

Verifying Performance for Autonomous Robot Missions with Uncertainty

Damian Lyons*, Ronald Arkin**,

Tsung-Ming Liu*, Shu Jiang **, Paramesh Nirmal*


* Fordham University, Bronx NY 10458 USA

(Tel: 718-817-4480; e-mail: dlyons@ fordham.edu)

** Georgia Institute of technology, Atlanta GA, USA

(e-mail: arkin@gatech.edu)

Abstract:

Establishing performance guarantees for robot missions is especially important for C-WMD applications.

Software verification techniques, such as model checking (Clark 1999, Jhala & Majumdar 2009), can be

applied to robotic applications but characteristics of this application area, including addition of a robot

environment model and handling continuous spatial location well, exacerbate state explosion, a key

weakness of these methods.

We have proposed an approach to verifying robot missions that shifts the focus from state-based analysis

onto the solution of a set of flow equations (Lyons et al. 2012). The key novelty introduced in this paper

is a probabilistic spatial representation for flow equations. We show how this representation models the

spatial situation for robot motion with environments or controllers that include discrete choice

(constraints).

A model such as we propose here is useful only if it can accurately predict robot motion. We conclude by

presenting three validation results that show this approach has strong predictive power; that is, that the

verifications it produces can be trusted.

Keywords: Mobile Robots, Performance Guarantees, Formal Methods, Design Tools



1. INTRODUCTION

A robot or team of robots acting autonomously to search an

area for a high impact target, a biological weapon for

example, must perform predictably despite the uncertainty

associated with the mission environment. We are developing

a mission design toolkit that allows designers to include

automatic verification of performance properties as part of

the mission design cycle. When a robot operates in a dynamic

and uncertain environment, its state at any point can only be

characterized uncertainly. In this paper, we build upon our

previous work in mission verification (Lyons et al. 2012,

2012b, Arkin et al 2012) and present here a probabilistic

framework for verifying the performance of autonomous

robot missions with uncertainty.

In Arkin et al. 2012 we introduced our approach, building on

the MissionLab (MacKenzie et al. 1997) robot mission

design, simulation and testing toolkit. Formally, we represent

the robot program and the environment with which it

interacts as concurrent communicating processes, and we use

the techniques of Process Algebra (Baeton 2005) to analyze

this interaction. In Lyons et al. (2012) we proposed an

approach to analyzing robot behavior in uncertain and

dynamic environments based on the identification of a

behavioral periodicity, the system period. In particular we

showed how verification of the combined robot and

environment system could be reduced to the solution of a set

of recurrent equations that we called the system flow

equations. The variables in the flow equations, message

communications in the underlying process networks,

represent characteristics of the robot such as its location and

velocity as well as the locations or other properties of parts of

the environment.

In this paper, we address the issue of the probabilistic

representation for variables that represent robot and

environment characteristics. We begin by introducing a

number of robot missions that show our application focus.

We use these to motivate our selection of probabilistic

representation. We consider how the process equations we

develop for robot programs and environment models, in cases

with and without discrete choice, give rise to probabilistic

flow equations. The paper presents two novel results: First,

we define a mixture of Gaussian representation for random

variables in our flow functions, and we show how these are

treated in the case of discrete choice/constraint (which can be

in the environment, e.g., a wall, as well as a conditional

program statement). Second, the method we propose here has

value only if it accurately verifies the behavior of real robots.

We report therefore validation results of our verification

predictions for several robot examples to show that this

approach produces results that can be trusted.

The remainder of the paper is laid out as follows. Section 2

places this work in the context of the literature in robot

uncertainty and software verification. Section 3 presents

examples of the kinds of robot mission on which our work is

predicated. Section 4 briefly reviews our approach to mission

verification and then presents our first main result, the

probabilistic representation in flow functions. In Section 5,

we present the validation experiments that show the strong

predictive power of the approach we have proposed here.

Section 6 presents our conclusions and discusses future work.

2. LITERATURE REVIEW

Emergency response incidents such as counter weapons of

mass destruction (C-WMD) and urban search and rescue

(USAR) provide unique challenges for autonomous robotic

systems. The operating environments in these domains could

be highly unstructured (caused by an earthquake) or unknown

(lack prior knowledge). While verification of robot missions

under these kinds of naturalistic environments poses a greater

challenge than traditional software verification, it is at the

same time a necessary process to ensure robot mission

success and safety under these conditions.

