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SUMMARY 

 

As robots become more and more prevalent in our everyday life, making sure that 

our interactions with them are natural and satisfactory is of paramount importance. 

Given the propensity of humans to treat machines as social actors, and the integral role 

affect plays in human life, providing robots with affective responses is a step towards 

making our interaction with them more intuitive. To the end of promoting more natural, 

satisfying and effective human-robot interaction and enhancing robotic behavior in 

general, an integrative framework of time-varying affective robotic behavior was 

designed and implemented on a humanoid robot. This psychologically inspired 

framework (TAME) encompasses 4 different yet interrelated affective phenomena: 

personality Traits, affective Attitudes, Moods and Emotions. Traits determine consistent 

patterns of behavior across situations and environments and are generally time-

invariant; attitudes are long-lasting and reflect likes or dislikes towards particular objects, 

persons, or situations; moods are subtle and relatively short in duration, biasing behavior 

according to favorable or unfavorable conditions; and emotions provide a fast yet short-

lived response to environmental contingencies. The software architecture incorporating 

the TAME framework was designed as a stand-alone process to promote platform-

independence and applicability to other domains. 

In this dissertation, the effectiveness of affective robotic behavior was explored and 

evaluated in a number of human-robot interaction studies with over 100 participants. In 

one of these studies, the impact of Negative Mood and emotion of Fear was assessed in 

a mock-up search-and-rescue scenario, where the participants found the robot 

expressing affect more compelling, sincere, convincing and "conscious" than its non-

affective counterpart. Another study showed that different robotic personalities are better 

suited for different tasks: an extraverted robot was found to be more welcoming and fun 



SUMMARY 

 

xviii 

 

for a task as a museum robot guide, where an engaging and gregarious demeanor was 

expected; whereas an introverted robot was rated as more appropriate for a problem 

solving task requiring concentration. To conclude, multi-faceted robotic affect can have 

far-reaching practical benefits for human-robot interaction, from making people feel more 

welcome where gregariousness is expected to making unobtrusive partners for problem 

solving tasks to saving people’s lives in dangerous situations. 
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1 INTRODUCTION 

We are born, we grow, we develop our personality that influences our career 

choices, the choice of people we associate with, that shapes our life. We learn to love 

and hate, admire and despise, and we behave accordingly towards those individuals or 

things that invoked those attitudes. As our life goes on, we may fear spiders – and avoid 

them, rejoice in our accomplishments – and strive to do even better. Our moods change 

as the days go by: we may feel low when it’s dreary outside, and creative and energized 

when the sun comes back out. Although we may not want to admit it, our lives are 

heavily influenced by our affective space: emotions, moods, attitudes, and personality.  

Robots are not like us: they are not born, they don’t grow, they don’t need to make 

career choices or have accomplishments. Therefore, they don’t need to be governed by 

affect or display affective behavior – or do they? If they are in danger, do they not need 

to avoid it lest they be destroyed or otherwise be rendered unusable? While performing 

a task, do they not need specific characteristics more suitable to this particular task than 

others? And as the robots become more and more prevalent in our lives, would they not 

need to interact with us in terms we know the best, social? By modeling a robot’s 

affective space we could achieve a richness and effectiveness of robotic behavior that 

would be hard to accomplish otherwise.  

What is an affective space comprised of? By definition, “affective” means “concerned 

with, arising from, relating to or influencing emotion” [1, 2]. There are a number of 

phenomena that can be classified as affective and which we include in affective space: 

personality, affective attitudes, moods and emotions themselves. Personality influences 

both generation and display of emotion (e.g., a fearful person tends to experience fear 

more often, and a happy person joy). Affective attitudes, or sentiments, refer to 

propensities to respond emotionally to specific persons, objects, or events [3]. Moods 
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are diffuse, global, low-intensity affective states [4], and, finally, emotions are at the 

center of the definition of the term “affective”. Each of these phenomena performs a 

variety of distinct functions, occupies a separate place on the time continuum (e.g., 

personality is relatively time-invariant, whereas emotions are very brief in duration), and 

is highly interrelated with one another. Together, these phenomena have enabled 

biological systems to survive, adapt and develop through extensive interaction. Robotic 

systems display similar needs, and thus could benefit from similar affective mechanisms. 

Our purpose in including a rich model of affect into robotic systems is then two-fold. 

First, it would serve to enhance the effectiveness of robotic behavior, contributing to a 

robot’s survivability and adaptability. The role of affect for survival has been long 

established in both animals and people. For example, personality is considered to 

provide a goodness-of-fit mechanism from the evolutionary standpoint [5, 6], and it plays 

a role in action selection and determines consistent patterns of behavior across 

situations [7]. Thus, modeling personality could facilitate adjustment to a variety of 

environments and matching heterogeneously behaving robots to tasks. Other affective 

phenomena play similarly important roles in our behavior [4, 8-11].  

Secondly, as we expect robots to become a part of our everyday lives, modeling 

affect in robotic systems will provide for more natural, effective and satisfying human-

robot interaction. Humans are inherently social creatures, and apply social rules not only 

to their interactions with one another, but also to those with non-human animals, and 

even inanimate objects. This propensity of people to anthropomorphize certain objects 

has been well established by Nass and his colleagues in an extensive set of 

experiments [12], which showed that people treat computers as social actors, whether 

they recognize it or not, and that even minimal cues evoke social responses. As affect 

plays a vital role in our social interactions (Oatley and Jenkins [13] call emotions “the 

language of human social life”), it would be beneficial for robots to be able to “speak” this 
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language. Giving robotic systems the ability to communicate with humans affectively 

would not only allow people to extend their known social models to robots, but would 

also help robots invoke desired responses from their human interaction partners or even 

passers-by (e.g., assisting a stuck robot, or evacuating from a dangerous zone).  

To the end of both enriching effectiveness of behavior-based robotic systems and 

promoting a more natural, effective and satisfying human-robot interaction, we propose 

an integrative framework of time-varying affective robotic behavior, TAME, in which the 

aforementioned phenomena are modeled as separate components within affective 

space, with explicitly defined interactions between them. TAME stands for Traits 

(personality), Attitudes, Moods and Emotions, the four components responsible for 

producing affective behavior. Although the framework itself is designed in support of 

both goals, the emphasis in this dissertation will be placed on the latter, namely, 

enhancing the interaction between humans and robots.  

Given the predicted pervasiveness of robots in our daily lives and our social human 

nature, a number of researchers [14, 15] support the paradigm of robots as collaborative 

partners/companions and acknowledge the role of affect in such collaborative interaction 

between humans and robots. However, to the best of our knowledge, no current 

research initiatives intend to combine this wealth of affective phenomena into a single 

integrative time-varying framework. The research in this dissertation is also in line with 

the Robotics 2.0 initiative [16], which places the human in the loop. Robotics 2.0 

proposes to expand the roles of robots to those of co-workers, co-inhabitants, and co-

protectors, and applications of the TAME framework to this Co-X paradigm will be 

considered throughout the dissertation.  

1.1 TERMINOLOGY 

The following terms will be used throughout the dissertation:  
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• Affective: perceived in positive or negative terms; refers to processes or 

phenomena in humans and animals traditionally thought of as “emotional” or 

those that cannot be explained strictly in terms of cognition. 

• Affective Attitude: a learned predisposition to respond in a consistently favorable 

or unfavorable manner with respect to a given object; a general and enduring 

positive or negative feeling about some person, object or issue. 

• Behavior-based: consisting of individual behaviors and coordination mechanisms 

between them. 

• Emotion: organized reaction to an event that is relevant to the needs, goals, or 

survival of the organism; is short in duration and noncyclical; is characterized by 

a high activation state and significant energy and bodily resources expenditure. 

• Mood: a continuous, low-activation variable affective state, or “stream of affect”; 

is more inclusive than emotion, non-specific, longer in duration and can be 

cyclical. 

• Personality, traits: consistent patterns in behavior over situations and time; 

developed as a goodness-of-fit mechanism from an evolutionary standpoint. 

1.2 RESEARCH QUESTION 

Does integration of coordinated time-varying affective processes (namely, emotions, 

moods, affective attitudes and personality traits) into behavior-based robotic systems 

generate more effective robotic behavior from the human-robot interaction standpoint? 

