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Abstract 

One of the core challenges of long-term autonomy is the environmental dynamics that 

agents must interact with. Some of these dynamics are driven by reliable cyclic 

processes, and thus are predictable. The most dominant of these is the daily solar cycle 

which drives both natural phenomena like weather, as well as the activity of animals and 

humans. Circadian clocks are a wide-spread solution in nature to help organisms adapt to 

these dynamics, and demonstrate that many organisms benefit from maintaining simple 

models of their environments and how they change. Drawing inspiration from circadian 

systems, this work models relevant environmental states as times series, allowing for 

forecasts of the state to be generated without any knowledge of the underlying physics. 

These forecasts are treated as special percepts in a behavior-based architecture; providing 

estimates of the future state rather than measurements of the current state. They are 

incorporated into an ethologically-based action-selection mechanism, where they 

influence the activation levels of behaviors. The approach was validated on a simulated 

agricultural task: a solar-powered agent monitoring pest populations. By using the 

artificial circadian system to leverage the forecasted state, the agent was able to improve 

performance and energy management. 
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Introduction 

Moving from structured, static environments to natural, dynamic environments remains a 

challenge in robotics. Reactive approaches in behavior-based designs have shown 

effectiveness in dealing with the randomness present in the real world, but most ignore 

the somewhat predictable dynamics that many environments exhibit. Drawing inspiration 

from circadian rhythms in nature, this work describes an approach for modeling 

environmental dynamics and adapting an agent’s behavior to them.  



The need for such an architecture in robotic systems is growing. More than ever, 

robotic agents are leaving controlled factory floors and entering complex dynamic 

worlds. Recently, the non-industrial robotic market overtook the industrial robotic market 

for the first time (“The Robotics Industry Will Reach $237 Billion in Revenue 

Worldwide by 2022”, 2017). These platforms are entering homes, fields, and city streets. 

They must deal with varying weather, light, and activity from both humans and animals. 

The widespread use of circadian clocks in natural organisms, from plants to humans to 

even bacteria (Paranjpe & Sharma, 2005), suggests that robotic agents would also benefit 

from some circadian-like system to adapt to their environment’s dynamics. 

This work is particularly targeted for slow and persistent robotic agents. The 

benefits of persistent robots are clear, and slow robots may have several advantages, 

especially for persistent energy-constrained tasks (Arkin & Egerstedt, 2016). We use the 

terms “slow” and “persistent” in relation to the speed of change in the environment. The 

most common examples will be daily cycles, where significant changes generally take on 

the order of hours. A persistent agent persists through significant change in its 

environment. As opposed to an agent that might execute for an hour and see few 

differences. Similarly, a slow agent acts on roughly the same time scale that the 

environment sees meaningful change. For example, if some relevant event happens over 

an hour, an agent that can always respond within five minutes can easily react to it. An 

agent that needs 45 minutes or more will struggle. If the slow agent can anticipate the 

event, or other changes in its environment, it can take action ahead of time and bypass 

some of its limitations. 

In this paper, we develop an artificial circadian system (ACS) to learn and exploit 

the patterns that often exist in the dynamics of natural environments. In previous work, 

we demonstrated the application of time series modeling of an environment for a robotic 

agent and tested it on a simulated robot interacting with pedestrian traffic using simple 

behavioral rules (O’Brien & Arkin, 2017). This research extends that work with a 

principled method to incorporate the generated predictions into action-selection. 

The follow sections in this paper will first overview circadian systems in nature 

and related work in robotics and artificial intelligence. Then the artificial circadian 

system will be presented. Next a simulated experiment providing an example application 

on a notional agriculture task will be detailed. The results of the experiment, and a 

discussion of those results, follows. Finally, the paper concludes with a summary of the 

work, discussion around when the artificial circadian system best applies, and proposed 

future work. 

Related Work 

Circadian Rhythms 
In many organisms, there exists a special set of biological rhythms. These “circa-

rhythms” each corresponds to a unique temporal niche associated with some geo-physical 

process (Aschoff, 1967). The most well known and studied being circadian rhythms, 

which correspond to the daily solar cycle. Circadian rhythms are the original inspiration 



for this work, and their widespread use in nature within organisms at all levels of 

complexity suggests that some circadian-like system would also benefit robotic agents. 

A circadian clock has three primary components. First is an internal oscillator 

which tracks the passage of time and defines the approximate period of an environmental 

cycle. This internal oscillation is created by a Transcription Translation Oscillating Loop 

(TTOL). A feedback loop between gene expression and protein production, whose details 

are out of scope of this work (see Richard & Gumz, 2013). Second is a sensory input 

channel which allows the oscillator to entrain to the environment through light, impacting 

the TTOL. Finally, there is the output channel, where the current state of the circadian 

oscillator drives both metabolic processes and behavior. 

Circadian clocks have been observed to offer different types of advantages. Some 

involve the synchronization of metabolic processes within an organism, or behavior 

between social organisms (Paranjpe & Sharma, 2005). In this way, circadian clocks are 

leveraged the same as a normal clock. Circadian clocks are even used for navigation in 

birds (Oatley, 1974). The usage of the circadian clocks relevant to this work is as a 

method for synchronizing to a changing environment. Some related species of parasites 

are active at different times of day: their circadian clock is used to avoid competition 

(Fleury, Allemand, Vavre, Fouillet, & Bouletreau, 2000). There are also examples where 

timing activity helps avoid predation (DeCoursey, 1997). Rather than simply reacting to 

environmental change, circadian clocks allow an organism to take action before its senses 

(perceptual state) or needs (internal state) could drive the behavior. “Circadian 

rhythmicity of behavior represents an animal’s information, or one is tempted to say, 

knowledge about a particular feature of its environment… and what to do about it.” 

