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SUMMARY 

As robots become persistent agents in a complex and dynamic world, they must deal with 

changing environments. This challenge has grown research in long-term autonomy, with 

particular focus on localization and mapping in dynamic environments. Less attention has 

been paid to learning these dynamics to adapt or entrain an agent’s behavior to them. 

 Inspired by circadian systems in nature, this dissertation seeks to answer how a 

robotic agent can both learn the regular cycles and patterns that exist in many 

environments, and how it can exploit that knowledge. In this work, relevant environmental 

states are modeled as time series and forecasted into the future. These forecasts are used to 

estimate the utility of executing some behavior at any point in time during the dominant 

environmental cycle. The relative utility of executing a behavior at the current time, 

compared to the potential utility for waiting until later, is passed as one component in an 

activation-based action selection system. While other components still impact what 

behaviors execute when, the ‘circadian’ component derived from forecasts biases the 

behavior to execute at the better times in the environmental cycle. This approach was 

dubbed the artificial circadian system. 

 As forecasting the future is inherently unreliable, methods to make the approach 

robust to degrading forecast accuracy are presented. A unitless error measure is used to 

adapt the weight of the forecasting component in action selection, allowing an autonomous 

agent to leverage forecasts when they are good, and fall back onto reactive strategies when 

forecasts fail. As time series models rely on the history for predictions, a temporary 

disruption to the environment can potentially degrade forecast accuracy for many cycles. 



 xiv 

Methods to create modified forecasts which exclude potential outlier data are presented, 

and these forecasts are leveraged only if they improve accuracy. 

 The ideas in this work were validated using an experimental test bed designed to 

approximate a precision agricultural task, where a solar powered robot monitored 

individual plants for pests and weeds. The artificial circadian system was shown to 

effectively entrain the agent’s behavior to the dynamics of its environment in some cases, 

improving performance. It was also noted that dynamics not on the same time-scale as the 

robot’s actions could not be exploited, even with forecasted knowledge. The artificial 

circadian system was reliably able to detect deviations in the environment and remove the 

influence of forecasts when their accuracy degraded. Successfully removing outlier data to 

generate better forecasts was less consistent, but achieved in a significant portion of trials. 
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CHAPTER 1. INTRODUCTION 

“Change is the law of life and those who look only to the past or present are certain to miss 

the future.” – John F. Kennedy 

The natural world is in constant change, and within those changes exist cycles that occur 

at a variety of time scales. The most significant of these is the 24-hour solar cycle. It is not 

surprising that life has evolved adaptations for this regular, ever-present change. Circadian 

clocks are biological oscillators that synchronize behavioral and metabolic processes to the 

solar cycle. They appear in all types of life; from complex mammals like humans (Czeisler 

& Gooley, 2007), to plants (Gardner, Hubbard, Hotta, Dodd, & Webb, 2006), to single cell 

bacteria (Johnson & Golden, 1999). Circadian systems entrain behavior to the dynamics of 

the environment, allowing animals to take the right actions at the right times, before their 

needs (internal state) or senses (perceptual state) could inform their behavior. “Circadian 

rhythmicity of behavior represents an animal’s information, or one is tempted to say, 

knowledge about a particular feature of its environment… and what to do about it.” 

(Oatley, 1974) 

 Adaption to a changing environment is not exclusive to circadian processes. Human 

activity expresses a strong daily cycle, and people use explicit models of this activity to 

guide behavior. Someone may head out early to beat the lunch rush, or wait to leave until 

traffic has died down. This extends to organizations, businesses, and even governments 

who plan and act based on the predicted outcomes of reliable cycles in the environment 

and human activity.  With a trait so prevalent in both the natural world and human society, 
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it is prudent to explore how and when such a concept should be implemented into a robotic 

agent. 

 Until recently, the only persistent robots used were operated in highly engineered, 

static environments. However, in 2016 the non-industrial robotic market surpassed the 

industrial robotic market for the first time (Tractica Research, 2017). Now, more than ever, 

robots are leaving the clean and controlled environments of the factory floor and entering 

a complex dynamic world. Many of these robots are persistent, designed to continuously 

operate. Robotic vacuum cleaners for inside homes and agricultural robots for both 

commercial and personal use exist and are sold (Franklin Robotics, 2020). In the near 

future, autonomous cars and delivery robots may begin to deal with the same daily traffic 

patterns that humans do. Persistent robots in a variety of domains will face dynamics in 

their environment over multiple time scales, generated both from the natural world and 

human behavior. 

 Of special interest are Slowbots, or slow robots (Arkin & Egerstedt, 2015), which 

offer unique advantages in reducing energy usage and wear, especially for persistent tasks. 

There are, of course, downsides to being slow. Such as a reduced ability to rapidly react to 

changes in the environment. The research reported here is especially well-suited for 

Slowbots. Relative to faster agents, a Slowbot will perceive environmental change as faster, 

making it more difficult to manage or respond to this change. If a Slowbot can predict 

future changes in its environment, it can take action before critical changes occur, 

bypassing some of the limitations of being slow. In contrast, a robotic agent that can 

respond rapidly may be able to adequately adapt to a changing environment through pure 
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reactive control. This work focuses explicitly on the scenarios where reactive response is 

not adequate, and Chapter 4 will explore this scope in more detail.  

 Inspired by circadian systems in nature and motivated by the growing number of 

persistent robotic platforms, this thesis investigates how an autonomous robotic agents, 

particularly slow and persistent ones, can learn and adapt to the dynamics of the 

environments they inhabit. In other words, how an autonomous agent can entrain itself to 

its environment. This work will show how such an approach can help an agent compensate 

for limitations in actuation and sensing. Over time, the dynamics of the environment itself 

may change due to either short-term perturbations (e.g. extreme weather, special events) 

or permanent changes (e.g. a new pest species invading, new roads being built, etc). 

Methods for responding to changes in the dynamics will also be discussed. This adds an 

element of robustness as the agent explicitly checks the validity of its forecasts over time. 

1.1  Research Questions 

To provide a clear structure for investigating this topic, this section introduces a set of 

research questions. The overall aim of the proposed work can be summarized in the 

principal research question: 

How can the long-term dynamics of an environment be modeled, predicted, and 

exploited by a slow and persistent autonomous robot? 

This can be broken down into relatively independent tasks for investigation, described by 

four subsidiary research questions: 
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1. How can the long-term dynamics of an agent’s environment be characterized 

or modeled? 

Given a relevant time-varying state variable, what equations or algorithms could be used 

to model its dynamics? How is the model generated? How can predictions or forecasts of 

its future values be generated? When should the model change due to new information? 

2. How can individual behaviors, and the set of active behaviors, adapt to changes 

in the environment using the knowledge of environmental dynamics? 

Given a model of the environment, and predictions of that environment’s future state, what 

should a robot do? How and when can individual behaviors adjust based on future 

forecasts? How and when can the choice of active behaviors, future task schedule, or other 

action-selection processes change based on the forecasted state? 

3. Can such a system be made robust to changes in the dynamics, due to either 

short-term perturbations or long-term environmental change? 

The environment dynamics themselves will change over time. How can the agent identify 

when this has occurred? What actions should the agent take when its environmental models 

are not accurate? How can the agent reset or re-entrain its model to the new dynamics if 

the environment has changed, or back to the old dynamics after random perturbations? 

4. In what contexts is entraining to a dynamic environment useful for a robotic 

agent? 
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Both reactive behavior and hard-coded schedules have been used successfully to deal with 

changing environments. When are these approaches not enough, and why do they fail? 

How does the proposed approach address their shortcomings? 

1.2  Contributions 

In answering the above research questions, the following contributions to the area of 

mobile autonomous robotics are expected: 

• An architecture for an artificial circadian system (ACS) that enables an autonomous 

agent to model, forecast, and adapt to dynamic environments. This includes: 

o An approach to applying time series forecasting in a real-time context 

o Incorporation of forecasts into action-selection mechanisms 

• Techniques for robustness – allowing an agent to detect and respond when the 

environment deviates from the expected dynamics. 

• Analysis of when such an approach is useful, and when simpler alternatives (such 

as reactive behavior) will be enough. 

1.3  Outline 

The remainder of this dissertation is as follows: Chapter 2 discusses several fields of 

research that this work either pulls from or relates to. Chapter 3 details the analysis of the 

problem and design of the artificial circadian system, addressing the first two subsidiary 

research questions. In Chapter 4 the agricultural test bed will be presented along with 

experimental results. In the context of these results, the fourth subsidiary research question 

will be addressed. An approach to robustly dealing with changing dynamics will be covered 
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in Chapter 5, along with experimental validation of the approach on a mock-up agricultural 

test. This addresses the third subsidiary research question. The sixth and final chapter of 

this document is the conclusion, where the work will be summarized and concluding 

remarks added. 
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CHAPTER 2. RELATED WORK 

This thesis draws on ideas from several fields. Within research on long-term autonomy for 

robotics, similar work can be found but is relatively scarce. Thus, the majority of this 

chapter is on various topics that inspired, were leveraged, or considered by this work. First, 

circadian systems in nature will be overviewed before moving on to discuss the modeling 

framework used, statistical time series forecasting. Extra detail will be spent on covering 

time series forecasting as it’s not a standard approach within the field of robotics research. 

Then approaches in long-term autonomy, both within robotics and outside of it, will be 

covered. Next approaches in reinforcement learning for dealing with time varying 

environments will be presented. Finally, model predictive control and how it relates to this 

work will be overviewed. 

2.1 Circadian Rhythms 

In many organisms, there exists a special set of biological rhythms that are both 

endogenous (internally generated) and entrained to the environment. While circadian 

rhythms are the most well studied and perhaps impactful example, there are three other 

significant “circa-rhythms” that have been identified in nature. Each corresponds to a 

unique temporal niche, where each niche is created by a different cyclic geophysical 

process. They are the circa-tidal, circa-lunar, and circannual rhythms (Aschoff J. , 1981). 

As circadian rhythms are the most well-known they will be the focus moving forward, but 

these principles are not specific to interacting with the solar cycle. 
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 A circadian clock has three primary components, shown below in Figure 2.1. First 

is the internal oscillator which tracks the passage of time and approximately aligns with 

the period of an environmental cycle. This internal oscillator is created by genes whose 

protein products regulate said gene’s production in a feedback loop (Hardin, Hall, & 

Rosbash, 1990). Second is the sensory input channel which allows the oscillator to entrain 

to the environment (through impacting the protein/RNA production cycle). Entrainment is 

a key property of circadian systems. A “free-running” circadian oscillator can have a 

notable difference in period from the environmental cycle it is tracking. Similar to a 

mechanical oscillator, entrainment drives the circadian oscillator at the relevant 

environmental frequency. It also ensures the circadian system will resync even after 

extreme disturbances (Roenneberg, Daan, & Merrow, 2003). Finally, there is the output 

channel, where the current state of the circadian rhythm drives both metabolic processes 

and behavior. 

 

Figure 2.1: Basic circadian system diagram based on (Gardner, Hubbard, Hotta, Dodd, & 

Webb, 2006) 

Circadian systems have been found to provide benefits in many different contexts. A study 

on fledglings showed that those who left the nest at a species-specific time fell victim to 

predation less often. By synchronizing with other juveniles, survival was increased 

(Tinbergen & Daan, 1980). In some parasitoids different related species have peaks of 

activity at different times of the day, creating a temporal partitioning helps reduce 

competition (Fleury, Allemand, Vavre, Fouillet, & Bouletreau, 2000). Circadian clocks are 

used to track the changing length of day to initiate migration in birds, and hibernation in 

mammals (DeCoursey, 2004). Experiments suggest that the evolutionary benefits of a 
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circadian rhythm exist primarily in natural dynamic environments. Under controlled 

laboratory conditions, a species of ground squirrels with their circadian clocks surgically 

removed had no increase in mortality. When released to a semi-natural enclosure with feral 

cats, however, they were preyed upon at a significantly higher rate compared to control 

groups (Paranjpe & Sharma, 2005). There are also contexts where animals with circadian 

clocks exhibit constant or ultradian (cycle with period shorter than a day, but longer than 

an hour) activity in environments that are constant, such as animals in polar environments 

and migratory birds (Bloch, Barnes, Gerkema, & Helm, 2013).  

 Note that it is possible for cyclic behavior to be generated as a direct, or reactive, 

response to a cyclically changing environment. Yet, circadian rhythms are not merely 

responses to periodically changing inputs from the environment, but come from internal 

processes of the organisms (Aschoff J. , 1981). A circadian system can be considered a 

model of the dynamics of the organism’s environment, representing implicit knowledge 

about how it is expected to change. An agent or organism can gain value from having even 

simple models of complex processes (tides, seasons, etc.) in the environment. The literature 

on circadian systems in nature supports the idea that as robotic agents move out of 

controlled environments and into dynamic worlds, they too will be able to benefit from 

entraining activity to their relevant environmental cycles. 

 Circadian clocks, however, may not be an effective model for how a robotic agent 

should entrain to an environment. As a circadian clock is a cyclic or phase-only model, it 

faces two limitations. First is the inability to represent non-cyclic dynamics. For example, 

traffic has a strong daily pattern, but also has short term surges or trends that can be 

modeled to some degree. E.g., a traffic jam may be expected to last at least a certain number 

of hours. Second is the inability to represent the amplitude of the relevant state. In some 

contexts, the relative values of the state at different times may be critical. Our current 

understanding of circadian clocks also provides no guidance on how an agent should act 
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given some model of the environment. The impact of output pathways have been tuned 

over millennia by evolution, and do not provide a systematic method to determine the 

correct actions. While circadian rhythms provide support that the work in this dissertation 

will be useful for persistent agents, a more structured method to model the environmental 

dynamics, and act based on its forecasted states, must be developed. 

2.2  Time Series Forecasting  

Time series modeling and forecasting covers the tools and techniques of forecasting (or 

predicting) future values of some variable based on past values of that variable. To make 

forecasting possible, it is assumed time series data has a “spatial” property (observations 

closer in time are more related) and a “temporal” property (past values can impact future 

values, not vice versa). Time series models are built on these assumptions. Approaches to 

time series forecasting can be broadly divided into statistical methods and machine learning 

methods. 

 The classical approach to time series modeling uses statistical methods. These 

methods create models that explicitly represent the relationship between past data and 

future values. Statistical approaches can be divided into two categories. The first is 

exponential smoothing, which contains the oldest and most widely applied approaches to 

forecasting due to both their simplicity and accuracy in real applications (Gardner E. S., 

1985). The core idea in exponential smoothing is to forecast the next value in a time series 

as the weighted average of previous values where, specifically, the weight of a previous 

value decreases exponentially with time. The basic form, referred to as simple exponential 

smoothing is: (notation used from (Hyndman R. , Koehler, Ord, & Snyder, 2008)) 

𝑦̂𝑡+1 = 𝑙𝑡 (1. 𝑎)

𝑙𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑙𝑡−1 (1. 𝑏)
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Here 𝑦𝑡 is the time series. The subscript designates the time step. The level, 𝑙𝑡, updates 

each time step based on the weighted average of the previous level, and the measured value 

of the time series. The parameter α specifies the weight of each. The impact of a previous 

measurement, 𝑦𝑡−𝑘, on the current level is thus weighted by α(1 − α)𝑘. Finally, the 

forecasted time series 𝑦̂𝑡+1 is assumed to be the current level. This method can be extended 

past a simple estimate of the current level to include knowledge of a trend component 

(slowly changing average) and seasonal components (cyclic change with known period): 

𝑦𝑡+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡−𝑚+ℎ+  (2. 𝑎)

𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (2. 𝑏)

𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − β)𝑏𝑡−1 (2. 𝑐)

𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚 (2. 𝑑)

 

Here, 𝑏𝑡 is a trend component, modelling a steady change over time as the average 

difference between the level of a time series at two time-steps. Note that the trend 

component also exponentially weights past measures of trend to provide a current best 

estimate. The trend component influences the forecast of future values as well as the 

estimation for the current level, which is the previous level plus the trend. The seasonal 

component is 𝑠𝑡, a vector of length m (the period) with an estimated seasonal value for 

every time-step. The factor h+ ensures that the seasonal index comes from the last sampled 

period, not a forecasted period, if more than one period is being forecasted. The parameters 

γ and β are weights. Exponential smoothing has been extended in various other ways, with 

other methods for modelling trend and seasonal components, incorporating regressor or 

explanatory variables, etc. Figure 2.2 shows an example forecast for real pedestrian traffic 

data with a strong seasonal component. Perhaps the most important extension is its 

incorporation into a state-space model to provide a true statistical framework (Gardner E. 

S., 1985). This allows for the generation of forecast intervals along with point forecasts 

and allows the use of model selection criteria. For a detailed review of exponential 

smoothing in a state-space framework, see (Hyndman R. , Koehler, Ord, & Snyder, 2008). 
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Figure 2.2: Historical data of pedestrian traffic (black) and the forecast of this traffic (blue) 

24 hours into the future using the TBATS model, an exponential smoothing based method 

(De Livera, Hyndman, & Snyder, 2011). 

 The second major branch for time series forecasting is based around the ARMA 

model and the Box-Jenkins method (Box, Jenkins, & Reinsel, 2008). ARMA 

(autoregressive moving average) models focus on the autocorrelations in the data, and are 

able to approximate a large class of stationary time series. An ARMA model is composed 

of two main components. First, an auto-regressive (AR) model, where the relevant variable 

depends on its past values, and an error term, AR(p): 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−1 + 𝑒𝑡 (3) 

Where again, 𝑦𝑡 is the time series variable, and ϕp are parameters which weight the impact 

of each previous time step. Second, a moving-average (MA) model, where the relevant 

variable is the average of the past error (or noise) terms, MA(q) 

𝑦𝑡 = 𝑒𝑡 + 𝜃1𝑒𝑡−1 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 (4) 

Here, θq are the weights of previous error terms, 𝑒𝑡. These can be combined to get the full 

ARMA(p,q) model… 

𝑦𝑡 − 𝜙1𝑦𝑡−1 − ⋯ − 𝜙𝑝𝑦𝑡−1 = 𝑒𝑡 + 𝜃1𝑒𝑡−1 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 (5) 
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As this is a model for stationary time series, time-varying components like trend and 

seasonality must be removed before the model is applied. The technique of differencing is 

commonly applied. Differencing is the approach of subtracting the value at each time step 

from a previous time step, to generate a new differenced time series without trend. For 

seasonality, the subtracted value is not one time-step in the past, but instead an entire period 

of the season in the past. Backshift notation provides a convenient way to handle 

differencing. By defining the operator 𝐵 to shift a variable one timestep into the past 

(equation 6.a), we can used basic algebraic manipulations to represent both repeated 

differencing (equations 6.c and 6.d) or seasonal differences (equation 6.e). 

𝐵𝑦𝑡 = 𝑦𝑡−1 (6. 𝑎)

𝑦𝑡 − 𝑦𝑡−1 = 𝑦𝑡 − 𝐵𝑦𝑡 = (1 − 𝐵)𝑦𝑡 (6. 𝑏)

𝐵2𝑦𝑡 = 𝑦𝑡−2 (6. 𝑐)

(𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2) = 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 = (1 − 2𝐵 + 𝐵2)𝑦𝑡 = (1 − 𝐵)2𝑦𝑡 (6. 𝑑)

(1 − 𝐵𝑚
)𝑦

𝑡
= 𝑦

𝑡
− 𝑦

𝑡−𝑚
(6. 𝑒)

 

As with exponential smoothing, there are many extensions to this basic ARMA model 

(state space forms, multivariate modeling, etc) which go beyond the scope of this summary. 

For a thorough introduction to ARMA based methods, see (Brockwell & Davis, 2006). An 

interesting note is that a large class of ARMA models and exponential smoothing models 

are equivalent (McKenzie, 1984). 

 A critical part of getting good forecasts is model selection and parameter 

estimation. The latter is much simpler in practice. Parameters for both exponential 

smoothing and ARMA based approaches can generally be found using maximum 

likelihood estimation. Good libraries are available that provide automated methods to do 

so for a variety of the standard techniques (Hyndman, O'Hara-Wild, Bergmeir, Razbash, 

& Wang, forecast: Forecasting Functions for Time Series and Linear Models, 2019). Model 

selection is not as straight forward. Information criterion can be used to guide the choice, 

but are not always adequate. In general, analysis of the data being modeled can reveal the 
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relevant dynamics. Then an adequate model, one that can represent those dynamics and 

ideally nothing more, can be selected.  

