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Abstract:  

Establishing performance guarantees for robot missions is especially important for C-WMD applications. 

Software verification techniques, such as model checking (Clark 1999, Jhala & Majumdar 2009), can be 

applied to robotic applications but characteristics of this application area, including addition of a robot 

environment model and handling continuous spatial location well, exacerbate state explosion, a key 

weakness of these methods. 

We have proposed an approach to verifying robot missions that shifts the focus from state-based analysis 

onto the solution of a set of flow equations (Lyons et al. 2012). The key novelty introduced in this paper 

is a probabilistic spatial representation for flow equations. We show how this representation models the 

spatial situation for robot motion with environments or controllers that include discrete choice 

(constraints).  

A model such as we propose here is useful only if it can accurately predict robot motion. We conclude by 

presenting three validation results that show this approach has strong predictive power; that is, that the 

verifications it produces can be trusted. 
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1. INTRODUCTION 

A robot or team of robots acting autonomously to search an 

area for a high impact target, a biological weapon for 

example, must perform predictably despite the uncertainty 

associated with the mission environment. We are developing 

a mission design toolkit that allows designers to include 

automatic verification of performance properties as part of 

the mission design cycle. When a robot operates in a dynamic 

and uncertain environment, its state at any point can only be 

characterized uncertainly. In this paper, we build upon our 

previous work in mission verification (Lyons et al. 2012, 

2012b, Arkin et al 2012) and present here a probabilistic 

framework for verifying the performance of autonomous 

robot missions with uncertainty.  

In Arkin et al. 2012 we introduced our approach, building on 

the MissionLab (MacKenzie et al. 1997) robot mission 

design, simulation and testing toolkit. Formally, we represent 

the robot program and the environment with which it 

interacts as concurrent communicating processes, and we use 

the techniques of Process Algebra (Baeton 2005) to analyze 

this interaction. In Lyons et al. (2012) we proposed an 

approach to analyzing robot behavior in uncertain and 

dynamic environments based on the identification of a 

behavioral periodicity, the system period. In particular we 

showed how verification of the combined robot and 

environment system could be reduced to the solution of a set 

of recurrent equations that we called the system flow 

equations. The variables in the flow equations, message 

communications in the underlying process networks, 

represent characteristics of the robot such as its location and 

velocity as well as the locations or other properties of parts of 

the environment. 

In this paper, we address the issue of the probabilistic 

representation for variables that represent robot and 

environment characteristics. We begin by introducing a 

number of robot missions that show our application focus. 

We use these to motivate our selection of probabilistic 

representation. We consider how the process equations we 

develop for robot programs and environment models, in cases 

with and without discrete choice, give rise to probabilistic 

flow equations. The paper presents two novel results: First, 

we define a mixture of Gaussian representation for random 

variables in our flow functions, and we show how these are 

treated in the case of discrete choice/constraint (which can be 

in the environment, e.g., a wall, as well as a conditional 

program statement). Second, the method we propose here has 

value only if it accurately verifies the behavior of real robots. 

We report therefore validation results of our verification 

predictions for several robot examples to show that this 

approach produces results that can be trusted. 

The remainder of the paper is laid out as follows. Section 2 

places this work in the context of the literature in robot 

uncertainty and software verification. Section 3 presents 

examples of the kinds of robot mission on which our work is 

predicated. Section 4 briefly reviews our approach to mission 

verification and then presents our first main result, the 



 

 

     

 

probabilistic representation in flow functions. In Section 5, 

we present the validation experiments that show the strong 

predictive power of the approach we have proposed here. 

Section 6 presents our conclusions and discusses future work. 

2. LITERATURE REVIEW 

Emergency response incidents such as counter weapons of 

mass destruction (C-WMD) and urban search and rescue 

(USAR) provide unique challenges for autonomous robotic 

systems. The operating environments in these domains could 

be highly unstructured (caused by an earthquake) or unknown 

(lack prior knowledge). While verification of robot missions 

under these kinds of naturalistic environments poses a greater 

challenge than traditional software verification, it is at the 

same time a necessary process to ensure robot mission 

success and safety under these conditions.  