(Oatley, 1974 p. 456)  

This work is biologically-inspired, but does not attempt biomimicry. The 

mechanisms of a circadian clock are not copied. Instead, two main principles are 

extracted. First that simple, data-driven models are very useful in complex, noisy 

environments. Circadian systems demonstrate that an agent or organism can gain value 

from having even simple models of complex processes in the environment. If the 

underlying physics of a system can be modeled directly, e.g. as a dynamical system, that 

could be a superior approach. However, doing so for complex natural environments may 

be impossible, or at least impractical, on an autonomous robot. Second, that entrainment 

is a key property of circadian systems. In nature, a “free-running” circadian clock often 

has a notable difference in period from the environmental cycle it is tracking. Similar to a 

mechanical oscillator, entrainment drives the circadian oscillator at the relevant 

environmental frequency and ensures the circadian system will resync even after extreme 

disturbances (Roenneberg, Daan, & Merrow, 2003). If the environmental dynamics were 

completely deterministic and reliable, entrainment would not be necessary. For cyclic 

change (a focus in this work) the problem may even reduce to finding a static optimal 

schedule of activity over the cycle. Natural environments are rarely so reliable. Even the 

presence of light, driven by constant steady planetary rotation, experiences seasonal shifts 

as well as random perturbations from weather. The approach outlined in this paper is 

based on the idea of using simple, data-driven models that can be constantly entrained to 



the dynamics a situated agent observes, as an efficient means to understand of how the 

environment is changing. 

Robotics and AI 
The challenge of a changing environment is fundamental to the goal of long-term 

autonomy in robotics. Mapping of dynamic environments over time has received 

considerable attention within long-term autonomy. Most approaches in the literature look 

to merely filter out changes from the static map, though some approaches do explicitly 

model the environment’s dynamics (e.g. Mitsou & Tzafestas, 2007, Ambrus, Ekekrantz, 

Folkesson, & Jensfelt, 2016). More relevant is work on modeling environment dynamics 

that is applied to robot behavior. The most similar research comes from work on the 

“frequency map enhancement”, or FreMEn, system (Krajnik, Fentanes, Santos, & 

Duckett, 2017). In this approach environmental states are treated as binary variables, 

whose values are modeled as probabilistic functions over time, represented using Fourier 

series. These simple and efficient models can be applied to small sections of an 

environment, allowing for the representation of spatio-temporal dynamics. This was 

leveraged for several types of problems, including localization and navigation. The 

FreMEn approach shares many ideas with this research. The main difference being that 

the methods in this paper allow for continuous state and more than purely cyclic 

dynamics. This broadens the potential applications, but the increased complexity limits 

the ability to use them at high resolution to capture differences over space. 

 

Research on energy harvesting for wireless sensor networks has also investigated ways to 

adapt to changing environments. For sensor nodes, the goal is to reach “energy neutral 

operation” so that the node can continue to operate for long durations (on the order of 

years). To achieve this, both predictive forecasts of future energy and reactive responses 

to the actual gathered energy can be used to adapt the behavior of the sensor node 

(Kansal, Hsu, Zahedi, & Srivastava, 2007; Buchli, Sutton, Beutel, & Thiele, 2014). In 

this case, action is limited to adjusting the duty cycle the sensor runs at, changing the 

amount of monitoring performed and energy expended. There is overlap between the 

work presented in this paper, and some of the modeling approaches in the sensor network 

domain. Though the action-selection methods are highly specialized for the limitations of 

the immobile nodes. 

 

Lastly the domain of reinforcement learning holds interesting potential. The problem of 

reinforcement learning is to both learn and solve a Markov Decision Problem (MDP): 

defined as a set of states 𝑆 = {𝑠}, actions 𝐴 = {𝑎}, transition probabilities between states 

𝑇(𝑠, 𝑎, 𝑠′), and rewards for acting and reaching a specific state 𝑅(𝑠, 𝑎, 𝑠′). The goal of 

reinforcement learning is to output the optimal policy 𝜋(𝑠): a mapping from state to 

action that maximizes the expected reward. This conventional approach has no way to 

represent a changing environment, but some methods for MDPs have been developed for 

to incorporate change over time. Time-Dependent MDPs (TMDP) provide a formulation 

that includes time as a special continuous variable in the state space, and models the 

durations of actions as dependent on time (Boyan & Littman, 2001). Very recent work 

instead makes the transition function 𝑇 time-varying, dubbed Time-Varying MDPs 

(TVMDPs), which allows forecasted dynamics to be included into it (Liu & Sukhatme, 



2018). This work more directly captures the differences between time and other states, 

and how the environment (modeled as the transition function) changes over time. 

The Approach 

The artificial circadian system is built on a behavior-based architecture. A special set of 

perceptual schemas (or perceptual algorithms that process sensor data for specific 

behaviors; Arkin, 1998) model the environmental dynamics as time series, and forecast 

future values of the state. Behaviors are supplemented with activation functions based on 

both the current measured state and the future predicted state. Action-selection is done by 

selecting the behavior with the highest activation. Figure 1 shows the top-level 

architecture, and the rest of this section details the components. 

 

Figure 1. The top-level diagram of the Artificial Circadian System. 