C-WMD and USAR missions are verified against specified

performance criteria which vary drastically based on the

emergency situation. Humphrey (2009) presented eight

CBRNE (Chemical, Biological, Radiological, Nuclear, and

Explosive) incident response tasks for robots: survey,

identification, scene observation/object tracking, medical

initial assessment, medical victim transportation,

decontamination, hazard disposal, and resource hauling. Each

mission category has different uncertainties associated with

it. Thrun (2000) observed that the five primary sources of

uncertainty in robotics are the environment, robots, sensors,

models, and computation. The real world environment is

dynamic and unpredictable; robots have imperfect actuation;

sensor measurements are usually corrupted by noise; internal

models are approximations of the real world; and uncertainty

in computation involves algorithmic approximations needed

real-time execution.

To provide performance guarantees for robots operating in

real C-WMD and USAR domains, uncertainty needs to be

properly represented and incorporated into the verification

process. This research tackles this challenge by addressing

the problem of verification of robot missions with

uncertainties in robots, sensors, and the operating

environment. Clark et al. (1999) describe how formal

verification typically handles verification of digital hardware

designs, network protocols, and verification of software.

Verification of robot mission software shares many concerns

with these but we argue it also has some very unique aspects.

In software verification, the performance criteria are

expressed as liveness and safety conditions on program

variable values. The ultimate effect of a robot program is

however, motion of the robot and, possibly, an effect on the

robot’s environment; performance guarantees for the

verification of robot software should therefore be liveness

and safety conditions on the robot motion and on parts of the

environment. The first implication of this is that any analysis

of the performance of robot mission software must include a

model of the robot’s environment, since the mission software

will behave quite differently in different environments

(Lyons & Arkin 2004). The second implication is that the

focus of robot mission software verification be on conditions

on the robot motion and environment rather than on the

values of arbitrary variables in the robot program.

In Lyons et al. (2012b) we present examples of these kinds of

performance guarantees as probabilistic constraints on robot

motion. There is an established literature on probabilistic

representations for robot motion. Smith (1990) proposed to

represent the uncertain spatial relationship in robot navigation

by estimates of the mean and covariance of the system state

vector. POMDPs have been a popular technique for planning

under uncertainty in which the robot’s state uncertainty is

explicitly modelled and the robot chooses action based on the

probabilistic distribution over state space (Vlassis et al.

2005). Filter-based methods (e.g., Kalman filters and particle

filter) are also popular methods for robot location and

mapping (Thrun 2005).

Software verification has focused on automata models (Jhala

& Majumdar 2009) because of the need to verify conditions

on arbitrary variables, and recent work in formal methods for

robotics (Kress-Gravit & Wongpiromsam 2011) has followed

that trend. We proposed an alternate model that focuses on

processes rather than on states (Lyons & Arkin 2012, Lyons

et al. 2012). Rather than requiring state-enumeration to verify

a performance criterion, our approach generates a set of

recurrent flow equations whose solution tests the

performance guarantee. This differs from other work in

software verification (e.g., SPIN, BLAST, etc. (Jhala &

Majumdar 2009)) in moving away from a state-based

approach. Probabilistic verifiers, such as PRISM

(Kwiatkowska et al. 2011), are closer to our approach. Our

intended focus on continuous spatial distributions to

represent the robot and environment however, distinguish us

from that work.

Our concern in this paper is how to represent probabilistic

robot and environment motion in flow equations. We propose

to represent robot motion, and other environment variables,

by random variables with Gaussian mixture distributions

(Bishop 2006). These allow us to capture the continuous,

multimodal spatial distributions that result from probabilistic

algorithms and interactions with motion, sensor and

environment uncertainty as seen for example in mapping

algorithms (Thrun 2005).

3. ROBOT MISSIONS

Emergency response (e.g., C-WMD, USAR) incidents

present critical missions that are characterized by various

stress factors: time pressure, high-stake risks, dynamic

conditions and uncertainty. The objective of this research is

to support a human robot operator’s mission specification

process in these naturalistic settings by providing feedback

on the predicted performance of the robotic system. This

section presents three robot missions as examples of the type

of missions that our verification framework will analyze and

provide performance guarantee for.

The Back and Forth mission was introduced in Lyons et al.

(2012b), Figure 1, where the robot goes back and forth

between points A and B. While this is a seemingly simple

mission, uncertainties in the robot motion and environment

can cause difficulty in its accomplishment. If the robot is

conducting this mission in an open space indoors, where GPS

cannot be used, the robot would have difficulty accurately

localizing itself due to slippage between wheels and the floor.

