMPED(h) = { =P(p), =P(t) } 
(4-7) 

where P(.) is a probability density.  We propose the time t taken 
by this operator to find the target spatial error in location of 
target are Normally distributed. While there may be many 
contextual parameters that influence these, we have chosen to 
start by modelling the distance to the target d as the principal 
parameter: 

= N(, ) = N((d), (d)) (4-8) 

= N(, 
2) =N((d), (d)2) 

 We will consider (d), (d), ((d), (d) to be linear 
functions of d, yielding a linear Gaussian model, and also 

consider that  is diagonal with x and y. 

C. Human in the Loop Quadrotor Mission 

Figure 3-2 shows the ground robot component of the mission, 

respectively. The Quadrotor/Operator mission is completely 

encapsulated in the lumped model process in eq. (4-6), 

LumpedQHh()(dT,dP). The result of the Quadrotor/Operator 

mission is the time of detection, written to the port dT, and 

location of the target, written to the port dP. The initial 

parameter h identifies the operator being modeled. 
In prior work we have autotranslated [12] and 

probabilistically verified and experimentally validated [4] [5] 
sensory triggered sequences of robot motions through 
environments with obstacles  similar to this mission, so we will 
focus here only on the aspects of it that relate to the novel 
lumped Quadrotor/Operator model. The MissionLab mission 
software is mapped to the following VIPARS Mission 
processes: 

Mission = TrackQuadrotortk , tr (cQ)(cT) | 
                    TargetDetected()(tT) ;           
                    GotoTarget(cT,cL)(cV). 

(4-9) 

As Section III explains, the ground robot runs the 
TrackQuadrotor behavior to track the quadrotor visually. The 
detection of the target by the human operator is signaled by the 
termination of the TargetDetected process and its transmission 
of the detection time on the port connection tT. 

 
Figure 4-1: The Sys process including both environment 
processes and the Mission processes, showing selected port 
connections related to the lumped model. 
The quadrotor then communicates the relative position of the 

target to the ground robot. The ground robot transforms the 
relative position of the target by the tracked position of the 
quadrotor relative to the ground robot, to get the relative 
position of the target to the ground robot. This is transmitted by 
TrackQuadrotor on the port connection cT. Of course, there 

are errors associated with the tracking process tk  and with the 

transformation tr. These are experimentally determined 
parameters to the TrackQuadrotor process. The processes 
and connections we have discussed are shown graphically 
in Figure 4-1. 

D. Continuous Time Step 

Our prior verification work [2] has represented time as a 
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discretized time step, but represented other variables as 
continuous; for example, the robot location or spatial accuracy. 
For this application, however, time needs to also be modelled as 
a continuous distribution. In this paper, the value of time will be 
given by another continuous random variable within the 
environment model, and consequently within the Dynamic 
Bayesian network slice for each time. This propagates time as a 
distribution (since random variables are represented in the DBN 
framework as Gaussian mixture distributions) from one DBN 
slice to the next. Both temporal uncertainty and time steps can 
vary between slices. Furthermore, the mixture model allows 
multimodal time steps. For example, a slice might generate a 
mode at t=5 with some variance and a second mode at t=10 with 
some variance, indicating the slice ends with high probability 
with one of these times. 

V. RESULTS 

A. Validation 

Figure 5.1 illustrates a trial run of the search mission in a 

laboratory environment, where the target is represented by a red 

bucket and there are other non-target objects (e.g., boxes). A box 

is placed on the path between the ground robot and the target 

such that it occludes the robot’s direct observation of the target. 

The mission starts with the human operator teleoperating the 

quadrotor to the target location. Once the target is detected, a 

signal is sent to the ground robot. The quadrotor is then flown 

back to a safe location. The ground robot uses the signaled 

location of the quadrotor as the estimated location of the target 

to move toward; it stops when it is within 1.5m of the target.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Biohazard Search Mission within a Laboratory 
Environment  

The ground robot is a Pioneer 3-AT equipped with a camera 

and a front facing SICK laser scanner for obstacle avoidance. 

The ground robot is controlled by the FSA (Figure 3.3) presented 

earlier. The quadrotor is an Ascending Technologies’ 

Hummingbird. The quadrotor has two onboard cameras. One 

camera faces forward and is used for flying by video, while the 

other camera faces downward and is used for target detection. 