Modeling environmental dynamics as time series 
Without an effective approach for understanding how the environment will change, a 

robotic agent cannot adapt its behavior to said dynamics. We view the environment state 

as a time series, and apply methods from the time series literature to model and forecast 

future values. Time series models predict, or “forecast”, future values of a variable from 

its past values. It allows for modeling of both cyclic and non-cyclic effects, and can 

forecast both the value of the future state as well as generate prediction intervals. A 

useful quality is that the approach is data driven. The underlying cause of the dynamics 

may be too complicated to model directly, or at least impractical to do so on a robot (for 

example, consider the actions of many individuals to create traffic). Time series modeling 

offers versatility and simplicity, side-stepping the need for expert knowledge about a 

domain. One of the most direct approaches is the auto-regressive (AR) model shown 

below in equation 1, where the next value of our variable 𝑦𝑡 is the weighted sum of the 

past values, along with a constant term 𝑐 and an error term 𝜀𝑡: 

 
𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑝−1 + 𝜀𝑡 (1) 

 

A fundamental technique in modeling time series is the classical decomposition 

(Hyndman, Koehler, Ord, & Snyder, 2008), of a time series into its major components: 

 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐸𝑡 (2) 

Where 𝑌𝑡 is the original time series. 𝑇𝑡 is the trend component, a slowly changing 

average level; 𝑆𝑡 is the seasonal component, a repeating pattern with known period; and 

𝐸𝑡 is the residual, or error, left over after the trend and seasonal components have been 



removed from the time series. This decomposition provides a structured approach for 

modeling and allows for focus on components of interest. For example, seasonal effects 

are sometimes removed from data in a process called deseasonalization. In our work the 

seasonal effects are of key importance, as they represent the cyclic (or circadian, if the 

period is roughly 24 hours) dynamics in the environment. 

The literature on time series analysis and forecasting provides a broad set of tools 

(Hyndman, 2017). At this time, however, there is no catch-all method or system. 

Historical data is required to manually select an appropriate model, one that can capture 

the dynamics of the environment. While model selection must be done offline, model 

fitting (i.e. parameter estimation) and forecasting can be done online, autonomously by 

the agent. 

Time series modeling has traditionally been applied for offline analysis of discrete 

data. To leverage these techniques on a real-time system, time is broken down into 

discrete periods which we will call forecast intervals. The past values of the state in each 

forecast interval are stored as the vector 𝑆𝑃. This vector is fed into the time series model, 

and used to forecast the future values of the state, 𝑆𝐹
𝑘, where 𝑘 is the timestep this 

forecast vector was generated. Lastly, there is a set of measurements for the current 

forecast interval called 𝑆𝑀. At the end of any forecast interval, 𝑆𝑀 is used to generate a 

final state value, 𝑆𝑃(𝑘), for that interval. 𝑆𝑃(𝑘) may be an average of all measurements in 

𝑆𝑀, a count of recorded events, or even a null value if no measurements of the relevant 

state variable were made. Figure 2 visualizes how these vectors represent the state over 

time. 

 

Figure 2. SP contains measurements of the state in the past, while SF contains forecasts of 

the state in the future, including the forecast of the current state made in the past. SM is 

the current measured state. 

A notion of entrainment to the environment is captured in the system at two 

levels. Every forecast interval the agent appends a new value to 𝑆𝑃, and generates a new 

forecast vector 𝑆𝐹
𝑘. This means the forecast for some specific point in time in the future is 

repeatedly updated (usually becoming more accurate) as new measurements of the 

environment are taken. Secondarily the new history, 𝑆𝑃, can be used to re-estimate the 

model parameters. Adapting the time series model if the dynamics of the environment 

have changed. 

 



Action-selection via activation levels 
The agent has some understanding of how the environment is changing, represented as a 

vector of forecasts into the future. How should the agent act based on these predictions? 

The action-selection method used in this work is part of a family of approaches that 

assigns an activation level to each top-level behavior an agent can execute. Arbitration 

via action-selection is straightforward: the behavior with the highest activation level is 

executed. This leaves the question of how to calculate that activation level. Many 

approaches for this problem have been developed (Richter, Sandamirskaya, & Schöner, 

2012; Blumberg, 1994; etc.). The approach in this paper is based on an ethologically-

inspired architecture, described in (Arkin, Fujita, Takagi, & Hasegawa, 2003). 

Every activation function is broken into three components. The first is a 

motivation function (MOT) which represents a behavior’s internal motivation to activate. 

This is based on endogenous (internal) variables representing the state of the agent. Such 

as its power level. The second component is the releasing mechanism (RM). It differs 

from the motivation function in that it focuses on external, or exogeneous, variables. The 

RM is a special function that specifies both the conditions required for a behavior to 

activate, and how well they are satisfied. Algorithmically, if its output is zero it means 

necessary conditions to execute a behavior are not currently satisfied, and the behavior 

cannot execute regardless of how high its total activation may be. 

In this research, we introduce a new component, the circadian function (CIR). 

This component represents the influence of an associated forecast on a behavior’s 

activation level. Like the releasing mechanism, the circadian rhythm function focuses on 

exogenous variables, but considers the impact of their future predicted values, rather than 

their current measured value. The output of each component is defined to be from zero to 

one. The full activation function is the weighted sum of these three components. The 

activation function produces a final activation level used to select which behavior to 

execute. The activation function of behavior N is: 

𝑎𝑐𝑡𝑁 = {
0                                                             𝑖𝑓 𝑅𝑀 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

𝐺 ∗ (𝑊𝑀 ∗ 𝑀𝑂𝑇𝑁 + (1 − 𝑊𝑀)(𝑊𝐶 ∗ 𝐶𝐼𝑅𝑁 + (1 − 𝑊𝐶) ∗ 𝑅𝑀𝑁))   𝑒𝑙𝑠𝑒
   (3)

   
 

Three parameters are used to conveniently adjust robot behavior, based on the 

approach taken in (Chernova & Arkin, 2007). The weight 𝑊𝑀 (0 ≤ 𝑊𝑀 ≤ 1) adjusts the 

relative influence of the exogenous factors (releasing mechanism and circadian function) 

and endogenous factors (motivation function). This allows for the robot to become more 

reactive to its environment, or more focused on its internal needs and goals. A second 

weight is introduced, 𝑊𝐶 (0 ≤ 𝑊𝐶 ≤ 1). This weight balances the impact of the circadian 

function against the releasing mechanism, or more generally sets how much the robot 

focuses on the current measured state compared to the predicted future state. Finally, a 

behavior gain, 𝐺, adjusts the overall activation magnitude of a behavior. 𝐺 effectively 

represents the priority between behaviors, determining which will execute given that 

similar activation from each behavior. Figure 3 below displays the structure of the 

activation function. 