1.2.1 SUBSIDIARY QUESTIONS 

The subsidiary questions to help explore the main research question are as follows:  

• How can the aforementioned phenomena be modeled computationally in a 

robotic system, both individually and relative to each other? 
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What are the psychological foundations for each of the components and their 

interactions? How can these phenomena be represented, generated, and applied to 

robotic behavior? What are their functions, and what is their relevance for robotic 

behavior? What are the interactions between them that can provide additional benefit 

beyond that of each individual component? Is there a need to include all four 

components into the framework? If not, then what components are desirable?  

• What are the implications for Human-Robot Interaction? Does complex affective 

robotic behavior lead to more natural, effective, and satisfying interaction 

between humans and robots? 

Does coordinated affect in robotic behavior improve the ease and pleasantness of a 

human interacting with a robot in more or less everyday activities? Would familiar 

affective responses make it easier for users (especially novices) to accept and enjoy 

the interaction? Would the complex affective behavior help maintain human’s interest 

in interacting with robots, or even form attachments? Would it make the robots 

appear more natural, persuasive, comprehensible, and welcoming?  

• What are the metrics for evaluating affective robotic behavior? 

How can we evaluate the effectiveness of adding a rich model of affective behavior 

as it relates to human-robot interaction? Are there specific quantitative and 

qualitative metrics to accurately perform such an evaluation? 

1.3 EXPECTED CONTRIBUTIONS 

Expected contributions stem directly from the aforementioned research issues:  

• A framework to augment behavior-based robotic systems with a variety of time-

varying affective processes, namely emotions, moods, attitudes and personality; 
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• Means for affective communication to afford more natural human-robot 

interaction; 

• Metrics for evaluating effectiveness of affective robotic behavior. 

1.4 DISSERTATION OVERVIEW 

The remainder of this dissertation is structured as follows. In chapter 2 we will 

present a review of relevant research in the areas of robotics and software agents. 

Chapter 3 will focus on psychological and mathematical foundations for each of the 

TAME components and the interactions between them. Chapter 4 will present a 

longitudinal human-robot interaction study conducted with the purpose of informing the 

design process. The architectural design and implementation of the TAME framework, 

as well as an online survey assessing recognition of nonverbal affective robotic 

behaviors, will be provided in Chapter 5. The first subsidiary question will be addressed 

in chapters 3 and 5. Two human-robot interaction studies designed to determine the 

usefulness of selected framework components will be discussed in detail in Chapter 6, 

which will address the second subsidiary question. Novel metrics for evaluating the 

effectiveness of affective robotic behavior, derived from the studies, will be presented in 

Chapter 7, where the third subsidiary question will be addressed. Finally, Chapter 8 will 

present conclusions and contributions.  
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2 RELATED WORK 

Within the past two decades, influences from at least three separate fields: 

neuroscience, HCI and psychology, brought increased interest to the problem of affect in 

robots and computational agents. Neurology has established the active role of emotions 

in human cognition and behavior, e.g., LeDoux proposed that emotions are powerful 

motivators of behavior [17], and Damasio implicated emotions and feelings in such 

cognitive processes as reasoning and decision-making [9]. From HCI came a 

counterintuitive at first, but currently well-established proposition that humans treat 

computers as social actors [12]. In particular, people are polite to computers, are 

responsive (positively) to flattery and (negatively) to criticism, easily pick up various 

personality cues, even minimal, and accept computers as teammates [18]. Finally, in 

psychology, Ortony, Clore and Collins presented a Theory of the Cognitive Structure of 

Emotions that turned out to be highly amenable to computer implementation, and has 

been widely used to generate emotions in artifacts since 1988 [19]. This theory, often 

referred to as the OCC model, classifies emotion according to cognitive eliciting 

conditions and includes a rule-based system for generation of emotion types. 

In her highly influential book “Affective Computing” Rozalind Picard advocates the 

usefulness of affect in computers (a term used quite broadly, to include computational 

agents, robots, wearables, etc.) [20]. She distinguishes between recognizing, 

expressing, and synthesizing affect. Although a wide variety of affect-recognition 

systems exists in both the robotics and computational agents communities (e.g., 

affective user modeling for entertainment, education and other domains [21-23], tangible 

interfaces [24, 25], and sensing and responding to user frustration and anxiety in 

computer interfaces [26] and robots [27]), this work won’t be covered here in detail as 
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the main focus of this research is on synthesis and expression (including behavioral) in 

robotic systems. 

To date, there has not yet been any systematic work on computational generation 

and application of all aspects of affect. In general, researchers have been trying out a 

wide variety of ideas for a number of purposes, ranging from improving dialogue 

believability in embodied conversational agents, overall believability in virtual characters 

and synthetic actors, to facilitating human-robot interaction and providing therapeutic 

psychological effects for humans, to enhancing robot learning and survival capabilities. 

The classification task of existing affective systems is further exacerbated by the fact 

that there is no consensus among psychologists and cognitive scientists as to what 

exactly affect is comprised of and what are its functions, generation and expression 

processes [3, 28-31]. This uncertainty resulted in a variety of approaches to 

computational models of affect, among which are biologically, ethologically, cognitively 

and neurologically inspired systems, in addition to those guided by primarily design and 

engineering considerations. However, for the most part, the inspiration is taken from a 

multitude of domains; therefore, in this chapter we provide a loose categorization of 

affect-related systems according to their domain and purpose, accompanied by their 

relevance to the research described in this dissertation. As our framework is mainly 

concerned with incorporation of four distinct but interrelated affective phenomena, 

namely, personality Traits, affective Attitudes, Moods and Emotions, the emphasis will 

be placed on those systems/models that combine the aforementioned phenomena. A 

brief overview of user studies assessing people’s attitudes to and perceptions of social 

robots is also presented, along with various evaluation methods that resulted from such 

studies.  
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2.1 SOCIALLY INTERACTIVE AFFECTIVE ROBOTS 

Reporter:  
One gets the sense that he (HAL) is capable of emotional 

responses. When I asked him about his abilities I sensed a sort 
of pride… 
Bowman:  

Well, he acts like he has genuine emotions. Of course, he’s 
programmed that way to make it easier for us to talk with him. 

But whether or not he has real feelings is something I don’t think 
anyone can truly answer.  

 

Movie, 2001 Space Odyssey  
Directed by Stanley Kubrick (1968) 

 

Socially interactive robots are defined in Fong et al. [15] as “robots for which social 

interaction plays a key role”. In particular, it implies exhibiting certain “human social” 

characteristics, of which affect is an integral part: establishing/maintaining social 

relationships, expressing and/or recognizing emotion, and exhibiting distinctive 

personality and character, among others. The related research presented in this section 

focuses on affective capabilities of such socially interactive robots designed for 

improving human-robot interaction. Systems most relevant to this research (those 

combining multiple affective components) will be described first, followed by those 

combining emotions and more general motivations, finally followed by a variety of robotic 

systems in which only a single phenomenon (most often emotions) is modeled. 

2.1.1 COMBINING EMOTIONS, PERSONALITY, MOODS OR ATTITUDES 

The systems presented below incorporate, at least to a certain extent, a combination 

of affective phenomena.  

2.1.1.1 Roboceptionist (Emotions, Moods and Attitudes) 

Kirby et al. [32] present an affective model for social robots, which incorporates 

emotions, moods and attitudes. The model was implemented on a virtual robot face 

placed on a rotating monitor, and the affect was expressed through animated facial 

expressions and a priori composed narrative, rather than body language or mobility.   
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The categorical emotions modeled in the system are joy, sadness, disgust and 

anger, and are generated in response to interaction with people and are displayed 

immediately after an eliciting event. The robot’s moods are primarily caused by its 

personal history and “live” events. Values for moods are assigned to the storyline by 

dramatic writers and are influenced by emotions the robot experienced during the day. 

Finally, attitudes are represented as a long-term mood associated with a person or thing, 

where each person who visits the robot may cause various emotional responses which, 

through mood modulation, influence the “opinion” of this person; in addition, familiarity 

with the person influences the person’s attitude. 

