
An Artificial Circadian System for a Slow and
Persistent Robot*

Matthew J. O’Brien and Ronald C. Arkin

Mobile Robot Lab, Georgia Institute of Technology, Atlanta, GA 30308

{mjobrien,arkin}@gatech.edu

Abstract. As robots become persistent agents in natural, dynamic environ-
ments, the ability to understand and predict how that environment changes be-
comes more valuable. Circadian rhythms inspired this work, demonstrating that
many organisms benefit from maintaining simple models of their environments
and how they change. In this work, we outline an architecture for an artificial
circadian system (ACS) for a robotic agent. This entails two questions: how to
model the environment, and how to adapt robot behavior based on those mod-
els. Modeling is handled by treating relevant environment states as time series,
to build a model and forecast future values of that state. The forecasts are con-
sidered special percepts, a prediction of the future state rather than a measure-
ment of the current state. An ethologically-based action-selection model incor-
porates this knowledge into the agent’s decision making. The approach was
tested on a simulated precision agricultural task - pest monitoring with a solar
powered robot - where it improved performance and energy management.

1 Introduction

Moving from structured, static environments to natural, dynamic environments re-
mains a challenge in robotics. While reactive approaches in behavior-based designs
have shown effectiveness in dealing with the randomness present in the real world,
most ignore the somewhat predictable dynamics that many environments exhibit. In
this work we describe an architecture for modeling environmental dynamics, and
adapting an agent’s behavior to them. This approach is inspired by circadian rhythms
found in a variety of natural organisms; from humans, to plants, to bacteria [15].

Circadian systems are chemical oscillators, synchronized to the solar cycle, that in-
fluence behavior and metabolic processes of an organism. Rather than simply reacting
to the environmental changes, circadian systems allow an organism to take action
before its senses (perceptual state) or needs (internal state) could drive the behavior.
“Circadian rhythmicity of behavior represents an animal’s information, or one is
tempted to say, knowledge about a particular feature of its environment… and what to
do about it.” [14]

* This research is supported by The Office of Naval Research Grant #N00014-15-1-2115.

2

The need for such an architecture in a robotic system is growing. Recently, the
non-industrial robotic market overtook the industrial robotic market for the first time
[18]. With the influx of robots into our lives, interest and research into persistent au-
tonomy is increasing. Particular focus has been placed on mapping dynamic environ-
ments. While some model those dynamics [1], many focus on ways to filter changes
to update the map [7]. More relevant is work on modeling environment dynamics that
is applied to robot behavior. The most similar work modeled binary environment
states as a periodic probability using Fourier series, and applied it to several problems
including path planning, localization, and exploration [11].

This work is particularly targeted for slow, persistent robotic agents. Persistent
agents will experience environmental cycles that a robot that executes for twenty
minutes, or even two hours, will not. Slow robots are inherently less able to react
quickly to a changing environment (but may have several advantages, especially for
persistent energy-constrained tasks [3]). Thus, the ability to predict and proactively
act could be very beneficial.

In this research, we develop an artificial circadian system (ACS) to learn and ex-
ploit the patterns that often exist in the dynamics of natural environments. In previous
work, we demonstrated the application of time series modeling of an environment for
a robotic agent, and tested it on a simulated robot interacting with pedestrian traffic
using very simple behavioral rules [13]. Here, we investigate a principled way to in-
corporate the generated predictions into action-selection.

2 The Architecture

The ACS is built on a behavior-based architecture. A special set of perceptual sche-
mas (or perceptual algorithms that process sensor data for specific behaviors [2])
model the environmental dynamics as time series and forecast future values of the
state. Behaviors are supplemented with activation functions based on both the current
sensed state and the future predicted state. Action-selection is done by selecting the
behavior with the highest activation. Figure 1 shows the top-level architecture, and
the rest of this section details the components.

Fig. 1. The top-level diagram of the ACS architecture.