Figure 1: Back and Forth

A waypoint-based biohazard search mission is shown in

Figure 2, where the robot is tasked to enter a building to look

for a biohazard (Arkin et al. 2012). This is an example of the

CBRNE survey task presented in Humphrey (2009) and it

also presented a robot operating in a realistic environment

(i.e., the basement of an office building).

Figure 2: Biohazard Search

Figure 3 presents a multi-robot mission, where the robots

alternate in advancing forward and taking overwatch position

(i.e., covering for the advancing robot). This scenario is

inspired by the military tactic called bounding overwatch,

which is used by infantry to move forward under enemy fire.

The ellipses in Figure 3 indicated where each robot stops and

takes the overwatch position while the other robot advances.

Figure 3: Bounding Overwatch

4. PROBABILISTIC REPRESENTATION

In Lyons et al. (2012) we introduced a process algebra,

PARS
1
, for representing robot missions: both the robot

control program and also the environment in which the

program will be carried out. From a system perspective: The

robot controller is built in MissionLab and is translated to a

1 Process Algebra for Robot Schemas

PARS representation for the verification step (Arkin et al.

2012). The robot, sensor, and environment models are

available in MissionLab as user-selectable libraries. The

designer can ask the VIPARS
2
 verification module whether a

combination of controller and robot, sensor, environment

models meets a performance specification. We do not address

the system architecture issues further in this paper; Arkin et

al. (2012) presents them in more detail. We begin by very

briefly reviewing PARS.

4.1 PARS

Programs and environment models are specified in PARS as

networks of communicating, concurrent processes. The

process is the basic unit of program and environment model

structure. An extended port automaton model (Lyons et al.

2012) provides the semantics for a process. We formalize

processes as automata, and communication connections

between processes as ports. We formalize the ways in which

the automata can be composed to a port connection

automaton as process algebra composition operations.

In PARS, we write a process P with initial parameter values

u1,u2,… and which produces final result values v1,v2,… as:

Pu1,u2,… v1,v2,…. Processes are defined as compositions of

other processes using operators such as sequence (;), parallel-

max (|) or parallel-min (#), ultimately in terms of set of

predefined basic processes that implement port

communications (In pr , Out p,r), random sampling (Ran),

timing (Delayt) and so forth. In Lyons et al. (2012) we

investigated the properties of a number of controllers and

environments, including a robot controller MoveTo (1) and

non-deterministic environment model NEnv (2) combined into

a system Sys (3):

MoveTog = Inpr  ; Neqr,g ; Outv, s(g-r) ; MoveTog (1)

NEnvr,q = (Delayt # NOdoq #Atr) ; (2)

 (RanN(0,s1)e1 | Invu) ;
 NEnvr+(u+e1) t , q+ut
 NOdoq = RanN(0,s2)e2  ; Outp,q+e2 ; NOdoq

 Syspi,g = MoveTog | NEnvpi,pi (3)

The MoveTo robot controller process (eq. (1)) reads an input,

a robot position from port p into a result variable r which is

then tested to see if it is equal to the goal location g. If it isn’t

equal (Neqr,g) then a value s(g-r), a velocity proportional to

difference between current and desired locations, is written to

the robot velocity output port v, and this sequence then

repeats. The sequence stops in the case r = g.

The NEnv environment process starts with three parallel

processes; a timer process that stops after t time units

(Delayt), a process that repeatedly transmits the current robot

location with some associated sensor noise e2~N(0,s2) (zero-

mean with variance s2), and a process that represents the

position of the robot (Atr). After t, this network terminates

and the velocity information u (from port v), along with

associated motor noise e1~N(0,s1), is used to calculate a new

location r+(u+e1) t and repeat the sequence.

4.2 System Flow Function

We have proposed an approach to efficiently analyze

2 Verification In PARS.

properties of process networks such as the concurrent

composition of (1) and (2) based on a novel process algebra

expansion theorem (Baeten 2005). If the concurrent

composition of controller and environment, Sys, consists of

the processes P1, ... , Pn, where, each process can be written

recurrently as:

 P1 = P1’ ; P1, (4)

 P2 = P2’ ; P2,
 … ,

 Pm = Pm’ ; Pm

 Sysr = P1 | P2 | …| Pm

We developed an expansion theorem:

 Sysr = F(P1’, P2’, …, Pm’) ; Sysf(r) (5)

The parameter r is the system flow variable, a vector of

values that characterize the state of the program and the

environment. We call F(P1’, P2’, …, Pm’) the system period

and f(r) the system flow function. Both F and f can be

generated by looking only at a single period Pi for each

process i (though of course the result may be highly

conditional). The result of all possible executions of Sys can

now be characterized in terms of f
n
(r). In Lyons et al. (2012)

we show how this result is leveraged for verification of

performance guarantees for several examples. Our focus here

is on the situation where r contains probabilistic information.