 An alternative to the statistical approaches described above is to apply more general 

machine learning (ML) methods for the forecasting problem. Artificial neural networks 

(ANNs) have received particular focus in the literature. The problem of forecasting a time 

series is readily applied to an ANN, and as general non-linear function approximators, 

ANNs have the potential to model very complex processes without any understanding of 

the system needed by the designer (Zhang, Patuwo, & Hu, 1998). Other machine learning 

approaches, such as deep learning (Qiu, Zhang, Ren, Suganthan, & Amaratunga, 2014), 

support vector machines (SVMs), and genetic programming (GP) (Wang, Chau, Cheng, & 

Qiu, 2009) have seen success when used for forecasting. However, the accuracy of these 

ML methods has not surpassed statistical ones in independent testing, despite greater 

computational requirements (Makridakis, Spiliotis, & Assimakopoulos, 2018). Often the 

fit of the model to the training data was better with the ML methods, which points to worse 

performance being a case of overfitting. Interestingly, this is a pattern that has also been 

found within statistical methods, with simple approaches often outperforming more 

sophisticated models (Makridakis & Hibon, 1979). More research is required to see if 

machine learning can better address the unique challenges in time series forecasting. 

 Time series forecasting will be the basis of how robotic agents in this work 

understand the environment and how it changes. Natural environments often have features 

driven by difficult to measure variables, such as the availability of food/water/predators 

impacting pest populations and activity. Yet an agent persisting in an environment will be 

able to directly observe how the state changes, providing time series data. Environments 

are often driven by complex processes, such as traffic being the product of actions taken 

by many individuals. This approach is data-driven, avoiding the need to create complex 

models of the underlying physics. It is increasingly common for robotic controllers to learn 
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the dynamics of the platform from data, saving effort creating models by hand. Applying 

time series forecasting can be considered analogous for understanding the environment 

around the agent, rather than the agent itself. 

2.3  Long-term Autonomy 

The development of persistent robotic platforms has grown interest in long-term autonomy. 

The majority of the research has been on localization and mapping in dynamic 

environments. Many approaches filter out the dynamic objects in an environment to more 

accurately generate a map of the static world (Hahnel, Triebel, Burgard, & Thrun, 2003) 

(Dayoub & Duckett, 2008). More closely related to our approach are methods that 

explicitly model the dynamics of objects in the environment in an effort to improve 

mapping (Mitsou & Tzafestas, 2007) (Ambrus, Ekekrantz, Folkesson, & Jensfelt, 2015). 

 Using models of the environment’s dynamics for a robot’s behavior is less 

common. Path planning through a dynamic network, where the traversability of paths 

changes over time, has been demonstrated. One approach modeled the uncertainty using a 

POMDP, applying forward search to find an efficient solution (Marthi, 2013). A similar 

approach modeled the dynamic state of an edge in a graph as a stochastic process, solving 

for a path with minimum expected travel time using dynamic programming (Loibl, Meyer-

Delius, & Pfaff, 2013). 

 The most similar work is on “frequency map enhancement” (FreMEn), an approach 

that represents time-varying states as a binary variable, whose probability over time is 

modeled as a Fourier series. This predictive capability was applied in a variety of contexts, 

including localization (Krajnik T. , Fentanes, Santos, & Duckett, 2017), path planning 

(Fentanes, Lacerda, Krajnık, Hawes, & Hanheide, 2015), and information-driven 

exploration (Santos, Krajnik, Fentanes, & Duckett, 2016). The simplicity of the model 

limits the contexts to which it can apply, but makes the approach very efficient. This allows 
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the model to be applied to each cell within a 3D occupancy grid, creating a spatiotemporal 

map. Recent extensions to this work developed a warped hypertime representation to better 

model and predict the spatiotemporal dynamics (Krajník , et al., 2019). The probability 

density function of relevant state variables over both space and time were approximated 

using gaussian mixture models. While the workspace of a robot is finite, time extends 

forever. To deal with this, major periodicities are identified and events projected into a 

looping dimension of time with length equal to the duration of a period. In this 

representation events in the morning of consecutive days are closer than events in the 

morning and afternoon of the same day, allowing for standard machine learning tools to 

learn the relations between these events due to their distance in the representation. 

 While not traditionally considered long-term autonomy, research on solar energy 

harvesting for wireless sensor networks has some interesting similarities with the approach 

in this proposal. For sensor nodes, the goal is to reach “energy neutral operation” so that 

the node can continue to operate for long durations (on the order of years). To achieve this, 

both predictive forecasts of future energy and reactive responses to the actual gathered 

energy can be used to adapt the behavior of the sensor node (Kansal, Hsu, Zahedi, & 

Srivastava, 2007). In this case, action is limited to adjusting the duty cycle the sensor runs 

at, changing the amount of monitoring performed and energy expended. 

2.4 Markov Decisions Processes and Reinforcement Learning 

The goal of reinforcement learning is for an autonomous agent to learn how to behave in 

an environment to maximize the reward they receive. Reinforcement learning is most 

commonly formulated as a Markov Decision Problem (MDP) where either the model of 

the environment or the rewards the agent will receive are unknown. MDPs are defined as 

a set of states 𝑆 = {𝑠}, actions 𝐴 = {𝑎}, transition probabilities between states 𝑇(𝑠, 𝑎, 𝑠′), 
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and rewards for acting and reaching a specific state 𝑅(𝑠, 𝑎, 𝑠′). The output of a 

reinforcement learning algorithm is a policy 𝜋(𝑠): a mapping from state to action that 

maximizes the expected reward. The standard MDP formulation has no way to represent a 

changing environment. Information about the environment is encoded in the transition and 

reward functions, which are assumed to be constant. A naïve solution is to enlarge the state 

space to directly include discrete time and set the transition probabilities to specify that an 

agent must always step forward in time. This severely increases computational 

requirements. 

 An early attempt to deal with these challenges was to treat time as a special 

continuous state by creating a Time-Dependent MDP (TMDP) (Boyan & Littman, 2001). 

The durations of actions are assumed to be probability density functions (pdf) dependent 

on time and could either be relative (i.e., it takes on average 10 minutes to drive) or absolute 

(i.e., the train will arrive on average at 10:03am). The policy becomes a mapping of state-

time pairs to actions, where the reward, transition, and value function all become functions 

of time. To make the Bellman equations solvable, this new time-value function is 

represented as a piecewise linear function, and the duration distributions restricted to 

discrete PDFs. 

 Recent work takes an alternative approach, viewing the changing environment as  

a changing transition function T and reward function R (Lantao & Sukhatme, 2018). This 

better captures the fundamental differences between time and space in (e.g., agents have 

no control of their location in time, time is asymmetric and unidirectional). The transition 

and reward functions at some time t in the future can be estimated using forecasts of the 

environment. The key to solving this new formulation, dubbed Time-Varying MDPs 
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(TVMDPs), is to estimate the transition time between states. With known transition times 

and the agent’s policy, the time a state is reached can be found, and the proper transition 

and reward function applied when applying value iteration is used to solve for the policy. 

This maintains the size of the state and action space but limits the provided policy to a 

single start time and continuous execution. Any deviations and the expected arrival times 

for states, which the transition function is dependent on, are no longer valid. 

 The framework of  MDPs and reinforcement learning seems capable of representing 

the types of problems this dissertation is focused on, but the author is not aware of a 

tractable method to do so. Generally speaking, representing the environment and how it 

changes over time increases the state space significantly. The slow nature means applying 

reinforcement learning in real-time is also difficult, as an environment with a strong daily 

cycle provides one true trial every 24 hours. Model-based reinforcement learning could be 

leveraged to solve this challenge. Using a complete model of the system, forward 

simulations could provide training at a significantly accelerated pace. If the solved policy 

learns only the best policy from a specific state forward, the approach becomes similar to 

model predictive controllers, constantly optimizing the future policy based on the current 

state and simulated future. A key difference with the work presented in this dissertation is 

the assumption of a complete model of the entire environment and agent. Rather than 

simulating the entire agent and environment forward in time, the utility of a specific 

behavior given knowledge of one aspect of the environment in the future is estimated. 
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2.5 Model Predictive Control 

The core idea behind model predictive control (MPC) is that leveraging a model of a system 

allows you to optimize control inputs over the predicted future outputs. Using the given 

model, an optimal control sequence is found up to some horizon in time. While the control 

sequence is found for several time steps, only the first step is executed. At the next time 

step the state is measured and the process repeated. Models never perfectly describe real 

systems, and the iterative nature of the approach ensures the controller updates to respond 

to deviations from the predicted trajectory. Using a time horizon strikes a balance between 

costly excessive planning into the future, and short-sighted action based only on the current 

state. 

 Model Predictive Control has had early and significant success in the control of 

industrial processes (Qin & Badgwell, 2003). Some of the key features of MPCs were the 

relative ease of solving online optimization (as opposed to deriving a close-loop control 

law), the flexibility of models that can be used, and the inclusion of constraints for inputs 

and outputs. The limitation of requiring significant computation for each time step was 

irrelevant in this domain as the processes being controlled were generally slower, with 

sample times in the seconds or even minutes. 

 Some of the earliest applications of MPC to robotics found that while it provided 

good solutions, the computation made it infeasible for real-time control (Essen & 

Nijmeijer, 2001). However, this limitation was quickly overcome as efficient formulations 

and techniques for various problems were found (along with the ever-increasing speed of 

computing). Trajectory generation for multiple flying robots was solved  in (Shim, Kim, & 
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Sastry, 2003) by writing the dynamics and cost functions in a form that allowed gradient 

descent to be applied for optimization. For trajectory tracking with a differential drive 

platform, a complete analytic solution to the prediction and optimization problem was 

found, enabling a very efficient solution (Klančar & Škrjanc, 2007). An excellent summary 

of various methods to reduce computation is provided in (Wang & Boyd, 2009). 

 Originally model predictive control was applied to dynamic systems where the 

model can be explicitly written as a differential or difference equations. Model predictive 

control allows for other types of models to leveraged in a straight-forward manner, the only 

requirement is that it can be used to predict the future state given certain control inputs. A 

common example is the use of neural networks to learn the dynamics of the system 

(Draeger, Engell, & Ranke, 1995) (Gu & Hu, 2002) (Williams, et al., 2017). Neural 

networks are popular due to their ability to approximate any non-linear function. A time 

series forecasting neural network was applied to forecast the disturbance coming into a 

system, rather than the system itself (Doganis, Aggelogiannaki, & Sarimveis, 2008). This 

was a special case for a production-inventory system, shown below in Figure 2.3, where 

sales were the disturbance and the forecasted demand helped the system compensate for 

changes. As opposed to treating demand as random noise into the system. 
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Figure 2.3: MPC controller leveraging forecasting from (Doganis, Aggelogiannaki, & 

Sarimveis, 2008). 

The approach presented in this dissertation has similarities with model predictive control. 

Both use a model of the system (or part of it) to predict the future and adjust actions based 

on that prediction. As mentioned in the last section, the underlying assumptions in this 

work differ notably from classic MPC which leverages a complete model of the 

environment and agent. Chapter 3 will detail the formulation and assumptions used in this 

work. 
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CHAPTER 3. THE ARTIFICIAL CIRCADIAN SYSTEM 

This chapter answers the first two subsidiary research questions: how the dynamics of the 

environment can be modeled, and how an agent can adapt its behavior using such 

knowledge. Before answering those questions, the term “dynamic environments” is defined 

to clarify the scope of this work. Then a concrete formulation of the entrainment problem, 

the problem of having an autonomous robotic agent entrain to a dynamic environment, is 

provided. Next the approach to modeling the environment, statistical time series analysis, 

is justified and the methods for applying it in real time are described. The core of this 

chapter will cover the action selection approach, i.e., how the agent uses forecasts from the 

time series model to adjust its behavior over time. Throughout the later sections a simple 

but detailed example will be used to demonstrate how the ideas can be applied in practice. 

3.1 Dynamic Environments 

This work defines a dynamic environment as one where properties of the 

environment change. The term “properties” is used to distinguish features of the 

entire environment from individual objects or agents within an environment. 

Consider the example an autonomous delivery robot. When navigating through 

empty roads it experiences a static environment. If traffic is added to this scenario, 

the robot must now deal with dynamic objects within its workspace, but the position 

of some specific car on the road would not be considered a property of the 

environment. An example of a property is the level of traffic, something of key interest 
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to anyone driving, which changes significantly over time. Traffic is not determined by 

any specific vehicle, but the interactions of many vehicles distributed within the road 

network. Traffic will greatly affect the travel time and fuel required to get somewhere, 

which means that knowing the level of traffic and how it is expected to change can 

help inform decisions on when and where to drive. It is these types of distributed 

properties of an environment that this dissertation considers. 

 The distributed nature of environmental properties makes modeling them more 

challenging. Continuing the traffic analogy, an autonomous car can see a nearby vehicle 

and immediately determine its position and velocity, which provides a strong predictor for 

where that vehicle will be in the near future. In comparison, there is no way for an 

individual car to determine how traffic will change given only the current amount of traffic. 

For the sort of environmental properties of interest, the true underlying state and dynamics 

are often complex and difficult to measure. In the delivery robot example, traffic is caused 

by the interaction of thousands of individuals. Another example is the activity of pests in a 

field which is generated by the interaction of the pest population with the local ecosystem. 

However, change in the property over time can follow trends and patterns. Time series 

models provide a structured way to identify and leverage the patterns from historical data. 

 The existence of patterns within these environmental dynamics is required for 

modeling to be meaningful. If environmental change is purely random, there is no way to 

predict the future, and a reactive approach to change is the best an agent can do. On the 

opposite side, if the environment is perfectly deterministic, then the exact state of the 

environment in the future is known, and optimal actions can be determined off-line and 
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provided as a schedule of behavior. Change in both natural and man-made environments 

almost always falls in between, neither completely random nor changing in a perfectly 

predictable way. Both clear patterns and significant random variation exist. In these cases, 

a forecasting system which continuously updates as new measurements are made provides 

the best predictions for an autonomous agent. 

3.2 The Entrainment Problem 

The primary research question motivating this dissertation is: “How can the long-term 

dynamics of an environment be modeled, predicted, and exploited by a slow and persistent 

autonomous robot?” The previous section clarified what  “long-term dynamics of an 

environment” means in the context of this work. This section provides a concrete 

formulation for the problem of having an autonomous agent model and exploit those 

dynamics. The inspirational vision behind this work is an autonomous robot that can 

inhabit a complex environment and entrain its activity to the dynamics within it. This 

“Entrainment problem” is defined as: 

1. A set of states, 𝑆, that represents both the agent’s internal state, as well as relevant 

features of the environment it inhabits. 

2. A subset, 𝑆̂ ⊂ 𝑆, of forecastable dynamic environmental properties. These states 

change over time regardless of the agent’s actions, and are able to be predicted with 

some degree of accuracy. The agent may or may not be able to influence these 

states. 

3. A set of agent behaviors, B, whose performance may depend on a subset of the 

forecastable dynamic environmental properties, 𝑆̂.  
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4. For each behavior, a dependency function, 𝐷(𝑆̂𝑡), that provides the expected utility 

of executing a behavior at a timestep given 𝑆̂, where 𝐷: 𝑆̂𝑡 → 𝑋 | 𝑋 ∈ ℝ≥ 

It is important to note that a complete model of the agent-environment dynamics is not 

given. Instead, the assumption is that realistic environments will have complex features 

changing due to causes that a robotic platform cannot measure. 𝑆̂ is a subset of those 

features that have patterns that can be predicted, as discussed previously in Section 3.1. 

 The agent has some goals it is attempting to accomplish, for which progress can be 

represented with a notion of utility. 𝐷(𝑆̂𝑡) captures how 𝑆̂ impacts the result of a behavior, 

changing the expected utility. The true utility may depend on other features in 𝑆, but given 

that the agent cannot predict the value of those features in future, it cannot predict the utility 

of the executing the behavior in the future based on them. The assumption used is that 

increasing 𝐷(𝑆̂𝑡) will increase the real utility and the performance of the agent. This 

assumption is likely to hold true when the forecastable property is a major factor for the 

overall performance of the behavior, and is not correlated with other non-forecastable 

features in the environment. Features of the environment that are both forecastable, and 

predictive of agent performance, are needed for the artificial circadian system to be useful. 

3.3 Time series Forecasting 

3.3.1 Approach 

Foundational to this work is the answer to the first subsidiary research question, “How can 

the long-term dynamics of an agent’s environment be characterized or modeled?” Without 
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an effective approach to understanding how the environment will change, a robotic agent 

cannot hope to adapt its behavior to those dynamics.  

 As circadian systems in nature were the original inspiration for this work, one might 

consider mimicking them as a first approach. This could be reasonable for environments 

with purely cyclic dynamics. An example of a similar model is provided in (Krajnik T. , 

Fentanes, Santos, & Duckett, 2017), where the environmental dynamics are modeled using 

Fourier series. Cyclic dynamics are of significant interest due to their prevalence and 

predictability. However, there are more general time series forecasting approaches that can 

both accurately capture cyclic dynamics and simultaneously model and predict non-cyclic 

effects. 

 In this work, we consider relevant states from the environment as time series. A 

variety of models and techniques have been developed in the field of time series 

forecasting, which focuses on the prediction of future values of some variable based on 

historical data. Along with capturing cyclic dynamics, usually referred to as “seasonal” 

effects in the time series literature, these approaches can model slow-moving trends and 

other statistical correlations between past and future measurements. A strength of time 

series modeling is that it is a data-driven approach. The underlying physics or domain 

knowledge about what in the environment creates the dynamics is not necessary. There is 

no need for expert knowledge. Instead, only a history of the state is required for model 

selection and parameter fitting. This simplifies applying the proposed architecture to new 

environments. Chapter 5 addresses how an agent can respond if this state history stops 

being a good predictor of future values (e.g., due to random disruptions or changes to the 

environment itself). 
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 Statistical time series techniques, in contrast to machine learning based methods, 

are leveraged specifically. The use of machine learning in many fields is increasing, and 

time series forecasting is not an exception. Given the prevalence of ML within robotics, it 

may seem to be the natural choice. While ML based models may have the potential to 

provide superior forecasting, as discussed in chapter 2, they have yet to surpass even simple 

statistical approaches despite greater computational requirements (Makridakis, Spiliotis, & 

Assimakopoulos, 2018). The literature on statistical time series modeling and forecasting 

is more mature, providing libraries of standard approaches (Hyndman, O'Hara-Wild, 

Bergmeir, Razbash, & Wang, forecast: Forecasting Functions for Time Series and Linear 

Models, 2019). As the inputs and outputs of either type of trained model are the same, ML 

methods can be swapped in with minimal changes to the approach used in this dissertation 

if they show superior forecasting for a specific scenario. 

 The first step to forecast a relevant environmental variable is to choose an 

appropriate model. Section 2.2 provides resources with more detail, but the basic approach 

used here starts with an offline analysis of historical data to find what type of dynamics are 

present in the time series. Time-varying components (namely trend and seasonality) need 

to be identified and modeled. This includes finding the period of seasonality and whether 

these components are additive or multiplicative with the time series level determined 

(Hyndman R. , Koehler, Ord, & Snyder, 2008). These components can then be removed, 

leaving a time series that is not time-varying, also known as a stationary time series. 

Correlations within the stationary series should be represented with an ARMA model (Box, 

Jenkins, & Reinsel, 2008). When the forecasting error, or the difference between a 

forecasted point and its measured value, is a random series, then all the dynamics in the 
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time series have been captured. If there is a pattern within the error, there are unmodeled 

dynamics. Information criteria can be used to balance training accuracy with model 

complexity, aiding model selection and helping to avoid over-fitting. However, automated 

methods are still limited, and this process is typically done by hand. Once a model is 

selected, reliable methods for parameter estimation can be leveraged. In this work the R 

forecasting library (Hyndman, O'Hara-Wild, Bergmeir, Razbash, & Wang, forecast: 

Forecasting Functions for Time Series and Linear Models, 2019) is used for analysis of 

time series, parameter estimation, and forecasting. 

 In traditional time series forecasting the process is offline and data provided is 

grouped into a relevant interval (hours, days, months, etc). For application on robotic 

platforms, data collection is real-time, and the data must be discretized by choosing an 

appropriate interval length. Shorter intervals provide higher resolution, but less data per 

interval to use. Forecasting accuracy is also heavily influenced by the number of steps 

forward in time being predicted. Part of the offline analysis process requires choosing an 

appropriate interval length that balances the resolution an agent needs to see relevant 

changes in its environment with the accuracy of its forecasts. 

 

Figure 3.1: The representation of the forecastable state over time, broken into the past history  

(𝑺𝑷), present measured (𝑺𝑴), and future forecasted (𝑺𝑭). 
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Given a time series model, the agent uses three data structures to update the forecast with 

real time sensing. The past state, or the measured time series, is stored as the vector 𝑆̂𝑃. 