2.1 Modeling environmental dynamics as time series

We view the environment state as a time series, and apply methods from the time
series literature to model and forecast future values. Time series models predict, or
“forecast”, future values of a variable directly from its past values. It allows for mod-

3

eling of both cyclic and non-cyclic effects, and can forecast both the value of the fu-
ture state as well as generate prediction intervals. A useful quality is that the approach
is data driven. The underlying cause of the dynamics may be too complicated to mod-
el, or at least impractical to do so on a robot (consider the actions of many individuals
to create traffic). Time series modeling offers versatility and simplicity, side-stepping
the need for expert knowledge about a domain.
 A fundamental approach to modeling time series is the classical decomposition [8],
of a time series into its major components:

𝑌௧ = 𝑇௧ + 𝑆௧ + 𝐸௧ (1)

Where Yt is the original time series. Tt is the trend component, a slowly changing
average level; St is the seasonal component, a repeating pattern with known period;
and Et is the residual, or error, left over after the trend and seasonal components have
been removed from the time series. This decomposition provides a structured ap-
proach for modeling and allows for focus on components of interest. For example,
seasonal effects are sometimes removed from data in a process called deseasonaliza-
tion. In our work the seasonal effects are of key importance, as they represent the
cyclic (or circadian, if the period is roughly 24 hours) dynamics in the environment.

The literature on time series analysis and forecasting provides a broad set of tools
[9]. At this time, however, there is no catch-all method or system. Historical data is
required to manually select an appropriate model, one that can capture the dynamics
of the environment. While model selection is must be done offline, model fitting (i.e.
parameter estimation) and forecasting can be done online, autonomously by the agent.

Time series modeling has traditionally been applied for offline analysis of discrete
data. To leverage these techniques on a real-time system, three data structures are
used when updating the forecast. The past state values, or the measured time series, is
stored as the vector 𝑆௣. These are fed into the time series model, and used to forecast
the future values of the state, 𝑆ி

௧ , where t is the time this forecast vector was generat-
ed. Lastly, there is a set of current sensor measurements called 𝑆ெ . At the end of any
forecast interval, 𝑆ெ is used to generate a final state value (𝑆௣) for that interval. This
could be an average of multiple measurements, a count of recorded events, or even a
null value if no measurements of the relevant state variable were made.

Fig. 2. SP returns measures of the state in the past, while SF returns forecasts of the state in the
future. SM is the current measured state.

Entrainment of this system to the environment happens at two levels. Every forecast
interval the agent appends a new value to SP, and generates a new forecast vector SF.
This means the forecast for some specific point in time in the future is repeatedly
updated (usually becoming more accurate) as new measurements of the environment

4

are taken. Secondarily the new recent history, SP, can be used to re-estimate the model
parameters. Adapting the time series model if the dynamics of the environment have
changed.

2.2 Action-selection via activation levels

The action-selection method used in this work is part of a family of approaches that
assigns an activation level to each top-level behavior an agent can execute. Arbitra-
tion via action-selection is straightforward: the behavior with the highest activation
level is executed. This leaves the question of how to calculate that activation level.
Many approaches for this problem have been developed [16, 5, etc.]. The approach in
this paper is based on an ethologically-inspired architecture, described in [4].

Every behavior includes several
additional components to facilitate
the action-selection process. The first
is a motivation function (MOT)
which represents a behavior’s internal
motivation to activate. This is based
on endogenous (internal) variables
representing the state of the agent
(such as its power level). The second
component is the releasing mecha-
nism (RM). It differs from the moti-
vation function in that it focuses on
external, or exogeneous, variables.
The RM is a special function that
specifies both the conditions required
for a behavior to activate, and how
well they are satisfied. Algorithmical-
ly, if its output is zero it means neces-
sary conditions to execute a behavior
are not currently satisfied, and the
behavior cannot execute regardless of
how high its total activation may be. In this research, we introduce a new component,
the circadian rhythm function (CIR). This component represents the influence of an
associated forecast on a behaviors activation level. Like the releasing mechanism, the
circadian rhythm function focuses on exogenous variables, but considers the impact
of their future predicted values, rather than their current measured value.