A number of experiments have been conducted to test the components of this affect 

model. An on-line emotion recognition survey showed that people were able to detect 

differences between the robot’s emotional expressions and differentiate between their 

intensities. Another study examined the influence of robot’s mood on people’s interaction 

during a longer term (nine weeks, during which the robot was typically operating 8 hours 

per day, 5 days per week). During “low traffic” weeks, people interacted with the robot in 

positive mood for a shorter period of time than with the robot in neutral mood; in 

contrast, during “high traffic” weeks, where there were significantly more visitors, the 

robot in neutral mood elicited the least amount of interaction. This model is 

psychologically inspired to a certain extent, but relies heavily on input from the designers 

who write the robot’s “life” story.  

2.1.1.2 Waseda Eye No. 4 Refined (Emotions, Moods and Personality) 

This system was created by Miwa, Takanishi and Takanobu [33-35]. The latest 

incarnation of their robot, Waseda Eye No.4 Refined, combines emotions, moods, and 

personality. The overall goal of the system is to achieve smooth and effective 

communication for a humanoid robot.  
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The Emotion space is defined along three dimensions: activation, pleasantness, and 

certainty. Emotions are represented as second order differential equations, based on 

laws of motion, and are influenced by three emotion coefficient matrices: Emotional 

Inertia, Emotional Viscosity, and Emotional Elasticity. The stimuli for emotion generation 

is extensive and includes visual (target is near, etc.), tactile (pushed, stroked, etc.), 

auditory (loud sound), temperature and olfactory (alcohol, smoke, etc.).  

The personality of the robot consists of Sensing and Expression Personalities. The 

Sensing Personality provides a mapping from sensory input to emotion generation as 

well as influences emotion duration and decay via the emotion coefficient matrices. The 

Expression Personality determines a particular emotional expression [33].  

Finally, mood is represented along pleasantness and activation axes. The mood 

pleasantness component is an integral of the emotion vector, and its activation 

component is based on an internal clock [34]. The resulting emotional expression is not 

limited to the face, but also includes neck, waist and arms; the speed of the motion is 

also varied depending on the emotion.  

Although many elements of this system are not psychologically or biologically 

founded, it provides a few interesting mechanisms, such as modeling personality’s 

influence on emotion via a variety of coefficient matrices and using internal-clock 

activation component in moods. No extensive human-robot interaction studies have 

been conducted to date to evaluate this system. 

2.1.1.3 Emotional Robot “Cherry” (Personality, Emotions and Moods) 

Lisetti [36] proposes incorporating personality, emotions and moods into robotic 

systems with the goal of achieving “social expertise”; however, moods have not been 

incorporated as yet, and later work places the emphasis primarily on emotions [37]. To 

embed emotions, a multilevel theory [38] is used, in which the sensorimotor level is 

automatically activated, schematic level integrates sensorimotor processes with scripts 
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of emotional situations, and the conceptual level is deliberative. In the hybrid 

reactive/deliberative robotic architecture (based on [39]), the sensorimotor level 

corresponds to the reactive layer, and effects parameters of actively running behaviors, 

whereas the schematic level, where emotions are represented as scripts, influences the 

set of active behaviors at the assemblage level.  

In the implementation of the ActiveMedia Peoplebots office service robot Cherry, the 

emotions were expressed via facial expressions and speech. Their generation was 

achieved via an FSA, where the transitions between emotions occur as emotional inputs 

are received. This implementation suggests that emotions are ever present, with or 

without external stimuli. The only application of personality presented refers to the 

robot’s experiencing various tendencies towards specific sets of emotions based on the 

preprogrammed personality traits.  

As far as the emotions are concerned, this system is psychologically inspired; 

however, the inclusion of personality seems to be only incidental and does not affect 

behavior per se.  

2.1.1.4 Character Robot Face (Emotions and Moods) 

Fukuda et al. [40] also include the notions of emotions and moods in their Character 

Robot Face.  Emotions are represented as semantic networks, and the combination of 

currently active emotions is deemed as mood. The currently implemented happy, 

neutral, and sad moods are in this case a summation of the experienced emotions of 

happiness or sadness (based on tactile – being petted or hit and visually – blue or 

orange objects perceptual stimuli). An interesting component in the system is a mood 

and task coordination mechanism: associating a human-given task with the current 

emotion, which biases the robot to pick the same task the next time the emotion is 

experienced. For example, once learned, the robot will “feel” happy while performing the 

task even without interacting with people (the internal trigger of happiness). In addition to 
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their influence on action selection, another effect of emotions are expressions exhibited 

via a nonhuman face, modified from emotional expressions defined Ekman's Facial 

Action Coding System [41]. This system seems mainly engineering-driven and is 

somewhat limited in both the set of emotions present and the way the moods are 

generated.  

2.1.1.5 iCat (Emotions and Moods) 

Leite et al. [42] implemented emotional reactions and moods on the Philips iCat robot 

within the context of a chess game. Emotional reactions were modeled as an 

“emotivector” – an anticipatory system that that generates an affective signal resulting 

from the mismatch between the expected and sensed values of the sensor to which it is 

coupled to. Mood is expressed as a less intense affective state, where positive values 

are associated with good scores in the game, and negative are related to bad scores. 

Moods are filtered over time, and are explicit when emotional reactions are not 

occurring.  

In two preliminary HRI experiments, it was found that emotional behavior of the robot 

helps users to have a better perception of the game [42]. Additionally, a later study [43] 

suggested that when the iCat displayed facial expressions during a game of chess, the 

level of user engagement towards the robot increased.  

2.1.1.6 “Mental Commit” Robot Paro (Emotions and Moods) 

Yet another robotic system that combines affective phenomena of emotions and 

moods is that of Wada et al. [44]. They propose “mental commit” robots that are 

designed to engender mental effects in humans, such as pleasure and relaxation, in 

their role of personal robots. Such artifacts can be used for Robot-Assisted Therapy. 

Their seal robot Paro, in the behavior-planning layer, has internal states that are labeled 

as emotions. They decay in time, are driven by interaction, and change behavioral 

parameters in the behavior-generation layer. The robot also has a diurnal rhythm with 
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several functions that depend on it, e.g., sleep – such cyclic functions can be classified 

as moods. This influence of mood-like states on other functions separates this work from 

other research in the area, where moods are primarily used in emotion generation. A 

number of human user studies involving this robot have been conducted; however, the 

emphasis was on the robot as a whole, not on the affective mechanisms in particular 

[45, 46]. 

The systems reviewed in this subsection are summarized in Table 1:  

Table 1: Robotic Systems with Multiple Affective Phenomena 

System Foundation Emotions Moods Personality Attitudes 

Roboceptionist Psychological/drama Yes Yes No Yes 

Waseda Eye 

No 4 Refined 

Design/ biological Yes Yes Yes (only in 

regards to 

emotions) 

No 

Cherry Psychological Yes No Yes (only in 

regards to 

emotions) 

No 

Character 

Robot Face 

Design/ biological Yes Yes No No 

iCat Design/psychological Yes Yes No No 

Paro Design Yes Yes No No 

 

2.1.2 COMBINING EMOTIONS AND DRIVES 

A number of researchers include emotions as part of a wider motivational system. 

One such system is Breazeal’s robotic creature Kismet [47]. It can probably be 

considered the first socially interactive robot. Kismet is modeled after an infant and is 

capable of proto-social responses, providing an untrained user with natural and intuitive 

means of communication. Kismet’s motivation system consists of drives (motivations) 

and emotions, where emotions are a result of its affective state. The affective space is 

defined along three dimensions: arousal, valence and stance; each emotion is computed 

as a combination of contributions from drives, behaviors, and percepts. The motivation 
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system plays a role in the behavior selection process and attention selection process, as 

well as providing activation for facial emotional expressions and speech. 

In Arkin et al [48], a similar dimensional emotional model (in which the dimensions of 

arousal, valence and confidence are modeled) serves as part of an extensive ethology-

inspired motivational system for the Sony robotic dog AIBO. The system utilizes 

homeostatic regulation mechanism: the internal variables (e.g., emotions) must be 

regulated and maintained within proper ranges. Emotions and drives are directly 

involved in action selection. Furthermore, a mechanism for “emotionally grounded 

symbols” is proposed in the Emotionally GrOunded Architecture (EGO) that allows 

learned associations to be formed between emotional experiences and grounded 

physical symbols.  