C-WMD and USAR missions are verified against specified 

performance criteria which vary drastically based on the 

emergency situation. Humphrey (2009) presented eight 

CBRNE (Chemical, Biological, Radiological, Nuclear, and 

Explosive) incident response tasks for robots: survey, 

identification, scene observation/object tracking, medical 

initial assessment, medical victim transportation, 

decontamination, hazard disposal, and resource hauling. Each 

mission category has different uncertainties associated with 

it. Thrun (2000) observed that the five primary sources of 

uncertainty in robotics are the environment, robots, sensors, 

models, and computation. The real world environment is 

dynamic and unpredictable; robots have imperfect actuation; 

sensor measurements are usually corrupted by noise; internal 

models are approximations of the real world; and uncertainty 

in computation involves algorithmic approximations needed 

real-time execution.  

To provide performance guarantees for robots operating in 

real C-WMD and USAR domains, uncertainty needs to be 

properly represented and incorporated into the verification 

process. This research tackles this challenge by addressing 

the problem of verification of robot missions with 

uncertainties in robots, sensors, and the operating 

environment. Clark et al. (1999) describe how formal 

verification typically handles verification of digital hardware 

designs, network protocols, and verification of software. 

Verification of robot mission software shares many concerns 

with these but we argue it also has some very unique aspects.  

In software verification, the performance criteria are 

expressed as liveness and safety conditions on program 

variable values. The ultimate effect of a robot program is 

however, motion of the robot and, possibly, an effect on the 

robot’s environment; performance guarantees for the 

verification of robot software should therefore be liveness 

and safety conditions on the robot motion and on parts of the 

environment.  The first implication of this is that any analysis 

of the performance of robot mission software must include a 

model of the robot’s environment, since the mission software 

will behave quite differently in different environments 

(Lyons & Arkin 2004).  The second implication is that the 

focus of robot mission software verification be on conditions 

on the robot motion and environment rather than on the 

values of arbitrary variables in the robot program. 

In Lyons et al. (2012b) we present examples of these kinds of 

performance guarantees as probabilistic constraints on robot 

motion. There is an established literature on probabilistic 

representations for robot motion. Smith (1990) proposed to 

represent the uncertain spatial relationship in robot navigation 

by estimates of the mean and covariance of the system state 

vector. POMDPs have been a popular technique for planning 

under uncertainty in which the robot’s state uncertainty is 

explicitly modelled and the robot chooses action based on the 

probabilistic distribution over state space (Vlassis et al. 

2005). Filter-based methods (e.g., Kalman filters and particle 

filter) are also popular methods for robot location and 

mapping (Thrun 2005).  

Software verification has focused on automata models (Jhala 

& Majumdar 2009) because of the need to verify conditions 

on arbitrary variables, and recent work in formal methods for 

robotics (Kress-Gravit & Wongpiromsam 2011) has followed 

that trend. We proposed an alternate model that focuses on 

processes rather than on states (Lyons & Arkin 2012, Lyons 

et al. 2012). Rather than requiring state-enumeration to verify 

a performance criterion, our approach generates a set of 

recurrent flow equations whose solution tests the 

performance guarantee. This differs from other work in 

software verification (e.g., SPIN, BLAST, etc. (Jhala & 

Majumdar 2009)) in moving away from a state-based 

approach. Probabilistic verifiers, such as PRISM 

(Kwiatkowska  et al. 2011), are closer to our approach. Our 

intended focus on continuous spatial distributions to 

represent the robot and environment however, distinguish us 

from that work.  

Our concern in this paper is how to represent probabilistic 

robot and environment motion in flow equations. We propose 

to represent robot motion, and other environment variables, 

by random variables with Gaussian mixture distributions 

(Bishop 2006). These allow us to capture the continuous, 

multimodal spatial distributions that result from probabilistic 

algorithms and interactions with motion, sensor and 

environment uncertainty as seen for example in mapping 

algorithms (Thrun 2005).  

3. ROBOT MISSIONS 

Emergency response (e.g., C-WMD, USAR) incidents 

present critical missions that are characterized by various 

stress factors: time pressure, high-stake risks, dynamic 

conditions and uncertainty. The objective of this research is 

to support a human robot operator’s mission specification 

process in these naturalistic settings by providing feedback 

on the predicted performance of the robotic system. This 

section presents three robot missions as examples of the type 

of missions that our verification framework will analyze and 

provide performance guarantee for. 