4.2 Probabilistic Flow Variables

Returning to the controller and environment in (3): The

system flow function for (3) from Lyons et al (2012) is

 f(r) = r + [s(g – (r + e2))+e1]t (6)

An evaluation of f(r) requires a sampling of the random

variables e1 and e2 from the two noise distributions in eq.

(2). But this means that f
n
(r) no longer captures all possible

executions of Sys – it’s just one sample of an execution;

different choices for e1 and e2 would have produced a

different sample.

Let us consider the initial position p to be a random variable

from a multivariate normal distribution N(p0,p0). In that

case, the ports, parameters and result variables that contain

results calculated from the value of p must also be

represented as random variables. Whenever variables are

added (or subtracted) in the flow we need to replace this by

convolution operations. If r and q are independent random

flow variables with distributions Pr(x) and Pq(x) then p+q is a

random variable with distribution:

 () ()

 () () ()

And if Pr(x) and Pq(x) are normal distributions, N(p,p) and

N(q,q), then so is Pr+q(x), N(p+q,p+q) (Bishop(2006)).

The random variable modified flow function, frv(r) is

therefore:

 frv(r) = r * [s(g – (r * N(0,s2))) * N(0,s1)]t (8)

Now when we look at f
n

rv(r) we will see all possible

executions of Sys again. Figure 4 below shows r = N(p0,p0)

and the result of evaluating f
n

rv(r) for several different values

of n.

Figure 4: Example of f nrv(r) solved for 3 values of n.

4.3 Conditional Flow Functions

The random variable flow function in (8) expressed an

unconditional transformation of its input r to its output frv(r).

While there are many examples of this kind of system in

robotics, there are also many examples where the

transformation is conditional. One obvious way this

conditionality can arise is from conditionals (“if statements”)

in robot program/controllers. Perhaps less obviously, it can

also arise due to environment constraints. Consider the

environment model below:

 WEnvr,q = (Delayt # NOdoq #Atr) ; (9)

 (RanN(0,s1)e1 | Invu) ;

 (GTR r+(u+e1) t , L ; PASSr,qnr,nq |

 LTE r+(u+e1) t , L ;PASS r+(u+e1) t , q+ut nr,nq); WEnvnr,nq

The WEnv model above is almost the same as NEnv in (2) and

uses the same variable naming. However, now each new

position of the robot, r+(u+e1)t, is ‘filtered’ so that the robot

is can only proceed if it is on one side of the wall L (see

Figure 5) that bisects its world. GTR only allows its parallel

branch of the program to be carried out if the projected

position is greater than the line L: r+(u+e1)t > L. Similarly,

LTE only allows its branch to be executed if the projected

position is less than or equal to the line L: r+(u+e1)t  L.

The value of the flow variables nr and nq (which are

analogous to r and q variables in (2)) depend on which PASS

process passes the values along, which in turn depend on

whether which condition process (GTR or LTE) succeeded.

(a) (b) (c) (d)
Figure 5: Example of conditional environment constraint: a wall L

preventing the robot access to a portion of the world; (a) shows robot

location distribution initially, a ellipse of 1SD centered on the

starting location; and (b,c,d) show the distribution after some time

has passed. The view is top down, and the (infinite) normal

distribution is represented with 1SD ellipse.

When the position of the robot is represented as a probability

distribution, then some part of the distribution will need to be

evaluated with one branch of eq. (9) and the other part with

the other branch of eq. (9).