Finally, in the robot MEXI (Machine with Emotionally eXtended Intelligence) [49], the 

Emotion Engine is composed of a set of basic emotions (positive that it strives to 

achieve, and negative that it strives to avoid) and homeostatic drives. Generated 

emotions influence the Behavior Engine, and actions respectively, only if they reach a 

certain threshold.  

The systems described in this subsection include only one affective phenomenon – 

emotions. What makes these systems interesting for this research is that in addition to 

purely expressive role of emotions, they also examine their influence on wider range of 

behaviors.  

2.1.3 OTHER SYSTEMS 

Other robotic systems including a single dimension of affect (primarily emotions) in 

order to improve human-robot interaction include:  

• The LEGO robot Feelix [50] capable of expressing a subset of basic emotions 

elicited through tactile stimulation;  
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• A social robot Sparky [51], in which different emotional states are expressed in a 

caricature robotic face and ambient motion, and in which emotional expressions 

are triggered by the operator;  

• A robot by Ogata et al. [52], described by users as “tame and likable” that 

possesses an emotion-like model of an internal secretion system with states like 

radical unpleasantness, unpleasantness and pleasantness;  

• A museum tour-guide robot Minerva, where ad hoc emotional states, ranging 

from happy to angry, served to improve navigation in crowded environments [53, 

54]; 

• A socially interactive robot head ERWIN, in which five basic emotions are 

generated through modulation of hormonal-like parameters [55]; 

• Robovie-mini R2 and Robovie M by Nakagawa et al. [56], which are provided 

with a method to control affective nuances by mapping dimensions of valence 

and arousal onto velocity and extensiveness of motion and body posture; 

• Hanson Robotics android head “Einstein” [57], which is capable of learning and 

producing a large number of realistic facial expressions based on Ekman’s Facial 

Action Coding System, FACS [41]; 

• Huggable robot Probo by Goris et al. [58] capable of producing emotional 

expressions based on the circumplex model of affect on a; 

• Expressive robotic head EDDIE [59] capable of display of affect based on the 

circumplex model and Ekman’s FACS; 

• Robotic dog AIBO programmed to express Extraversion and Introversion [60]; 

• CERO, a fetch-and-carry robot for motion impaired users [61]. 
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Finally, in addition to AIBO, a number of other commercial robots designed for 

Human-Robot Interaction, such as Sony’s QRIO [62], IBM’s QB [63] and NEC’s PaPeRo 

[64], claim to possess some level of affective capabilities.  

The systems presented in this subsection have a very limited affective component to 

them, primarily confined to emotions. They also are mostly engineering-oriented, without 

psychological or biological foundations. They are described here for completeness and 

to provide an idea of the extensiveness of the field. 

2.2 EVALUATING SOCIALLY INTERACTIVE ROBOTS 

Despite the fact that the field of human-robot interaction in general, and socially 

interactive robots in particular, is quite young, a number of researchers have conducted 

studies where human attitudes towards robots expressing personality or emotion were 

assessed. The largest study to date was conducted by Bethel et al. [65], in which 128 

participants interacted with two different non-anthropomorphic search-and-rescue robots 

in a mixed design. This study utilized four methods of evaluation (self-assessments, 

video-recorded observations, psychophysiology measurements, and a structured audio-

recorded interview) so that convergent validity could be obtained to determine the 

effectiveness of the use of non-facial and non-verbal affective expression for naturalistic 

social interaction in a simulated disaster application. The results indicated that 

participants were calmer in the emotive mode, and reported feeling that the emotive 

robots were friendlier and spent more time oriented towards them [66]. Based on this 

and a review of other HRI studies, Bethel et al. [65] also provide a number of 

recommendations for design, execution and analysis of these types of experiments, 

stressing, in particular, the importance of large sample sizes and multiple evaluation 

methods.  
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The rest of this subsection describes a number of representative studies conducted 

in the area. In particular, Yan et al [60] encoded expressions of Introversion and 

Extraversion in AIBO and found that subjects could correctly identify the encoded trait, 

preferring to interact with a robot possessing a complementary personality. In a set of 

studies by a different group [67], it was observed that the personality preference 

depended on the nature of the task given to the subjects, and that people liked more 

cheerful robots better, but followed a serious robot’s instructions to a greater extent. In a 

similar study performed by Mutlu et al. [68] it was found that the task structure 

(cooperative vs. competitive) and user attributes (male vs. female) impacted users’ 

perception of the robot; an additional finding from the same study suggested that metrics 

used in human-robot interaction studies do not always have the same validity as in 

human-human study, and should be carefully reexamined or new metrics should be 

developed.  

In Lisetti et al. [36], the user study followed a social informatics approach, according 

to which experiments are conducted in order to inform the design of the robot. It was 

found that after being exposed to Cherry, the aforementioned office robot possessing 

emotions and personality, the participants responded more positively towards robots 

with social abilities, and in particular towards those expressing emotion, both positive 

and negative. In the study by Bruce et al. [69], interaction with Vikia, a robot with an on-

screen woman’s face capable of emotional expression, was compared to one without a 

face, and it was found that  more people were willing to stop and interact with the robot 

with the face than without one.  

Other interesting findings come from studies with Sony AIBO. For example, Kahn et 

al. [70] conducted a  study in which 80 children were engaged in 45 minute individual 

sessions, where half of each session they interacted with AIBO, and the other half with a 

stuffed dog. No difference in subjective evaluation between the two dogs (including 
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"having feelings") were found, but there were behavioral differences: children engaged 

more in exploratory and apprehensive behaviors, as well as attempts at reciprocity with 

AIBO, and more often mistreated the stuffed dog. In another study, Friedman et al. [71] 

analyzed over 3,000 postings on on-line discussion forums from 182 participants that 

had something to say about AIBO directly, and found that 38% of members spoke of 

AIBO's having feelings, 28% spoke of emotional connection (mostly person to AIBO), 

and 26% spoke of companionship with AIBO. However, AIBO's moral standing (e.g, 

deserving respect and having rights) was very low (12%).  

In addition to evaluating social robots for more or less general purposes, a number of 

studies have been conducted in order to assess effects of such robots on human well-

being. In fact, a new term has been coined – “robopsychology”, defined by Libin et al. 

[72] as a systematic study of compatibility between people and artificial creatures on 

many different levels, such as sensorimotor, emotional, cognitive, and social. As an 

evaluation tool for robopsychology, they developed a Person-Robot Interactive Scale - A 

Unified Methodology for Assessing Interactions Between Humans and Artificial 

Creatures. It includes nonverbal interaction scale (tactile and manipulative), verbal 

interaction scale, emotional display scale, and the animated interaction scale. Using this 

scale for assessment, Libin et al. [72] conducted a study of 80 people interactive with a  

robotic cat NeCoRo [73]  to show how individual and social differences influence the 

interaction between a person and a robot; one interesting finding was that older people 

liked the interaction better. Unfortunately, no further developments in this research 

direction could be found. 

Another study that falls under this category is one assessing human interaction with 

the aforementioned seal robot Paro at a day service center [44]. According to the study, 

the interaction improved the mood of elderly subjects, their perceived vigor, and stress 

recovery; also, according to the observations of the nursing staff, the subjects were more 
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active and communicative during the interactions. Finally, a number of studies have 

been done to analyze the interaction between robots and autistic children, both short 

term and longitudinal (for one day a week, 30-40 minutes per session, over a five week 

period) [74, 75].  

To conclude this subsection, a number of assessment techniques used by 

researchers in evaluating interaction with social robots are described briefly:  

• Dautenhahn et al. [74, 76] propose a combination of quantitative and qualitative 

techniques. The quantitative approach is based on analysis of micro-behaviors 

presented as well-identifiable, rather low-level and action/movement oriented 

categories, e.g., touch, eye contact, handling, approach, etc. The qualitative 

approach is based on conversation analysis (CA) and provides a systematic 

analysis of everyday and institutional talk-in interaction [77].  