The Back and Forth mission was introduced in Lyons et al. 

(2012b), Figure 1, where the robot goes back and forth 

between points A and B. While this is a seemingly simple 

mission, uncertainties in the robot motion and environment 

can cause difficulty in its accomplishment. If the robot is 

conducting this mission in an open space indoors, where GPS 

cannot be used, the robot would have difficulty accurately 

localizing itself due to slippage between wheels and the floor. 



 

 

     

 

 

Figure 1: Back and Forth 

A waypoint-based biohazard search mission is shown in 

Figure 2, where the robot is tasked to enter a building to look 

for a biohazard (Arkin et al. 2012). This is an example of the 

CBRNE survey task presented in Humphrey (2009) and it 

also presented a robot operating in a realistic environment 

(i.e., the basement of an office building).  

 

Figure 2: Biohazard Search 

Figure 3 presents a multi-robot mission, where the robots 

alternate in advancing forward and taking overwatch position 

(i.e., covering for the advancing robot). This scenario is 

inspired by the military tactic called bounding overwatch, 

which is used by infantry to move forward under enemy fire.  

The ellipses in Figure 3 indicated where each robot stops and 

takes the overwatch position while the other robot advances.  

 

 

 

 

 

Figure 3: Bounding Overwatch 

4. PROBABILISTIC REPRESENTATION 

In Lyons et al. (2012) we introduced a process algebra, 

PARS
1
, for representing robot missions: both the robot 

control program and also the environment in which the 

program will be carried out. From a system perspective: The 

robot controller is built in MissionLab and is translated to a 

                                                 
1 Process Algebra for Robot Schemas 

PARS representation for the verification step (Arkin et al. 

2012). The robot, sensor, and environment models are 

available in MissionLab as user-selectable libraries. The 

designer can ask the VIPARS
2
 verification module whether a 

combination of controller and robot, sensor, environment 

models meets a performance specification. We do not address 

the system architecture issues further in this paper; Arkin et 

al. (2012) presents them in more detail. We begin by very 

briefly reviewing PARS. 

4.1 PARS 

Programs and environment models are specified in PARS as 

networks of communicating, concurrent processes. The 

process is the basic unit of program and environment model 

structure. An extended port automaton model (Lyons et al. 

2012) provides the semantics for a process. We formalize 

processes as automata, and communication connections 

between processes as ports. We formalize the ways in which 

the automata can be composed to a port connection 

automaton as process algebra composition operations.  

In PARS, we write a process P with initial parameter values 

u1,u2,… and which produces final result values v1,v2,… as: 

Pu1,u2,… v1,v2,…. Processes are defined as compositions of 

other processes using operators such as sequence (;), parallel-

max (|) or parallel-min (#), ultimately in terms of set of 

predefined basic processes that implement port 

communications (In pr , Out p,r), random sampling (Ran), 

timing (Delayt ) and so forth. In Lyons et al. (2012) we 

investigated the properties of a number of controllers and 

environments, including a robot controller MoveTo  (1) and 

non-deterministic environment model NEnv (2) combined into 

a system Sys (3): 

MoveTog = Inpr  ; Neqr,g ; Outv, s(g-r)  ; MoveTog                (1) 

NEnvr,q   = (Delayt  # NOdoq #Atr)  ;                                    (2) 

                                  (RanN(0,s1)e1 | Invu)  ;  
                                        NEnvr+(u+e1) t , q+ut                                            
         NOdoq    = RanN(0,s2)e2  ; Outp,q+e2 ; NOdoq 

          Syspi,g     =  MoveTog  |  NEnvpi,pi                                           (3) 

The MoveTo robot controller process (eq. (1)) reads an input, 

a robot position from port p into a result variable r which is 

then tested to see if it is equal to the goal location g. If it isn’t 

equal (Neqr,g) then a value s(g-r), a velocity proportional to 

difference between current and desired locations, is written to 

the robot velocity output port v, and this sequence then 

repeats. The sequence stops in the case r = g. 

The NEnv environment process starts with three parallel 

processes; a timer process that stops after t time units 

(Delayt), a process that repeatedly transmits the current robot 

location with some associated sensor noise e2~N(0,s2) (zero-

mean with variance s2), and a process that represents the 

position of the robot (Atr). After t, this network terminates 

and the velocity information u (from port v), along with 

associated motor noise e1~N(0,s1), is used to calculate a new 

location r+(u+e1) t  and repeat the sequence. 