Each behavior has an activation function that is the weighted sum of the motivation
function, releasing mechanism, and circadian rhythm function. The activation func-
tion produces a final activation level used to select which behavior to execute. The
activation function of behavior N is:

𝑎𝑐𝑡ே = ቊ
0 𝑖𝑓 𝑅𝑀 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

𝐺 ∗ ൫𝑤௠ ∗ 𝑀𝑂𝑇ே + (1 − 𝑤௠)(𝑤஼ ∗ 𝐶𝐼𝑅ே + (1 − 𝑤஼) ∗ 𝑅𝑀ே)൯ 𝑒𝑙𝑠𝑒
 (2)

Fig. 3. The activation function of a behavior is a
weighted sum of the three components, plus a
conditional check on the releasing mechanism

5

Three parameters are introduced to conveniently adjust robot behavior, based on the
approach taken in [6]. The behavior gain, 𝐺, adjusts the overall activation magnitude
of a behavior. The weight {𝑤ெ ∈ 𝑅 ∨ 0 ≤ 𝑤ெ ≤ 1} adjusts the relative influence of
the releasing mechanism and the motivation function. This allows for the robot to
become more reactive to its environment (higher weighting of releasing mechanism
and circadian rhythm function) or more focused on its internal needs and goals (high-
er weights of motivation function). A final weight is introduced, {𝑤஼ ∈ 𝑅 ∨ 0 ≤ 𝑤஼ ≤
1}. This weight balances the impact of the CIR function against the releasing mecha-
nism, or more generally sets how much the robot focuses on the current measured
state compared to the predicted future state.

The circadian function allows for more than acting directly on a forecasted state.
For instance, choosing an ideal time to execute a behavior over some time window
can be done by comparing the current state against the forecasted state throughout that
window. An otherwise hidden state can be estimated using forecasts generated in the
past of the now current state. In the following experiment, both of these approaches
are leveraged.

3 Experimental Validation

To validate this architecture, we set up a simulated experiment to test how incorporat-
ing the circadian rhythm function impacts an agent’s behavior. The scenario involves
a small, slow agriculture robot; one that persists within the agricultural environment
as a beneficial component of the ecosystem, monitoring and tending to the plants.

The agent’s purpose is to monitor the population of a pest over a growing season,
and identify when the population reaches a critical threshold requiring intervention by
a farmer. It must do so while spending a minimal amount of time and energy, allow-
ing the agent to work on other tasks, and reducing wear on physical components. The
dynamics modeled by the time series will be the pest population and solar energy.
This will inform when the agent must spend more time and energy on monitoring the
pest population, and when it should charge.

3.1 Environment Details and Modeling

The simulation is implemented
in Gazebo as shown in Figure
4. The pest population dynam-
ics follow a model based on
aphids. Many aphid species
exhibit exponential population
growth after an initial infesta-
tion due to their ability to per-
form rapid asexual reproduc-
tion during some periods of
their life cycle. This growth is

Fig. 4. The Gazebo simulation environment. The bot-
tom right image highlights the robot (white box) and
pest (red disk)

6

simulated by inserting pests according to a simple aphid population model [10], plus a
random noise factor. Pest are distributed uniformly over the work space. Figure 5
shows several simulated trajectories of the aphid population. The robot is solar
charged, and must spend a significant portion of its time charging. It expends energy
whenever moving, proportional to its speed. The robot receives “direct” solar light
when against the top wall closest to the “sun” (yellow sphere), and reduced solar light
as it moves away. Available solar power over time followed a bell shape plus noise
between dawn and dusk, and was zero at night time.

Fig. 5. Example population trajectories used for simulation. The critical threshold for pest
population, where intervention is needed, is shown as a dashed red line. Different trials reached
this threshold over 30 days apart.