 

Figure 3. The activation function of a behavior is a weighted sum of the three 

components, plus a conditional check on the releasing mechanism. 

Acting based on any model introduces some level of risk for agents in real 

environments. A basic level of robustness is achieved in this approach through the 

redundancy of the releasing mechanism and the circadian function. Both act on the same 

relevant exogenous variables, with the weight 𝑊𝐶 determining the impact from each. If 

𝑊𝐶 = 1, the behavior fully leverages the forecast. This may be the best action if the 

forecast is accurate, and detrimental if it is not. For all other values of 𝑊𝐶, the releasing 

mechanism ensures the behavior has some activation due to the current measured external 

state, regardless of what the time series model predicts. 

A final consideration is the issue of behavior dithering. When activation levels 

change smoothly a rapid switching of behaviors can occur, degrading overall 

performance. Consider an agent that continuously leaves and returns to a charger, as it 

collects or expends just enough energy for a charge behavior’s activation to cross the 

threshold of “highest activation”. Some method of prioritizing the active behavior, to 

create behavioral persistence, is needed. The most common approaches are inhibition of 

inactive behaviors by the active behavior (Blumberg, 1990), or hysteresis in the action-

selection process (Velayudhan & Arkin, 2017). This approach uses the latter, and each 

activation function is supplemented with a hysteresis function that defines a minimum 

amount of time the behavior will execute. 

The ACS allows an agent to adapt to the future using models of the world, a trait 

normally associated with deliberative systems. Yet no deliberation or planning is 

performed; the approach is fundamentally reactive. The agent “reacts” to the predicted 

future state. Adapting to the future can involve more than responding directly to the 



forecast at some point in the future. For instance, choosing an ideal time to execute a 

behavior over a window of time can be done by comparing the current state against the 

forecasted state throughout that window. An otherwise unmeasured state can be estimated 

using forecasts of the current state from measurements in the past. In the following 

experiment, both of these ideas are leveraged. 

Experimental Validation 

To validate this architecture, we set up a simulated experiment to test how incorporating 

the circadian function impacts an agent’s behavior and performance. The scenario 

notionally represents a small, slow agriculture robot; one that persists within the 

agricultural environment as a beneficial component of the ecosystem, monitoring and 

tending to the plants. 

The agent’s purpose is to monitor the population of a pest over a growing season 

and identify when the population reaches a critical threshold requiring intervention by a 

farmer. It must do so while spending a minimal amount of time and energy, 

hypothetically allowing the agent to work on other tasks, and reducing wear on physical 

components. The dynamics modeled by the time series will be the pest population and 

solar irradiance. This will inform when the agent must spend time and energy on 

monitoring the pest population, and when it should charge. 

The general procedure for the experiment is to vary the weight of the circadian 

function (Wc) for one behavior at a time, and observe how it impacts the agent’s 

performance. The two key behaviors are monitor and charge, which utilize the forecasts 

for the pest population and solar irradiance respectively. The rest of this section covers 

how the environment dynamics are generated and modeled, how the robot behaviors were 

constructed, the full experimental procedure, and other miscellaneous details of the 

implementation. 

Environment Dynamics and Modeling 
The pest population dynamics follow a model based on aphids. Many aphid species 

exhibit exponential population growth after an initial infestation due to their ability to 

perform rapid asexual reproduction during some periods of their life cycle. This growth is 

simulated by inserting pests according to a simple aphid population model (Kindlmann, 

Arditi, & Dixon, 2004), plus a random noise factor. Pest are distributed randomly over 

the work space. Figure 4 shows several simulated trajectories of the aphid population. 



 

Figure 4. Example population trajectories. The critical threshold for pest population, 

where intervention is needed, is shown as a dashed red line. 

The pest dynamics were stored on the agent as a time series of measured pest 

levels, defined as the number of pests found per area searched. A 12-hour time interval 

was used. As the agent often did not monitor in a 12-hour period, values between 

measured intervals were interpolated, while values after the last measurement were 

forecasted. The pest dynamics were modeled using the forecast.stlm method in the R 

forecasting library (Hyndman, 2017). This approach first breaks the series into a trend, 

seasonal, and stationary components using the STL decomposition (Seasonal and Trend 

decomposition using Loess: Cleveland, Cleveland, McRae, & Terpenning, 1990). The 

stationary component was modeled as an ARMA(2,1) process. Forecasts of the overall 

series are generated by taking the forecast of the stationary component, and 

reseasonalizing it with the trend and seasonal components. For details on these 

forecasting techniques, see Hyndman et al. (2008). Nine previous seasons, each 90 days 

long, were simulated to provide data to fit the model parameters. 

Solar irradiance available to the robot was based on measurements from the 

National Solar Radiation Database (National Renewable Energy Laboratory, 2016). 