• Kanda et al. [78], in assessment of their socially interactive “partner” robot 

Robovie, used a combination of subjective evaluation by means of semantic 

differential with measurement of body movement; it was found that the body 

movement (e.g., distance, distance moved, eye contact, touch, etc.) was 

correlated with subjective evaluations.  

• Scholtz et al. [79] developed a set of metrics for bystander social interaction with 

robots: predictability of behavior, capability awareness, interaction awareness 

and user satisfaction. 

• Bartneck et al. [80] present a survey of subjective evaluation measures used in a 

number of HRI studies, and provides a number of semantic differential scales to 

evaluate the following constructs: anthropomorphism, animacy, likeability, 

perceived intelligence and perceived safety of robots. 
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• Along with design recommendations, Bethel et al. [65] also provide an general 

overview of evaluation methods advisable for use in HRI studies, including self-

assessments, behavioral measures, psychophysiology measures, interviews and 

task performance metrics. 

Although most of the studies described here do not evaluate affective robotic 

behavior directly, but rather socially interactive robots in general, the evaluation methods 

utilized appear to be applicable to evaluating human interactions with affective robots as 

well. Such traditional methods as self-assessment and observation can be applied to 

understand participants’ perceptions of affective robots, and should be combined with 

more objective techniques, such as task performance or compliance metrics, to provide 

greater validity. 

2.3 AFFECT FOR ENHANCING ROBOTIC BEHAVIOR 

For a limited number of robotic systems, improving human-robot interaction was not 

the primary reason for incorporating affect. In these, the role of affect as an adaptive 

mechanism was acknowledged and therefore the focus is on improving the robot’s 

behavior through decision making, learning, action selection, and multi-robot 

cooperation. However, it should be noted that none of these systems employ a 

combination of affective phenomena; rather, they are limited to emotions as their only 

affective components.  

Velasquez extends the role of emotion from emotional expression for communication 

purposes to a determining factor in decision-making processes [81]. His model includes 

multiple mechanisms of emotion generation, based on Izard’s [82]’s four types of 

elicitors of emotion in humans: neural, sensorimotor, motivational and cognitive. This 

approach is categorical, where the affect space is divided into a number of distinct 

emotions. The model can synthesize a number of emotions simultaneously, and allows 
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for a number of different affective behaviors to be active at once. Decision-making is 

emotionally biased not only by the current emotional state, but also by prior emotional 

experiences, based on Damasio’s [9] somatic marker hypothesis.  Velasquez also 

considered temperament and mood as potential influences on emotion generation. This 

model was implemented in Yuppy, an emotional pet robot, and Virtual Yuppy, its 

simulated counterpart.  

A number of researchers used the Fuzzy Logic approach to emotion generation. In 

El-Nasr et al.’s emotional system for decision making in mobile robots [83], the 

emotional states have no definite boundaries, and are represented by fuzzy sets with 

intensities of low, medium and high. They are generated according to Fuzzy Logic 

inference rules and OCC model [19], based on goals and expectations, where at 

different intensities the same emotion can trigger different actions. In another fuzzy-logic 

based system [84], Fuzzy Cognitive Maps (FSM) are used to represent generation and 

effects of emotional states. FSMs allow a robot to learn associations between stimuli and 

emotional states, as well as between emotions and tasks. Finally, Yu et al. [85] present 

an emotional system consisting of four fuzzy emotions: Sad, Lonely, Disgust and Fear 

and four Sensory inputs: Energy, Friendship, Cleanness, and Brightness. Emotions are 

based on sensor input and current emotional history and can influence behavior 

selection by increasing/decreasing corresponding action weights.  

Murphy et a. [86] describe the use of emotions to control a group of robots working 

on interdependent tasks by dynamically adapting current behaviors to the context or 

changing the set of active behaviors altogether. The emotion model is based on 

Scherer's multilevel process theory of emotions, as in the aforementioned work on robot 

Cherry [36]. The Emotional State Generator (Finite State Machine) accepts measures of 

task progress as input, and emotion then influences task selection of the Behavioral 
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State Generator. The following advantage of using emotions was noted: they help break 

cyclic dependency problems without centralized planning and minimum communication.  

In the Schema-Based Agent Architecture by Scheutz [87], basic motivations and 

emotions are also used as control mechanisms. The architecture is based on Arbib’s 

schema theory [88], and consists of sensors, perceptual schemas, motor schemas, with 

an action selection mechanism through summation and effectors. The emotion schemas 

are placed in the intermediate position between perceptual and motor schemas; they 

take perceptual stimuli as input, and change “behavioral dispositions” of agents by 

influencing behavioral gains, thus allowing agents to adapt their behaviors. A basic 

mammalian fear/anger system was implemented in the architecture in which controllers 

were modeled as a feed-forward, three-layer neural network. It was found in a set of 

simulation experiments that agents with emotional control mechanisms performed much 

better in a variety of foraging and survival tasks.  

Another control architecture for autonomous mobile robots which incorporates 

biologically-inspired artificial emotions is proposed by Lee-Johnson et al. [89]. Five 

emotions modeled in the system are fear, sadness, anger, surprise and happiness; they 

are characterized by certain elicitation/response patterns – e.g., fear is invoked if the 

robot is damaged, and anger if progress towards a goal is obstructed. Once elicited, 

emotions modulate a robot’s planning and control parameters providing bias towards 

certain drives without overtly controlling the behavior; e.g., anger helps achieve the 

current goal even at the expense of secondary considerations. This model was 

implemented on a simulated version of MARVIN, a custom-built mobile robot, and was 

shown to have certain advantages in a navigation task. 

Dominguez et al. [90] present a Real-Time Emotional Architecture (RTEA), which 

regulates robotic behavior to fulfill objectives depending on emotional state, taking into a 

consideration robot’s attitude (determines appraisal styles for emotion generation) and 
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robot’s mental capacity (processing resources). Positive and negative emotional 

responses are generated based on the environmental conditions and robot’s state, and 

their influence on behavior can be inhibited if necessary. This model appears to be 

primarily engineering-driven, and the attitudes in particular differ significantly from more 

widely accepted definitions, and resemble personality more than anything else. 

Other systems aimed at enhancing overall robot performance include those 

employing hormonal homeostatic regulation to guide consummatory and appetitive 

behaviors [91]; those using a global emotional state to help regulate recharging needs of 

autonomous robots [92]; those guiding reinforcement learning through maintaining 

homeostatic variables [93]; and those establishing general goals through emotions 

based on both current and future well-being of the robot [94]. 

Although none of the systems in this subsection are directly related to the research in 

this proposal, as they only include one affective phenomenon – emotions (with the 

exception of RHEA, which includes “attitudes” as well), they are described here because 

they all claim that emotions may enhance general robotic behavior, and therefore are of 

interest to our overall research goal.  

2.4 AFFECT IN VIRTUAL AGENTS 

The class of “virtual agents” includes a wide range of agents capable of facial and/or 

bodily behaviors and created for a variety of purposes, such as education/training, 

entertainment, and commerce. The underlying premise behind these agents, including 

embodied conversational actors, autonomous virtual characters and synthetic agents for 

interactive drama, is believability. A believable character can be defined as “one who 

seems lifelike, whose actions make sense, who allows you to suspend disbelief” 

[95].Therefore user perceptions are the key, and play a paramount role in design of 

these characters. In particular, intentionality is believed to be very important in humans, 
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and so an overwhelming majority of the systems in this domain are highly goal-oriented 

and cognitively inspired. It is no wonder then that the appraisal-based OCC model of 

emotion by Ortony et al. [19] is at the core of the affect modules. The OCC model 

classifies emotion according to cognitive eliciting conditions, rather than using sets of 

basic emotions, and includes a rule-based system for generation of emotion types. As 

was the case in the previous section, the most relevant work is presented first, and then 

a brief overview of other affect-incorporating systems is given.  