The pest dynamics were stored as a time series of measured pest levels, defined as
the number of pests found per area searched. A 12-hour time interval was used. As the
agent often did not monitor in a 12-hour period, values between measured intervals
were interpolated, while values after any measurement were forecasted. The pest dy-
namics were modeled using the STL decomposition (Seasonal and Trend decomposi-
tion using Loess) in the R forecasting library [9] which breaks the series into a trend,
seasonal, and stationary components. For details on these forecasting techniques, see
[8]. Nine previous seasons, each 90 days long, were simulated to provide data to fit
the model parameters.

Solar energy is this simulation was simple, a set cyclic function over 24 hours, plus
noise. Thus, it was forecasted as the average or expected solar level per time step.

3.2 Robot Behaviors

While the top-level action-selection is handled by the architecture described in section
2, each behavior is built as an assemblage of simpler behaviors. The behaviors are
based on work exploring the design of slowbots (i.e. slow robots [17]). The monitor
behavior is responsible for pest monitoring. It drives the robot around its work space,
exploring and searching for pests. This is implemented as a vector summation of three
behaviors: a wander behavior to drive the robot around its work space, an attachment
behavior [12] to keep the robot in its workspace, and an obstacle avoidance behavior.
 For the activation function, the monitor behavior’s MOT (equation 3 below) drives
the agent to monitor the environment at periodic intervals. When not monitoring, its

7

activation level increases proportional to the time since it last monitored. When moni-
toring, the activation level decreases proportional to the time is has been recently
monitoring (we used a 12-hour window). The RM (equation 4) increases activation of
the monitor behavior based on how much the forecasted pest level, and the last meas-
ured pest level, disagree. This causes the robot to monitor longer and more frequently
when the current pest population deviates from expected values. The RM has a small
constant factor to always release the monitor behavior, as the environment is always
available to monitor. The CIR (equation 5) increases activation proportional to the
expected level of pests. This is the key component that prioritizes the robot’s actions
when there are more pests, or a higher expected number of pests.
 In the below equations, 𝑇ୗ is the time (minutes) since the monitoring behavior last
executed. 𝑇ெ is the time (minutes) spent monitoring in the last 12 hours. 𝑃ெ is the last
measured pest level, and 𝑃ி(𝑡) is the forecasted pest level for time 𝑡. All 𝐾௡ values
are constant parameters.

𝑀𝑂𝑇(𝑇ெ , 𝑇ୗ) = ൜
𝐾ଵ ∗ 𝑇ୗ 𝑖𝑓 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

100 − 𝐾ଶ ∗ 𝑇ெ 𝑖𝑓 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑎𝑐𝑡𝑖𝑣𝑒
 (3)

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ≤ 𝑀𝑂𝑇(𝑇ெ , 𝑇ୗ) ≤ 100

𝑅𝑀(𝑃ெ , 𝑃ி(𝑡)) = 𝐾ଷ ∗ |𝑃ெ − 𝑃ி(𝑡)| + 0.1 (4)

𝐶𝐼𝑅(𝑃ி(𝑡)) = 𝐾ସ ∗ 𝑃ி(𝑡) (5)

The energy collection behavior moves the robot to the region of its work space where
direct sunlight is available. Once there the agent waits, charging, until another behav-
ior takes over executing. This is implemented through a simple FSA (see Figure 6).

The energy collection behavior’s motivation function (equation 6) is a function of
the internal battery level, and it increases exponentially as the robot’s battery level
decreases. This was arbitrarily chosen, but ensures the behavior becomes dominant
when power is low. The RM (equation 7) increases the activation level proportional to
the amount of solar energy currently available to the robot, averaged over the recent
history. The behavior is released even when there is no sunlight so that the agent can
move and wait for energy, rather than monitor when its battery might be too low.
Finally, the CIR (equation 8) looks at the average solar energy for a set time in the
future (in this experiment, 90 minutes), and compares that to the current solar energy.
When the current solar energy is higher, the activation level of energy collection is
increased, making the robot more likely to charge before the opportunity is lost.
 In the following equations, B is the battery level of robot (as a percentage), 𝐸ெ is
the current measured solar energy, and 𝐸ி(𝑡) is the forecasted solar energy at some
point in time, 𝑡.