Change in available power is driven primarily by the daily solar cycle, secondarily by 

weather effects, and finally a small impact due to the seasonal shift in daylight hours over 

the 90 days the data was drawn from. Figure 5 visualizes the variability in the amount of 

solar energy available per day. 



 

Figure 5. Average daily solar irradiance over 90 days. 

Some of the most advanced and widely available forecasts are for weather. While 

manual forecasting of solar irradiance using time series is possible (e.g. Bacher, Madsen, 

& Nielsen, 2009), in this experiment we simulate the agent receiving weather forecasts 

from an outside entity. Forecasts are generated by taking the ground truth measurements 

and multiplying them with a random factor. This factor increases exponentially the 

further into the future the forecast is. Based on literature (Lorenz, Hurka, Heinemann, & 

Beyer, 2009), a relative RMSE of 30% for forecasting 24 hours into the future was 

chosen as a realistic estimate of error. The relative RMSE was calculated by taking the 

RMSE for forecasts of time steps with non-zero values (time steps during the night were 

ignored) and scaling that error by the mean value over time. 

Robot Behaviors 
Three behaviors are implemented for the agent: monitor, charge, and rest. While the top-

level action-selection is handled by the architecture described in section 2, each behavior 

is itself built as an assemblage of simpler behaviors. In this section each behaviors 

implementation, activation, and hysteresis will be detailed. 

 

Monitor Behavior 

The monitor behavior is responsible for pest monitoring. It drives the robot around its 

work space, exploring and searching for pests. This is implemented as a vector 

summation of three behaviors: a wander behavior to drive the robot around its work 

space, an attachment behavior to keep the robot in its workspace, and an obstacle 

avoidance behavior. The wander behavior itself is an assemblage of a random walk 

behavior, and an avoid-past behavior. This provides a reasonably consistent, but not 

perfect searching behavior. Nearly every trial had some pests missed during monitoring, 

meaning the agent had to deal with imperfect measurements of the environment. 

 

 

 



Monitor Activation 

For the activation function, the monitor behavior’s MOT (equation 4 below) drives the 

agent to monitor the environment at periodic intervals based on the time since it last 

monitored, 𝑇𝑀. For this experiment, the MOT began increasing after 12 hours since 

monitoring, and maximized at 168 hours (seven days). The RM (equations 5 and 6) 

increases activation of the monitor behavior based on the last measured pest level, 𝑃𝑀. 

Two releasing mechanisms are tested for the monitor behavior. The first increases 

linearly based on 𝑃𝑀, scaled so that it maximizes activation at 𝑃𝑀𝑎𝑥 which was set to the 

pest threshold of 20 in this experiment. The second releasing mechanism increases 

activation based on a logistic function, the same logistic function the circadian function 

uses below. The linear RM has a small constant factor to always release the monitor 

behavior, even if no pests were found, as the environment is always available to be 

monitored. 

 

𝑀𝑂𝑇( 𝑇𝑀 ) =
𝑇𝑀 − 12

156
  (4) 

𝑅𝑀( 𝑃𝑀) =
PM

PMax
+ 0.01 (5) 

𝑅𝑀( 𝑃𝑀) =
1

1 + e−2(PM−17)
  (6) 

The CIR (equation 7) increases activation according to the same logistic function 

as in equation 6, however it uses the forecasted pest level for the current time, 𝑃𝐹(𝑡), 

rather than the most recent measured level. The reasoning behind this logistic function is 

easy to see when compared to the linear function in Figure 6. By restricting activation 

until the pest level is close to the critical threshold, the agent can theoretically save time 

and energy. However, without measuring the pest population, the agent has no way of 

knowing for certain when the population is close to this threshold. The intuition behind 

this circadian function is that forecasts from the past can substitute for current 

measurements, and allow the agent to more conservatively respond to an increasing level 

of pests. 

𝐶𝐼𝑅( 𝑃𝐹(𝑡) ) =
1

1 + e−2(PF(t)−17)
(7) 

 

 

 

 



 

Figure 6. Graph of the logistic and linear activation equations used in the monitor 

behavior. 

Monitor Hysteresis 

The hysteresis for the monitor behavior is a constant thirty minutes, meaning the behavior 

will execute for at least thirty minutes each time it activates. As the MOT component 

resets activation when the agent monitors, every monitor execution lasts thirty minutes. 

 

Charge Behavior 

The charge behavior moves the robot to the region of its work space where direct sunlight 

is available. Once there the agent waits, charging if sunlight is available and the battery is 

not full, until another behavior takes over executing. This is implemented through a 

simple finite state automaton (FSA) (see Figure 7). 

 

Charge Activation 

The charge behavior’s motivation function (equation 8) is a function of the internal 

battery level, increasing linearly as the robot’s battery level decreases. The RM (equation 

9) increases the activation level proportional to the amount of solar energy currently 

available to the robot. The behavior is released even when there is no sunlight so that the 

agent can move and wait for energy, rather than monitor when its battery might be too 

low. In the following equations, B is the battery level of robot (as a percentage), 𝑆𝑀 is the 

current measured solar irradiance, and 𝑆𝑀𝑎𝑥 is the level of solar irradiance where the RM 

reaches max activation. 