These are fed into the time series model and used to forecast the future values of the state, 

𝑆̂𝐹
𝑡 , where t is the timestep during which this forecast vector was generated. Lastly, there is 

a set of current sensor measurements called 𝑆̂𝑀. These measurements could be anything 

from individual events that are being counted to separate measurements that will be 

averaged together. At the end of a forecast interval, 𝑆̂𝑀 is used to generate a final state 

value for that interval. This process is described by the algorithm in Table 3.1. The example 

in section 3.5 will show how a specific time series model can be updated to fit to new data 

and used to forecast. 

Table 3.1: Algorithm to apply discrete time series models in real time on autonomous agents. 

Algorithm: Forecasting Loop 

Data 

structures: 

𝑆̂𝑃 – Vector of past measurements of relevant state 

𝑆̂𝑀 – Vector of current measurements of relevant state 

𝑆̂𝐹 – Vector of future forecasts of relevant state 

𝑇𝑆 – Time series model object with functions fit and forecast 

𝑘 – Current timestep 

Functions: 

𝑃𝑒𝑟𝑐𝑒𝑝𝑡(𝑋) – Converts the measurements 𝑋 to a single estimate for one time-

step 

𝑇𝑆. 𝐹𝑖𝑡(𝑋) – Fits the TS model parameters to the data vector X 

𝑇𝑆. 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑋) – Forecasts the future values of time series X using model 

Initialization: 

      𝑆̂𝑃 ← ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙  
      𝑇𝑆. 𝑓𝑖𝑡(𝑆𝑃)  

      𝑆̂𝐹 ← 𝑇𝑆. 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑆̂𝑃)  

      𝑡 ← 0 

 

Repeat: 

      𝑡 ← 𝑡 + 1 

      For duration of time interval: 

            𝑆̂𝑀 ← 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑛𝑠𝑜𝑟 𝑖𝑛𝑝𝑢𝑡 

      𝑆̂𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑃𝑒𝑟𝑐𝑒𝑝𝑡(𝑆̂𝑀)) 

      𝑆̂𝐹 ← 𝑇𝑆. 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑆̂𝑃)  
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The main application of such a model is to forecast the future state, but there is a close 

relation to the more general ideas of state prediction, filtering, and smoothing. Forecasting 

is prediction, and much of this dissertation focuses on how it can aid an agent in making 

decisions based on the future state. Forecasts from past data can also be used when 

estimating a current state that the robot has not or cannot measure. This idea can be 

leveraged in cases with limited sensing and will be discussed more in Chapter 4. If a robotic 

agent’s sensing is particularly noisy, filtering and smoothing may also be useful. It is 

possible to develop true smoothing and filtering operations within some time series 

modelling frameworks (Hyndman R. , Koehler, Ord, & Snyder, 2008). 

 A notion of entrainment to the environment is captured in the system at two levels. 

Every forecast interval the agent appends a new value to 𝑆̂𝑃 and generates a new forecast 

vector 𝑆̂𝐹
𝑘 . This means the forecast for some specific point in time in the future is repeatedly 

updated (usually becoming more accurate) as new measurements of the environment are 

taken. In this context, entrainment can be viewed as a feedback loop, continuously 

adjusting the forecasts (and therefore the behavior of the agent) as new measurements come 

in. Secondarily, the new history, 𝑆̂𝑃, can be used to re-estimate the model parameters 

adapting the time series model if the dynamics of the environment have changed. This latter 

context is more akin to learning, and Chapter 5 will explore this idea in an effort to make 

the approach robust to changing dynamics. 

 This section discussed how time series modeling and forecasting is a data-driven 

approach. This is most useful when a model of the underlying process is either not available 

or not reasonable to use. As section 3.1 stated, many environmental properties that could 
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impact an autonomous robotic agent are like this, with traffic being the most clear and 

common example. Time series models fit well with common cases considered in this 

dissertation, which focuses on the idea of a persistent robot in a complex natural 

environment. However, when physics-based models are available, they may provide 

superior predictions and should be considered. Note that for the rest of the work, the type 

of model does not matter, as long as the model can produce predictions of the future state. 

3.3.2 Forecasting Example Application 

Here an example is introduced to demonstrate the application of the approach in a 

simplified scenario. This will be a running example, used through the following sections 

in this chapter. Consider an autonomous electric vehicle that has several tasks it is used for, 

including a daily delivery of supplies to locations across the city it is based in. The vehicle 

can drive for a few hours on one charge, and traffic will impact how much useful work it 

can perform before having to stop and recharge. How can the artificial circadian system be 

applied to time the deliveries to the traffic patterns of the city? The first step, described in 

this section, is to forecast the traffic. 

 Publicly available traffic data from Arlington, VA (Bike Arlington, 2020) will be 

utilized. Five days of the data of are shown below in Figure 3.2. While this data measures 

traffic counts at a specific location, it will be used in this example as an overall level of 

traffic throughout the city. 
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Figure 3.2. Traffic data used for this example. 

The data in Figure 3.2 shows clearly cyclic dynamics (referred to as “seasonal” in the time 

series literature) but no obvious trend. Let us apply one of the simpler time series models. 

From (Hyndman R. , Koehler, Ord, & Snyder, 2008), the basic exponential smoothing 

model for a time series with only additive error and seasonal components is: 

𝑦̂𝑡+ℎ|𝑡 = 𝑙𝑡 + 𝑠𝑡+ℎ  (3.1) 

𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)𝑙𝑡−1 (3.2) 

𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡) + (1 − 𝛾)𝑠𝑡−𝑚 (3.3) 

Where ℎ is the number of time steps past the current time 𝑡, 𝑚 is the period of seasonality, 

α and γ are smoothing parameters, 𝑙 is the current level of the series, and 𝑠 is a vector 

holding an average value for each timestep within a cycle. Equation 3.1 is the forecasting 

equation, which uses the level and seasonal components to provide the forecast ℎ steps into 

the future. Equations 3.2 and 3.3 are used to update the level and seasonal components 

based on new measurements 𝑦𝑡. 
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 The parameters for this model are the smoothing parameters α and γ, weights 

between 0 and 1 that determine how much a component changes give an update, and the 

initial states of components 𝑙 and 𝑠. The R forecasting library is used to find the smoothing 

parameters and initial values for the level and seasonal terms by applying likelihood 

maximization to the historical data. See (Hyndman, O'Hara-Wild, Bergmeir, Razbash, & 

Wang, forecast: Forecasting Functions for Time Series and Linear Models, 2019) for 

details on the R forecasting library. The command used and output model parameters are 

shown below: 

Command: 
model_fit <- ets(traffic_history, model=’ANA’) 

 
Model details: 

α = 0.1613 
γ = 0.0001 
l = 7.6273 
sm = {-8.1579, -7.204, -6.0761, -6.1372, -3.3255, -0.3216, 
8.0552, 13.6075, 6.5137, 2.2273, 3.4802, 2.9286, 3.5316, 
3.1464, 4.803, 7.8877, 9.4509, 8.7658, -4.9698, -7.4824, -
7.525, -7.458, -7.8846, -7.8558} 

Consider if we had the model and parameters given above. Initially, the forecast for three 

timesteps into the future is 𝑦̂
𝑡+3|𝑡 = 𝑙𝑡 + 𝑠𝑡+ℎ = 7.6273 + (−6.1372) = 1.4901. This 

makes sense as that is still early in the morning, a time when there is historically very little 

traffic. Now consider the agent receives several updates with higher than average traffic 

for the time. Remember that 𝑦𝑡 is the measured value at timestep t, while 𝑦̂𝑡|𝑡−1 is the 

forecasted value given the data at time 𝑡 − 1. First consider a new measurement comes in 

at time 𝑡 + 1: 

𝑦𝑡+1 = 5.0  
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This can be put into equations 3.2 and 3.3 to update the level and seasonal components: 

𝑙𝑡+1 = 𝛼(𝑦𝑡+1 − 𝑠𝑡+1−24) + (1 − 𝛼)𝑙𝑡

                                                    = (0.1613)(5.0 + 7.204) + (0.8387)(7.6273) = 8.366
𝑠𝑡+1 = 𝛾(𝑦𝑡+1 − 𝑙𝑡+1) + (1 − 𝛾)𝑠𝑡+1−24

                                                  = (0.0001)(5.0 − 8.366) + (0.999)(−7.204) = −7.197

 

The new components can be used in equation 3.1 to produce new forecasts of the future 

time-steps: 

𝑦̂
𝑡+2|𝑡+1 = 𝑙𝑡+1 + 𝑠𝑡+2 = 8.366 + (−6.0761) = 2.29

𝑦̂
𝑡+3|𝑡+1 = 𝑙𝑡+1 + 𝑠𝑡+3 = 8.366 + (−6.1372) = 2.229

This process can be repeated when new data comes in at time 𝑡 + 2: 

𝑦𝑡+2 = 7.0

𝑙𝑡+2 = 𝛼(𝑦𝑡+2 − 𝑠𝑡+2−24) + (1 − 𝛼)𝑙𝑡+1

                                                = (0.1613)(7.0 + 6.0761) + (0.8387)(8.366) = 9.126
𝑠𝑡+2 = 𝛾(𝑦𝑡+2 − 𝑙𝑡+2) + (1 − 𝛾)𝑠𝑡+2−24

                                                  = (0.0001)(7.0 − 9.126) + (0.999)(−6.0761) = −6.07
𝑦̂

𝑡+3|𝑡+2 = 𝑙𝑡+2 + 𝑠𝑡+3 = 9.126 + (−6.1372) = 2.989

 

We see the seasonal component changes little due to the very low value of 𝛾. This implies 

there is a strong historical average that seems persistent through random perturbations. 

However, the value of the level component shifts up, increasing the forecasted amount of 

upcoming traffic as the agent gets more data. Figure 3.3 below shows the application of 

these update and forecasting equations to the historical traffic data for two days of 

forecasts. Note that for this simple model the forecast will repeat every cycle going 

forward. This forecast will be fed into the action selection system, changing the activation 

of relevant behaviors. 
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Figure 3.3: Traffic data (black) plus two days of forecasted traffic (blue). 

3.4 Action Selection 

Given forecasts of how the environment will change and knowledge on how the 

environment impacts performance, how can a robotic agent adapt its behavior? This is the 

second subsidiary research question and the focus of this section. The core action-selection 

mechanism is ethologically inspired and based on activation levels. First, a circadian 

function that turns forecasts into activation for a behavior is constructed. Then, how this 

circadian function is integrated into the action-selection approach is described.  

3.4.1 The Circadian Function 

The circadian function takes the forecasted state (𝑆̂𝐹) and provides activation for a 

behavior. It is designed to leverage three qualities of the targeted domain of slow, persistent 

agents:  

• For slow and persistent agents, behaviors will often be executed for long durations 

of time 



 36 

• The environment may change significantly during the execution of a behavior 

• The environmental dynamics are dominated by a cycle with known period 

The first two points imply that any instantaneous measurement or prediction of the 

environment may be inadequate. Instead, we need to consider the state of the environment 

over the expected duration of the behavior. In other words, we are concerned with the 

agent’s activity over time. The last point is a convenient property of the types of dynamics 

we are most interested in. 

 As discussed in Section 3.2, 𝐷(𝑆̂) encodes the dependency of a behavior’s 

performance on the subset of forecasted states. 𝐷(𝑆̂) is mostly unconstrained and may be 

any function that outputs non-negative real numbers (𝐷: 𝑆̂ → 𝑋 | 𝑋 ∈ ℝ≥). In many 

common cases, performance will be roughly proportional to key environmental properties 

(e.g., power collected increasing linearly with solar irradiance). Another common trait may 

be a minimum/maximum or saturation point, after which the state may increase but not 

impact performance. With a forecast of the state in the future and an estimate of the robot’s 

performance given that state, the last element needed is the time an agent would be 

executing the behavior. Specifically, delays before starting a behavior’s useful work 

(generally due to needing to move to a location) noted as 𝑡𝑑, and the total execution time, 

noted as 𝑡𝑒, are used. Both variables can take calculated values if available (e.g. known 

distance to a goal location and known travel speed) or average values from previous 

executions otherwise. With these components, we can estimate the period of time a 

behavior will be executing and the total performance: 
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𝑃(𝑆̂, 𝑡, 𝑡𝑑 , 𝑡𝑒) = ∑ 𝐷 (𝑆̂(𝜏))

𝑡+𝑡𝑑+𝑡𝑒

𝜏=𝑡+𝑡𝑑

 (3.4) 

Equation 3.4 shows the predicted performance function, 𝑃, which outputs the performance 

for the full execution of the associated behavior starting at time 𝑡 given the forecasted state, 

delay, and execution duration. As a circadian function is behavior-specific, the 

fundamental question is always “should this behavior activate now?” This is answered by 

comparing the expected performance of executing now versus in the future. To do so, P is 

applied as a sliding window, shown in Figure 3.4, giving the performance of executing the 

behavior over a range of times into the future.  

 

Figure 3.4: Visualization of the predicted performance function, P, which acts as a sliding 

window over the forecasted state, determining the performance for executing a behavior at a 

certain time t. 

This introduces the question of how far into the future should the estimated performance 

be calculated? The circadian function is concerned with relative performance within one 

cycle, rather than the absolute level of performance. For example, if the agent gets a second 

solar panel and can collect twice as much energy from the same amount of sunlight, the 

best hour of the day to charge is unchanged. Note that if the agent needs less total time to 

charge, the duration of the behavior execution (𝑡𝑒) will change, impacting the performance 
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for executing at a specific time.  The final step for the circadian function is to find the 

average and maximum values for a behavior’s performance over one cycle and compare 

that to the performance for executing now. The heuristic used will provide activation when 

it is better than average to execute, with maximum activation at the best time. In the 

following equations, 𝐻 is the period of the cycle. 

𝑃𝑎𝑣𝑔 =
1

𝐻
∑ 𝑃(𝜏)

𝑡+𝐻

𝜏=𝑡

 (3.5) 

𝑃𝑚𝑎𝑥 = max{𝑃(𝜏) | 𝜏 = 𝑡 … 𝑡 + 𝐻}  (3.6) 

𝐶𝐼𝑅(𝑡) = (
𝑃(𝑡) − 𝑃𝑎𝑣𝑔

𝑃𝑚𝑎𝑥 − 𝑃𝑎𝑣𝑔
)

𝑛

 if P(t) > Pavg,   else CIR = 0 (3.7) 

A naïve approach may provide full activation at the maximum time-step and no activation 

anywhere else. If no other factors impacted the ability for the agent to execute the behavior, 

this would be the best strategy. In practice, it is expected that the agent will have other 

behaviors and constraints and will not be able to execute a behavior at any given time. 

Providing activation over a range of times ensures the behavior will have multiple 

opportunities to execute. The parameter 𝑛 in equation 3.7 allows one to select how much 

to bias towards the max value. Figure 3.5 below shows how higher values decrease 

activation for sub-maximal performance. In practice, 𝑛 = 1 is expected to be effective in 

most cases. 
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Figure 3.5: The parameter n adjusts the bias of the circadian function towards the maximum 

performance, with higher values of n making a sub-maximal performance provide less 

activation. 

3.4.2 Circadian Function Example Application 

This section continues the example of an autonomous delivery car dealing with traffic. 

Section 3.3.2 detailed how forecasts of the traffic into the future are generated. Here those 

forecasts will be used within the circadian function. The circadian function also requires 

the dependency of the behavior’s performance on the state. Let us assume for this example 

that an increase in traffic proportionally increases the duration needed to travel some 

distance according to a parameter 𝑘, with a known minimum duration when traffic gets 

low enough (𝑚𝑖𝑛_𝑑𝑢𝑟). There is a maximum performance (𝑚𝑎𝑥_𝑝𝑒𝑟𝑓) value that 

decreases as the duration to travel increases. The performance for a given timestep with a 

level of traffic 𝑆, is: 

𝐷(𝑆) = 𝑚𝑎𝑥_𝑝𝑒𝑟𝑓 − max{𝑘𝑆, 𝑚𝑖𝑛_𝑑𝑢𝑟} (3.8) 

For this example, some arbitrary values are used: 𝑚𝑎𝑥_𝑝𝑒𝑟𝑓 = 7.5, 𝑘 = 3/10, and 

𝑚𝑖𝑛_𝑑𝑢𝑟 = 3. Let us assume the vehicle can operator for three hours (𝑡𝑒 = 2) and there is 
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one hour of setup time before it can begin (𝑡𝑑 = 1). Plugging the forecasted traffic values 

from section 3.3.2 into this equation, the estimated utility at each time step is found. The 

estimate utility for timesteps 9-11, with forecasted traffic values of 𝑆̂[9,11] =

{12.7, 11.1, 11.5}, are:  

𝐷(𝑆̂(9)) = 7.5 − max {
3

10
(12.7), 3} = 3.68, 𝐷 (𝑆̂(10)) = 4.18,

𝐷 (𝑆̂(11)) = 4.06 

These timesteps are when the behavior activating at t=8 is expected to execute. As 

described in equation 3.4, the predicted performance for activating the behavior at t=8 is 

sum of the utility over the expected duration of the behavior: 

𝑃(𝑆̂, 8,1,2) = ∑ 𝐷 (𝑆̂(𝜏))

8+1+2=11

𝜏=8+1=9

= 3.68 + 4.14 + 4.06 = 11.88 

Repeating this calculating at every timestep in the cycle allows us to find the max and 

mean value for the predicted performance. In this example, they are 𝑃𝑚𝑎𝑥 = 13.5, and 

𝑃𝑎𝑣𝑔 = 11.64. The final circadian activation for our example timestep t=8 is given by 

equation 3.7: 

𝐶𝐼𝑅(𝑡 = 8) = (
P(Ŝ, 8) − Pavg

Pmax − Pavg
) = (

11.88 − 11.64

13.5 − 11.64
) = 0.129 

The circadian activation at this timestep is labeled below in Figure 3.6, which also shows 

the predicted performance and circadian activation at any given time in the cycle, 

generated using the forecast from section 3.3.2. There are regions of high activation 
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during the middle of the night, when traffic is very low. There is also a range of time 

during the middle of the day where performance will be decent, e.g. traveling will not 

take too long. 

  

Figure 3.6: Forecasted state, predicted performance, and circadian activation for one 

environmental cycle into the future. The scale for predicted performance P is not shown, but 

is aligned against the circadian function for easier comparison. 

3.4.3 Behavior Activation 

The action-selection approach is primarily based on the method described in (Arkin, Fujita, 

Takagi, & Hasegawa, 2003), but draws from a rich set of work in this area (Chernova & 

Arkin, 2007) (Blumberg, 1994) (McFarland & Bösser, 1993). The core idea is simple: each 

behavior has an activation function, and the behavior with the highest activation is 

executed. Activation functions are broken into two components: the motivation function 

and the releasing mechanism. The motivation function (MOT) provides activation based 

on internal, or endogenous, variables that represent the state of the agent and its goals. The 

releasing mechanism (RM) provides activation based on external, or exogenous, variables 

which represent the state of the environment around it. An activation function is defined 

as: 
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𝐴𝑐𝑡 = 𝐺 ∗ 𝑀𝑂𝑇 ∗ 𝑅𝑀 (3.9) 

A useful interpretation is that the releasing mechanism represents the effectiveness of 

executing a behavior based on the environmental state (e.g., higher solar irradiance means 

more power from charging). The motivation function provides how much the agent values 

the expected change (e.g. a lower battery means charging some amount is more valuable). 

The final component, G, is the behavior gain: a scalar weight used to set the priority 

between different behaviors. 

 The motivation function and releasing mechanism themselves are both defined as 

a weighted summation of functions of relevant variables (e.g. battery charge, distance to or 

position of a goal, traffic level, etc). Each component function describes how much the 

behavior activates based on the relevant variable’s value, outputting between 0 and 1. Thus, 

the MOT and RM also return between 0 and 1. In (7) below, v(i,j) are relevant variables, 

f(i,j) are the component functions, and w(i,j) are the weights of each component. 

𝑀𝑂𝑇 = ∑ 𝑤𝑖 ∗ 𝑓𝑖(𝑣𝑖)

𝑖

         𝑅𝑀 = ∑ 𝑤𝑗 ∗ 𝑓𝑗(𝑣𝑗)

𝑗

 (3.10) 

The circadian function (CIR) provides activation at the best times to execute over a cycle 

based on a forecasted environmental variable. A key observation is that the circadian 

function should impact the activation generated by the environmental variable being 

forecasted. If part of a releasing mechanism is a function of some variable, fj(vj), then that 

would be replaced with a weighted sum of this original component and the circadian 

function: 
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𝑓𝑗(𝑣𝑗)   →   𝑤𝑐𝐶𝐼𝑅(𝑡) + (1 − 𝑤𝑐)𝑓𝑗(𝑣𝑗)      0 ≤ 𝑤𝑐 ≤ 1 (3.11) 

The parameter 𝑤𝐶 allows adjustment from not using the circadian function at all (𝑤𝐶=0) to 

relying on it completely (𝑤𝐶=1). In practice, forecasts are never guaranteed to be right, and 

it is useful to consider the current measured value of some environmental variable in the 

computation. Later, in chapter 5, we will look at how making 𝑤𝑐 a function of forecast 

accuracy can allow the action-selection system to adapt online to changing dynamics and 

better deal with inaccurate forecasts. 