One approach is to consider the mass of the position

distribution that ‘meets’ each of the two branch conditions,

and to use this to produce an output that is a weighted sum of

both. Let M(c(r)) be the fraction of the mass of the

distribution of the random variable r that meets the condition

c(r). We will refer to M(c(r)) as the mass function for the

condition c(r) on r:

 (()) ()

 ()

 (1)

For example, M(r>L) would be the fraction of the

distribution r greater than the line L. In that case, M(rL) is

the mass less than or equal to L, and M(rL) = 1 - M(r>L)

since the probability mass is normalized to 1. In that case, we

can write a flow function for eq. (9) as

 frv(r) = M(r>L) * r +

 M(rL)* r *

 [s(g – (r * N(0,s2))) * N(0,s1)]t (11)

Now f
n
rv(r) is the distribution that generalizes to the results

of both branches. Consider an example of this approach

where a robot is moving with some velocity uncertainty (and

no use of sensors to avoid collision) as it passes a sharp

corner. Let us assume that the flow function for the robot

position f
n

rv(r) is solved for a fixed value of n and the

distribution is plotted as an ellipse. As the robot moves by the

corner some portion of the distribution will get ‘snagged’ by

the corner and be unable to progress, while the remainder will

pass the corner unhindered and reach the goal. Using eq. (11),

the resulting distribution has to capture this spread of results

with a single distribution of large variance. However, this

wide spread caused by the weighted sum approach used in

(11) hides the fact that there are really just two results: a

distribution close to the goal, and a distribution by the corner.

4.4 Conditionals using Mixture of Gaussians (MoG).

If we want to shows the two actual results in the previous

example, we need to use a multimodal representation for our

probability distribution. Using a normal distribution as a

representation for random variables had the advantage of a

large established literature (e.g., (Bishop 2006)); we would

like to continue this advantage, so we adopt a mixture of

normal distributions (MoG) as our model:

 ((, ,) 1, , m) (

 ,) (12)

 1

 The effect of a conditional such as that in eq. (9) will be to

generate additional modes (members) in the mixtures,

avoiding the issue of overgeneralization we saw with the

weighted-sum unimodal approach. The mass function

M(c(r)) needs to be redefined for this MoG case. There are

two parts to the definition. If the flow variable r is

represented by a MoG model, then the mass function is

applied to each member of the model according to the

member weights:

 () (())

 (1)

The effect applying the mass function to a single Gaussian,

M(c(ri)) is to generate a new Gaussian N(, ) representing

the mass of the original distribution on one side of the

condition c(ri) and its corresponding weight as a fraction of

the original distribution:

 () (, ,) (1)

The mean and variance is arrived at by computing the

expected value of the truncated normal distribution (Robert

1995).

()

 ()

 (1)

The addition operator in (6) now needs to take two MoGs M1

and M2 generated as indicated in eqs. (13) and (14) above

and combine them into a single MoG assuming independence

as follows:

M1 + M2 = (, ,) 1, , 1,… , 1 2 (16)

 (, ,) 1 1

(, ,) 2

 where (, ,) 1 1

 (, ,) 2

(, ,)

Figure 6 below shows this example, the motion of a robot

under uncertainty as it passes a corner. Note that the two

spatial modes show up clearly in Figure 6(b) after the

intersection with the wall.

 (a) (b) (c)

Figure 6: MoG distribution of location after moving (a) to (c) by a

sharp corner with motion uncertainty.

4.5 Motion through a doorway

A common situation for a robot traversing an indoor site is

moving through a doorway or passageway. This kind of

scenario offers a lot of conditional interactions with the

environment. Figure 7 below shows a robot moving through a

passageway, again with motion uncertainty and no use of

sensors to avoid collisions.

 (a) (b) (c)

Figure 7: Traversal (a) through (c) of a passageway with

uncertainty; Area of ellipse indicates variance; shading of ellipse

indicates its weight in the mixture.

The flow function for the robot position f
n

rv(r) is solved for a

fixed value of n and all the distribution members plotted as

ellipses. The result is a probability landscape for where the

robot will be at three successive times.

The robot starts just outside the entrance to the passageway,

and its distribution is shown in Fig. 7(a) as a single Gaussian

with a weight of 1.0. As the robot moves towards the

passageway, some probable locations will result in it

colliding with the wall. The small, light-colored ellipses to

each side of the doorway in Fig. 7(b) represent situations

where the uncertainty has caused the robot to collide with one

or the other side of the doorway.

The ‘safe’ positions of the robot (i.e., that did not collide) are

smeared out along the passageway in Fig. 7(c), the result of

the left and right wall constraints cropping the original

position distribution to its central portion. The darker, overlap

regions along the centre just indicate the summing of the

individual member distributions. This is an artefact of

drawing the distributions as bounded ellipses when in fact

they are infinite.

The ‘trail’ of ellipses along each side of the passageway

represents the (relatively small) number of situations where

the uncertainty results in the robot jamming against the side

of the passageway. After a short distance into the hallway

these situations have too low a probability to see.