𝑀𝑂𝑇( B ) = 1 − 𝐵 (8) 

𝑅𝑀( 𝑆𝑀 ) =
SM

SMax
+ 0.01 (9) 

Finally, the circadian function takes the forecasted solar irradiance and estimates 

three values. First, the energy that would be collected if the agent charged at the current 

time (𝑆𝐶𝑢𝑟). Second, the average energy that would be collected by charging during 

daylight over the next 24 hours (𝑆𝐴𝑣𝑔). Third, the max energy that could be collected by 

executing the charge behavior once over the next 24 hours (𝑆𝑏𝑒𝑠𝑡). The CIR component, 

defined in equation 10, activates when charging at the current time (𝑆𝐶𝑢𝑟) is better than 

the average (𝑆𝐴𝑣𝑔). The activation is proportional to how much better than average 

charging now is, scaled such that it reaches max activation at the best time to charge (as 



estimated by 𝑆𝐵𝑒𝑠𝑡). In the equations below, 𝑆𝐹(𝑡) is the forecasted solar energy at some 

point in time, 𝑡. 

𝐶𝐼𝑅(SF(𝑡)) =
𝑆𝐶𝑢𝑟 − 𝑆𝐴𝑣𝑔

𝑆𝐵𝑒𝑠𝑡 − 𝑆𝐴𝑣𝑔
 (10) 

 

The three values 𝑆𝐶𝑢𝑟, 𝑆𝐴𝑣𝑔, and 𝑆𝐵𝑒𝑠𝑡, are calculated as follows: 𝑆𝐶𝑢𝑟 sums the 

forecasted solar irradiance for the next three hours. 𝑆𝐴𝑣𝑔 estimates the results of 𝑆𝐶𝑢𝑟 for 

the next 24 hours, in 30 minutes increments. Values that charged only during daylight are 

used to find the average, therefore 𝑁 in equation 12 is the number of time steps with 

sunlight. 𝑆𝐴𝑣𝑔 is scaled by a factor 𝑓, so that values larger or smaller than the average can 

be used instead. In this work, 𝑓=1.5. 𝑆𝐵𝑒𝑠𝑡 also looks at the results of 𝑆𝐶𝑢𝑟 over 24 hours, 

but returns the max value. 

𝑆𝐶𝑢𝑟(t) = ∑ 𝑆𝐹(𝑖)

𝑖=𝑡+3

𝑖=𝑡

(11) 

 

𝑆𝐴𝑣𝑔(t) =
f

N
∑ SCur(𝑖)

𝑖=𝑡+24

𝑖=𝑡

     𝑖𝑓 𝑆𝐹(𝑡) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑡𝑒𝑝𝑠 𝑖𝑛 𝑆𝐶𝑢𝑟(𝑖)  (12) 

 

𝑆𝐵𝑒𝑠𝑡(t) = max({𝑆𝐶𝑢𝑟(𝑡), … , 𝑆𝐶𝑢𝑟(𝑡 + 24)}) (13) 

 

Charge Hysteresis 

The charge behavior has a constant hysteresis of three hours, meaning the behavior will 

stay active for at least three hours once activated. This is enough time to charge a large 

portion of the agent’s battery, assuming it began charging at a good time, and keeps the 

agent from ending the charge behavior early with a half-filled battery. 

 

Rest Behavior 

The final behavior, rest, simply causes the robot to stop moving. This behavior exists as 

an alternative to always attempting to charge or monitor, even when the activation of 

both behaviors is low. Thus, if there is nothing important for the agent to do, the agent 

will do nothing. The rest behavior maintains a constant activation of 0.5 at all times. It 

has a brief hysteresis period, ten minutes. There is potential for a more sophisticated 

activation function for a rest behavior, taking into consideration over heating or bad 

weather, but this was not the focus of this work. Figure 7 shows the top-level diagram of 

the robot’s architecture for this experiment. 

 



 

Figure 7. Top-level behavioral architecture 

Experiment Procedure 
The robot’s task was to detect when the pest population crossed a critical threshold, 

which was arbitrarily defined as 20 total pests in the robot’s workspace. This goal was 

achieved by executing the monitoring behavior and measuring the pest population after 

said threshold is reached. Three separate conditions were tested: the inclusion of the 

circadian function into the monitor behavior with the linear releasing mechanism 

(monitor-linear), the inclusion of the CIR into the monitor behavior with the logistic 

releasing mechanism (monitor-logistic), and the inclusion of the CIR into the charge 

behavior (charge). In each condition, the weight Wc was varied from 0 to 1 by 

increments of 0.2. 

Three metrics are defined. For performance with respect to the goal, the time-to-

detection is defined as the time between when the critical pest threshold was reached, and 

when the robot detected it. With respect to energy, energy-spent is the average energy 

used per day by the robot to monitor. Charge-rate is the rate of energy collected, per 

minute, during the periods the robot was charging. These measure the efficiency of both 

working and charging in terms of energy. Each condition has one associated hypothesis 

based on these metrics: 

Hypothesis 1: For the “monitor-linear” condition, the inclusion of the circadian 

component will cause the agent to significantly reduce energy-spent without significantly 

increasing time-to-detection. 

Hypothesis 2: For the “monitor-logistic” condition, the inclusion of the circadian 

component will improve performance, significantly reducing time-to-detection. 



Hypothesis 3: For the “charge” condition, the inclusion of the circadian function will 

significantly increase the charge-rate. 

The experiment was executed 20 times for each condition and group. All 

environmental factors (pest locations, levels, solar irradiance) were saved and replicated, 

so that equivalent trials were identical between groups. To test whether the performance 

of groups in one condition are different, a one-way ANOVA was applied, and Tukey’s 

HSD used for post hoc testing. When the assumption of homogeneity was violated, 

Welch’s ANOVA and the Games-Howell post hoc testing were used instead. 

Implementation Details 
The simulation is implemented in Gazebo as shown in Figure 8. The robot is solar 

powered and must spend a significant portion of its time charging. It expends a large 

amount energy whenever moving, such that the entire battery is depleted after 90 minutes 

of activity. It expends a small amount of energy while inactive, such that the entire 

battery is depleted after 7 days. The robot receives “direct” solar light, and is able to 

charge, when in the charge behavior and near the top wall closest to the “sun” (yellow 

sphere). The robot’s workspace is 16x4 meters, and the agent can move at 5 cm/s. 