𝑀𝑂𝑇(B) = 𝐾ହ ∗ 10ଵି஻ − 𝐾଺ (6)

𝑅𝑀(𝐸ெ) = 𝐾଻ ∗ 𝐸ெ + 0.1 (7)

𝐶𝐼𝑅൫𝐸ெ , 𝐸ி(𝑡)൯ = ൜
𝐾଼ ∗ ൫𝐸ி(𝑡) − 𝐸௔௩௚൯ 𝑖𝑓 𝐸ி(𝑡) − 𝐸௔௩௚ > 0

0 𝑒𝑙𝑠𝑒
 (8)

8

𝐸௔௩௚ =
1

𝑁
෍ 𝐸ி(𝑖)

௜ୀ௧ାே

௜ୀ௧

 (9)

The final behavior, rest, simply causes the robot to stop moving. This behavior exists
as an alternative to always attempting to collect energy or monitor, even when the
activation of both behaviors is low. Thus, if there is nothing important for the agent to
do, the agent will do nothing. The agent will still charge if its positioned in direct
sunlight while resting. The rest behavior maintains a constant activation level at all
times, achieved by a constant value for the MOT, RM, and CIR functions. There is
potential for a more sophisticated activation function, potentially taking into consider-
ation over heating or bad weather, but this was not the focus of this work. Figure 6
shows the top-level diagram of the robot’s architecture for this experiment.

Fig. 6. Top-level behavioral architecture

3.3 Experiment Procedure

The robot’s task was to detect when the pest population crossed a critical threshold.
This goal was achieved by executing the monitoring behavior and measuring the pest
population after said threshold is reached. The experiment varied the weight of the
CIR function for both behaviors (monitor and charge) across a range of values. For
performance with respect to the goal, the time-to-detection measure is defined as the
time between when the critical threshold was reached, and when the robot detected it.
With respect to energy, two others are defined. Energy-spent is the energy used by the
robot in one trial. Charge-rate is the rate of energy collected, per minute, during the

9

periods the robot was charging. These measure the efficiency of both working and
charging in terms of energy.

The experiment was executed 20 times for each condition. Trials had different ini-
tial conditions, pest locations, and pest population growth included some randomness.
The hypotheses for the experiment was that the inclusion of the CIR component in the
activation function of the monitor behavior will cause the robot to detect that the pest
population reached the threshold sooner (lower time-to-detection) while spending less
time/energy in the monitoring behavior (lower energy-spent). For the charge behav-
ior, the CIR component will improve the timing of when the robot charges (higher
charge-rate).

4 Results and Discussion

4.1 The Monitor Behavior

When testing the monitor behavior, the charge behavior weights were set (by experi-
mentation) to: WM = 0.5, WC = 0.3. The monitor activation weights were WC = 0.9,
and WM varied from 1.0 (only use MOT) to 0.4 (heavily use CIR and RM compo-
nents). Figures 7 and 8 show the performance for time-to-detection and energy-spent.
There is a clear trend that higher weighting of the CIR component reduced the aver-
age time-to-detection, reducing it by 85.9% between 0% and 54% CIR weights (2267
minutes to 319.9). The time-to-detection also has significant variance, as the robot
could randomly monitor right before or after the pest threshold is reached. The stand-
ard deviation was reduced by 74% with higher weighting of the CIR: from 1352
minutes to 351.

Figure 9 illustrates the difference in behavior. Without the CIR component, the
agent uses no knowledge about the pest population, and monitors at regular intervals.
In this case, the ACS predicts an otherwise hidden variable: the level of pests when
the robot is not monitoring. This allows the agent to use less energy to monitor when
the pest threat is low, but more energy to monitor near the critical time when pests are

Fig. 7. Average time-to-detection over 20
trials when monitor behavior weights
varied. One standard deviation marked.