4.2 System Flow Function 

We have proposed an approach to efficiently analyze 
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properties of process networks such as the concurrent 

composition of (1) and (2) based on a novel process algebra 

expansion theorem (Baeten 2005). If the concurrent 

composition of controller and environment, Sys, consists of 

the processes P1, ... , Pn, where, each process can be written 

recurrently as: 

   P1  = P1’  ;  P1,                                         (4) 

  P2  = P2’ ; P2,   
            … ,  

  Pm = Pm’ ; Pm 

                     Sysr = P1 | P2 | …| Pm 

We developed an expansion theorem: 

            Sysr = F(P1’, P2’, …, Pm’) ; Sysf(r)                              (5) 

The parameter r is the system flow variable, a vector of 

values that characterize the state of the program and the 

environment. We call F(P1’, P2’, …, Pm’)  the system period 

and f(r) the system flow function. Both F and f can be 

generated by looking only at a single period Pi for each 

process i (though of course the result may be highly 

conditional). The result of all possible executions of Sys can 

now be characterized in terms of f 
n
(r). In Lyons et al. (2012) 

we show how this result is leveraged for verification of 

performance guarantees for several examples. Our focus here 

is on the situation where r contains probabilistic information. 

4.2 Probabilistic Flow Variables 

Returning to the controller and environment in (3): The 

system flow function for (3) from Lyons et al (2012) is 

                        f(r) = r + [s( g – ( r + e2 ) )+e1]t                (6) 

An evaluation of f(r) requires a sampling of the random 

variables e1 and e2 from the two noise distributions in eq. 

(2). But this means that f 
n
(r) no longer captures all possible 

executions of Sys – it’s just one sample of an execution; 

different choices for e1 and e2 would have produced a 

different sample. 

Let us consider the initial position p to be a random variable 

from a multivariate normal distribution N(p0,p0). In that 

case, the ports, parameters and result variables that contain 

results calculated from the value of p must also be 

represented as random variables. Whenever variables are 

added (or subtracted) in the flow we need to replace this by 

convolution operations. If r and q are independent random 

flow variables with distributions Pr(x) and Pq(x) then p+q is a 

random variable with distribution:  

    ( )     (   )

 

  

  ( )        ( )          ( ) 

And if Pr(x) and Pq(x) are normal distributions, N(p,p) and 

N(q,q), then so is Pr+q(x), N(p+q,p+q) (Bishop(2006)). 

The random variable modified flow function, frv(r) is 

therefore: 

             frv(r) = r * [s( g – ( r * N(0,s2) ) ) * N(0,s1) ]t        (8) 

Now when we look at f 
n

rv(r) we will see all possible 

executions of Sys again. Figure 4 below shows r = N(p0,p0) 

and the result of evaluating f 
n

rv(r) for several different values 

of n.  

      

Figure 4: Example of f nrv(r) solved for 3 values of n. 

4.3 Conditional Flow Functions 

The random variable flow function in (8) expressed an 

unconditional transformation of its input r to its output frv(r). 

While there are many examples of this kind of system in 

robotics, there are also many examples where the 

transformation is conditional. One obvious way this 

conditionality can arise is from conditionals (“if statements”) 

in robot program/controllers. Perhaps less obviously, it can 

also arise due to environment constraints. Consider the 

environment model below: 

  WEnvr,q   = (Delayt  # NOdoq #Atr) ;                                                  (9) 

   ( RanN(0,s1)e1 | Invu )  ;   

        ( GTR r+(u+e1) t , L ; PASSr,qnr,nq | 

            LTE r+(u+e1) t , L ;PASS r+(u+e1) t , q+ut  nr,nq  ); WEnvnr,nq                                            

The WEnv model above is almost the same as NEnv in (2) and 

uses the same variable naming. However, now each new 

position of the robot, r+(u+e1)t, is ‘filtered’ so that the robot 

is can only proceed if it is on one side of the wall L (see 

Figure 5) that bisects its world. GTR only allows its parallel 

branch of the program to be carried out if the projected 

position is greater than the line L: r+(u+e1)t > L. Similarly, 

LTE only allows its branch to be executed if the projected 

position is less than or equal to the line L: r+(u+e1)t   L. 