5. VALIDATION

The approach we propose here has value only if it accurately

verifies the behavior of real robots. In this section, we report

on our results in validating predictions made with our

approach. We present three different validation results:

The first is a validation of the precision of motion, comparing

our prediction of robot position after carrying out a single

waypoint mission to the measured location of the robot after

carrying out the mission.

The second is a similar validation of the verification

prediction for a two waypoint mission.

The final validation is of the corner motion shown in Figure

6, comparing our prediction of the proportion of successes to

the measured number of successes.

We calibrate the robot uncertainty model using empirically

collected motion data that characterizes a Pioneer-3AT

mobile robot operating in an indoor, laboratory environment.

To collect this data, the robot was commanded to traverse

straight-line motions of varying distances, and the error along

the x and y plane is recorded. Rotational uncertainty was

measured in a similar fashion. Based on the collected data,

we characterized the resulting uncertainties using a linear

model parameterized by the distance (angle) moved. The

results of these uncertainty measurements are normal

distributions for the translation and rotation error that are

used during the verification of a controller.

5.1 Validation of Single Waypoint

In the single waypoint mission, the robot is given a goal

location 10m from its start location. The PARS model for the

single waypoint mission in an uncertain environment, as

presented in (3), was used incorporating the uncertainty

calibration data.

The VIPARS verification module, (see Arkin et al. (2012) for

a system diagram) is then used to predict the position of the

robot. The module identifies the system period, extracts the

flow equations, and solves them for specific goal conditions

given by the performance criterion. In all the following cases,

the performance criterion is that the robot have a cumulative

probability of 80% of having reached the goal before a

maximum time Tmax. The output of VIPARS includes

whether the performance criterion was met or not, and a

spatial distribution for the robot location in either case.

In the single waypoint validation example, the robot start

position p0 was the distribution

 ((,),

) (17)

For the 10m traverse (waypoint location=(10,0)) with

velocity=0.8m/s, VIPARS confirmed that the performance

criterion are met and returned the final position p1

distribution:

 ((1, 1 1),

) (18)

This, and the following, waypoint examples represent random

variables as normal distributions rather than mixtures to

allow for statistical significance testing.

This prediction is then validated against a set of empirically

collected data points for the robot carrying out the 10m

traverse. Because of the inherent motion uncertainty, every

time the traverse is carried out, the final robot position may

be different. Our null hypothesis is as follows:

 (1)

where μPARS is the mean final position predicted by the PARS

verification module, μOb is the observed mean position of the

robot (in meters).

We validate PARS predictions using the 
2
 test as follows:

 , , (2)

Where [x, y] is the difference between the predicted position

and the observed position, and S is the covariance of the

PARS population. The critical value is:

 1 1 () () (21)

Where , , is the 
2
-

score for a 5mm position error (which we consider as the

minimum error), and Q(k) is the P-value of k obtained from

the two-dof -table. If 
2
 < 

2
crit holds, then the results

support the null hypothesis that within the 95%

confidence interval given a minimum error of 5mm.

For the 10m traverse, 
2

crit=6.06 and the 
2
 test statistic

computed from eq. (20) was 0.2578. Clearly 
2
 << 

2
crit; the

result emphasizes that our approach has the potential to

produce accurate predictions of the behavior of the actual

robot – that is, that the verification can be trusted.

5.2 Validation of Two Waypoint Mission

A more challenging validation case is the two waypoint

mission shown in Figure 8. The robot carries out several

motions in order to reach the final waypoint. We can validate

the spatial accuracy of the final location as we did in the

previous section.

Using the same translation and rotational uncertainty

calibration as we did before, the VIPARS module confirms

the performance criterion and its prediction for the robot

position distribution after the second waypoint is:

 (, 1),
1 1 1
 1

 (22)

(a) (b)

Figure 8: Two waypoint mission. (a) The mission is shown in dotted

blue. (b) Robot near the start location

After collecting n=10 samples of the Pioneer 3-AT robot

carrying out the two waypoint mission, the observed mean

location is (57.83, 32.17). Carrying out a 
2
-test as in (11)

and (12), we find that the critical value 
2
crit=5.9916 and the


2
 test statistic is 

2
=0.6274. Once again, 

2
 << 

2
crit showing

strong evidence of the predictive power of our method and

emphasizing that the verification can be trusted.