 A final consideration is the issue of behavior dithering. When activation levels 

change smoothly a rapid switching of behaviors can occur which degrades overall 

performance. Consider an agent that continuously leaves and returns to a charger, as it 

collects or expends just enough energy for a charge behavior’s activation to cross the 

threshold of “highest activation”. Some method of prioritizing the active behavior to create 

behavioral persistence is needed. The most common approaches are inhibition of inactive 

behaviors by the active behavior (Blumberg, 1990), or hysteresis in the action selection 

process (Velayudhan & Arkin, 2017). This approach uses the latter, and each activation 

function is supplemented with a hysteresis function that defines a minimum amount of time 

the behavior will execute. 

 The approach described in this section is sufficiently general in that it is compatible 

with many action selection methods. If a relevant environmental variable is represented as 

a scalar value and used to calculate some component (activation, utility, cost, etc.) then the 

circadian function can be substituted in, extending the method to consider the best time to 

activate in the dominant cycle. 
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3.4.4 Behavior Activation Example Application 

Continuing the example implementation, the behavior to deliver goods will not activate 

exclusively based on the output of circadian function. Let us consider if there is a releasing 

mechanism comparing the current level of traffic, which we will assume is perfectly 

known, to the maximum traffic (estimated to be 30). There is also a motivation function 

based on the time since last delivery which maximizes internal motivation after 48 hours 

without a delivery. 

𝑀𝑂𝑇 =
𝑡𝑖𝑚𝑒_𝑠𝑖𝑛𝑐𝑒_𝑙𝑎𝑠𝑡

𝑚𝑎𝑥_𝑡𝑖𝑚𝑒
 (3.12)  

𝑅𝑀 = 1 −
𝑆

𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑚𝑎𝑥
  (3.13) 

Using equation 3.11 to include the circadian function into the RM, and inserting both the 

MOT and RM components into equation 3.9, we get the equation for the total activation 

of the behavior shown in equation 3.14. The activation for this example is plotted below 

in Figure 3.7 against the forecasted traffic levels. In this example 𝑤𝑐 = 0.8 was used, and 

the behavior gain G is set to 1. 

𝐴𝑐𝑡(𝑡, 𝑆) = 𝑀𝑂𝑇(𝑡) ∗ ((1 − 𝑤𝑐) ∗ 𝑅𝑀(𝑆) + 𝑤𝑐 ∗ 𝐶𝐼𝑅(𝑡, 𝑆)) (3.14) 
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Figure 3.7: The total activation of the delivery behavior when using the circadian function 

(black) and when not using the circadian function (purple). Generated by applying equation 

3.14, with time_since_last starting at 24 hours, and the real traffic S for a time step equal to 

the forecasted traffic. The green shaded regions mark areas where the circadian function 

significantly changes the total behavior activation. 

Figure 3.7 compares the delivery behavior’s activation with and without the circadian 

function. When the level of traffic is unchanging, these reduce to nearly identical activation 

as the current traffic is the future traffic. Two regions of large deviation are marked with 

green shading. These are areas where traffic is low but will soon increase, and activation 

of the “delivery” behavior would cause the agent to end up stuck in bad traffic. This is one 

of the simplest uses of the artificial circadian system. Allowing the agent to avoid activating 

at bad times due to informed predictions of the future, even when current measurements 

indicate it would be advantageous to activate. 

3.5 Summary 

This chapter answered the first two subsidiary research questions and in doing so developed 

an architecture for an autonomous robotic agent to entrain itself to dynamic environments. 

First, the term “dynamic environments” was defined to clarify the scope of this work, and 

a concrete formulation of the problem of entraining an agent to a dynamic environment 
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was provided. The chosen method for modelling the environmental dynamics, statistical 

time series, was justified, and its application in a real-time context on a robotic platform 

was detailed. 

 Using the forecasted state and the knowledge of how that state impacts a behavior’s 

performance, a circadian function was developed that adjusts the activation of its associated 

behavior based on the future predicted state. The performance of a behavior over the 

dominant environmental cycle is estimated. The circadian function provides activation 

when it is better than average to execute the behavior, with max activation at the best time 

within a cycle. 

 Finally, this circadian function is incorporated into a general action-selection 

methodology. While a behavior’s activation is dependent on multiple factors, the circadian 

function provides a strong bias to execute behaviors at the best times within an 

environmental cycle. A simple example detailed how this approach can be applied to an 

agent dealing with traffic. The more comprehensive experimental validation in chapter 4 

will demonstrate how behavior entrained to the environment’s dynamics can be produced. 
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CHAPTER 4. A NOTIONAL AGRICULTURAL EXPERIMENT 

The artificial circadian system has been presented as an answer to the first and second 

subsidiary research questions. It is a method to model environment dynamics on an 

autonomous robotic agent and entrain its behavior to them. This chapter describes the 

experiment built to validate this proposed answer. It will entail an autonomous agent 

performing persistent, agricultural-themed tasks. Daily and seasonal environmental cycles 

will drive the changing presence of pests, weeds, and sunlight. Successful entrainment of 

the agent’s behavior to its environment will be shown by quantitative improvements in 

performance and qualitative analysis of the scheduling of activity. 

 A second goal of this experiment is to answer the fourth subsidiary research 

question: “In what contexts is entraining to a dynamic environment useful for a robotic 

agent?”. Chapter 3 discussed the type of dynamic environments that are relevant, but 

qualities of the agent itself have so far not been addressed. If an agent can sense and react 

to environmental change fast enough, there may be no need for any type of prediction or 

forecasting. Simple reactive responses to those changes may be enough. As discussed in 

chapter two, a reactive agent will still generate cyclic behavior in response to a cyclically 

changing environment. In the following experiment, specific scenarios tested both slow 

actuation and limited sensing. These scenarios impeded the agent enough to degrade 

performance in its task and tested if the artificial circadian system was able to compensate 

for those limitations. Dynamic weather based on historical solar measurements was also 

applied to test the ACS approach against realistic dynamics for a solar-powered robot. 
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 This chapter first covers the construction of the agricultural testbed. Then, the full 

implementation of the experiment will be detailed, including the environmental dynamics, 

agent behaviors, scenarios, measures, and procedures. Next the results of each scenario 

will be presented, and the core hypotheses of the experiment answered. Finally, a 

framework for describing the scope of the ACS, an answer to the fourth subsidiary 

question, will be presented and the chapter will conclude. 

4.1 Construction of the Agricultural Testbed 

Validation of the artificial circadian system brings several challenges. This research is on 

the interaction of a robotic agent with a dynamic environment. Most robotic laboratories 

are not dynamic. The research is also focused on agents persisting over long durations of 

time. If a single trial requires multiple days, collecting multiple trials for multiple scenarios 

becomes an incredibly time intensive process. To make this work tractable, a notional 

agricultural environment was created for both simulation and hardware.  

 

Figure 4.1: The Neato Botvac platform used in the physical experiment, with the Raspberry 

Pi controller and camera mounted. The charging station is shown behind it. 
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The agricultural testbed consists of a mobile robot, a charging station, and sixteen artificial 

plants. The mobile robot is a Neato Botvac (see Figure 4.1) which comes equipped with a 

2D lidar for localization and the ability to dock to recharge (a key feature for the long 

duration experiments). The Botvac has been supplemented with a Raspberry Pi for control 

and a camera to detect the LED outputs of the artificial plants. 

 The core feature of the environment is the artificial plant, which uses three LEDs 

to display its state. Red indicates the presence of pests, green for weeds, and blue indicating 

a lack of water. Each artificial plant also has an IR range sensor, which acts as a switch the 

robot can interact with by moving close. A fourth white LED indicates when the robot is 

close enough to trigger the switch. Each of the eight cylinders shown below has two 

independent sides for a total of sixteen artificial plants in the testbed. A plant is “monitored” 

when the agent sits close enough to an artificial plant to trigger the distance sensor, 

essentially docking to it. To remove a pest the agent backs up from this docked position 

and then returns after a brief delay, toggling the distance switch OFF-ON. To remove a 

weed, this procedure is repeated, toggling the switch OFF-ON-OFF-ON. 
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Figure 4.2: The physical testbed. Each row shown has artificial plants on both sides. The 

green shrubs shown are decorative fakes, no plants were harmed in this work. 

Each row of artificial plants, shown above in Figure 4.2 is controlled through an Arduino, 

connected to a base laptop. This laptop runs the environment model, generating pest and 

weed activity to display on the artificial plants, and updating the model when the agent acts 

to remove pests or weeds. 

4.1.1 Simulated version 

A simulated version of the agricultural testbed was critical to get more data in reasonable 

time frames. The simulation uses ROS/Gazebo. The physical size of testbed and speed of 

the robotic platform were measured to match simulation parameters to. Results detailed in 

section 4.3 showed overall good matching between hardware and simulated trials. 
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Figure 4.3: The gazebo simulation of the physical testbed. In this image, the locations of 

individual artificial plants (P1 through P16) and quadrants that share pest populations (Q1 

through Q4) are labeled. 

4.2 Experiment Design 

4.2.1 Environmental Variables 

The first dynamic environmental variable is solar power. The simulation of solar power is 

based on data from the National Solar Radiation Data Base (NSRDB) (National Solar 

Radiation Database, n.d.). Available solar radiation is primarily driven by the daily solar 

cycle, with random influence from weather. The chosen data uses measurements from near 

Atlanta in 2016. Figure 4.4 shows six consecutive days of solar irradiance. Days with clear 

skies have smooth curves, while days with cloudy weather have sporadic levels of available 

solar energy. Below this, Figure 4.5 displays the daily net values for the entire year.  It 

shows the yearly cycle in daily solar irradiance, and a view of the prevalence of disruptions 

due to weather. To isolate the impacts of weather from other experimental variables, some 

scenarios use “static” solar dynamics, for which days with impact from weather are 

removed. 
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Figure 4.4: Solar irradiation data for several consecutive days. There are examples of clear 

and cloudy weather. 

 

Figure 4.5: Solar irradiation data for a full year. The max follows a smooth curve based on 

the seasonal change, while weather causes regular but random decreases in available energy. 

As weather forecasts are some of the most advanced and widely available forecasts, this 

experiment simulates the agent receiving weather forecasts from an outside entity. Direct 

forecasting of solar irradiance using time series is possible (Bacher, Madsen, & Nielsen, 

2009) but inherently more limited due to the smaller set of data available on a single robotic 

platform. Forecasts are generated and provided to the agent by taking the ground truth and 

multiplying by a random factor. This factor increases exponentially the further into the 
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future the forecast is. Based on literature (Lorenz, Hurka, Heinemann, & Beyer, 2009) a 

relative RMSE of 30% for forecasting 24 hours into the future was chosen as a realistic 

estimate of error. 

 The second environmental variable, pest dynamics, is broken down into quadrants 

with the four plants within a quadrant sharing a single pest population. Pest population uses 

a simplified linear growth model. Based on the population, pest activity is generated. It is 

this activity that the agent measures and interacts with. The agent can only remove a pest 

when it is active at the plant being monitored. Many insects have daily cycles in activity. 

This experiment used a nocturnal pattern peaking in the night, with low activity (20% of 

max) at other times. Figure 4.6 shows an example of this pest activity over time, including 

agent intervention, for one quadrant. 

 

Figure 4.6: Pest activity for one quadrant over seventeen days. Decreases in activity were 

caused by the agent removing pests. 

Pest activity is forecasted using the exponential smoothing method from the R forecasting 

library (Hyndman, O'Hara-Wild, Bergmeir, Razbash, & Wang, forecast: Forecasting 

Functions for Time Series and Linear Models, n.d.). An additive trend component captures 

the increasing population over time. A multiplicative seasonal component captures the 
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daily cycle in activity. In the time series literature this is also referred to as the Holt-Winters 

seasonal-multiplicative method and is shown below in equations 4.1.1-4. The variable of 

interest, 𝑦, at some point in time h steps into the future, 𝑦𝑡+ℎ, is dependent on the level 𝑙𝑡, 

the trend 𝑏𝑡, and the seasonal component 𝑠𝑡. The terms α, β, and γ are weights found via 

maximum liklihood estimation based on available historical data, and m is the number of 

steps in a seasonal cycle. See chapter 2 for more details on time series forecasting 

approaches. The full parameters for this model are provided in Appendix A.1 

𝑦𝑡+ℎ|𝑡 = (𝑙𝑡 + ℎ𝑏𝑡)𝑠𝑡+ℎ−𝑚 (4.1.1)

𝑙𝑡 = 𝛼
𝑦𝑡

𝑠𝑡−𝑚
+ (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (4.1.2)

𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − β)𝑏𝑡−1 (4.1.3)

𝑠𝑡 = 𝛾
𝑦𝑡

𝑙𝑡−1 − 𝑏𝑡−1 
+ (1 − 𝛾)𝑠𝑡−𝑚 (4.1.4)

 

As section 4.2.5 will discuss shortly, some scenarios will involve missing data. When the 

missing data is on the end of the time series, the agent simply forecasts longer: from the 

last measurement, up to the current time, and further into the future as needed. When the 

missing data is in the middle of the time series history, the time series is first decomposed 

into seasonal, trend, and error components. Then a linear interpolation is applied to the 

deseasonalized data, and the seasonal component is added back. 

 The final dynamic environmental variable is the presence of an annual weed 

species. As an annual species, the seeds that germinate this season were spread during the 

previous year. Rather than any daily cycle, the dynamics of the weeds are be a longer, 

seasonal one. Here the concern is when weeds begin to sprout, and thus require 

intervention. The weed dynamics are scheduled so that germination begins roughly mid-
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way through the experiment, effectively changing the demands on the agent. Every day 

evaluates the probability of having some number of weeds spawn based on the model, and 

then the location and hour the weed spawns are chosen randomly. 

 For forecasting weed activity, a simple exponentially weighted moving average 

(EWMA) is applied to each time slot in the seasonal cycle, with slots that are 24 hours 

long. Equation 4.2 below shows the basic form of the EWMA. The expected weed activity 

on a given day is therefore based on the moving average for that day in previous seasons. 

As the experiment only lasted for one simulated season, a true updating forecast was not 

possible, and in practice this was an estimated average amount of weed activity per day in 

the season. 

𝑦̂𝑡+1|𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑦̂𝑡|𝑡−1 (4.2) 

4.2.2 Charge Behavior 

The agent has three behaviors to execute, each associated with one of the key 

environmental variables: pests, weeds, and sunlight. The charge behavior returns the agent 

to its charging station, which notionally represents leaving the field to go into direct 

sunlight. Once the agent docks it begins recharging based on the simulated presence of 

solar radiation. Table 4.1 lists the component functions that provide activation for this 

behavior. 

Table 4.1: Charge Behavior Activation Components. 

Component Variable Function Weight 

Motivation 

Function 

Battery 

Level  
𝑓1 = 1 − (𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙 − 0.1) 𝑤1 = 1 
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Table 4.1 continued 

 

Releasing 

Mechanism 

Solar 

Level 
𝑓2 =

𝑠𝑜𝑙𝑎𝑟_𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑚𝑎𝑥_𝑠𝑜𝑙𝑎𝑟
  

𝑤2 = 0.66 

Constant 

Factor 
𝑓3 = 1 𝑤3 = 0.34 

Circadian 

Function 

Solar 

Level 
𝐷 = 𝑠𝑜𝑙𝑎𝑟_𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑤𝑐 = 0.6 

The charge behavior motivation function is based on the current battery level, scaled so 

that it activation is maxed when the battery reaches 10%. It’s releasing mechanism is based 

on the current solar irradiance (scaled by the approximate max solar irradiance for a given 

time step) and a constant factor. This constant factor allows for non-zero activation when 

there is no sunlight so that the agent may go to charge at night and wait for the sun to come 

up. As discussed in chapter three, the circadian function is based on a dependency function 

𝐷 that provides an estimate of the utility for executing the behavior during one time step 

given the environmental state. This dependency function is used together with the 

forecasted state and expected duration of the behavior to find the best time to activate, and 

activation at other times is scaled relative to that. See Section 3.4 for the full details. For 

this behavior, the dependency function is proportional to the solar irradiance. Scaling is not 

needed, as the circadian function will average constant factors out.  

 As discussed in chapter three, the motivation function and releasing mechanism are 

weighted sums of their individual components. If the associated variable of a component 

is forecasted, then that component becomes a weighted sum of the circadian function’s 

output and the original output. The final activation is the multiplication of the motivation 

function and releasing mechanism, representing internal and external factors respectively, 
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and a scaling factor G. For the charge behavior, 𝐺 = 1.1, setting it as higher priority than 

the pest and weed behaviors. This ensures that when the charge behavior’s activation is 

near its max, it will override other behaviors and keep the agent from becoming stranded 

without power. Equations 4.3.1-3 show the construction of the final activation function. 

𝑀𝑂𝑇 = 𝑤1𝑓1 (4.3.1)

𝑅𝑀 = 𝑤2𝑓2 + 𝑤3(𝑤𝑐𝐶𝐼𝑅 + (1 − 𝑤𝑐)𝑓3) (4.3.2)

𝐴𝑐𝑡 = 𝐺 ∗ 𝑀𝑂𝑇 ∗ 𝑅𝑀 = 1.1 ∗ 𝑤1𝑓1 ∗ (𝑤2𝑓2 + 𝑤3(𝑤𝑐𝐶𝐼𝑅 + (1 − 𝑤𝑐)𝑓3)) (4.3.3)

 

4.2.3 Pest Behavior 

There is one pest behavior per quadrant. When activated the agent drives to the closest 

plant in the relevant quadrant and monitors it for pest activity. Anytime a pest is active at 

the plant, it is removed. As activity is spread out over the four plants within a quadrant, 

this means the agent removes 1/4th of pest activity as it monitors. Table 4.2 lists the 

component functions that provide activation or this behavior. 

Table 4.2: Pest Behavior Activation Components. 

Component Variable Function Weight 

 

Motivation 

Function 

Time  
𝑓1 =  

ℎ𝑜𝑢𝑟𝑠_𝑠𝑖𝑛𝑐𝑒_𝑚𝑜𝑛𝑖𝑡𝑜𝑟 − 48

120
 

𝑤1 = 0.5 

Constant 

Factor 

𝑓2 = 1 𝑤2 = 0.5 

 

Releasing 

Mechanism 

Distance 
𝑓3 =

max_dist − current_dist

max_dist
 

𝑤3 = 0.34 

Pest Level 
𝑓4 =

𝑝𝑒𝑠𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑚𝑎𝑥_𝑝𝑒𝑠𝑡
 

𝑤4 = 0.66 

Circadian 

Function 

Pest Level 𝐷 = 𝑝𝑒𝑠𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑤𝑐 = 0.6 
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 The pest behavior’s motivation function is based on the time since it last monitored, 

increasing up to a max at seven days. This drives it to regularly monitor all quadrants, 

prioritizing the ones visited the least recently. There is also a constant factor, which allows 

for the agent to continue monitoring a plant even when it has completed the initial action 

and reset the hours_since_monitor variable. This constant factor represents the inherent 

value of monitoring and plant and removing pests, even if it has been checked recently. 

The releasing mechanism is based on distance to the nearest plant in the quadrant and the 

current pest activity level. The dependency function is also based on the pest activity level. 

The scaling factor G was set to 1. The full activation function is shown in equations 4.4.1-

3. 

𝑀𝑂𝑇 = 𝑤1𝑓1 + 𝑤2𝑓2 (4.4.1)

𝑅𝑀 = 𝑤3𝑓3 + 𝑤4(𝑤𝑐𝐶𝐼𝑅 + (1 − 𝑤𝑐)𝑓4) (4.4.2)

𝐴𝑐𝑡 = 𝐺 ∗ 𝑀𝑂𝑇 ∗ 𝑅𝑀 = (𝑤1𝑓1 + 𝑤2𝑓2) ∗ (𝑤3𝑓3 + 𝑤4(𝑤𝑐𝐶𝐼𝑅 + (1 − 𝑤𝑐)𝑓4)) (4.4.3)

 

The values for the parameters of the pest behavior and the following behaviors were chosen 

through limited experimental testing in simulation. The process for this is detailed in 

section 4.2.6. As the round values suggests, they were not overly optimized, just tuned to 

get the basic desired behavior. 