The value of the flow variables nr and nq (which are 

analogous to r and q variables in (2)) depend on which PASS 

process passes the values along, which in turn depend on 

whether which condition process  (GTR or LTE) succeeded. 

         
(a)                    (b)                       (c)                    (d)       
Figure 5: Example of conditional environment constraint: a wall L 

preventing the robot access to a portion of the world; (a) shows robot 

location distribution initially, a ellipse of 1SD centered on the 

starting location; and (b,c,d) show the distribution after some time 

has passed. The view is top down, and the (infinite) normal 

distribution is represented with 1SD ellipse. 

When the position of the robot is represented as a probability 

distribution, then some part of the distribution will need to be 

evaluated with one branch of eq. (9) and the other part with 

the other branch of eq. (9). 

One approach is to consider the mass of the position 

distribution that ‘meets’ each of the two branch conditions, 

and to use this to produce an output that is a weighted sum of 

both. Let M(c(r)) be the fraction of the mass of the 

distribution of the random variable r that meets the condition 

c(r). We will refer to M(c(r)) as the mass function for the 

condition c(r) on r: 
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For example, M(r>L) would be the fraction of the 

distribution r greater than the line L. In that case, M(rL) is 

the mass less than or equal to L, and M(rL) = 1 - M(r>L) 

since the probability mass is normalized to 1. In that case, we 

can write a flow function for eq. (9) as 

              frv(r) = M(r>L) * r +  

                           M(rL)* r *  

                              [s( g – ( r * N(0,s2) ) ) * N(0,s1) ]t       (11) 

Now f 
n
rv(r) is the distribution that generalizes to the results 

of both branches. Consider an example of this approach 

where a robot is moving with some velocity uncertainty (and 

no use of sensors to avoid collision) as it passes a sharp 

corner. Let us assume that the flow function for the robot 

position f 
n

rv(r) is solved for a fixed value of n and the 

distribution is plotted as an ellipse. As the robot moves by the 

corner some portion of the distribution will get ‘snagged’ by 

the corner and be unable to progress, while the remainder will 

pass the corner unhindered and reach the goal. Using eq. (11), 

the resulting distribution has to capture this spread of results 

with a single distribution of large variance. However, this 

wide spread caused by the weighted sum approach used in 

(11) hides the fact that there are really just two results: a 

distribution close to the goal, and a distribution by the corner. 
 

4.4 Conditionals using Mixture of Gaussians (MoG). 

If we want to shows the two actual results in the previous 

example, we need to use a multimodal representation for our 

probability distribution. Using a normal distribution as a 

representation for random variables had the advantage of a 

large established literature (e.g., (Bishop 2006)); we would 

like to continue this advantage, so we adopt a mixture of 

normal distributions (MoG) as our model: 

   (   (  , ,  )   1,   , m )        (
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 The effect of a conditional such as that in eq. (9) will be to 

generate additional modes (members) in the mixtures, 

avoiding the issue of overgeneralization we saw with the 

weighted-sum unimodal approach.  The mass function 

M(c(r)) needs to be redefined for this MoG case. There are 

two parts to the definition. If the flow variable r is 

represented by a MoG model, then the mass function is 

applied to each member of the model according to the 

member weights: 

   ( )       ( (  ))

 

   

                      (1 ) 

The effect applying the mass function to a single Gaussian, 

M(c(ri)) is to generate a new Gaussian N(,  )   representing 

the mass of the original distribution on one side of the 

condition c(ri)  and its corresponding weight as a fraction of 

the original distribution: 

   (  )  ( ,  ,  )                                    (1 ) 

The mean and variance is arrived at by computing the 

expected value of the truncated normal distribution (Robert 

1995). 

       
( )

     (  )

                           (1 ) 

The addition operator in (6) now needs to take two MoGs M1 

and M2 generated as indicated in eqs. (13) and (14) above 

and combine them into a single MoG assuming independence 

as follows: 

M1 + M2 =  (  , ,  )     1,   ,  1,… , 1   2   (16) 

      (  , ,  )   1        1 

(     ,    ,  )   2      

   
  

   where (  , ,    )   1        1 

    (  , ,       )   2      

      

(  , ,  )        

 

Figure 6 below shows this example, the motion of a robot 

under uncertainty as it passes a corner. Note that the two 

spatial modes show up clearly in Figure 6(b) after the 

intersection with the wall. 