 5.3 Validation of Missions with Environment Interactions

In both of the previous cases, the PARS verification only

involved solving flow functions of the form (4) without

discrete conditions. In our final example, we will validate a

prediction from solving flow functions with discrete

conditions, as in (6). We will use the example from Figure 6

of a robot moving in a straight line past a corner obstruction

(without any sensing). Due to uncertainty, the robot

sometimes collides with the wall. Our prediction in this case

will produce a probability distribution member along the

wall, and also a probability distribution member at the goal.

In the two waypoint validation example, we did not explicitly

model the wall collisions; we do so in this example.

Our statistic validation framework is different from the last

two examples. It is time-consuming to repeat the empirical

measurements of Section 5.1 and 5.2 for multiple waypoint

missions and for missions where the robot end location varies

widely. Also, we needed to restrict our random variables to

be normal distributions rather than mixtures, to support the

significance testing we were doing. Of course, for the corner

example in Figure 6, we have already argued that a normal

distribution is not sufficient and we extended our approach to

normal mixtures. We need to be able to validate verification

results that include mixtures.

We will use the results from the VIPARS prediction to

determine what proportion of the distribution of predicted

robot locations successfully passed the obstruction. The

remaining proportion would have hit the wall at some point

during the transit. From this we predict our success

proportion The proportion of collisions predicted from

verification will be given by the sum of the MoG member

weights for distribution members at the goal location (as

opposed to at the wall).

To validate the prediction, we collect empirical data for the

robot carrying out this mission n times. We only count how

many times the robot successfully reaches the end goal

(versus how many times its motion uncertainty causes it to

collide with the wall) which we record as the observed

success proportion pOb. Using a 1-proportion z-test we can

test our hypothesis:

 (2)

The z-test statistic is calculated as

 ()

 (24)

Empirical measurements were taken in this case, by modeling

the corner in Figure 6 in the lab with a box, Figure 9. Each

time the robot hit the box was counted as a failure and each

time it successfully reached the goal was counted as a

success. After n trials the success proportion was

calculated as the ratio of successes to n.

Figure 9: Experimental setup for robot moving by a corner.

 The VIPARS module reported that the performance criterion

in this case would not be met (i.e., that by the time Tmax there

was not an 80% cumulative probability that the robot reached

its goal location). The spatial distribution returned was

inspected and the success proportion calculated as indicated

above. The prediction was 2 .

The empirical testing was carried out for n=40 trials, and

recorded a success proportion The z-test statistic

for this case was calculated from eq. (24), and is z=0.31.

Such a low z-statistic is strong evidence in favor of the

VIPARS prediction. Once again it shows that the prediction,

in this case that the controller will not operate according to

the performance criterion in this environment, can be trusted.

 6. CONCLUSIONS

Being able to establish performance guarantees for robot

missions is especially important for C-WMD applications.

Unfortunately applying software verification techniques, such

as model checking (Jhala & Majumdar 2009), to robotic

applications is difficult because of the many special robotic

characteristics that exacerbate state explosion, including the

necessity to verify a robot controller in conjunction with a

model of its environment, and the importance of the

continuous spatial state in performance guarantees (Lyons et

al. 2012b). We have proposed an approach to verifying robot

missions that shifts the focus from state-based analysis onto

the solution of a set of flow equations (Lyons et al. 2012). In

this paper we have introduced a novel probabilistic spatial

representation for flow equations. We show how this

representation models the spatial situation for robot motion

with models (environment or controller) that include discrete

choice (constraints). All of the examples focused on the

conditional effects of the environment on the robot, since this

is the less obvious, though no less important case to consider.

The effect on the robot position distribution of conditionals in

the program can be handled in exactly the same way. In

Lyons et al. (2012) for example, we show an example

controller and flow function for obstacle avoidance.

A model such as we propose is useful only if it can accurately

predict robot motion. We concluded by presenting three

validation results that show our approach has strong

predictive power, that is, that its verifications can be trusted.

Comparing our work to other well known probabilistic

verifiers such as PRISM (Kwiatkowska et al. 2011), the first

important point of difference is our focus on spatial

distributions representing the robot’s physical location, and

the mixture-based representation of random variables. Note

that while probabilistic spatial filtering methods are common

in mapping and localization (Thrun 2005), our flow functions

are not restricted to just spatial variables and can represent

other relevant mission variables as desired. A second point of

difference is the system period (5) as mechanism to

automatically construct the probabilistic flow functions (e.g.

(6, 11)) used for filtering.