 

 

Figure 8. The gazebo simulation environment. The bottom right image highlights the 

agent (white box) and one pest (red disk). 

For all tests, the monitor behavior’s weight Wm was set to 0.5, and the charge behavior’s 

weight Wm was set to 0.6. The behavior gains 𝐺 were left at 1 for all behaviors. When 

testing a behavior (charge or monitor), the other behavior’s circadian function was 

excluded (Wc=0). When testing the charge behavior, the monitor behavior used the linear 

releasing mechanism. 

Results and Discussion 

The Monitor Behavior 
First let us examine the inclusion of the circadian function for the monitor-linear 

condition. The data for time-to-detection and energy-spent are shown below in Figure 9. 

See Appendix A for detailed results of both this and the following conditions. The results 

for time-to-detection have large variance (a maximum standard deviation of 554 minutes 

was found for Wc=1.0), as the agent always had the possibility of monitoring right before 



or after the pest threshold was crossed. No trend, however, emerged in the mean values. 

A one-way ANOVA found no difference between any groups ( F(5,114)=0.24, p=0.944 ). 

In contrast, the energy-spent shows a clear decreasing trend. With the lowest 

energy-spent found for Wc=1.0, 24% lower than Wc=0. A one-way ANOVA found the 

differences between groups was highly significant (F(5,144)=6.83 , p<0.001). Post hoc 

testing with Tukey’s HSD showed that the energy-spent for Wc=0 was significantly 

different for groups from Wc=0.4 to Wc=1.0. To summarize, the hypothesis for the 

monitor-linear condition has been confirmed: Use of the circadian function allowed the 

agent to significantly reduce its energy expenditure without impacting performance. 

 

Figure. 9. Average time-to-detection over 20 trials when monitor behavior weights 

varied.  Standard error bars shown. 

Next is the monitor-logistic condition, the data is summarized below in Figure 10. 

In this case, a trend for time-to-detection appears to exist, with the mean value for 

Wc=1.0 dropping to under half the value for Wc=0. In addition, the variance is larger, 

with a max standard deviation of 1209 minutes for group Wc=0. For time-to-detection 

alone, the assumption of homogeneity of variance between groups is violated (Levene’s 

test showed significant difference between variance of groups, F(5,114)=5.022, p<0.001). 

Welch’s one-way ANOVA was applied and found there was no significant difference 

between time-to-detection for the groups (F(5,52.6)=1.285, p=0.284). Therefore 

hypothesis two could not be confirmed. Perhaps surprising when looking at the data, but 

the details of the trials shows that the majority of the increase in the average time-to-

detection for Wc=0 is due to a minority of very bad trials. Five of the twenty trials have a 

time-to-detection roughly double (or more) than the average of 1175 minutes. In 

comparison, there is only one such outlier trial for Wc=1. The circadian function helped 

the agent be more robust to poor or badly timed measurements by incorporating 

information from past measurements into its prediction of the pest level. 



 

 

Figure 10. Average energy-spent per day over 20 trials when monitor behavior weights 

varied. Standard error bars shown. 

Although it’s impossible in this experimental setup for the agent to know exactly 

when it needs to monitor in advance, incorporating knowledge about the normal seasonal 

pest cycle through the circadian function allows the agent to prioritize when it spends 

time and energy monitoring. Without the circadian system, the agent can achieve similar 

performance by expending more energy, shown with the monitor-linear condition. 

However, attempting to use the same conservative activation scheme as the circadian 

function without the forecasts (as shown in the monitor-logistic condition) caused the 

agent’s performance to become less reliable. 

The Charge Behavior 
The results of including the circadian function into the charge behavior are shown below 

in Figure 11 and 12. The charge rate increases quickly with a small inclusion of circadian 

function, and seems to level off after. The two horizontal lines of Figure 12 provide a 

scale for reasonable performance. The bottom line is the average charge rate over all 

daylight hours, representing the performance of an agent that picks a time to charge 

during the day randomly. The top line is the average charge rate for the best time to 

charge every day. Both use the assumption of a three-hour charge time. These can be 

considered reasonable boundaries for “best” and “worst” performance. 

For weight Wc=0.4 and higher, the charge rate was over 10% higher than without 

the circadian function. A one-way ANOVA found the difference between groups was 

highly significant (F(5,114)=17.497, p<0.001). Post hoc testing with Tukey’s HSD 

showed group Wc=0.0 was significantly lower than all other groups, and groups Wc=0.2 

to Wc=1.0 were not significantly different from each other. Therefore hypothesis three is 

confirmed, the agent using the circadian function has significantly higher charge-rate. 



 

Figure 11. Average charge-rate as the circadian function is included in the charge 

behavior. The lower dashed line is the average charge rate if the agent charged during all 

daylight hours. The upper dashed line is the average charge rate if the agent charged at 

the best time each day. Standard error bars shown. 

 

Figure 12. The same data as in figure 11, zoomed in for clarity.  

The releasing mechanism for the charge behavior performs reasonably well. The 

heuristic of “charge when there’s a lot of sunlight” is effective. However, it is unable to 

adapt to changing solar dynamics. Both weather and the seasonal shift in solar irradiance 

create opportunities for the forecasting approach to perform better. An example of this is 

shown below in Figure 13, which illustrates a single day that two agents both charged on. 