4.2.4 Weed Behavior 

The robot has a single weed behavior, which drives around to systematically check each 

plant for weeds and remove them if found. The activation function for the weed behavior 

closely matches the pest behavior. Table 4.3 lists the component functions that provide 

activation or this behavior. 
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Table 4.3: Weed Behavior Activation Components 

Component Variable Function Weight 

 

Motivation 

Function 

Time  
𝑓1 =  

ℎ𝑜𝑢𝑟𝑠_𝑠𝑖𝑛𝑐𝑒_𝑚𝑜𝑛𝑖𝑡𝑜𝑟 − 48

120
 

𝑤1 = 0.5 

Constant 

Factor 

𝑓2 = 1 𝑤2 = 0.5 

 

Releasing 

Mechanism 

Distance 
𝑓3 =

max_dist − current_dist

max_dist
 

𝑤3 = 0.34 

Weed 

Level 
𝑓4 =

𝑤𝑒𝑒𝑑_𝑐𝑜𝑢𝑛𝑡

max _𝑤𝑒𝑒𝑑𝑠
 

𝑤4 = 0.66 

Circadian 

Function 

Weed 

Level 
𝐷 = 𝑤𝑒𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 𝑤𝑐 = 0.4 

As with the pest behavior, the weed behavior’s motivation function is based on the time 

since it last monitored, increasing to a max at seven days. The constant factor provides 

non-zero activation from the motivation function when it has checked for weeds so that the 

agent may continue if there is no other behavior with high activation. Its releasing 

mechanism is based on distance to the next plant it must check and the current weed level. 

The dependency function is also based on the weed level. The scaling factor G was set to 

1. Once again, equations 4.5.1-3 show the full activation function. 

𝑀𝑂𝑇 = 𝑤1𝑓1 + 𝑤2𝑓2 (4.5.1)

𝑅𝑀 = 𝑤3𝑓3 + 𝑤4(𝑤𝑐𝐶𝐼𝑅 + (1 − 𝑤𝑐)𝑓4) (4.5.2)

𝐴𝑐𝑡 = 𝐺 ∗ 𝑀𝑂𝑇 ∗ 𝑅𝑀 = (𝑤1𝑓1 + 𝑤2𝑓2) ∗ (𝑤3𝑓3 + 𝑤4(𝑤𝑐𝐶𝐼𝑅 + (1 − 𝑤𝑐)𝑓4)) (4.5.3)

 

4.2.5 Scenarios and Measures 

Three scenarios increased the difficulty for the agent in different ways. The first scenario, 

“Local Sensing”, required the agent to directly observe plants to get an updated 
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measurement of pest and weed levels. This contrasts with the global sensing used in other 

scenarios, where environmental sensors provided the agent real time information. This can 

be viewed as a practical case of “slow sensing” for a robotic platform. Most sensors used 

on robotic platforms perform measurements extremely fast, but the need for a mobile 

robotic platform to move to an area introduces a delay in collecting the measurement. 

 For the non-forecasting agent, the most recent measurement taken replaced active 

sensing of pest/weed levels. In the forecasting condition, both pest and weed levels were 

forecasted to compensate for the lack of active sensing. In this scenario the relevant 

measures were the pest and weed levels. The pest level is the amount of pest activity per 

hour averaged over all hours and all four quadrants, while the weed level is the number of 

weeds present per hour averaged over all hours. The hypothesis is both the pest level and 

weed level should show a statistically significant decrease in the forecasting condition 

when compared to the non-forecasting agent. To test significance for both this scenario 

and the following scenarios, two-tailed T-tests were applied to simulated data with the 

standard P < 0.05 used as the cutoff for significance. 

 In the second scenario, “Slow Actuation”, global sensing was returned to the agent 

allowing for immediate sensing of changes in the environment. However, the travel speed 

of the robot was reduced by a factor of four. This meant it could take several hours to 

traverse across the entire workspace. In this scenario, the variables of interest are the pest 

level and charge rate, as they both have daily cycles and were forecasted. Charge rate is 

the percent of battery life recharged per hour, averaged over the total time the agent was 

charging. The hypothesis for scenario two is that there will be a statistically significant 

decrease in the average pest level, and increase in the charge rate, in the forecasting 
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condition when compared to the non-forecasting agent. The seasonal cycle of weeds is 

significantly slower, enough that the robot’s change in speed will not impact it. 

 In the final scenario, “Dynamic Weather”,  the static solar model is replaced using 

the historical measurements of solar irradiance at a site near Atlanta, GA. This introduces 

significant amounts of disruptions in solar energy availability. The robot’s speed is returned 

to normal, and the agent maintains global sensing. In this scenario only solar energy is 

forecasted, making charge rate the only variable of interest. The hypothesis is therefore 

that the charge rate for the forecasting agent will have a statistically significant 

increase compared the non-forecasting agent. Table 4.4 summarizes the hypotheses for 

this experiment. 

Table 4.4: Summary of experiment hypotheses for each scenario. 

Scenario Hypothesis Key Metrics 

1: Local Sensing The pest level and weed level should show 

a statistically significant decrease in the 

forecasting condition when compared to the 

non-forecasting agent. 

Average pest level 

Average weed level 

2: Slow Actuation There will be a statistically significant 

decrease in the pest level, and increase in 

the charge rate, in the forecasting condition 

when compared to the non-forecasting 

agent. 

Average pest level 

Charge rate 

3: Dynamic Weather The charge rate for the forecasting agent 

will have a statistically significant increase 

compared to the non-forecasting agent. 

Charge rate 
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4.2.6 Procedure Details 

In each scenario a reactive agent is compared to an agent utilizing the artificial circadian 

system. The only difference between the agents is the inclusion of the circadian function 

within the releasing mechanism, effectively changing the parameter wc from zero to non-

zero. Scenarios 1 and 2 had hardware trials executed to validate the approach on a physical 

platform. 

 There are a number of parameters associated with each behavior. The procedure for 

selecting these was as follows. A reactive agent was tested in a “null” scenario, without 

any of the challenges listed in the previous section for the tested scenarios. The agent 

moved relatively quickly, had global sensing, and weather was static. Parameters were 

tuned to get the intended qualitative performance, along with reasonable quantitative 

performance. Then behavior parameters were fixed for all scenarios. The only exception 

being wc, which was increased from zero for the forecasting agent condition. Thus, 

behaviors were never optimized for the inclusion of forecasting. The tested scenarios 

introduced challenges which degraded agent performance, and the artificial circadian 

system was applied to test if it could help recover performance, without any separate 

tuning. 

 Each scenario was run for 28 simulated days per trial. For the hardware experiment, 

the environment was sped up 30x compared to real time to reduce a 28 day trial to 22.4 

hours. All scenarios had five simulated trials executed. Each perturbed the initial pest 

population, used separately generated weed germination patterns, and had a different 

selection of days from historical solar measurements. 
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4.3 Results 

4.3.1 Scenario 1: Local Sensing 

 

Figure 4.7: Pest and weed levels for scenario 1. The colored bars are the simulated results, 

with standard error shown. The horizontal lines show the results of the hardware trials. 

When comparing the forecasting condition to the non-forecasting condition, pest levels 

were reduced by 28.3%, and weed levels by 50.2% (P = 0.0059, P = 0.0034 respectively). 

Figure 4.7 displays the results for both conditions. Hardware results match the pattern 

shown in simulation. The validates the hypothesis for scenario 1, showing the ACS 

improved performance.  

 How did the agent’s behavior change with forecasting to improve performance? 

Figure 4.8 displays histograms of the activation times for the pest behavior. Quadrant 1 is 

located near the charger, and both agents frequently moved to remove pests from it due to 

the low cost to do so. The other quadrants required notably more time/energy to travel to, 

and a clear difference in activation times is shown. The non-forecasting agent executes 
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sporadically throughout the day. Without any model of the pest dynamics, there’s no 

alignment of the pest behavior with pest activity, as the agent has no way to know when 

pests are more active without first executing the pest behavior. Instead, the agent generally 

goes to monitor after it has charged. While pests are still removed during these periods of 

lower pest activity, it is less efficient. 

 

Figure 4.8: Histograms of the pest behavior activation times for each quadrant. 

In contrast, the forecasting condition biases the pest behaviors to almost exclusively 

activate during periods of higher pest activity. The activation also has a noticeable shift 

forward in time for quadrant 4, which has the longest distance for the agent to travel to or 

from the charging station, where the agent spends the majority of its time. 
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 Weeds do not have any daily cycle, but the weed behavior is similarly unresponsive 

without forecasting. With local sensing the agent must estimate weed levels based on its 

last execution of monitoring, and by chance it may investigate several plants without weeds 

and incorrectly assume the level of weeds is lower than it is, delaying further work. The 

forecasting condition balances these noisy measurements with the forecasted germination 

rates, improving performance. 

4.3.2 Scenario 2: Slow actuation 

Scenario two’s main results are shown in Figure 4.9. In the forecasting condition there is a 

decrease in average pest levels of 14.3% (statistically significant with P = 0.0017). Though 

forecasting can’t completely overcome the physical limitation of slower actuation imposed 

on the agent, it helped compensate for it. There is also a small increase in the charge rate 

of 5.3% (P = 0.0432 ). However, the hardware results for charging did not match 

simulation, with the reactive robot charging slightly faster on hardware. The hypothesis for 

scenario 2 is partially validated. Pest levels were significantly decreased, but charge-rate 

was not significantly increased. 
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Figure 4.9: Pest and weed levels for scenario 2. The colored bars are the simulated results, 

with standard error shown. The horizontal lines show the results of the hardware trial. 

With regards to pest levels, activation times of the behaviors can be observed in Figure 

4.10 to gain insight into the difference. As in the previous scenario, in both conditions the 

agent would repeatedly go to the first quadrant to clear it off pests due to its short distance 

from the charging station. For the other quadrants, the activation times of the pest behaviors 

clearly shift to be earlier for the forecasting agent, in comparison to the reactive one. This 

is most significant for quadrant 4, the farthest quadrant from the charger, where the agent 

frequently started from. For quadrant 4 the forecasting agent typically activated the 

behavior several hours before pest activity increased beyond the minimal level. Under 

normal conditions this would be detrimental, but the slow agent took several hours to move 

to a relevant plant. Thus, the forecasting agent successfully generated proactive behavior 

to deal with its slow actuation. 
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Figure 4.10: Histograms of the pest behavior activation for each quadrant. 

The results of the charge behavior are analyzed in the next section along with scenario 

three. 

4.3.3 Scenario 3: Dynamic weather 

For scenario three, the only measure was the charge rate. The reactive agent had a charge 

rate of 0.131 percent/min, and the forecasting agent had a charge rate of 0.128 percent/min. 

While the reactive agent’s average charge rate was slightly higher (~2.3%), statistical tests 

show that the null hypothesis cannot be rejected: there was no difference between the two 

conditions (P = 0.508). 
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Figure 4.11: Histograms of the charge behavior activation. 

The charge behavior activation times for both scenario 2 and 3 are shown in Figure 4.11. 

These graphs show a strong pattern in both scenarios: begin charging early in the morning, 

typically before energy is even available (after being depleted at night) and move to charge 

again in the early afternoon after performing some amount of work. The emergent strategy 

of expending energy at night limits the ability of the charge behavior to be discriminative 

about when it chooses to charge. 

 Look backing at the dynamics shown in Figure 4.4, variation in solar energy 

happens at two scales. Hour-by-hour there can be significant fluctuation during cloudy 

weather. Due to the energy and time cost for moving around, the agent is unable to exploit 

these hourly changes. For reference, the average duration of pest monitoring was around 

three hours. On a longer scale, some days provide much more energy than others. If the 

agent could charge enough to run for multiple days, it could choose which days to charge. 
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Like most solar-powered platforms, daily charging is required, and this was not possible. 

Due to traits of the agent, it was not able to exploit changing solar energy due to dynamic 

weather even with forecasted knowledge. This is an important insight discussed further in 

the following section. 

4.4 The Scope of the ACS 

One of the goals stated at the beginning of this chapter was to answer the fourth subsidiary 

research question: “In what contexts is entraining to a dynamic environment useful for a 

robotic agent?”. Drawing lessons from these experiments, a set of general rules are 

proposed. The artificial circadian system provides value when: 

• The environment is changing. 

• The change impacts an agent’s performance. 

• The change is forecastable. 

• The environment dynamics are changing on a similar time-scale to the agent’s 

actions.  

The first three points reiterate the discussion in chapter three. If the environment is not 

changing in a way relevant to the agent, or that change is too random to be predicted, there 

can clearly by no relevance for forecasting. The last point is the key insight. If the time-

scales of the agent’s action and environmental change are similar, then the environment 

may have meaningfully changed once an agent has completed some action, or even during 

it. This environmental change could significantly impact the utility the agent will receive, 

and forecasting that change allows for the agent to take it into consideration during action 

selection, as it did it sections 4.3.1 and 4.3.2. 
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 This is not true for environmental change on time-scales different from the agent. 

For longer time-scales, an agent will generally have time to sense and react to small 

changes before they become significant. Forecasting is unnecessary. For change on time-

scales shorter than the agent’s action, the environmental will change repeatedly before a 

response could be executed, even with perfect knowledge of the future. Rapid changes will 

effectively average out. A similar phenomenon is seen in dynamical systems, where time-

scale separation can decouple different or components of a system from each other 

(Sakurama, Verriest, & Egerstedt, 2015).  

 

Figure 4.12: An agent will not need, or be able, to entrain behavior to environment dynamics 

that are much faster or slower than its actions. For dynamics at a similar time-scale, the 

timing of actions may have a significant impact. 

The experimental scenarios detailed in this chapter demonstrated this time-scale rule. In 

the second scenario, slow actuation, the speed of the agent is slowed down such that travel 

can take upwards of four hours to traverse the entire workspace. This is similar to pest 

activity, which is elevated for a roughly eight-hour period every day. This means the agent 

can miss a large portion of heightened activity if it was not prepared. 
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 In the local sensing scenario, the agent was not particularly slow nor did it 

consistently monitor too late. Often the agent monitored too early. However, the agent in 

this experiment was energy constrained, with a limited amount of time it could work. When 

the agent monitored prematurely, it expended energy and could not fully exploit the periods 

of high pest activity. As the agent charges every day, this happens on the same time-scale 

as the pest activity fluctuations. This effect was present in all scenarios, but the local 

sensing limitation lead to the reactive agent monitoring at worse times more frequently, 

and thus wasting its limited energy. 

 The experiment also had dynamics outside of the agents time-scale. Variations in 

solar energy happened on a scale of hour-to-hour or over multiple days. As mentioned, the 

agent was unable to exploit either of these. Hour-to-hour is on a time-scale too short for 

the agent to act, even with perfect knowledge about the future. The energy cost of moving 

back and forth would overshadow any benefits. The difference in available solar energy 

over multiple days is on a time-scale too long for the agent, as it had to charge every day.  

 The rules listed here identify when the features of the environment will cause 

the timing of an agent’s actions to significantly impact its performance. This makes it 

likely, but does not guarantee, that using the artificial circadian system will provide 

improvements. There are possible cases where simpler strategies have adequate or even 

optimal performance. However, if the environment meets these criteria and an autonomous 

agent is unable to handle the changing environment, then the artificial circadian system (or 

similar approaches which leverage forecasting) should be considered. 
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 A separate question is whether the ACS is the right approach to adapting the 

agent’s behavior, given an environment that meets these criteria. The answer here is similar 

to what was discussed in chapter 3 on when to use time series models. If you have a 

complete model of the agent and environment (e.g. a system of dynamical equations, a 

transfer function, etc), then techniques designed for those models (e.g. control theory, 

Markov decision processes) may do better. In this work, time series forecasting provides 

some insight to the future of the environment, but it is not assumed that you have a complete 

model of how the environment changes and how the agent impacts it. Rather the ACS 

exploits what it has, forecasts for some variables. If a reasonably accurate model for all 

relevant state variables is available, approaches that can exploit that have the potential to 

perform better. 

4.5 Conclusions 

In this chapter, the artificial circadian system was tested in a notional precision-agricultural 

task. Multiple scenarios stressed the agent in different ways. Quantitative results 

demonstrated the ACS was able to improve performance in some cases. Qualitative 

analysis showed how it entrained agent behavior to the dynamics of the environment, 

timing the activation of behaviors around the dominant cycles. Drawing from the results, 

an answer to the fourth subsidiary question was provided. A set of rules is proposed to 

define the general scope of the ACS based on the environment and how it interacts with 

the agent. 

 In the first chapter of this dissertation, it was mentioned that both reactive 

controllers and set schedules can be used to deal with changing environments. This chapter 
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has focused on comparing the artificial circadian system to a reactive agent, but what of an 

agent with a hardcoded schedule designed offline to best exploit a regular environmental 

cycle? An obvious issue is that such an approach will break down if (or when) the 

environments dynamics deviate from their normal cycle. In the next chapter, responding to 

change within the environment dynamics will be covered. 
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CHAPTER 5. ROBUSTNESS TO CHANGING DYNAMICS 

It is inevitable that for any real robotic platform, models of the environment will eventually 

fail. Simplified models may not capture important effects, truly random or unpredictable 

events may occur, or the dynamics themselves may change over time. In these situations, 

forecasting may not only fail to help, but may make an agent’s performance worse than a 

more naïve reactive approach. The work in this chapter addresses these challenges and 

answers the third subsidiary research question: “Can such a system be made robust to 

changes in the dynamics, due to either short-term perturbations or long-term 

environmental change?”. 

 The first section of this chapter details extensions to the ACS to make it robust to 

deviations of the environment from its model. The second section covers a modified 

version of the experiment in chapter four. The experiment will include new scenarios where 

the dynamics undergo both temporary and permanent shifts. Both the original ACS and a 

new robust version are tested on each scenario. The third section discusses the results of 

the experiment, including quantitative and qualitative analysis, before the chapter 

concludes. 

5.1 Robustness in the Artificial Circadian System 

The goal of robustness in this context is to make the ACS fail-safe with regards to 

inaccurate forecasts. The ACS can be considered robust if it can leverage forecasting when 



 75 

it is accurate and ignore forecasting when accuracy degrades. This involves three steps that 

will be examined in this section: 

• Identify when forecasting accuracy has degraded 

• Adjust action-selection to not rely on the degraded forecasting 

• Attempt recovery of forecasting 

5.1.1 Identifying Modelling Error 

The most important capability for achieving robustness is the ability to detect when forecast 

accuracy is degrading. It is impossible to know how accurate a forecast generated at the 

current moment is in advance. Instead, the accuracy of forecasts in the past are evaluated 

using measurements taken by the agent after the forecasts were generated. Similar to the 

forecasting process itself, an assumption is made that forecast accuracy in the past predicts 

forecast accuracy in the future. If yesterday’s forecast for today was accurate, today’s 

forecast for tomorrow may be as well. This assumption is broken whenever the 

environment’s dynamics transition. There will always be a delay between the forecast 

becoming inaccurate (or accurate again) and the ability of the agent to detect that change. 

For cases of short-term disruptions, however, the agent can explicitly check this 

assumption and potentially speed up recovery. Section 5.1.3 below will discuss this in more 

detail. 

For a state variable 𝑦𝑡, the standard error of its forecast 𝑦̂𝑡 at some point in time is defined 

as: 

𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡 (5.1) 
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Many approaches can be used to evaluate the error over time. Standard metrics such as root 

means square error (RMSE) or the mean absolute error (MAE) provide absolute measures 

of error. Percentage errors can be used to achieve a unit-independent measure, which 

allows for the metric to be applied in different domains more easily. The work in this 

dissertation uses a metric based on the mean absolute scaled error (MASE) proposed in 

(Hyndman & Koehler, 2006) and shown below in equations 5.2 and 5.3. The idea is to 

scale the measured error by the error of the naïve forecast. The naïve forecast always 

predicts the next time step as the value of the previous time step. Thus, the error of the 

naïve forecast is always the difference between the values of two consecutive time steps. 

The MASE looks at the mean of this scaled error over multiple time steps. MASE will be 

below one whenever the forecasting model is performing better than the naïve approach. 

𝑞𝑡 =
𝑒𝑡

1
𝑛 − 1

∑ |𝑦𝑖 − 𝑦𝑖−1|𝑛
𝑖=2

 (5.2)
 

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|𝑞𝑡|) (5.3) 

Without any model of the environment and how it changes, the best a robotic agent can do 

is to rely on direct sensor measurements of the relevant environmental variables. Whenever 

the variable can’t be actively measured, the best estimation is the last measured value. 