The object is detected when the biohazard is within the center 

field of view of the downward facing camera onboard the 

quadrotor.  

We examine two modes of teleoperation for the validation 
experiment: the quadrotor is teleoperated by a human operator 
either by line of sight (LOS) or through the video stream from 
the quadrotor (FBV). The experiment is run 50 times for each 
operation mode. The performance of mission is evaluated with 
spatial and time criteria: 

1. Rmax – success radius; the ground robot is required to be 

within this radius (e.g., 1.5 m) of the target 

2. Tmax – mission deadline; the mission needs to be 

completed under this time limit (e.g., 60s) 

For each trial, the time it takes for the team to complete the 

mission (t) and the distance of the ground robot from the target 

(r) are measured. The mission is only considered successful 

when both of criteria are met:  

Success = (r≤Rmax) AND (t ≤Tmax) (5-1) 

B. Calibration 

To derive the linear Gaussian models for the lumped operator 

and quadrotor system, a series of calibration experiments were 

conducted for the Line of Sight (LOS) and Fly by Video (FBV) 

cases. In each case an operator was asked to fly the quadrotor 

from a known start position and find a target. The distance to 

the target, time to detection, and the spatial error in detection 

were recorded. A single operator was used for all trials. The 

linear Gaussian models derived from these calibration 

measurements were as follows (where  denotes the time 

distribution and  the spatial error distribution as in eqns. (4-9)): 

Line of Sight Model(LOS) Fly by Video Model (FBV) 

(d)  = 0.4930d + 6.0135 s 

(d)  = 0.0396d + 1.7016 s 

(d)   = 0.4966d+7.7245 s 

(d)   = 0.8092 s 

x(d) = 0.0177d + 0.0084 m 

x(d) = 0.2494 m 

x(d)  = -0.0020d – 0.041 m 

x (d) = 0.1591 m 

y(d) = 0.0087d – 0.0572 m 

y(d) = 0.0879 m 

y(d)  = 0.0064d + 0.004 m 

y(d)  = 0.1435 m 

These models are used within lumped model process to generate 

the univariate Gaussian time and bivariate spatial error given the 

target distance (d) in the mission to be verified.  

 The result of the VIPARS verification of the mission 

described in the validation section is obtained by inspecting the 

final values of the time and ground robot position state variables 

to generate a probability of completion time graph and a spatial 

error probability graph.  

C. Results 

Figures 5.2 & 5.3 show the verification and validation results 

of the probability of mission success for time (Tmax) and spatial 

(Rmax) criteria for the LOS operation mode, where the quadrotor 

is teleoperated by line of sight. The results are further divided 

into three regions based on the probability of success generated 

by VIPARS: 1) High Confidence (Unsuccessful), 2) Uncertain, 

and 3) High Confidence (Successful). This division provides a 

succinct representation of the performance guarantee of the 

mission that is more readily comprehensible to the mission 

operator. Since the goal of verification is to ensure mission 

success before deployment, this information helps the mission 

1. Quadrotor searches for target, 

while the ground robot tracks the 

quadrotor 

2. Quadrotor finds the target and 
sends notification to ground 

robot 
 

3. Ground robot navigates to 

the located target 
 



  

operator in making such decision. The high confidence regions 

are where the probability of success is either 0 or 1.0; that is, the 

mission is either guaranteed to fail or succeed. The uncertain 

region lies between the high confidence regions, where the 

probability of mission success is between 0 and 1.0. The mission 

operator should avoid operating in this region when designing a 

mission. Furthermore, most of the discrepancies between 

verification and validation lie in the uncertain region, where the 

verification error is nonzero.  

 
Figure 5.2: Verification and Validation of the Probability of Mission 

Success for Time Criteria (Tmax) with Quadrotor Teleoperated by Line 

of Sight (LOS) 

 
Figure 5.3: Verification and Validation of the Probability of Mission 

Success for Spatial Criteria (Rmax) with Quadrotor Teleoperated by Line 

of Sight (LOS) 

For instance, Figure 5.2 shows the VIPARS verification and 

experimental validation results for the performance guarantee of 

the time criterion P(t ≤ Tmax), the probability that the 

cooperative search mission will be completed under the time 

limit, Tmax. Based on this result, the mission operator can easily 

discern that the mission is guaranteed to be successful for Tmax > 

60 seconds, or has high confidence that the mission can be 

completed within 60 seconds. However, if the criterion is too 

stringent (e.g., Tmax = 30 seconds), then the mission would be 

unsuccessful, and the operator could modify mission parameters 

such as speeding up the robot, using a different robot, or even 

abandon the mission. Figure 5.2 shows that the VIPARS 

verification of the mission closely resembles the actual 

performance of the mission in experimental validation.  