For Wc=0, the releasing mechanism prioritizes charging at the highest solar level. The 

agent with Wc=1.0 starts charging earlier and at a lower level of sunlight, even though it 

started the day with ~5% more battery power. It does so because it forecasts that future 

opportunities to charge will be worse, due to inclement weather. 



 

Figure 13. One example when agents charged on the same day highlights how the 

circadian function allows the agent to identify better times to charge, even when the 

immediate level of solar irradiance is lower. 

Summarizing these results, at Wc=0.6 the ACS allowed the agent to use ~20% less 

energy and charge ~10% faster. For an energy-constrained agent, this would represent a 

significant boost in performance, and it is achieved without complete reliance on 

forecasts. Ensuring the agent could still operate (though with degraded performance) if 

the time series models became highly inaccurate. For any persistent robotic platform, 

energy is likely to be a major concern. For solar-powered platforms in particular, it is 

likely to be the limiting factor in performance. 

Conclusions 

This work has detailed an approach to help a robotic agent respond to long-term 

dynamics - the Artificial Circadian System. Inspired by the circadian systems in nature, 

time series models forecast the changing environment. These forecasts are incorporated 

into the action-selection process to allow a robot to act based on both the current 

measured and future predicted values of the state. Forecasts can potentially be applied in 

multiple ways: for proactive behavior, to estimate an otherwise unmeasured state, to 

identify the best time to execute a behavior, or even to detect deviations in the 

environment by comparing a predicted and measured state. 

An agricultural domain was chosen as a test bed, and a pest-monitoring task with 

a slow, solar-powered robot was simulated. With the ACS, the agent was able to model 

the pest level over time, even when not actively monitoring it. Allowing the agent to 

conserve energy while still reliably performing its task. The agent also weighed the future 

predicted availability of solar energy into its decisions on when to charge, improving the 

timing of transitions to a charging behavior. The agent’s behavior adapted to the 

changing environment: prioritizing monitoring only when the pest level was high, and 

prioritizing charging at the best times. 



When considering whether the ACS is relevant for a given problem, there are two 

main factors to consider. One is the predictability or randomness of the relevant 

environmental dynamics. By relevant, we mean that the state or attribute of the 

environment has a meaningful impact on the performance of the agent. Purely random 

change is unpredictable, and there is no better strategy than a reactive one in such a 

situation. On the opposite end, purely deterministic environments lend themselves to 

solving an optimal schedule offline. Many environments fall in between these extremes, 

experiencing random perturbations and short-term trends, but showing clear long-term 

patterns that can still be exploited. The interaction between the agent and environment is 

also critical. If the agent does not remain active for long enough to experience 

meaningful change or is fast enough to react to change with little loss in performance, it 

may not need to predict anything. If the agent can be considered either slow or persistent, 

however, then the ability to anticipate change and adapt to it will likely bring benefits.  

As shown in the presented experiment, the agricultural domain is an area with 

significant potential relevance for the ACS. This extends to field robotics in general if the 

platforms are intended to be persistent. Urban applications may also crop up whenever a 

robotic agent is impacted by traffic: either pedestrian or vehicular. Traffic dynamics are 

both highly cyclic and noisy, an ideal case for the modeling approach used in this work. 

Adapting activity of an agent around traffic using the ACS could allow agents to save 

time and energy, in the same way that people might avoid driving during rush hour or 

take an alternative route. 

A physical test-bed has been constructed to continue future work in two primary 

directions. First is to more thoroughly study the scope of this approach. What other 

characteristics of an environment and agent make the artificial circadian system valuable? 

How fast does an agent need to be, relative to environmental changes, such that 

forecasting isn’t useful? How accurate do the forecasts need to be? Second is robustness 

in cases when the forecasting system fails, due to an insufficient model or unpredictable 

changes in the environment. Any model of a natural environment is limited. How can the 

agent detect when forecasts accuracy degrades, and adjust the weight of the forecasts in 

action-selection appropriately? Given detection of the model failing, how should the 

agent re-entrain it using the state’s history? 
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Appendix A: Experimental Data 

In this section, we present the experimental results in tabular form for reference. 

Table 1. Detailed results for monitor-linear condition. Time-to-detection is in minutes, 

and energy-spent in battery percentage per day. 

Weight of CIR 0.0 0.2 0.4 0.6 0.8 1.0 

Time-to-
detection  

Mean 475.85 527.65 488.45 483.25 401.05 495.5 

Stand. 
Dev. 

224.84 311.13 485.02 369.82 237.15 554.61 

Energy-
Spent 

Mean 11.206 10.206 9.618 9.1641 8.7467 8.5187 

Stand. 
Dev. 

1.7783 1.5457 1.5657 1.7512 1.783 1.8513 

 

Table 2. Detailed results for monitor-logistic condition. Time-to-detection is in minutes, 

and energy-spent in battery percentage per day. 

Weight of CIR 0.0 0.2 0.4 0.6 0.8 1.0 

Time-to-
detection 

Mean 1175 800.1 853.15 671.4 708.6 495.5 

Stand. Dev. 1208.8 798.8 905.1 494.1 629.02 554.61 

Energy-
Spent 

Mean 7.0889 7.268 7.6443 8.2783 8.6715 8.5187 

Stand. Dev. 1.4616 1.7046 1.3049 1.6217 1.7935 1.8513 
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Table 3. Detailed results for charge condition. Charge-rate is in battery percentage per 

minute. 

Weight of CIR 0.0 0.2 0.4 0.6 0.8 1.0 

Charge
-rate 

Mean 0.33299 0.3629 0.37007 0.36684 0.36875 0.3726 

Stand. Dev. 0.000163 0.000153 0.00033 0.000309 0.000188 0.00035 

 