Though not typically referred to as a naïve forecast, this assumption that the most recent 

measurement is the most accurate guess is commonly applied in robotics and related 

systems when measurements are not always available; e.g., (Wang, Wang, Li, & Wang, 

2016) (Krajnik T. , Fentanes, Santos, & Duckett, 2017). 
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 The metric defined in equations 5.2 and 5.3 is not only a general reference for 

accuracy but provides a comparison between the accuracy of the forecasts with the 

assumptions a non-forecasting agent makes. This scaling against the naïve forecast means 

some level of absolute forecast error will be treated as worse in a simple environment with 

slow and mild changes, compared to the same level of error in an environment experiencing 

significant swings. Phrased another way, the error metric MASE is not the absolute error, 

but how much better (or worse) the forecast is compared to not forecasting. Note that a 

reactive agent does have one advantage compared to the forecasting agent: it can update 

continuously. In contrast, time series models are generally discrete and must wait for the 

next time step to update. For a MASE of one, a reactive agent may perform better due to 

adjustments made between time steps. 

 There are a few important variations from the original MASE metric in our 

approach. Rather than using in-sample data to calculate the naïve forecast error (i.e., the 

naïve forecast error on the training data for the model), the error for the naïve forecast on 

the real-time data is used. This scales the forecast error by the estimated accuracy of a non-

forecasting agent given the same real-time data. In addition, the agent uses the multi-step 

forecast for action selection, forecasting a full cycle of the dominant seasonal pattern in 

advance. It is the accuracy of this multi-step forecast that we are concerned with, and which 

is used when calculating error, rather than the standard one-step forecasts. Given 𝑦̂𝑡
𝑘 is the 

forecast for time step 𝑡 generated at time step 𝑘, the multi-step error of the forecast at time 

𝑡 for with an environmental cycle of period 𝑀 is: 

𝑒𝑡 =
1

𝑀
∑ 𝑦̂𝜏

𝑡−𝑀 − 𝑦𝜏

𝑡

𝜏=𝑡−𝑀

 (5.4) 
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Rather than taking the mean of this error over all time steps, the value of the last time step 

is used directly to create a continuously updating measurement of error. The final error 

metric for a time step 𝑡 will be referred to as the scaled error (SE): 

𝑆𝐸𝑡 =
𝑒𝑡

1
𝑀

∑ |𝑦𝜏 − 𝑦𝜏−1|𝑡
𝜏=𝑡−𝑀

 (5.5)
 

Figure 5.1 introduces an example that will be used throughout Section 5.1. Figure 5.1(a) 

shows an example state variable with a strong cyclic pattern repeating every 24 hours. A 

simple forecasting method is used which forecasts the value of a one-hour time step as the 

average of the two time steps at the same hour during the previous two days. The error of 

the forecast in blue, at timesteps 96 to 119, is used when calculating the multi-step forecast 

accuracy for time step 120, marked with a vertical blue line. Likewise, the forecast in red 

is used to calculate the SE for the timepoint marked with the vertical red line. 
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Figure 5.1: (a) shows and example time series with a disruption between hours 125 and 140.  

(b) shows the forecast error. The blue and red forecasts are used to calculate the SE at the 

time steps marked by the vertical blue/red lines. 

Note the deviation of the state variable from its regular pattern between timesteps 125 

and 140. The red forecast, made using data before this environmental transition, shows 

significantly higher deviation from the true values of Y. Figure 5.1(b) shows how the SE 

metric defined in this section changes over time. Initially around ~0.5, it spikes 

dramatically during the period of time the deviation is included in the measurement of 

accuracy. Afterwards, the SE drops but remains higher than the original value for several 

cycles due to the deviation biasing the forecasting model. Section 5.1.3 will discuss these 

phenomena, and potential responses, in more detail. Table 5.1 below provides 

pseudocode for calculating the scaled error. Note that M is the number of time steps for 

one period in the cycle. 

Table 5.1: Algorithm to calculate the scaled error of a forecast. 

Algorithm: Scaled Error 

Inputs: 

• t – Current timestep 

• state – Vector of state history 

• forecast – Vector or forecast values generated one cycle (M time steps) in the 

past 

ScaledError(t, state, forecast): 

    For i from t-M to t: 

        forecast_error += forecast[i] – state[i] 

        naive_error += state[i] – state[i–1] 

    End For 

    Return forecast_error / naive_error 
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5.1.2 Adjusting Action Selection 

Chapter 3 described how the circadian function is incorporated into action selection. 

Reviewing briefly, action selection is based on two functions. The motivation function 

(MOT) and releasing mechanism (RM), which consider internal and external factors 

respectively. Each are weighted sums of various components. The circadian function 

comes into play only for the components dependent on the variable being forecasted. It is 

a function of the forecasted value of an environmental variable, rather than its current 

measured value. As shown in equation 5.7, the relevant component of the releasing 

mechanism is replaced with a weighted sum of the circadian function and the original 

function. 

𝑅𝑀 = ∑ 𝑤𝑗 ∗ 𝑓𝑗(𝑣𝑗)

𝑗

 (5.6) 

𝑓𝑗(𝑣𝑗)   →   𝑤𝑐𝐶𝐼𝑅(𝑣𝑗 , 𝑡) + (1 − 𝑤𝑐)𝑓𝑗(𝑣𝑗)      0 ≤ 𝑤𝑐 ≤ 1 (5.7) 

One option to deal with a degraded forecast is to reduce the length of the forecast being 

used, e.g. (Droge & Egerstedt, 2011). Forecasts usually become less accurate farther into 

the future, so this enables the best part of the forecast to still be leveraged. In this work, 

looking at the forecast over a full cycle is critical. In addition, disruptions in the 

environment may make forecasts of the near future less accurate than the forecast of later 

time steps. Instead the weight or influence of the full forecast is reduced. The parameter 

𝑤𝑐, which was static in previous work, will be adjusted to respond to changing forecast 

accuracy. If the SE is equal to one, then the forecast is on average as accurate as the naïve 

forecast. Around or above values of one, the agent should ignore forecasting entirely and 
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rely only on sensor measurements. For values below one, the agent transitions to relying 

more and more on forecasting. The parameter 𝑤𝑐 becomes a monotonically decreasing 

function of SE such that: 

𝑤𝑐(0) = 𝐿     𝑤𝑐(1) = 0     𝑆𝐸1 ≤ 𝑆𝐸2 → 𝑤𝑐(𝑆𝐸1) ≥ 𝑤𝑐(𝑆𝐸2) 

𝐿 is the maximum value of 𝑤𝑐 used in action selection. These constraints provide the 

general shape of the function 𝑤𝑐(𝑆𝐸), but still leave many possible options: a step function, 

a linear function, etc. Finding the optimal function would require measuring the 

performance of the agent with different forecasting accuracies and values for 𝑤𝑐, and is not 

practical in the contexts this dissertation focuses upon; contexts where collecting samples 

takes large amounts of time. Instead, a procedure for building a reasonable 𝑤𝑐(𝑆𝐸) function 

for common use-cases is presented. This procedure was applied in the experiment detailed 

later in Section 5.3. 

 A logistic function is chosen to provide a smooth switching behavior; where error 

values under some level maximize 𝑤𝑐 and error values above some level minimize 𝑤𝑐. 

Given that the max value 𝐿 is selected as part of tuning action selection, as discussed in 

chapter 3, this leaves two parameters to select: the midpoint 𝑚 where the transition is 

centered, and the growth rate 𝑘 that determines how fast the transition happens. 

𝑤𝑐(𝑆𝐸) = 𝐿 (1 −
1

1 + 𝑒−𝑘(𝑆𝐸−𝑚)
 ) (5.8) 

For any agent operating in a real environment, there will be some level of forecast error 

that will exist under normal operation. This will be defined as the nominal SE. In the 

example from Figure 5.1, the average error before any environmental disturbance was just 
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under 0.5. For simplicity, we will round this up for a nominal SE of 0.5. A reasonable 

choice for the midpoint 𝑚 of the logistic function is the midpoint between this nominal SE 

value and 1. If the system is expected to be more or less sensitive to degrading forecast 

accuracy, this could be adjusted to be closer or farther from the nominal SE.  

𝑚 =
1 − 𝑛𝑜𝑚𝑖𝑛𝑎𝑙_𝑆𝐸

2
 (5.9) 

The second parameter to set is the growth rate k, which determines the steepness of the 

function. As discussed above, the constraint to be met is that 𝑤𝑐 approaches 0 as SE 

approaches 1. This can be represented as 𝑤𝑐(1) = 𝐿 ∗ 𝜀, where ε is some arbitrarily small 

number. It is important to note that the gain 𝑘 to achieve this is itself dependent of the 

midpoint, 𝑚. For a higher value of 𝑚, closer to 1, the gain must be higher. The gain is 

therefore a function of a static parameter and 𝑚: 

𝑘 =
𝑘0

1 − 𝑚
 (5.10) 

This can be plugged back into equation 5.8, with 𝑆𝐸 = 1, to solve for the parameter 𝑘0 

needed to drive 𝑤𝑐(1) = 𝐿 ∗ 𝜀 for a certain value of ε: 

𝑤𝑐(1) = 𝐿 ∗ 𝜀 = 𝐿 ∗ (1 −
1

1 + 𝑒−(
𝑘0

1−𝑚
)(1−𝑚)

) 

𝜀 = 1 −
1

1 + 𝑒−𝑘0
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1 − 𝜀 =
1

1 + 𝑒−𝑘0
 

(1 − 𝜀) + (1 − 𝜀)𝑒−𝑘0 = 1 

(1 − 𝜀)𝑒−𝑘0 =  𝜀 

𝑒−𝑘0 =
𝜀

1 −  𝜀
 

𝑘0 = − ln (
𝜀

1 −  𝜀
) (5.11) 

If the desired value is 𝜀 < 0.01, or that 𝑤𝑐(1) will be less than 1% of its maximum value, 

then apply equation 5.11:  

𝑘0 = − ln (
0.01

1 − 0.01
) = 4.595 

For 𝜀 = 0.01 we get 𝑘0 = 4.595. Therefore, to hit the requirement of 𝜀 < 0.01, we must 

select 

𝑘0 > 4.595. Rounding this up to 4.6, we have a method to set the growth rate 𝑘, given any 

midpoint 𝑚, to ensure 𝑤𝑐(1) is within 𝜀 < 0.01 of 0: 

𝑘 =
4.6

1 − 𝑚
 (5.12) 

Let us apply this to the example from Figure 5.1. The nominal SE was 0.5. Let us assume 

for this example the intended max weight of the circadian function for action selection is 

𝐿 = 0.7. Applying equations 5.9 and 5.12, we can find the full function 𝑤𝑐(𝑆𝐸): 
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𝑚 =
1 − 0.5

2
= 0.75 

𝑘 =
4.6

1 − 0.75
= 18.4 

𝑤𝑐(𝑆𝐸) = 0.7 (1 −
1

1 + 𝑒−18.4(𝑆𝐸−0.75)
 ) 

Figure 5.2 below shows the value of 𝑤𝑐(𝑆𝐸) for this example, demonstrating that the 

desired switching behavior is achieved. When the scaled error spikes, 𝑤𝑐(𝑆𝐸) falls to 

zero, switching off the impact of forecasting and the circadian component in action 

selection. Figure 5.3 shows the output of 𝑤𝑐(𝑆𝐸) on this example for a range of midpoint 

values, with the gain 𝑘 for each calculated by equation 5.12. The constraints provided 

ensure they all cut off activation when forecasting is clearly inaccurate. However, the 

sensitivity to mild increases in forecasting error, and therefore the weight of forecasts in 

action selection under those conditions, vary. For some sets of values, the output of 

𝑤𝑐(𝑆𝐸) is lowered but non-zero for a significant amount of time. Others keep the output 

maximized up until 𝑤𝑐(𝑆𝐸) goes to zero. 

 

Figure 5.2: The error from the example in Figure 5.1 with circadian weight Wc plotted. 
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Around time step 125, Wc falls to zero, turning off the usage of the circadian component 

in action selection. This is reversed around time step 205, when error falls and Wc increases 

quickly back to its max level. 

 

Figure 5.3: The function Wc plotted for several additional values of the midpoint (m) and 

growth rate (k) parameters. Lower midpoint (m) and gain (k) values means it is more likely 

for the circadian weight Wc to be reduced without turning off entirely. 

5.1.3 Recovery 

The approach described so far in this chapter allows the ACS to identify when its model 

no longer accurately captures the environment dynamics and stops poor quality forecasts 

from degrading action-selection. The basic recovery option available to an agent is to 

simply wait until forecasting error returns to normal, if it does. In some cases that may be 

the best the agent can do. For other cases there are opportunities for the agent to recover 

faster, if recognized. 

 Let us define “disruptions” as relatively short-duration changes to the environment, 

lasting two or less periods of the dominant cycle. Examples of this in the real world include 

large events in a city disrupting traffic for a day, or serious storms making pests take shelter. 

While the disruption may end, forecasting based on past data will be less accurate due to 
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the disrupted history. The number of time steps this effect persists will depend on the 

model, but it is common for models to leverage data from one to three cycles back. 

 This creates two distinct phases of error for the forecasting model. Figure 5.4 below 

visualizes them, using the same simplified scenario introduce earlier for Figure 5.1. 

Focusing on the normal forecast error in the bottom graph, the initial phase is when data 

from the disruption event are directly used when calculating the forecast accuracy. This 

region is marked by the red background region. The second phase, marked by the green 

background region, is the error introduced by the disrupted data’s impact on the forecasting 

model. Though the error is lower than during and directly after the disruption, it is still 

significant. Figures 5.2 and 5.3 also show this phenomenon, and how the circadian weight 

𝑤𝑐(𝑆𝐸) stays at zero during this second phase. 

 

Figure 5.4: A hypothetical disruption event, where the dynamics on day three return to the 

regular pattern seen before the disruption in day two. The forecast from the current time is 
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influenced by the disruption, and may have more error then a forecast generated with data 

before the disruption. 

Is there some way the agent can avoid having a temporary disruption reduce forecast 

accuracy, and therefore performance, for multiple cycles into the future? The agent could 

ignore recent measurements, which include data from during the disruption, and instead 

forecast from before the disruption to the current time. Forecasting from farther back in 

time will increase error and uncertainty, but may provide a better forecast after a disruption. 

An outlier forecast is therefore defined as a forecast based on data from before the 

environment had changed. An example outlier forecast is shown in Figure 5.4(a) in blue. 

The example state variable has limited drift, so the forecast is able to project multiple cycles 

into the future with reasonable accuracy. Given 𝑀 is the period of the dominant seasonal 

cycle, 𝑆𝑡 is the state history up to timestep 𝑡, and 𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 is the first timestep that the 

error SE crosses over a threshold determined by the range of SE values under normal 

operation, then we define the outlier forecast as: 

𝑡𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 −
𝑀

2
 (5.13) 

𝑜𝑢𝑡𝑙𝑖𝑒𝑟_𝐹𝐶 = 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑆̂𝑡𝑜𝑢𝑡𝑙𝑖𝑒𝑟
) (5.14) 

How far back does the outlier forecast need to begin? The time step 𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 is the time 

when some change in the environment is detected, but there is no way to know exactly 

when the change started. Given that the error metric SE uses one cycle of forecasts, the 

range of options are restricted to between 1 and 𝑀 time steps, where M is the period of the 

environmental cycle. Starting the outlier_FC earlier will likely increase error as it has to 

forecast farther forward in time, but starting too late could leave “bad” data in the forecast, 
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increasing error even more. Experimental testing suggests a disruption event, one that 

changes the environment significantly, can generally be detected in ~1/4th of the cycle. To 

be conservative, in this work the outlier forecast begins from half a cycle before the 

detection time step. Any environmental change that would take longer to detect, needing 

the majority of a cycle to drive the error noticeably higher, would be a rather mild change. 

The forecast from the time step 𝑡𝑜𝑢𝑡𝑙𝑖𝑒𝑟 is generated in the same manner as the normal 

forecast, but is extended to forecast beyond a single cycle. 

 The “detection” at this point is not a detection of a disruption specifically, but a 

detection that the environment changed in some way not captured by the model. 

Confirming the event is a disruption, as opposed to a more persistent change in the 

environment, requires confirming that the environment returned to the normal dynamics. 

The outlier forecast is used to confirm this hypothesis, and if the outlier forecast error falls 

low enough, it replaces the normal forecast being provided to the action selection 

mechanism. The threshold used to determine if the outlier forecast is good enough is not 

the same threshold used to detect the initial disruption. As the scaled error is noisy, two 

thresholds are used to create a small amount of hysteresis and avoid rapid repeated 

transitions: high_thresh and low_thresh. A detection of a potential disruption happens 

when the normal forecast error goes above high_thresh. To determine that the normal 

forecast has returned to an acceptable error level, or that the outlier forecast is valid, the 

scaled error must fall below low_thresh. The exact values of these parameters should be 

tuned based on the characteristics of the environment; e.g. more noise would suggest more 

hysteresis is needed and there should be a larger gap between the thresholds. However, a 

good starting place based on the author’s experience is to set high_threshold to be half way 
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between the nominal_SE and 1 (the same value as the midpoint from equation 5.9) and 

low_thresh to be 0.05 below that:  

ℎ𝑖𝑔ℎ_𝑡ℎ𝑟𝑒𝑠ℎ =
1 − 𝑛𝑜𝑚𝑖𝑛𝑎𝑙_𝑆𝐸

2
(5.15) 

𝑙𝑜𝑤_𝑡ℎ𝑟𝑒𝑠ℎ = ℎ𝑖𝑔ℎ_𝑡ℎ𝑟𝑒𝑠ℎ − 0.05 (5.16) 

To manage this process which is executed in parallel with the adjustment of the weight 

𝑤𝑐(𝑆𝐸), the forecasting component of the artificial circadian system uses a state machine, 

shown below in Figure 5.5.  

 

Figure 5.5: State machine for the robust ACS. The robust mode generates and tests the outlier 

forecast to see if it improves accuracy. The outlier mode provides this outlier forecast to the 

action selection system. The change mode, if reached, will notify supervisors that a significant 

change in the environment has happened, and intervention is needed. 
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In the default mode, the forecasts produced and used by action selection are the normal 

forecasts introduced in chapter 3; a forecast generated based on the most recent 

measurements. Likewise, the SE used to weight action selection is the error of this normal 

forecast. If SE crosses the high_thresh, the ACS transitions to the robust mode. This mode 

indicates that change in the environment has been detected, but the ACS continues to use 

the normal forecast and SE for action selection. In this robust mode the agent also generates 

the outlier forecast described in this section, and tests the disruption hypothesis using the 

outlier forecast error. In the case that the event is a disruption, the outlier forecast’s SE will 

still be high during the time the environment is changed (phase 1) but if/when the 

environment returns to normal (phase 2) the outlier forecast’s SE may drop. If outlier 

forecast error crosses low_thresh, the ACS transitions to outlier mode, meaning it has 

successfully identified an outlier event. In this mode, the outlier forecast and its SE are 

used for action selection, rather than the normal forecast based on all historical data. The 

ACS will only stay in outlier mode for a relatively short duration. If the outlier forecast is 

accurate, then the normal forecast will become accurate again once the model moves past 

referencing any of the disrupted time steps. Table 5.2 summarizes how each mode of the 

ACS uses the normal and outlier forecast. 

Table 5.2: Forecast Usage in ACS Modes. 

Mode Normal Forecast Outlier Forecast 

Default Used for action selection Not calculated 

Robust Used for action selection Checked for transition 
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Table 5.2 continued 

Outlier Checked for transition Used for action selection 

Change Used for action selection Not calculated 

It’s important to note that even with a true disruption event, this approach may not be able 

to confirm that the event was a disruption and provide a better forecast. Real environment 

dynamics may be too complicated or noisy to accurately forecast multiple cycles into the 

future. Particularly if a significant amount of drift exists in the state, forecasts from far back 

in time may be inaccurate. If so, the outlier forecast error will stay high, and the agent will 

never transition to outlier mode. In this case, the agent will simply continue to ignore 

forecasts in action selection (due to high SE) until the normal forecasts become accurate 

again, and the ACS transitions back to the default mode. 

 On the other end of the spectrum from disruptions, changes to an environment’s 

dynamics may be permanent. In this case, the goal should be to identify the change. As 

discussed in chapter 2, model selection for time series forecasting is still done 

predominantly by hand. Some changes may be captured by re-fitting parameters to new 

data, but not all. Machine-learning based approaches offer the possibility of fully automatic 

learning, but need significantly more data to train with compared to a given statistical time 

series model fitting parameters. In the contexts focused on in this dissertation, where one 

cycle is often an entire day, collecting enough data could take weeks or months. Specialized 

approaches for learning in these contexts could be interesting future work, but are not 

addressed in this dissertation. 
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 Thus, the detection and response to apparent permanent changes is more 

straightforward than for disruptions. If the ACS persists in the robust mode for too long, 

and the outlier forecast is not accurate, then it assumes the environment has changed 

permanently and transitions to change mode. “Too long” is a set number of time steps 

given by the time_thresh. As disruptions are defined to be less than two environmental 

cycles (2M), and the robust_start time is shifted back half a cycle from detection (M/2), 

this work sets 𝑡𝑖𝑚𝑒_𝑡ℎ𝑟𝑒𝑠ℎ = 2.5𝑀. The only action taken in change mode is to identify 

this state so that relevant supervisors can be alerted, and appropriate manual interventions 

taken. As Table 5.2 notes, even if long-term changes are detected, the normal forecast and 

error are still provided to action selection, though 𝑤𝑐(𝑆𝐸) will likely remain near zero. 