Similarly, Figure 5.3 shows the VIPARS and experimental 

results for the mission performance with the spatial criterion P(r 

≤ Rmax), the probability that the ground robot reaches within 

Rmax radius of the target. We observed that while most of the 

verification errors lie within the uncertain region, some 

discrepancies between verification and validation exist near its 

boundary with the high-confidence (successful) region. 

Nonetheless, the validation result is of still a relative high 

confidence with probability of mission success greater than 0.95. 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
Figure 5.4: Verification (a) and Validation (b) for both Spatial and Time 

Criteria P(r≤ Rmax, t≤ Tmax) 

 

Figure 5.5: V&V of Spatial Criterion at various Rmax 

Since the mission is deemed successful only if both criteria 

of spatial and time are met, the VIPARS verification and 

experimental validation of both criteria P(t ≤ Tmax, r ≤ Rmax) 

are summarized in Figure 5.4. The result allows the robot 

operator to query the verification system for probability of 

overall mission success for different combination of 

performance criteria. 

To further analyze the results, we examine the effects of the 

one performance criterion on the other (Rmax and Tmax) in terms 

of performance guarantees and verification errors in Figures 5.5 

and 5.6. Figure 5.5 shows how the probability of success for the 
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time criterion (Tmax) is affected by various specifications of the 

spatial criterion (Rmax). We observed that for Rmax within its own 

uncertain region, the various Rmax’s significantly impacted the 

performance guarantee of the time criterion P(t≤Tmax). 

Specifically, it caused P(t≤Tmax) to plateau at probability values 

other than 1.0 for different Rmax’s. Moreover, it also introduced 

significant verification errors. Similar observations are made in 

Figure 5.6 for the verification and validation of the spatial 

criterion P(r≤Rmax) at various values of the time criterion, Tmax. 

 
Figure 5.6: V&V of Time Criterion at various Rmax 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
Figure 5.7: Verification and Validation of the Probability of 

Mission Success for (a) Time Criteria (Tmax) and (b) Spatial 

Criteria (Rmax) with Quadrotor Teleoperated in FBV Mode. 

Lastly, we also performed verification and validation of the 

cooperative search mission where the quadrotor is teleoperated 

with video streaming from a camera onboard the quadrotor (FBV 

operation mode) instead of line of sight (LOS). The results are 

summarized in Figure 5.7. For the time criterion (Figure 5.7a), 

while most of the verification errors lie within the uncertain 

region, there is some significant error near its boundary with the 

high-confidence successful region. For the spatial criterion 

(Figure 5.7b), the verification result is better than the LOS case 

(Figure 5.3) in the sense that all the verification errors occur 

within the uncertain region of the performance guarantee.  

VI. CONCLUSION 

In this paper, we have applied our approach to the 
probabilistic verification of behavior-based systems to obtain, 
and experimentally validate, formal performance guarantees for 
a heterogeneous robot mission in which a human operator pilots 
a quadrotor to search an area for a target, and once it is found, a 

ground robot is automatically directed to acquire the target. A 
novel approach to modeling the skill level of the operator is 
presented and integrated into VIPARS automatic verification. 
The method leverages a linear Gaussian model of skill, 
parameterized by experimental calibration. This approach allows 
us to model different skill levels directly in terms of the behavior 
of the lumped, robot/operator system.  

We present a comparison of our predicted guarantees for two 
missions: one where the operator flies the quadrotor by line of 
sight and one where the operator flies the quadrotor using its 
video feed. The results in both cases are well aligned and we 
discuss the specific details of each result. However, lesser 
verification accuracy was observed for the FBV time criterion as 
compared to the LOS case (Figure 5.2) for the time criterion. We 
estimate that this can be attributed to the nonlinearity in the 
performance of the human-quadrotor system, which we 
approximated with a linear performance model, eq. (4-8), and 
with a single dependent variable, distance to target. 
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