Fig. 8. Average energy-spent per day over 20
trials when monitor behavior weights varied.
One standard deviation marked.

10

Fig. 9. Two executions by the agent on the same trial with different activation function
weighting. This highlights the difference between when the agent monitors over the course of
the experiment if the CIR component is included in the activation function.

becoming a problem. The average energy used per day was minimized at 36% CIR
weight, where it was 22.2% lower than with 0% CIR weight. With higher CIR
weight, the overall energy usage begins to increase, up to 6.71% above the value at
0% CIR weight. Once the CIR weight reaches high enough, the agent may begin to
monitor continuously (if it has energy to do so). This depends on the forecasted pest
level, it did not happen in every trial, which creates the rapidly growing variance in
energy usage. This effect happened when the CIR component alone can surpass the
rest behavior in terms of activation. This significantly reduces the average time-to-
detection, but expends a large amount of energy to do so.

4.2 The Charge Behavior

When testing the charge behavior, the monitor behavior was held constant with
weights WM = 0.5 and WC = 0.9. The charge behaviors weights were adjusted with a
slightly different scheme. The releasing mechanism was an important component to
avoid behavioral dithering (or rapid switching). It was left at a total 30% of the activa-
tion weight, while the total weight of the CIR component was varied from 0% to 40%.
WM and WC were both varied to achieve these ratios of the MOT and CIR compo-
nents on final activation level.

The charge-rate, as shown in Figure 10, has a trend of increasing with greater
weight of the CIR component: from an average 0.1778 charge-% per min to 0.4187,
an increase of 135%. The charge behavior’s circadian rhythm function particularly
prioritizes charging near peak sunlight, before the ideal opportunity to charge is lost.
Thus, the agent is reacting not just on its current power and the current solar energy,
but also on how the solar energy is changing. This has a clear impact on performance.
The time-to-detection was also investigated for the charge behavior testing

11

(Figure 11) to see if there might be effects on performance due to the changes to
charge timings. However, no trend seems to have emerged.

5 Conclusions

This work has detailed an architecture to help a robotic agent respond to long-term
dynamics - the Artificial Circadian System. Inspired by the circadian systems in na-
ture, time series models forecast the changing environment. These forecasts are incor-
porated into the action-selection process to allow a robot to act based on both the
current measured and future predicted values of the state. The time series models can
also be applied to estimate an otherwise hidden state, or detect deviations in the envi-
ronment by comparing an expected and measured state.

An agricultural domain was chosen as a test bed, and a pest-monitoring task with a
solar-powered robot was simulated. With the ACS, the agent was able to model the
pest level over time, even when not actively monitoring it. Results showed this al-
lowed for quicker identification of when the pest level reached a critical threshold
requiring action, while using less energy to do so. The agent also weighted the future
predicted availability of solar energy into its decisions on when to charge, improving
the timing of transitions to a charging behavior. The agent’s behavior adapted to the
changing environment: monitoring more when the pest level was higher, and prioritiz-
ing charging when solar energy was at its peak.

Future work is planned in several directions. The next step is to leave simulations
and begin testing with physical robots interacting with real environments. Robustness
should be developed to handle cases when the forecasting system fails, due to model-
ing error or random events, allowing the agent to detect and respond to these situa-
tions. Finally, reinforcement learning offers interesting possibilities for the agent to
autonomously adapt even when the environmental dynamics themselves change, but
also brings significant challenges. A single state becomes a multi-dimensional trajec-
tory when forecasted, significantly increasing the complexity of the state space.

Fig. 10. Average charge-rate over 20 trials
when charge behavior weighs varied. One
standard deviation marked.

Fig. 11. Average time-to-detection over 20 tri-
als when charge behavior weights varied. One
standard deviation marked.