Thus action-selection will ignore forecasting, and the agent will act reactively until manual 

intervention updates the environment model. 

 Table 5.3 below shows the core loop logic the ACS performs every time step. First 

forecasts are updated, and their error’s calculated. Based on those error values, the ACS 

checks if it should transition to a different state. Finally, based on what mode it is in, it 

returns the correct forecast and error which are used by the action selection system. 

 

 

 

 



 93 

Table 5.3: Algorithm to monitor forecast accuracy and implement robust methods. 

Algorithm: Robust ACS Core Loop 

Inputs: 

• t – Current timestep 

• y_history – Vector of state history 

Functions: 

• Forecast(history) – Forecast with known model using state vector history 

o See Chapter 3 

• ScaledError(t, history, forecast) – Finds the scaled error of a forecast 

o See Table 5.1 

RobustCoreLoop(t, y_history): 

    // Step 1: Get the forecasts and scaled errors 

    normal_forecast = Forecast( y_history[1:t-M] )         // y_history up to time step t-M 

    normal_SE = ScaledError( t, y_history, normal_forecast ) 

    If ACS_state == (Robust or Outlier): 

        outlier_forecast = Forecast( y_history[1:robust_start] )//y_history up to robust_start 

        outlier_SE = ScaledError( t, y_history, outlier_forecast ) 

 

    // Step 2: Check and transition states as necessary 

    If normal_SE < low_thresh: 

        ACS_state = Normal 

    Else If ACS_state == Normal And normal_SE > high_thresh: 

        ACS_state = Robust 

        robust_start = t – M/2 

        outlier_forecast = Forecast( y_history[1:robust_start] ) 

        outlier_SE = ScaledError( t, y_history, outlier_forecast ) 

    Else If ACS_state == Robust:  

        If outlier_SE < low_thresh: 

            ACS_state = Outlier 

        Else If ( t – robust_start ) > time_thresh: 

            ACS_state = Change 

            Notify supervisory system/personnel  
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Table 5.3 continued 

        End If 

    Else If ACS_state == Outlier And outlier_SE > high_thresh:  

        ACS_state = Robust 

    End If 

 

    // Step 3: Return the correct forecast/error for action selection to use 

    If ACS_state = Outlier: 

        Return outlier_forecast, outlier_SE 

    Else: 

        return_forecast = Forecast( y_history[1:t] ) 

        Return return_forecast, normal_SE 

    End If 

 

5.2 Robust Experiment Design 

The experiment design presented in this chapter follows the core design detailed in chapter 

four.  The same notional agricultural testbed is used, and the agent still must balance 

charging from solar energy and removing pests. The “slow actuation” scenario is used as 

the baseline to create a need for forecasting. The key new element to this experiment is that 

the environment dynamics will change during a trial. A reactive agent, the basic ACS 

approach, and the robust ACS detailed in this chapter are all tested against various changes 

to the dynamics. The main hypothesis is that the robust ACS will be able to identify and 

respond to the changes in the environment dynamics, providing better overall performance 

than either a reactive approach or the basic ACS. Specific hypotheses to be evaluated are 

detailed in section 5.2.3. 
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5.2.1 Environmental Variables 

This experiment more narrowly focuses on pest dynamics and agent performance 

managing pests. To avoid obscuring the impact of changing pest dynamics, weeds are no 

longer included. Solar energy is still available according to the daily solar cycle, but the 

static solar dynamics from the previous experiment is used. Days with significant variation 

due to weather are removed to make available solar power consistent, and it was not 

forecasted by the agent. 

 Pest dynamics are still broken down into quadrants where four plants within a 

quadrant share a single pest population. The underlying pest population uses a linear 

growth model. A daily activity pattern is used to generate cyclic activity based on the time 

of day and the total population. When the environment dynamics change, it is this activity 

pattern that is modified. The underlying population model stays the same. An active pest 

is displayed on a plant, and the agent can only remove a pest when it is active at the plant 

being monitored. The agent can therefore only respond to 25% of activity in a quadrant. 

 This experiment uses an ARIMA based model for forecasting due to a better ability 

to include other regressor variables besides the historical data. The robot’s actions, i.e., the 

number of pests removed, is used to adjust forecasts and get better estimates of accuracy. 

The forecasting process starts by applying a Box-Cox transform, defined below in equation 

5.17, to the data. This transformation can normalize the absolute differences within a 

seasonal cycle, even when the cycle is purely multiplicative. Additive seasonal cycles are 

generally simpler to model (Hyndman R. , Koehler, Ord, & Snyder, 2008). For the 

simulated pest data, 𝜆 = 0.4 was found to minimize forecast error. 
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𝑦′ = {

ln(𝑦)       𝑖𝑓𝜆 = 0

𝑦𝜆 − 1

𝜆
   𝑖𝑓𝜆 ≠ 0

 (5.17) 

Next, the data is differenced, so that change in activity is modeled rather than the absolute 

level of pest activity. This transformed data is then fit with an ARIMA model using the R 

forecasting library (Hyndman, O'Hara-Wild, Bergmeir, Razbash, & Wang, forecast: 

Forecasting Functions for Time Series and Linear Models). The final model used is an 

ARIMA(0,0,2)(2,1,1). The first parenthesis, (0,0,2), indicates that a second order moving 

average model is applied to the data. The second parenthesis, (2,1,1), is the seasonal terms. 

It indicates one seasonal difference is applied, and the seasonally differenced data is 

modeled with a second order autoregressive model, and a first order moving average 

model. To keep the written model concise, the backshift operator B introduced in chapter 

2 will be used. As a brief refresher, the backshift operator provides a convenient way to 

represent differencing: 

𝐵𝑦𝑡 = 𝑦𝑡−1

𝑦𝑡 − 𝑦𝑡−1 = 𝑦𝑡 − 𝐵𝑦𝑡 = (1 − 𝐵)𝑦𝑡
 (5.18) 

The regressor variable 𝑥𝑡, which is the number of pests removed in this experiment, is 

included as a standard linear regression. The error in a normal linear regression is replaced 

with the timeseries model, 𝐹𝑡. The timeseries model therefore captures all change in the 

state variable 𝑦𝑡 not correlated with the regression variable. 

𝑦𝑡 = 𝛽1𝑥𝑡 + 𝐹𝑡  (5.19) 
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The model of forecasted component 𝐹𝑡 is shown below where 𝑃𝑖 is the seasonal 

autoregression parameters, 𝑞𝑖 and 𝑄𝑖 are the normal and seasonal moving average 

parameters respectively, M is the period of the seasonal cycle, and 𝜀𝑡 is the error term. 

Parameters were fit using the R forecasting library on simulated training data. All 

parameters are provided in Appendix A.2. 

(1 − 𝑃1𝐵 − 𝑃2𝐵2𝑀)(1 − 𝐵𝑀)𝐹𝑡 = (1 + 𝑞1𝐵 + 𝑞2𝐵2)(1 + 𝑄1𝐵𝑀)𝜀𝑡 (5.20) 

The forecast from 𝑦𝑡 is a forecast of the transformed, differenced data and must be 

converted back to ‘real’ units by reversing the differencing and Box Cox transforms. One 

may ask why data is differenced before the ARIMA model, when the ARIMA model is 

capable of differencing data on its own. This has to do with the regressor variable, 𝑥𝑡. 

Differencing beforehand better captures the impact of the removing pests on the long-

term activity, as changes in the differenced activity accumulate over time. Differencing 

within the ARIMA model means that 𝑥𝑡 suppresses activity for the time steps it is high 

but has limited impact after. 

 Figure 5.6 shows an example forecasting data from one of the simulated trials. 

The black line is the measured pest activity. The blue line is the forecast from the current 

time forward, using the assumption the agent does not remove any pests. The red line is 

the forecast from 24 hours ago up to now, using the actual robot’s actions as the regressor 

variable. This visualizes the accuracy of recent forecasts by overlaying them onto the real 

data. The inclusion of the actual regressor data means the forecast shown in red is not the 

same as the forecast actually made 24 hours ago, but the regressor variable prevents the 

robot’s actions from adding large amounts of error to otherwise accurate forecasts. 
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Figure 5.6: The pest activity of one quadrant over several days is shown above in black. The 

forecast forward from the current time is in blue, while the forecast from 24 hours ago is 

shown in red. The forecast model is able to do a good job predicting pest activity, even 

including pest removals by the agent which create the dip in pest activity just after day 6. 

5.2.2 Behaviors 

The agent has two behaviors to execute: pest monitoring and charging. The charge behavior 

returns the agent to its charging station, which notionally represents leaving the field to go 

into direct sunlight. Once docked, the agent begins recharging based on the presence of 

solar radiation. Table 5.4 lists the component functions that provide activation for this 

behavior. 

Table 5.4: Charge Behavior Activation Components 

Component Variable Function Weight 

Motivation 

Function 

Battery 

Level  
𝑓1 = 1 − (𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙 − 0.1) 𝑤1 = 1 

Releasing 

Mechanism 

Solar 

Level 
𝑓2 =

𝑠𝑜𝑙𝑎𝑟_𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑚𝑎𝑥_𝑠𝑜𝑙𝑎𝑟
  

𝑤2 = 0.66 
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Table 5.4 continued 

Releasing 

Mechanism 

Constant 

Factor 
𝑓3 = 1 𝑤3 = 0.34 

Activation for the charge behavior is the same as in chapter 4. The motivation function is 

based on the current battery level and scaled to reach max activation when the battery is at 

10%. The releasing mechanism is based on the current solar irradiance and a constant 

factor. The constant factor allows for non-zero activation even without sunlight. This 

means the agent can move to charge at night before the sun has come up.  

 There is one pest behavior per quadrant which drives the agent to the closest plant 

in the relevant quadrant and monitors it for pest activity. Anytime a pest is active at the 

plant during this monitoring, the agent removes it. Activity is spread out over the four 

plants within a quadrant, thus the agent removes pests from 1/4th of the activity. Table 5.5 

lists the component functions for this behavior. 

Table 5.5: Pest Behavior Activation Components. 

Component Variable Function Weight 

 

Motivation 

Function 

Time  
𝑓1 =  

ℎ𝑜𝑢𝑟𝑠_𝑠𝑖𝑛𝑐𝑒 − 48

120
 

𝑤1 = 0.5 

Constant 

Factor 

𝑓2 = 1 𝑤2 = 0.5 

 

Releasing 

Mechanism 

Distance 
𝑓3 =

max_dist − current_dist

max_dist
 

𝑤3 = 0.34 

Pest 

Level 
𝑓4 =

𝑝𝑒𝑠𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑚𝑎𝑥_𝑝𝑒𝑠𝑡
 

𝑤4 = 0.66 

Circadian 

Function 

Pest 

Level 
𝐷 = 𝑝𝑒𝑠𝑡_𝑎𝑐𝑡 

wc(𝑆𝐸) = 0.6 (1 −
1

1 + 𝑒−30(𝑆𝐸−0.85)
 ) 
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The pest behavior’s motivation function is based on the hours since it last activated, with 

a maximum at seven days. This means the agent regularly monitors all quadrants, and 

prioritizes the ones not visited recently. There is also a constant factor, which allows for 

the agent to continue monitoring a plant even when it was completed the initial action and 

reset the hours_since variable. This constant factor represents the inherent value of 

monitoring and plant and removing pests, even if it has been checked recently. The 

releasing mechanism is based on distance to the nearest plant in the quadrant and the 

current pest activity level. The dependency function used with the circadian function is 

also based on the pest activity level. The weight of the circadian function is changed to a 

function of the scaled error. Where previously it was hardcoded to 0.6, that is now the 

maximum value. Based on experimental testing, the limit for nominal SE was identified as 

0.7. Applying equations 5.9 and 5.12, the midpoint is set to 0.85 and the growth rate to 30. 

This means when SE the crosses above 0.7, the weight 𝑤𝑐 rapidly decreases. 

5.2.3 Scenarios, Measures, and Hypotheses 

Three scenarios change the environment dynamics in different ways. The first scenario is 

shifted disruption. For a period of 36 hours, the activity pattern is shifted and scaled such 

that periods of high pest activity are out-of-sync with the original pattern. After the 

disruption, activity returns to the original pattern. The second is random disruption, which 

also changes the dynamics for 36 hours, but provides random amount of activity at each 

hour by shuffling the activation per hour. Shuffling is used to keep the total activation the 

same. The final scenario is permanent change. The activity pattern is adjusted to follow 

a shorter cycle (18 hours instead of 24) which persists for the rest of the trial. Figures 5.7-

5.9 below show examples of these dynamic changes from simulated trials. 
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Figure 5.7: Example pest history (black) from the shifted disruption scenario. The ‘start’ and 

‘end’ lines mark the period the dynamics are changed. The peak of activity around day 9 is 

wider and offset from the regular cycle. Though the dynamics returned to normal, the 

forecasts (shown in red/blue) are still degraded. 

 

Figure 5.8: Example pest history (black) from the random disruption scenario. The ‘start’ 

and ‘end’ lines mark the period the dynamics are changed. Pest activity during this disruption 

is randomly shuffled hour-by-hour. The accuracy of forecasts (red/blue) generated 

afterwards are again degraded. 
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Figure 5.9: Example pest history (black) from the permanent change scenario, where the 

cycle’s duration is reduced. The ‘start’ line marks where the dynamics change. The past 

forecast (red) was generated with data just after the change to the environment and highlights 

how the new pest activity is offset from the predicted activity. 

The key quantitative metric for all experimental conditions is the pest-level post-change: 

the pest population averaged over all hours and all four quadrants, for time steps after the 

environment dynamics changed. Several hypotheses are presented. In each case, better 

performance means a lower pest-level: 

H1.  In the disruption scenarios, the basic-ACS will outperform the reactive agent. 

The basic-ACS is expected to have degraded performance during environment disruptions. 

However, disruptions are short, and based on previous experiments (see chapter 4) the 

basic-ACS should perform better than a reactive agent during the rest of the experiment. 

Thus, it is expected that over the entire duration, the basic-ACS will still perform better 

than a reactive agent.  

H2.  In the disruption scenarios, the robust-ACS will outperform both the basic-

ACS and the reactive agent. 
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The robust-ACS is expected to adapt to these environmental changes, as designed, and thus 

reap the same benefits as the basic-ACS when forecasting is accurate without having 

performance degrade as much when forecasting is poor. If the robust-ACS can accurately 

identify and switch when forecasting error increases, it will perform better than either the 

basic-ACS or a reactive agent. 

H3.  In the permanent change scenario, the reactive agent will outperform the basic-

ACS. 

As in the disruption scenarios, the inaccurate forecasts provided by the basic-ACS after the 

environment changes are expected to create worse behavior then a purely reactive 

approach. In contrast to the disruption scenarios, the permanence means the basic-ACS 

will have degraded performance for a significant length of time, causing its net 

performance to be worse than a reactive agent. 

H4.  In the permanent change scenario, the robust-ACS will outperform both the 

basic-ACS and reactive agent. 

Just like for hypothesis H2, it is expected that the robust-ACS will perform as well as the 

basic-ACS before the change occurs, and perform as well as the reactive agent after, 

ensuring it will have the best overall performance. 

 To test the significance of pest-level differences and validate these hypotheses, the 

one-way ANOVA and post-hoc testing using Tukey’s HSD are applied with the standard 

P < 0.05 used as the cutoff for significance. 

5.2.4 Procedure Details 
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Each scenario was run for 14 days per trial in simulation. All scenarios had five simulated 

trials executed. Each trial perturbed the initial pest population. Changes to environment 

happened 138 hours, or 5.75 days into the experiment. This was to allow several days for 

the agent/environment to stabilize before any change, and then provide a week of data after 

the change. In the disruption scenarios the dynamics returned to normal 174 hours (7.25 

days) into the trial. 

5.3 Results 

5.3.1 Scenario 1: Shifted Disruption 

Table 5.6: Shifted Disrupted Results. The mean and standard deviation of the pest population 

per quadrant after the environment changed is shown. The Robust ACS condition saw a 

statistically significant decrease in the pest population compared to the No ACS (reactive) 

and Basic ACS conditions. 

 No ACS Basic ACS Robust ACS 

Mean Population  

Post-Change 

5.598 5.355 4.878 

Standard Dev. 0.352 0.199 0.153 

The main results of all three conditions in the shifted disruption scenario is shown above 

in Table 5.6. A one-way ANOVA indicated the differences between the groups were 

significant (P=0.002). Post-hoc testing with Tukey’s HSD indicated the robust-ACS 

performed significantly different from the no-ACS and basic-ACS conditions (P=0.002 

and P=0.027 respectively). In contrast, the difference between the no-ACS and basic-ACS 

conditions was not significant enough to reject the null hypothesis (P=0.31). 

 For this scenario we can accept the hypothesis H2; that the robust-ACS would 

improve performance. Hypothesis H1, that the basic-ACS would improve performance 
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over the reactive-agent, is rejected. The key factor is how the environment dynamics were 

changed. In the shifted disruption scenario, the dynamics were not changed arbitrarily but 

intentionally made to be off-set with the normal dynamics. This could be considered close 

to the worse-case scenario for the basic-ACS, and some trials showed drastic degradation 

in performance after the change. 

 

Figure 5.10: Pest removals per day for one trial. The vertical lines mark when the 

environment was shifted. In this trial, the basic ACS showed a sharp decline in daily removals 

during the disruption, due to its forecast being out-of-sync with the shifted environment. This 

did not happen for the no-ACS or robust-ACS conditions.   

Figure 5.10 above shows pest removals per day for one trial from the basic-ACS condition, 

and compares it to the other conditions for the same trial. After the dynamics change, the 

number of pests removed in the basic-ACS condition falls off as the agent’s activity 

becomes entirely out-of-sync with the environment. Though not every trial saw such a large 

drop, the average impact was significant. The poor performance during and after the 

shifted-dynamics cancelled out much of the benefit from forecasting during other portions 

of the trial. 
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 The robust-ACS was able to reliably identify forecasting has failed, and sometimes 

was able to successfully generate a disruption-forecast. All quadrants in all trials entered 

the robust-mode during the shifted dynamics, and 55% entered outlier-mode correctly after 

the dynamics returned to normal. Figure 5.11 below shows an example of a trial where the 

outlier forecast provided better predictions for over 24 hours before the normal forecast 

error reduced. Figure 5.12 shows an example where the outlier mode failed to produce a 

good forecast. In this particular case, the pest population of the quadrant was low; less than 

half of the overall average population during the shifted dynamics. The overall low activity 

meant the agent identified the disruption late and had insufficient data to forecast several 

days forward with. 

 

Figure 5.11: The normal SE (blue line) and outlier SE (orange line) plotted over the duration 

of the experiment. The two black vertical lines indicate the beginning and end of the shifted 

dynamics. In this trial/quadrant, the outlier was quickly identified (see the blue region 

beginning in day 6, identifying that the robust mode started). An outlier-forecast successfully 

generated accurate predictions and transitioned the robust ACS to outlier mode (shown as 

the yellow region) until the normal forecast error returned to adequate levels. 
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Figure 5.12: The normal SE (blue line) and outlier SE (orange line) plotted over the duration 

of the experiment. The two black vertical lines indicate the beginning and end of the shifted 

dynamics. In this trial/quadrant, the outlier was identified late, and a good outlier-forecast 

was never generated. However, the robust-ACS still reduced the weight of the circadian 

component after the disruption. Through most of day 7 to day 10, Wc is significantly reduced 

due to the increased forecast error. This mitigates the worst outcomes from inaccurate 

forecasts. 

5.3.2 Scenario 2: Random Disruption 

Table 5.7: Random Disruption Results. The mean and standard deviation of the pest 

population per quadrant after the environment changed is shown. The Basic-ACS and 

Robust-ACS conditions both had significantly lower pest population from the No ACS 

condition, and were not significantly different from each other. 

 No-ACS Basic-ACS Robust-ACS 

Mean Population  

Post-Change 

5.918 4.79 4.67 

Standard Dev. 0.338 0.256 0.143 

Table 5.7 displays the main results for the random-disruption scenario. Once again, a one-

way ANOVA showed significant differences between the groups (P<0.001). Post-hoc 

testing showed that the no-ACS condition was significantly different from both forecasting 
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conditions (P=0.001 for both), and the two forecasting conditions were not significantly 

difference (P=0.71). 