2.4.1 COMBINATION OF PERSONALITY, EMOTIONS AND MOODS 

The most relevant to our research system is perhaps the one proposed by El Jed 

Mehdi et al. [96]. Not only does it model three of the four components proposed for 

TAME, it also provides a number of interactions between these components, and the 

psychological foundations behind the personality traits included in this system are similar 

to the ones proposed for this research.  This model is based on the generic model for 

personality and emotion developed in MIRALab [97]. The two systems have different 

purposes: the former is aimed at allowing the user to animate virtual characters and 

provides the underlying emotional background for this process, whereas the latter is 

used as glue for perception, dialogue and expression. Both models consist of emotions 

represented as an m-dimensional vector of intensities that dynamically change, 

personality traits represented as a static n-dimensional vector intensities, and mood 

represented as a dynamically changing k-dimensional vector of intensities. The 

personality traits used are based on the Five- Factor Model and influence emotion 

generation by changing sensitivity of a character to certain emotions. The emotion 

emergence is based on the OCC model, and depends on the current situation, previous 

emotional state, and input from characters personality and current mood; El Jed Mehdi 

et al. [96] also add a decay function into the mix. The mood state is based on the current 

emotion experienced and the personality of the character. The output of the Emotion 
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module in El Jed Mehdi et al. [96] affects the facial expression of the character, its 

behavioral reaction (emotional gesture) and cognitive reaction. For example, the same 

character exhibits a different walking style as a result of an emotional response. In 

Egges et al. [97], emotional response results in affective facial expressions and changes 

in dialogue structure. Unlike the framework in this proposal, these models do not 

consider personality and moods apart from their influence on emotions, do not explore 

time-varying aspects of these phenomena, and have not been considered for the 

robotics domain.  

2.4.2 COMBINATION OF PERSONALITY, EMOTIONS AND ATTITUDES 

Prendinger et al. [98] present the SCREAM system – a scripting tool that enables 

authors to create emotionally and socially appropriate responses for animated 

characters. In this system a complex process for emotion generation (based on the OCC 

model), resolution, maintenance and regulation is employed which is heavily influenced 

by a character’s personality and attitudes. For example, personality plays a role in 

selecting the dominant emotion among a number of conflicting ones, determines the 

decay process for emotions, and regulates emotional expression (whether or not the 

dominant emotion will be acted upon). One of the most relevant parts of this system, 

however, is the process of attitude change which is based on combination of emotions at 

the time of attitude formation and whether a strong attitude has been formed already and 

is either to be strengthened or weakened in the consequent interactions.  

2.4.3 OTHER AFFECTIVE SYSTEMS 

The OCC cognitive model also serves as psychological foundation for a number of 

non-human animated characters. One example from the entertainment domain are 

believable agents from the “Oz project” by Joe Bates, Bryan Loyall and Scott Reilly [99]. 

These animated creatures are capable of producing a range of emotions and 

corresponding behaviors. The emotion generation system “Em” is based on the OCC 
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model, and emphasizes cognitive appraisal for emotion generation. In this system, 

intensity of emotions depends on the importance of the goals that generated them. An 

emotion has to reach a certain threshold before it can activate a corresponding behavior. 

If negative emotions dominate, then the agent is in a ‘bad mood’, and vice versa. Em 

was embodied into an architecture for Action, Emotion, and Social Behavior, in which the 

output of Em influenced the behavior by altering the importance of current goals. The 

architecture also includes “behavioral features”, such as aggressive and curious, which 

affect the mode of execution of actions.  

Another OCC-based system is Clark Elliot’s “Affective Reasoner” [100] which 

simulates simple worlds populated with agents capable of responding emotionally as a 

function of their concerns. In this system, Elliot models three categories of emotion 

intensity variables: situation-event variables (independent of situation interpretation), 

stable disposition variables (involved in an agent’s interpretation of the situations, which 

are constant and help to determine an agent’s personality), and mood-related variables. 

All three categories affect the intensity of emotions rather than influence behavior 

directly.  

Other systems incorporating affect into believable characters include:  

• A domain-independent framework for emotion and adaptation (EMA) by Gratch 

et al. [101] and Marsella et al. [102] which includes appraisal-based emotions, as 

well as mood expressed as an aggregate emotional state;  

• A Dynamic Belief Network-based Greta’s Mind [103], in which OCC-based 

emotions are influenced by agent’s personality;  

• P-R Planning Architecture in which personality is modeled as a cluster of  goals 

[104];  
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• MAMID architecture which models both static (traits) and dynamic (affective 

state) processes via a combination of belief networks and rule based inferencing; 

a dimension-based Bayesian model of personality and emotion by [105];  

• An interactive AlphaWolf system in which dimension-based emotions and 

emotional memories help maintain the believability of animated wolf pups while 

giving the high-level behavioral control to the user [106]. 

2.5 SUMMARY 

Table 2 provides an overview of the aforementioned affective systems modeling 

more than one type of affect, including each system’s name, the affective components it 

contains, and the primary domain (human-robot interaction, autonomous robots, or 

virtual agents) it is designed for.  

Table 2: Overview of Multi-Affective Systems 

System Affect Types Domain 

Roboceptionist Emotions, Moods, Attitudes HRI 

Waseda Eye No 4 Refined Emotions, Moods, Personality 
(with respect to Emotions) 

HRI 

Cherry Emotions, Personality (with 
respect to Emotions), Moods  

HRI 

Character Robot Face Emotions, Moods HRI 

iCat Emotions, Moods HRI 

Paro Emotions, Moods HRI 

Velasquez’s Yuppy Robot Emotions; potentially temperament 
and mood 

Autonomous Robots 

Real-Time Emotional 
Architecture 

Emotions, Attitudes Autonomous Robots 

El Jed Mehdi’s Agent Emotions, Moods, Personality Virtual Agents 

MIRALab’s Agent Emotions, Moods, Personality Virtual Agents 
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Table 2 (continued) 

SCREAM system Emotions, Attitudes, Personality 
(with respect to Emotions) 

Virtual Agents 

“Oz Project” Emotions, Personality Virtual Agents 

“Affective Reasoner” Emotions; Moods and Personality 
as Emotion-generation variables 

Virtual Agents 

EMA system Emotions, Moods Virtual Agents 

Greta’s Mind Emotions, Personality Virtual Agents 

MAMID Architecture Emotions, Personality Virtual Agents 

 

Although all the presented systems incorporate affect on some level, they all differ 

from the proposed research in a number of ways. First, none of the systems includes all 

four of the proposed components, namely, personality, attitudes, moods and emotions. 

Furthermore, these systems are not exploring and comparing the contributions of each 

of these phenomena individually and in their time-varying interaction with one another. 

Finally, the use of affect in these systems seems to either be targeted towards improving 

social interaction with humans, or towards enhancing general robotic behavior, but not 

both, while this research covers both domains.  
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3 ARCHITECTURAL FRAMEWORK 

Despite an increased interest among psychologists in the “feeling” part of our lives, 

there as yet exists no single unified theory of affect-related phenomena. Partly, the 

current state of things is due to the fact that the study of affect is still in its nascence and 

the existing body of knowledge regarding each type of affect has not reached the critical 

mass that would allow for comprehensive, all-encompassing and coherent theories that 

would satisfy the majority of researchers. Furthermore, traditionally, Emotion 

Psychology, Personality Psychology and Attitudes Psychology have been treated as 

separate fields, and although their mutual influence on each other has been 

acknowledged, little has been done to date to unify this type of research. Nonetheless, 

the existing work in these areas has a lot to contribute and can serve as an inspiration 

for endowing autonomous robots with adaptation capabilities, as well as improving their 

performance in the area of human-robot interaction. Each of the four components 

performs a distinct adaptive role: personality traits serve as an adaptation mechanism to 

specialized tasks and environments, emotions mobilize the organism to provide a fast 

response to significant environmental stimuli, moods bias behavior according to 

favorable/unfavorable environmental conditions, and attitudes guide behavior towards 

desirable goals and away from aversive objects. This said, however, it should be noted 

that although this framework is inspired by a number of separate psychological theories, 

it is not intended to be a cognitive model of affect and personality, but rather to serve as 

a framework for including affect into behavior-based autonomous robotic systems. In 

addition to robotics, the framework can also be extended to the field of intelligent 

embodied agents without loss of generality. 

In this chapter, the first research subquestion, “How can these affective phenomena 

be modeled in a robotic system?”, is explored in detail by presenting the following:   
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• The psychological and cognitive foundations behind each component modeled in 

the TAME framework (Traits, Attitudes, Moods, Emotions); 

• Computational representation of each component; 

• Antecedents and methods of generation for each affective phenomenon; 

• Their influence on robotic behavior; 

• And interrelation between the components.  