        
              (a)                               (b)                               (c) 

Figure 6:  MoG distribution of location after moving (a) to (c) by a 

sharp corner with motion uncertainty. 

4.5 Motion through a doorway 

A common situation for a robot traversing an indoor site is 

moving through a doorway or passageway. This kind of 

scenario offers a lot of conditional interactions with the 

environment. Figure 7 below shows a robot moving through a 

passageway, again with motion uncertainty and no use of 

sensors to avoid collisions.  

   
              (a)                            (b)                       (c)   

Figure 7: Traversal (a) through (c) of a passageway with 

uncertainty; Area of ellipse indicates variance; shading of ellipse 

indicates its weight in the mixture. 



 

 

     

 

The flow function for the robot position f 
n

rv(r) is solved for a 

fixed value of n and all the distribution members plotted as 

ellipses.  The result is a probability landscape for where the 

robot will be at three successive times. 

The robot starts just outside the entrance to the passageway, 

and its distribution is shown in Fig. 7(a) as a single Gaussian 

with a weight of 1.0. As the robot moves towards the 

passageway, some probable locations will result in it 

colliding with the wall. The small, light-colored ellipses to 

each side of the doorway in Fig. 7(b) represent situations 

where the uncertainty has caused the robot to collide with one 

or the other side of the doorway.   

The ‘safe’ positions of the robot (i.e., that did not collide) are 

smeared out along the passageway in Fig. 7(c), the result of 

the left and right wall constraints cropping the original 

position distribution to its central portion. The darker, overlap 

regions along the centre just indicate the summing of the 

individual member distributions. This is an artefact of 

drawing the distributions as bounded ellipses when in fact 

they are infinite. 

The ‘trail’ of ellipses along each side of the passageway 

represents the (relatively small) number of situations where 

the uncertainty results in the robot jamming against the side 

of the passageway. After a short distance into the hallway 

these situations have too low a probability to see. 

5.  VALIDATION 

The approach we propose here has value only if it accurately 

verifies the behavior of real robots. In this section, we report 

on our results in validating predictions made with our 

approach. We present three different validation results: 

The first is a validation of the precision of motion, comparing 

our prediction of robot position after carrying out a single 

waypoint mission to the measured location of the robot after 

carrying out the mission.  

The second is a similar validation of the verification 

prediction for a two waypoint mission.  

The final validation is of the corner motion shown in Figure 

6, comparing our prediction of the proportion of successes to 

the measured number of successes. 

We calibrate the robot uncertainty model using empirically 

collected motion data that characterizes a Pioneer-3AT 

mobile robot operating in an indoor, laboratory environment. 

To collect this data, the robot was commanded to traverse 

straight-line motions of varying distances, and the error along 

the x and y plane is recorded. Rotational uncertainty was 

measured in a similar fashion. Based on the collected data, 

we characterized the resulting uncertainties using a linear 

model parameterized by the distance (angle) moved. The 

results of these uncertainty measurements are normal 

distributions for the translation and rotation error that are 

used during the verification of a controller. 

5.1 Validation of Single Waypoint 

In the single waypoint mission, the robot is given a goal 

location 10m from its start location. The PARS model for the 

single waypoint mission in an uncertain environment, as 

presented in (3), was used incorporating the uncertainty 

calibration data. 

The VIPARS verification module, (see Arkin et al. (2012) for 

a system diagram) is then used to predict the position of the 

robot. The module identifies the system period, extracts the 

flow equations, and solves them for specific goal conditions 

given by the performance criterion. In all the following cases, 

the performance criterion is that the robot have a cumulative 

probability of 80% of having reached the goal before a 

maximum time Tmax. The output of VIPARS includes 

whether the performance criterion was met or not, and a 

spatial distribution for the robot location in either case.  

In the single waypoint validation example, the robot start 

position p0 was the distribution  

 (  ( , ),       
       

       
 )      (17) 

For the 10m traverse (waypoint location=(10,0)) with 

velocity=0.8m/s, VIPARS confirmed that the performance 

criterion are met and returned the final position p1 

distribution: 

 (  (    1,  1 1),       
        

       
 )    (18) 

This, and the following, waypoint examples represent random 

variables as normal distributions rather than mixtures to 

allow for statistical significance testing.  