 The first two hypotheses (H1 and H2) presented in section 5.2.4 apply to the 

random disruption scenario as well as the shifted disruption scenario. For the random 

disruption scenario, the first hypothesis H1 is validated. The basic-ACS improved 

performance over the no-ACS condition. The second hypothesis H2, that the robust-ACS 

would outperform the basic-ACS, is rejected. The randomized activity meant that no 

intelligent timing of activity could be generated by the agent. The accuracy of forecasting, 

or the usage of forecasting at all, had no apparent impact during the disruption. 

 The randomized disruption interacted with the scaled error (SE) in a 

counterintuitive way. An important detail to remember is that the SE is not a measure of 

how accurate forecasts are, but how accurate they are relative to the naïve forecast. 

Randomization is the worst-case for a naïve forecast. This means that SE stayed low during 

the random disruption, due to the naïve forecast error increasing just as much. Figure 5.13 

below shows an example of how the SE was unaffected during the disruption, but spikes 

after as the dynamics return to normal due to the forecast still using the randomized data. 

 The key difference when compared to scenario 1 is that while the random dynamics 

degraded forecast accuracy, it did not do so in a way that biased activation towards any 

specific time. The basic-ACS did not see a significant degradation of performance, either 

during the random disturbance or after due to forecasting. Therefore, the robust-ACS had 

little to compensate for. 
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Figure 5.13: The normal SE (blue line) and outlier SE (orange line) plotted over the duration 

of the experiment. The two black vertical lines indicate the beginning and end of the random 

dynamics. Due to the naïve forecast error increasing at the same time, the SE does not 

increase during the random disruption. Instead, SE spikes after the dynamics return to 

normal, but when data from the disruption is still impacting forecasting. 

5.3.3 Scenario 3: Permanent Change 

Table 5.8: Permanent Change Results. The mean and standard deviation of the pest 

population per quadrant after the environment changed is shown. The Robust ACS condition 

had a pest population significantly lower compared to the No ACS (reactive) and Basic ACS 

conditions. 

 No-ACS Basic-ACS Robust-ACS 

Mean Population  

Post-Change 

6.162 5.932 5.387 

Standard Dev. 0.441 0.19 0.214 

The third and final scenario, permanent-change, has the main results presented above in 

Table 5.8. One-way ANOVA showed the conditions were significantly different 

(P=0.005), and post-hoc testing showed the robust-ACS condition was significantly 

different from both the no-ACS condition (P=0.004) and the basic-ACS condition 
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(P=0.0365). There was no significant difference between the no-ACS and basic-ACS 

conditions (P=0.477). 

 The fourth hypothesis H4 was that the robust-ACS would outperform both the no-

ACS and basic-ACS conditions in this scenario, and this hypothesis is validated. In 

addition, the robust-ACS successfully identified that the environment changed in 95% of 

quadrants over all trials. It was able to take advantage of forecasting early on, ignore 

forecasting after the environment dynamics changed, and alert any supervisory system or 

personnel to the change. Figure 5.14 below shows how the change was detected in one 

example quadrant. 

 

Figure 5.14: The normal SE (blue line) and outlier SE (orange line) plotted over the duration 

of the experiment. The black vertical line indicates when the dynamics change. In this trial, 

the robust-ACS quickly enters robust mode after the dynamics change and error increases. 

Once enough time has passed, it transitions to change mode, representing that it has detected 

a long-term change to the environment. 

 The third hypothesis H3, that the no-ACS condition would perform better than the 

reactive-ACS condition, was rejected in this experiment. However, analyzing the trends in 
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more detail suggest that with more time, the basic-ACS’s overall performance would have 

degraded further. Figure 5.15 below shows the total pest populations of all quadrants 

averaged over all trials in the permanent-change scenario. Initially, the normal and robust 

ACS conditions maintain similar performance, both decreasing the total pest population. 

After the environment dynamics changed, both forecasting conditions see increasing pest 

populations. The robust-ACS approaches the population of the no-ACS condition which 

aligns with expectations, as it will not be using forecasting. The basic-ACS shows a pest 

population growing faster and overshooting the no-ACS condition. 

 

Figure 5.15: The total pest population averaged over all trials. Before the environment 

change, marked by the vertical red line, both the basic and robust-ACS conditions diverge 

from the no-ACS condition. After the change, the robust-ACS looks to be approaching the 

no-ACS condition, while the basic-ACS sharply rises above both. 

5.4 Conclusions 

This chapter developed and validated extensions to the artificial circadian system to make 

it robust to changes in the environment dynamics, addressing the third subsidiary research 
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question. This included a method for monitoring forecast accuracy in real time, how action-

selection should be adjusted based on changing forecast accuracy, and two hypotheses the 

ACS can test to help recover faster. 

 Several experimental hypotheses were developed to compare the basic-ACS, the 

new robust-ACS, and a purely reactive agent. Hypotheses H1 and H3 focused on the 

performance of the basic-ACS, predicting it would perform better than the reactive agent 

in the disruption scenarios, but worse in the permanent change scenario. Results showed 

that in the shifted-disruption and permanent change scenarios, the basic-ACS had 

equivalent performance to the reactive agent. In the random-disruption scenario, it 

performed significantly better. The key takeaway is that the basic-ACS may see significant 

degradation in performance when the environment dynamics change, performing no better 

than a reactive agent not forecasting at all. How sensitive the basic-ACS is to these changes 

depends on how exactly the dynamics change. 

 Hypotheses H2 and H4 were concerned with the performance of the robust-ACS 

and they predicted it would outperform both the basic-ACS and reactive agent in all 

scenarios. The robust-ACS did perform significantly better than the reactive agent in all 

scenarios, and better then the basic-ACS in all scenarios except for random-disruption 

(where it performed equivalently). In summary, the robust-ACS was able to perform as 

good or better than either the basic-ACS or a reactive agent in every scenario. The key 

capability of the robust-ACS was reliable detection of when the environment no longer 

matched its internal forecasting model. This allowed action-selection to be adjusted to 

compensate. Additionally, in some cases it was able to identify that a short-term disruption 



 113 

had occurred and generate accurate forecasts by ignoring the data from during the 

disruption. 

 The robust-ACS allows for forecasting to be used much more opportunistically. If 

the robotic platform has an adequate non-forecasting-based strategy it can fall back on, 

then the ACS can be applied. Even if the forecasting models of the environment, or the 

environment itself, are not reliable. Beyond the original goal of robustness, this expands 

the range of potential applications. 
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CHAPTER 6. CONCLUSION 

The world is in constant change. The solar and seasonal cycles of earth drive both weather 

and the behavior of living organisms. These patterns are engraved into human activity, and 

thus still impact most man-made environments. As robotic platforms inevitably become 

persistent features in many of these environments, they will experience and be impacted 

by these dynamics. Circadian clocks are a well-known natural adaption to dynamic 

environments, and their prevalence in a large variety of organisms suggests that persistent 

robots may also benefit from some circadian-like system to adapt to a changing 

environment. This leads to the core research question of this dissertation: How can the 

long-term dynamics of an environment be modeled, predicted, and exploited by a slow and 

persistent autonomous robot? 

 This research question was broken down into four subsidiary questions. In this 

chapter they will each be reexamined and results relevant to them will be summarized. 

After, the contributions made in the pursuit of these questions will be presented. Finally, 

future extensions will be discussed and the work concluded. 

6.1 Research Questions Revisited 

1. How can the long-term dynamics of an agent’s environment be characterized 

or modeled? 
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The core capability a robotic agent requires to adapt to a changing environment is an 

understanding of how the environment is changing. Based on the inspiration of this work, 

a natural first idea would be biomimicry of circadian systems. This dissertation 

summarized how natural circadian systems work, and some of their limitations (Section 

2.1). Circadian systems can be closely approximated by a phase-only model which cannot 

capture non-cyclic dynamics or represent changes in peak amplitudes of a variable. The 

fundamental problem a robotic platform faces is time series forecasting: predicting the 

future of an environment (specifically a state variable) based on its history. While 

traditionally applied offline to static data sets, statistical time series forecasting offers more 

generality in what it can model and can provide detailed forecasts (Section 2.2). The 

application of time series forecasting online on an autonomous robot was presented 

(Section 3.3). The effectiveness of the leveraging these types of models was validated for 

a simplified precision agricultural task through the results of several experiments in which 

an autonomous agent relied on these forecasts to make better decisions (Sections 4.3, 5.3). 

2. How can individual behaviors, and the set of active behaviors, adapt to changes 

in the environment using the knowledge of environmental dynamics? 

An activation-based approach was used for action selection. In this framework, the 

question is narrowed to how forecasts should impact activation of a behavior, and thus 

change both a behavior’s individual timing and the patterns of activity of the agent overall. 

Chapter 3 introduced a key assumption, that the dynamics would be strongly cyclic with a 

known period, as this is the case for many environments on earth. In this context, there is 

a natural time-horizon for an agent to use when looking forward: the period of the dominant 

cycle. The agent only needs to know the best timing of a behavior within the cycle. This 
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dissertation presented methods and algorithms for computing the utility of executing a 

behavior at any point in the next cycle, and weighting the current activation based on the 

relative utility (Section 3.4). This was dubbed the circadian function, and provided 

activation for a behavior based on how its timing over the dominant cycle. This circadian 

function was used through the experiments in chapters 4 and 5. Detailed graphs of the 

activation times demonstrate how the circadian function helped synchronize activity with 

the environment (Figures 4.8 and 4.10).  

3. Can such a system be made robust to changes in the dynamics, due to either 

short-term perturbations or long-term environmental change? 

All models are approximations, and environments will continue to change over time, 

making the original approximation less accurate. Leveraging inaccurate forecasts could 

create worse performance then simple reactive responses. Chapter 5 dived deeply into how 

the artificial circadian system could be made robust to the dynamics themselves changing. 

Given a measure of forecast accuracy (Section 5.1.1), a robotic agent can remove the 

influence of bad forecasts in action selection (Section 5.1.2). This allows an agent to 

leverage the models when they are helpful, and fall back to a reactive approach when they 

are not. Forecast models will fail when the environment itself changes, and these changes 

can be either permanent or temporary. Due to the reliance on historical data for prediction, 

a short-term disruption to the environment can potentially degrade forecast accuracy for 

days during which the environment has returned to normal. Methods were presented to 

exclude outlier data from the forecast model and leverage this modified forecast if it 

improved accuracy (Section 5.1.3). Experimental results showed the artificial circadian 

system (ACS) could reliably identify when simulated pest dynamics changed and 



 117 

forecasting degraded in the agricultural testbed (Section 5.3). Sometimes outlier data was 

also successfully removed to generated modified forecasts and help forecasting recover 

faster, but this was more difficult and not consistently successful. 

4. In what contexts is entraining to a dynamic environment useful for a robotic 

agent? 

Not all cyclic behavior in nature is generated by circadian rhythms (Section 2.1). A reactive 

response to a cyclic environment will create cyclic behavior. Likewise, just because an 

environment is changing does not necessarily mean a robotic agent needs to model and 

forecast the changes to effectively deal with it. The experiments in chapter 4 were designed 

to explore different contexts to better understand the scope of this work. A set of conditions 

under which the ACS will have value were developed (Section 4.4). Some of the conditions 

are straightforward: the environment must be changing in a way that impacts the agent and 

is predictable. A key insight is that the dynamics must change at a similar time-scale to the 

agent’s ability to act. Dynamics that change slowly (relative to the agent) can be handled 

reactively, and do not need a more complex forecasting approach. On the other end of the 

spectrum, an agent will be unable to exploit dynamics changing faster than it can act, even 

if the forecasts of the dynamics are perfect. Slow robots, along with being more capable of 

persisting for long durations, are more likely to act on a similar time-scale to their 

environment’s dynamics. 

6.2 Contributions 

• Algorithms to apply time series forecasting in an autonomous robotic agent. 
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While some examples of autonomous robots modeling the dynamics of their environment 

exist (e.g. Krajnik T., Fentanes, Santos, & Duckett, 2017), the author is not aware of any 

which leverage time series models. In this work, standard models for time series forecasting 

were applied online in an iterative manner, continuously providing an autonomous agent 

an updated forecast of key environmental variables (Section 3.3). Chapters 4 and 5 

presented experiments applying this approach with different underlying time series models 

under different conditions, including with missing data (Section 4.3.1), validating it as an 

approach an autonomous robot can effectively  use. 

• Algorithms and methods to estimate the utility of executing a behavior given 

a forecasted environment state and integrate this into action selection. 

Novel methods were presented that consider the estimated delay to execute a behavior, the 

estimated duration, the estimated environment state (given by forecasts), and the estimated 

performance based on the environment state. These are used together to estimate the utility 

of activate a behavior at any time (Section 3.4.1). The relative utility of executing the 

behavior now, compared to the potential utility for waiting, is passed to the action selection 

system as one component of a behavior’s activation. (Section 3.4.3). 

• Methods for an agent to monitor forecast accuracy and adjust its weight in 

action selection. 

Based on work from (Hyndman & Koehler, 2006), an error metric that provides a real-time 

measure of forecasting accuracy was presented (Section 5.1.1). This is a unitless measure 

that compares a forecast to the implicit assumption a non-forecasting agent makes, that the 

measured state will stay the same. Novel methods for tuning the weight of forecasting 
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within action selection using this metric were described (Section 5.1.2). These methods let 

an acceptable level of error be specified and have the agent smoothly transition to ignoring 

forecasts as accuracy degrades. 

• Algorithms to identify disruptions in the environment and ignore outlier data 

to recover forecasting faster. 

This dissertation demonstrated novel algorithms to enable an agent to estimate when the 

environment has been disrupted and exclude this data to create a new modified forecast 

(Section 5.1.3). This new forecast is leveraged only if it improves accuracy, in which case 

it replaces the default forecast. This approach was able to recover accuracy significantly 

faster than waiting for the original forecasting model to correct (Section 5.3.1). 

• Implementation and demonstration on a physical and simulated testbed 

representing a notional precision agricultural task. 

An agricultural testbed was developed with artificial plants an agent could monitor and 

interact with (Section 4.1). The agent could also autonomously dock and charge, 

representing solar charging and permitting long-duration experiments without human 

intervention. The testbed enabled a variety of dynamics to be tested, including cycles with 

different lengths, dynamics from simulated models and real data, and variables that could 

be sensed either globally or locally (Section 4.2). For the robust experiments, these 

dynamics were also changed midway (Section 5.2). This testbed was applied throughout 

the work to validate the ideas presented, demonstrating both when the methods worked and 

when they didn’t (Sections 4.3 and 5.3). 
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6.3 Future work 

There are two main directions for future work. The first steps away from robotics and 

focuses on time series modeling and forecasting. As time series analysis is traditionally 

done offline on fixed data-sets, a large majority of research and effort have been put 

towards discrete models and methods. However, robots function in a continuous world. 

Research has been done on continuous time series models, most commonly continuous 

ARMA models (Brockwell P. J., 2001). These could potentially be adapted for use online 

instead of the more common discrete approaches. From an alternative perspective, 

nonparametric models have been applied to cluster data over cycles in time to achieve 

continuous modeling of events (Krajník , et al., 2019). Whatever the underlying model is, 

a continuous implementation of the artificial circadian system could add the ability to 

reason about the expected time until some event, rather than only estimating the number of 

events over a period of time. It would also be capable of responding immediately to new 

significant data, such as a sudden disruption, rather than having to wait until the next time 

step. 

 The second area of future work focuses on the underlying action selection method. 

This dissertation began with the idea of letting a robotic platform persist in a natural 

environment over long periods of time, becoming part of the ecological system. This led 

to goal of entraining its behavior to the dynamics, but it also guided the assumptions the 

work built on. One key assumption was that the robot would not have a complete model of 

the environment, how it is changing, and how the robot’s actions impact it. Rather, 

forecasting was used to provide useful but limited insight into a complex world. However, 

some environments and applications do afford more complete models. In such cases, 
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techniques like Monte Carlo Tree Search or Model Predictive Control may be able to plan 

an agent’s actions, with forecasts of the environment used to predict state changes that are 

independent of the agent’s actions. 

6.4 Final words 

It is inevitable that the number of robots used in complex and dynamic environments will 

increase over time. While this dissertation has frequently used agriculture as an example 

domain, any platform which persists around people will interact with the strongly cyclic 

pattern of human activity. Adapting to these dynamics will help robotic platforms 

maximize their performance and minimize inconvenience to the people around them. This 

dissertation has laid out a complete methodology to model and forecast environment 

dynamics, incorporate these forecasts into action-selection, and adapt based on changing 

forecast accuracy. 

 Using predictions of the future to improve decision making is an intuitive idea. 

Predicting the future is hard, however. Keeping robots running autonomously for long 

durations is also hard. Gracefully handling failure is required for any approach to be 

applicable to the real world. Any method should consider entraining an autonomous agent 

to its environment as an opportunistic endeavor. Something to be leveraged when possible, 

but not a fundamental part of action selection. Perhaps unsurprisingly this mirrors natural 

circadian systems which influence, but do not control, the behavior of animals and other 

natural organisms. 
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APPENDIX A. FORECASTING MODEL PARAMETERS 

A.1 Chapter 4 Pest Forecasting Model 

In the experiment descripted in chapter 4, pest dynamics were modeled with the Holt-

Winters seasonal-multiplicative method. This is a type of exponential smoothing method 

where the trend term is additive, but the seasonal term is multiplicative. The equations of 

this model are shown below, where 𝑦̂𝑡+ℎ|𝑡 is the forecasted value of the state 𝑦 at time step 

𝑡 + ℎ, given information up to time step 𝑡: 

𝑦𝑡+ℎ|𝑡 = (𝑙𝑡 + ℎ𝑏𝑡)𝑠𝑡+ℎ−𝑚 (𝐴. 1)

𝑙𝑡 = 𝛼
𝑦𝑡

𝑠𝑡−𝑚
+ (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (𝐴. 2)

𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − β)𝑏𝑡−1 (𝐴. 3)

𝑠𝑡 = 𝛾
𝑦𝑡

𝑙𝑡−1 − 𝑏𝑡−1 
+ (1 − 𝛾)𝑠𝑡−𝑚 (𝐴. 4)

 

Three smoothing parameters (𝛼, 𝛽, 𝛾) determine how fast the level, trend, and seasonal 

components (𝑙𝑡, 𝑏𝑡, 𝑠𝑡 respectively) update. There is also an initial state for each of the level, 

trend, and seasonal components. Note the seasonal component is a vector of length 24, with 

and initial value for each hour of the day. 

Table A.1: Smoothing parameters and initial states for Chapter 4 pest model. 

𝛼 = 0.75 𝛽 = 0.0001 𝛾 = 0.0002 

𝑙0 = 0.6357 

𝑏0 = 0.0308 
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Table A.1 continued 

𝑠0 =  
2.405, 1.8461, 1.2896, 0.718, 0.6058, 0.5415 

0.5817, 0.5867, 0.5812, 0.5967, 0.5978, 0.5786 

0.5852, 0.5823, 0.5578, 0.5758, 0.5702, 0.5737 

0.5489, 0.7278, 1.2943, 1.8185, 2.4213, 2.8153 

 

A.2 Chapter 5 Pest Forecasting Model 

For the experiment in Chapter 5, pest dynamics used an ARIMA(0,0,2)(2,1,1) model. As 

discussed, the first parenthesis (0,0,2), indicates that a second order moving average model 

is applied. The second parenthesis shows the seasonal terms. The values (2,1,1) indicate 

one seasonal difference is applied, and this seasonally differenced data is modeled with a 

second order autoregressive model, and a first order moving average model. 

 The model also uses a regressor term to include the impact of the robot’s actions. 

Equation A.5 shows how the robot’s actions, 𝑥𝑡, are included as part of a linear regression 

which has the error term replaced by the forecast model, 𝐹𝑡. The forecast model is shown 

in equation A.6, and the full table of parameters below in Table A.2. Note that 𝐵 is the 

backtrack operator, discussed in Chapter 2. 

𝑦𝑡 = 𝛽1𝑥𝑡 + 𝐹𝑡  (𝐴. 5) 

(1 − 𝑃1𝐵 − 𝑃2𝐵2𝑀)(1 − 𝐵𝑀)𝐹𝑡 = (1 + 𝑞1𝐵 + 𝑞2𝐵2)(1 + 𝑄1𝐵𝑀)𝜀𝑡 (𝐴. 6) 
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Table A.2: Parameters for Chapter 5 pest model. 

Regressor terms 𝛽1 = −0.3376 --- 

Autoregressive (AR) terms --- --- 

Moving Average (MA) terms 𝑞1 = −0.9064 𝑞2 = 0.2778 

Seasonal AR terms 𝑃1 = −0.3384 𝑃2 = −0.2337 

Seasonal MA terms 𝑄1 = −0.2401 --- 
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