The primary focus of this chapter is on the psychological foundations and a 

computational model of the TAME framework; the software design incorporating the 

computational model and its implementation are addressed in Chapter 5.   

3.1 TAME FRAMEWORK OVERVIEW 

The goal behind the TAME framework [107, 108] is to add an affective element to a 

behavior-based robotic system in order to improve general robotic performance and 

facilitate human-robot interaction. In the behavior-based paradigm, a robot’s control 

program consists of a collection of behaviors and coordination mechanisms [109]. 

Primitive behaviors have a set of defining parameters (e.g., obstacle avoidance sphere-

of-influence) and these behaviors can themselves be combined into behavioral 

assemblages, where each of the primitive behaviors’ outputs is weighted and combined, 

resulting in coherent motor actions. Perceptual input not only serves as stimuli for 

behaviors, but also triggers transitions between assemblages.  

    The affective module of the TAME framework is composed of four interrelated 

components: personality Traits, affective Attitudes, Moods, and Emotions. The input into 

this architectural module consists of relevant perceptual information, such as the 

categories of visible objects and distances to them (stimuli and their strengths), as well 

as some internal state information (e.g., battery level) and environmental conditions 
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(e.g., light and noise levels). Each component is modeled as a set of primitive behaviors 

and, with the exception of traits that are defined prior to execution, runs as a separate 

thread continuously throughout the execution. Instead of directly defining behavioral 

transitions, the affective module rather modifies the underlying behavioral parameters, 

which, in turn, directly affect currently active behaviors. As behavioral parameters can 

refer not only to primitive behaviors, but to complex assemblages as well, the module 

can, in effect, determine action selection, by setting, for example, the relative weight of 

one of the behaviors composing an assemblage to zero. The conceptual view of the 

framework is presented in Figure 1. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Integrative Framework for Affective Robotic Behavior (TAME) [107, 108, 110]. 
Dashed arrows represent potential interactions not currently explored in this research. 
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Affective state refers to temporary conditions of an organism reflected in multiple 

systems, whereas disposition reflects general tendencies to behave and process 

information in certain ways. Emotions and moods constitute a robot’s dynamically 

changing, transient affective state (object-specific and short-term for emotions, and 

diffuse and prolonged for moods). Moods provide an affective background, or “emotional 

color”, and can vary cyclically, whereas emotions can be viewed as “phasic 

perturbations on this background activity” [10]. In contrast, personality traits and attitudes 

are more or less time-invariant, and define general dispositions to behave and process 

information in certain ways. Similar to emotions, affective attitudes, or sentiments, are 

object-specific; however, unlike emotions, they refer to ways of seeing and treating an 

object rather than to momentary responses [3]. Finally, personality refers to enduring 

individual differences in behavior and information processing of a more general, object-

independent kind.  

Therefore, we can position each component in the two-dimensional space defined by 

duration and specificity [4, 7, 111]. Traits and emotions are at the opposite ends of the 

spectrum: traits are life-long, stable over time, and global (independent of specific 

objects/events), whereas emotions are short-term, dynamically changing and focused; 

moods and attitudes occupy the intermediate positions (Figure 2). In addition to 

occupying a different position in the duration/specificity space, each of the four 

components also performs a distinct adaptive role (not limited to what is described 

below): traits serve as an adaptation mechanism to specialized tasks and environments, 

emotions mobilize the organism to provide a fast response to significant environmental 

stimuli, moods bias behavior according to favorable/unfavorable environmental 

conditions, and attitudes guide behavior towards desirable goals and away from aversive 

objects, as well as facilitate decision-making process by reducing decision space.  



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 34

We could visualize the complex variation in time and intensity of these components 

as a multi-dimensional surface, where traits would present a never-changing base plane, 

with moods representing low intensity, smooth undulations on this plane, and emotions 

being relatively rare, sharp, high-intensity and short-term spikes superimposed onto 

moods. Attitudes are harder to pinpoint, as they are both objects-specific and lasting; 

perhaps, they could be visualized as multiple lines running across the aforementioned 

surface. 

 

 

 

 

 

 

 

 

Figure 2: Relative Positions of Types of Affect in the Duration/Specificity Space 
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component also provides the widest influence on the robotic behavior of all other 

components.  

3.2.1 PSYCHOLOGICAL FOUNDATIONS 

Personality psychology covers a wide range of psychological phenomena, and 

attempts to combine this multitude of phenomena into a unifying theory, both on the level 

of human nature universals, and on the level of individual differences [112]. Among 

many directions of personality research, the study of personality traits seeks to identify 

the consistent, coherent patterns in behavior, or behavioral dispositions, that 

characterize different individuals and to classify them according to a number of broad 

dimensions. From the evolutionary standpoint, individual differences might have resulted 

from adapting to certain types of environments: individuals, by being different, can select 

environmental niches that maximize their own fitness [6]. Matthews et al. [113] also 

suggest that “traits represent adaptation to specialized environments, defined by their 

processing requirements, and are supported by a number of independent cognitive 

characteristics” (e.g., neurotic individuals are fit for environments with subtle threats), 

and thus have a purpose and a cognitive foundation. In the next section we will review 

the “Big Five” taxonomy of personality traits, the most prominent and comprehensive of 

trait models as of today.  

3.2.1.1 The Big Five Trait Taxonomy 

In the late 1980s – early 1990s, two research groups independently arrived at a set 

of five global personality dimensions via factor analysis. The taxonomy developed by 

McCrae et al. [114] was named “The Five-Factor Model of Personality” (FFM), and the 

one developed by Goldberg [115] - the Big Five. Although not without their differences, 

both taxonomies are similar enough to be treated interchangeably for the remainder of 

the proposal, and will be referred to as “the Big Five” or “Five-Factor Model”.  
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The Big Five taxonomy represents diverse systems of personality description in a 

common framework [116]. Its five dimensions (domains) are: Openness, Agreeableness, 

Conscientiousness, Extraversion, and Neuroticism. The taxonomy is consistent over 

time, age and cultural differences [114], as well as applicable to nonhuman animals 

[117]. Personality traits, according to McCrae et al. [114], are mainly inherited or 

imprinted by early experience, and remain relatively unchanged throughout the lifetime. 

Numerous studies also show predictive utilities of these dimensions; for example, 

Conscientiousness, a domain of Big Five, is a general predictor of job performance, 

Extraversion predicts performance in sales and management positions, Neuroticism can 

show vulnerability to depression, and Openness is a predictor of creative performance 

[116].  

Given the broad nature of these dimensions, their labels can be somewhat 

misleading, therefore in Table 3 we present the most commonly used names along with 

a brief description of each dimension. In addition, we will also include a number of facets 

per each dimension identified as more specific constituents of global dimensions [118].  

Table 3: Description and Facets of Big Five Personality Dimensions 

Big Five 
Dimension 

Description Facets [118] 

Extraversion/ 
Energy 

Implies an energetic approach 
to the social and material 
world [116]; also refers to 
liking people and preferring 
large groups and gatherings 
[114]. 

• Gregariousness 
(sociable) 

• Assertiveness (forceful) 
• Activity (energetic) 
• Excitement-seeking 

(adventurous) 
• Positive Emotions 

(enthusiastic) 
• Warmth (outgoing) 

 

 

 

 



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 37

Table 3 (continued) 

Agreeableness/ 
Affection 

Contrasts prosocial and 
communal orientation toward 
others with antagonism [116]; 
a dimension of interpersonal 
tendencies, refers to being 
altruistic, sympathetic to 
others, cooperative and eager 
to help [114]. 

• Trust (forgiving) 
• Straightforwardness 

(not demanding) 
• Altruism (warm) 
• Compliance (not 

stubborn) 
• Modesty (not show-off) 
• Tender-mindedness 

(sympathetic) 

Conscientiousnes/ 
Control 

Describes socially prescribed 
impulse control that facilitates 
task- and goal-directed 
behavior, such as following 
norms and rules, and planning, 
organizing and prioritizing 
tasks [116]; high scores mean 
purposeful, strong-willed, 
achievement – oriented 
individuals [114]. 