A practical aspect that we have not discussed in depth here is

management of the number of members in the MoG for a

random variable. In our implementation we have set a fixed

maximum number of members for each variable. During the

calculation of (10) the number of members will increase. At

the end of the calculation, the number of members is again

reduced to the maximum allowed by removing members with

low weights and renormalizing. Other management policies

are possible here including merging some low weight

members that are spatially close. We note the similarity here

to the issue of hypothesis pruning in techniques such as MHT

and expect that similar concerns apply.

This paper has not addressed the software/architecture aspect

of this work. That is addressed by Arkin et al. (2012) and

includes the overall system diagram, the verification

algorithms and their integration with the MissionLab mission

design toolkit.

The examples shown in this paper have focused on fairly

simply robot missions, with little or no sensor use. This is

because this level of verification must function demonstrably

well before the results of more complex missions can be

evaluated. We are now working on versions of the waypoint

mission that include laser ranging and visual sensing and its

verification, and will also consider multi-robot missions.

ACKNOWLEDGEMENT

This research is supported by the Defense Threat Reduction

Agency, Basic Research Award #HDTRA1-11-1-0038.

REFERENCES

Arkin R.C., Lyons, D.M., Nirmal, P., Shu, J. & Zafar, M.,

(2012) Getting it Right the First Time: Predicted

Performance Guarantees from the Analysis of Emergent

Behavior in Autonomous & Semi-autonomous

Systems, Unmanned Systems Tech. XIV, Baltimore MD.

Baeten, J., (2005) A Brief History of Process Algebra.

Elsevier J. Theo. Comp. Sci. – Process Algebra, 335(2-3).

Bishop, C.M., (2006) Pattern Recognition and Machine

Learning, Springer.

Clark, E., Grumberg, O., Peled, D., (1999) Model Checking.

MIT Press.

Humphrey, C.M., Adams. J.A. (2009), Robotic tasks for

CBRNE incident response. Adv. Robotics, 23:1217-1232.

Jhala, R., Majumdar, R., (2009), Software Model Checking.

ACM Computing Surveys, V41 N4.

Kress-Gazit, H., Wongpiromsarn, T., (2011), Corrective,

Reactive, Highlevel Control. Rob. & Aut. Magazine

18(3).

Kwiatkowska, M., Norman, G., and Parker, D., (2011),

PRISM 4.0: Verification of Probabilistic Real-time

Systems. Proc. 23rd Int. Conf. Computer Aided

Verification, v6806 LNCS, Springer.

Lyons, D.M., Arkin, R.A., (2004), Towards Performance

Guarantees for Emergent Behavior, IEEE Int. Conf. on

Rob. & Aut., New Orleans LA.

Lyons, D., Arkin, R., Nirmal, P., and Jiang, S., (2012)

Designing Autonomous Robot Missions with

Performance Guarantees', IEEE/RSJ Int. Conf. on Int.

Rob. and Sys. (IROS 2012), Algarve, PT.

Lyons, D., Arkin, R.C., Fox, S., Jiang, S., Nirmal, P., and

Zafar, M., (2012b) Characterizing Performance

Guarantees for Real-Time Multiagent Systems Operating

in Noisy and Uncertain Environments, Proc. Performance

Metrics for Intelligent Systems Workshop, Baltimore MD.

MacKenzie, D., Arkin, R.C., Cameron, R., (1997) Multiagent

Mission Specification and Execution. Aut. Robots, 4(1),

29-52.

Robert, Christian P. (1995). Simulation of truncated normal

variables. Statistics and Computing 5 (2): 121–125

Smith, R., Self, M., Cheeseman, P. (1990), Estimating

uncertain spatial relationships in robotics, Autonomous

Robot Vehicles, Vol. 4, pp. 167-193.

Thrun, S., Beetz, M., Bennewitz, M., Burgard, W. Cremers,

A.B. Dellaert, F. Fox, D. Hähnel, D. Rosenberg, C. Roy,

N. Schulte, J. and Schulz, D. (2000), Probabilistic

algorithms and the interactive museum tour-guide robot

Minerva. Int. J. of Robotics Research, 19(11):972-999.

Thrun, S. Burgard, W. and Fox, D. (2005), Probabilistic

Robotics. MIT Press, Cambridge, MA.

Vlassis, N., Gordon, G., & Pineau J. (2005), Reasoning with

Uncertainty in Robotics (RUR-05), IJCAI Workshop

Notes, Edinburgh, Scotland.