This prediction is then validated against a set of empirically 

collected data points for the robot carrying out the 10m 

traverse. Because of the inherent motion uncertainty, every 

time the traverse is carried out, the final robot position may 

be different. Our null hypothesis is as follows: 

                                                     (1 ) 

where μPARS is the mean final position predicted by the PARS 

verification module, μOb is the observed mean position of the 

robot (in meters). 

We validate PARS predictions using the 
2
 test as follows: 

     ,          ,                          (2 ) 

Where [x, y] is the difference between the predicted position 

and the observed position, and S is the covariance of the 

PARS population. The critical value is: 

     
      1   1   ( )        ( )        (21) 

Where          ,                  ,        is the 
2
-

score for a 5mm position error (which we consider as the 

minimum error), and Q(k) is the P-value of k obtained from 

the two-dof  -table.  If 
2
 < 

2
crit holds, then the results 

support the null hypothesis that            within the 95% 

confidence interval given a minimum error of 5mm.  

For the 10m traverse, 
2

crit=6.06 and the 
2
 test statistic 

computed from eq. (20) was 0.2578. Clearly 
2
 << 

2
crit; the 

result emphasizes that our approach has the potential to 

produce accurate predictions of the behavior of the actual 

robot – that is, that the verification can be trusted. 

 



 

 

     

 

5.2 Validation of Two Waypoint Mission 

A more challenging validation case is the two waypoint 

mission shown in Figure 8. The robot carries out several 

motions in order to reach the final waypoint. We can validate 

the spatial accuracy of the final location as we did in the 

previous section.  

Using the same translation and rotational uncertainty 

calibration as we did before, the VIPARS module confirms 

the performance criterion and its prediction for the robot 

position distribution after the second waypoint is: 

    (     ,   1 ),       
1  1    1
   1     

         (22) 

 

 

(a) (b) 

Figure 8: Two waypoint mission. (a) The mission is shown in dotted 

blue. (b) Robot near the start location 

After collecting n=10 samples of the Pioneer 3-AT robot 

carrying out the two waypoint mission, the observed mean 

location is (57.83, 32.17). Carrying out a 
2
-test as in (11) 

and (12), we find that the critical value 
2
crit=5.9916 and the  


2
 test statistic is 

2
=0.6274. Once again, 

2
 << 

2
crit showing 

strong evidence of the predictive power of our method and 

emphasizing that the verification can be trusted. 

 5.3 Validation of Missions with Environment Interactions 

In both of the previous cases, the PARS verification only 

involved solving flow functions of the form (4) without 

discrete conditions. In our final example, we will validate a 

prediction from solving flow functions with discrete 

conditions, as in (6). We will use the example from Figure 6 

of a robot moving in a straight line past a corner obstruction 

(without any sensing). Due to uncertainty, the robot 

sometimes collides with the wall. Our prediction in this case 

will produce a probability distribution member along the 

wall, and also a probability distribution member at the goal. 

In the two waypoint validation example, we did not explicitly 

model the wall collisions; we do so in this example.  

Our statistic validation framework is different from the last 

two examples. It is time-consuming to repeat the empirical 

measurements of Section 5.1 and 5.2 for multiple waypoint 

missions and for missions where the robot end location varies 

widely. Also, we needed to restrict our random variables to 

be normal distributions rather than mixtures, to support the 

significance testing we were doing. Of course, for the corner 

example in Figure 6, we have already argued that a normal 

distribution is not sufficient and we extended our approach to 

normal mixtures. We need to be able to validate verification 

results that include mixtures. 

We will use the results from the VIPARS prediction to 

determine what proportion of the distribution of predicted 

robot locations successfully passed the obstruction. The 

remaining proportion would have hit the wall at some point 

during the transit. From this we predict our success 

proportion        The proportion of collisions predicted from 

verification will be given by the sum of the MoG member 

weights for distribution members at the goal location (as 

opposed to at the wall).  