12

References

1. Ambrus, R., Ekekrantz, J., Folkesson, J., Jensfelt, P.: Unsupervised learning of spatial-
temporal models of objects in a long-term autonomy scenario. In: Intelligent Robots and
Systems (IROS 2015), pp. 5678-5685. Curran Associates, Inc (2016)

2. Arkin, R.C.: Behavior-based robotics. MIT press. (1998)
3. Arkin, R.C., Egerstedt, M.: Temporal heterogeneity and the value of slowness in robotic

systems. In: IEEE International Conference on Robotics and Biomimetics (ROBIO 2015),
pp. 1000-1005. Curran Associates, Inc (2016)

4. Arkin, R.C., Fujita, M., Takagi, T., Hasegawa, R.: An ethological and emotional basis for
human–robot interaction. Robotics and Autonomous Systems. 42(3), 191-201 (2003). doi:
10.1016/S0921-8890(02)00375-5

5. Blumberg, B.: Action-selection in hamsterdam: Lessons from ethology. In: Proceedings of
the Third International Conference on Simulation of Adaptive Behavior: From Animals to
Animats, pp. 108-117. MIT Press (1994)

6. Chernova, S., Arkin, R.C.: From Deliberative to Routine Behaviors: A Cognitively In-
spired Action-Selection Mechanism for Routine Behavior Capture. Adaptive Behav-
ior, 15(2), 199-216 (2007). doi:10.1177/1059712306076255

7. Dayoub, F., Duckett, T.: An adaptive appearance-based map for long-term topological lo-
calization of mobile robots. In Intelligent Robots and Systems (IROS 2008), pp. 3364-
3369. Curran Associates, Inc (2009)

8. Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with exponential
 smoothing: the state space approach. Springer Science & Business Media (2008)

9. Hyndman, R.J.: Forecasting Functions for Time Series and Linear Models. R package.
http://pkg.robjhyndman.com/forecast/ (2017) Accessed Jan 2018

10. Kindlmann, P., Arditi, R., Dixon, A.F.G.: A simple aphid population model. In: Aphids in
a New Millennium, pp. 325-330. INRA, Paris (2004)

11. Krajník, T., Fentanes, J.P., Santos, J.M., Duckett, T.: Fremen: Frequency map enhance-
ment for long-term mobile robot autonomy in changing environments. IEEE Transactions
on Robotics. 33(4), 964-977 (2017). doi:10.1109/TRO.2017.2665664

12. Likhachev, M., Arkin, R.C.: Robotic comfort zones. In: Sensor Fusion and Decentralized
Control in Robotic Systems III, International Society for Optics and Photonics, vol 4196,
pp. 27-42 (2000). doi:10.1117/12.403722

13. O’Brien, M.J., Arkin, R.C.: Modeling Temporally Dynamic Environments for Persistent
Autonomous Agents. In: Proceedings of the Thirtieth International Florida Artificial Intel-
ligence Research Society Conference, pp. 442-448. The AAAI Press, Palo Alto (2017)

14. Oatley, K.: Circadian Rhythms and Representations of the Environment in Motivational
Systems. In: McFarland, D.J. (eds.) Motivational Control Systems Analysis, pp. 427-459.
Oxford: Academic Press. (1974)

15. Paranjpe, D.A., Sharma, V.: Evolution of temporal order in living organisms. Journal of
Circadian Rhythms. 3(7), (2005). doi:10.1186/1740-3391-3-7

16. Richter, M., Sandamirskaya, Y., Schöner, G.: A robotic architecture for action selection
and behavioral organization inspired by human cognition. In: Intelligent Robots and Sys-
tems (IROS 2012), pp. 2457-2464. Curran Associates, Inc (2012)

17. Velayudhan, L., Arkin, R.C.: Sloth and Slow Loris Inspired Behavioral Controller for a
Robotic Agent. IEEE-ROBIO, Int. Conf. on Robotics and Biomimetics, Macau, (2017)

18. The Robotics Industry Will Reach $237 Billion in Revenue Worldwide by 2022. Tratica.
https://www.tractica.com/newsroom/press-releases/the-robotics-industry-will-reach-237-
billion-in-revenue-worldwide-by-2022/ (July 5th, 2017) Accessed January 2018