To validate the prediction, we collect empirical data for the 

robot carrying out this mission n times. We only count how 

many times the robot successfully reaches the end goal 

(versus how many times its motion uncertainty causes it to 

collide with the wall) which we record as the observed 

success proportion pOb. Using a 1-proportion z-test we can 

test our hypothesis: 

                                               (2 ) 

The z-test statistic is calculated as 

  
          

 
      (       )

 

                           (24) 

Empirical measurements were taken in this case, by modeling 

the corner in Figure 6 in the lab with a box, Figure 9. Each 

time the robot hit the box was counted as a failure and each 

time it successfully reached the goal was counted as a 

success. After n trials the success proportion     was 

calculated as the ratio of successes to n. 

 

Figure 9: Experimental setup for robot moving by a corner. 

 The VIPARS module reported that the performance criterion 

in this case would not be met (i.e., that by the time Tmax there 

was not an 80% cumulative probability that the robot reached 

its goal location). The spatial distribution returned was 

inspected and the success proportion calculated as indicated 

above. The prediction was         2   .  

The empirical testing was carried out for n=40 trials, and 

recorded a success proportion          The z-test statistic 

for this case was calculated from eq. (24), and is z=0.31. 

Such a low z-statistic is strong evidence in favor of the 

VIPARS prediction. Once again it shows that the prediction, 

in this case that the controller will not operate according to 

the performance criterion in this environment, can be trusted.  

 6. CONCLUSIONS 

Being able to establish performance guarantees for robot 

missions is especially important for C-WMD applications. 

Unfortunately applying software verification techniques, such 

as model checking (Jhala &  Majumdar 2009), to robotic 



 

 

     

 

applications is difficult because of the many special robotic 

characteristics that exacerbate state explosion, including the 

necessity to verify a robot controller in conjunction with a 

model of its environment, and the importance of the 

continuous spatial state in performance guarantees (Lyons et 

al. 2012b). We have proposed an approach to verifying robot 

missions that shifts the focus from state-based analysis onto 

the solution of a set of flow equations (Lyons et al. 2012). In 

this paper we have introduced a novel probabilistic spatial 

representation for flow equations. We show how this 

representation models the spatial situation for robot motion 

with models (environment or controller) that include discrete 

choice (constraints). All of the examples focused on the 

conditional effects of the environment on the robot, since this 

is the less obvious, though no less important case to consider. 

The effect on the robot position distribution of conditionals in 

the program can be handled in exactly the same way. In 

Lyons et al. (2012) for example, we show an example 

controller and flow function for obstacle avoidance. 

A model such as we propose is useful only if it can accurately 

predict robot motion. We concluded by presenting three 

validation results that show our approach has strong 

predictive power, that is, that its verifications can be trusted. 

Comparing our work to other well known probabilistic 

verifiers such as PRISM (Kwiatkowska et al. 2011), the first 

important point of difference is our focus on spatial 

distributions representing the robot’s physical location, and 

the mixture-based representation of random variables. Note 

that while probabilistic spatial filtering methods are common 

in mapping and localization (Thrun 2005), our flow functions 

are not restricted to just spatial variables and can represent 

other relevant mission variables as desired. A second point of 

difference is the system period (5) as mechanism to 

automatically construct the probabilistic flow functions (e.g. 

(6, 11)) used for filtering. 

A practical aspect that we have not discussed in depth here is 

management of the number of members in the MoG for a 

random variable. In our implementation we have set a fixed 

maximum number of members for each variable.  During the 

calculation of (10) the number of members will increase. At 

the end of the calculation, the number of members is again 

reduced to the maximum allowed by removing members with 

low weights and renormalizing. Other management policies 

are possible here including merging some low weight 

members that are spatially close. We note the similarity here 

to the issue of hypothesis pruning in techniques such as MHT 

and expect that similar concerns apply. 

This paper has not addressed the software/architecture aspect 

of this work. That is addressed by Arkin et al. (2012) and 

includes the overall system diagram, the verification 

algorithms and their integration with the MissionLab mission 

design toolkit. 

The examples shown in this paper have focused on fairly 

simply robot missions, with little or no sensor use. This is 

because this level of verification must function demonstrably 

well before the results of more complex missions can be 

evaluated. We are now working on versions of the waypoint 

mission that include laser ranging and visual sensing and its 

verification, and will also consider multi-robot missions. 
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