• Competence (efficient) 
• Order (organized) 
• Dutifulness (not 

careless) 
• Achievement striving 

(thorough) 
• Self-discipline (not lazy) 
• Deliberation (not 

impulsive) 

Neuroticism/ 
Negative 
Affectivity 

Contrasts emotional stability 
and even-temperedness with 
negative emotionality [116]; 
the general tendency to 
experience negative affects 
such as fear, sadness, 
nervousness, anxiety, etc. 
[114]. 

• Anxiety (tense) 
• Angry hostility (irritable) 
• Depression (not 

contented) 
• Self-consciousness 

(shy) 
• Impulsiveness (moody) 
• Vulnerability (not self-

confident) 

Openness to 
Experience/  
Open-mindedness 

Describes the breadth, depth, 
originality and complexity of 
individuals mental and 
experiential life [116]; refers to 
active imagination, preference 
for variety, intellectual 
curiosity, and independence of 
judgment [114].  

• Ideas (curious) 
• Fantasy (imaginative) 
• Aesthetics (artistic) 
• Actions (wide interests) 
• Feelings (excitable) 
• Values (unconventional) 

 

3.2.1.2 Implications for TAME 

Based on this psychological overview, there are a number of design decisions we 

can make:  
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1. As traits are to a great extent determined by heredity and early experience, we 

will assume that their influence doesn’t change throughout a “life-time” of a robot 

(be it a single mission, a general task over a number of executions, or all the 

interactions with the same person). Therefore, they can be set once at the 

beginning of the execution by an operator/designer, and will continually influence 

the selected behavioral and affective parameters.  

2. As the trait component doesn’t change throughout execution, it will accept no 

input, including the influence of other affective components; its output will consist 

of behavioral parameters that will serve as the base/default parameters.  

3. As traits are in part a mechanism for adapting to a variety of situations, different 

tasks may require a different trait configuration that will affect the robotic behavior 

in different ways. As part of this research, we will provide a mechanism by which 

traits will affect actions. Although only the five broad dimensions will be used 

initially, the component may be potentially extended to explore their facets as 

well. 

4. In addition to its influence on behavior, the trait component will also affect 

generation, intensity or response output of other affective components (described 

in later sections). 

3.2.1.3 Application to HRI 

The goal of including personality traits into a robotic system is at least two-fold: to 

adapt behaviors to different tasks and environments, and to provide a means for 

matching a robot’s personality to a human’s personality for a better fit in prolonged, 

everyday interactions. Additionally, traits serve a predictive purpose, allowing humans to 

understand and infer the robot’s behavior better; for example, an extraverted robot would 

be expected to be more gregarious, loud and interactive than its introverted counterpart. 
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Table 4 presents examples of tasks and situations for which each of the traits would be 

beneficial, along with the general role the robot would have in each of the examples.  

Table 4: Examples of Traits Applied to Human-Robot Interaction 

Trait/Dimension Example Role 

Extraversion Extraverted robot would be more suitable for tasks 

requiring engagement and entertainment – for 

example, a museum tour guide, or a play partner 

for children; on the other hand, introverted robot 

would be more suitable for tasks requiring 

concentration from a human – any mutual 

problem solving task. 

Co-worker 

Co-inhabitant 

Agreeableness A highly agreeable, compassionate robot would 

be valuable for working with sick and the elderly, 

where compassion is desired, whereas a more 

selfish robot might fare better in environments 

where robot abuse is expected (in case of non-

acceptance) 

Caretaker 

Co-inhabitant 

Conscientiousness A highly conscientious robot would be needed for 

tasks that required utmost precision and control – 

explosive material disposal; and a less 

conscientious robot would be less annoying for 

tasks in which time to completion is valued more 

than perfectionism – cleaning the house, for 

instance. 

Co-protector 

Co-inhabitant 

Neuroticism A more neurotic robot would be suitable for 

dangerous environments, where it could suggest 

to an accompanying human, through its behavior, 

to be more vigilant and to pay more attention to 

any signs of danger; on the other hand, a more 

bold and calm robot may instill more confidence in 

the surroundings. 

Co-protector 

Openness to 
Experience 

A robot high on Openness would suit collaborative 

exploration tasks, where the robot would favor 

more creative exploration strategies – space 

exploration or playing with children; whereas a 

less open robot would be preferred in more 

mundane cases, where just getting the job done is 

more important – cleaning or delivery tasks.   

Co-explorer 

Co-worker 
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Similarly, combinations of different traits can be put together to match a task or an 

environment: for instance, an extraverted, agreeable (compassionate) robot would 

perform well as a nursebot in a recovery ward; and an introverted, less agreeable (stern) 

robot would project a sense of authority when managing a disaster evacuation route.  

3.2.2 REPRESENTATION AND INFLUENCE ON BEHAVIOR 

Traits are represented as a vector p
v

 of intensities of N personality traits, where 

intensity refers to the extent to which each trait is represented in the robot:  

][ ipp =
v

 

For this research, we will use the five broad personality dimensions that constitute 

the Big Five taxonomy, therefore:  
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3.2.2.1 Grounding Trait Intensity in Psychological Data 

Although in theory trait intensity could range from negative infinity to positive infinity, 

it would be highly unlikely or useful. What would it mean to have a trait of certain 

intensity, either for humans or for robots? One way to ground it in both psychological 

findings and in reality is to look at the normal distribution of personality scores. Multiple 

tests have been developed to assess the relative personalities of both people and 

animals. According to one of such tests [118], the Five-Factor Model self-reported 

personality scores of 500 men and 500 women were normally distributed, with the 

following means and standard deviations (Table 5):  
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Table 5: Means and Standard Deviations for Personality Scores for Adults 

Personality Trait Mean (µµµµ) Standard Deviation (σσσσ) 

Openness 110.6 17.3 

Conscientiousness 123.1 17.6 

Extraversion 109.4 18.4 

Agreeableness 124.3 15.8 

Neuroticism 79.1 21.2 

 

Given these scores, we can identify a range within which a certain percentage of the 

population falls. For example, approximately 68 % of the population falls within +/- 1 

standard deviation of the mean, 95% within +/- 1.96 standard deviations from the mean, 

and 99% within 2.58 standard deviations from the mean. Figure 3 displays the normal 

distribution curve of personality scores for Neuroticism, with the corresponding 

percentage/standard deviation points marked on the curve with black diamonds.   

 

Figure 3: Neuroticism Scores Normal Distribution 

The mean score for a trait refers to the average trait intensity; this might correspond 

to general suitability for a wide range of tasks, but not to any type in particular. As the 

values slide away from the mean, they become representative of a lesser proportion of a 

+/- 1 SD, 68% 

+/- 1.96 SD, 95% 

+/- 2.58 SD, 99% 
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population, and also more adaptive for certain types of tasks, but not for the others. For 

example, a low value of Neuroticism signifies that an individual is calm, unemotional, 

and has low avoidance tendencies when compared to others; such an individual will 

thrive performing either high-risk tasks where courage is required or those with a low 

amount of danger. 

In terms of robots, by using this bell curve as a baseline, we can assign to each trait 

numeric values that represent the relative location of the robot’s desired personality 

against the average trait value.  For example, to have a highly neurotic individual 

(person or robot) would mean that their neuroticism value would be greater than some 

large percentage of the population, e.g. 99%.  We can then calculate mathematically the 

personality score that is greater than the personality scores of 99% of the population, or 

134 (for Neuroticism).  Therefore, prior to execution, the user defines a personality 

configuration, a value for each of the five traits, by selecting the desired population 

percentile that the robot’s resulting personality should reflect. This population percentile 

is converted to a numeric value relative to the normal distribution for that trait by 

integrating over the probability density function of the normal distribution N(µ,σ): 

( )
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  (1) 

where µi and σi are the mean and standard deviation of the personality trait being 

calculated, N() is the normal curve, Ki is the desired population percentile, and pi is the 

corresponding personality trait value that is being solved for.   

The advantage of using this method for assigning personality intensities, as opposed 

to simply selecting from a range of allowable values, is that it provides an operator with a 

more intuitive means for understanding what a certain numeric value stands for. In 
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addition to providing us with the personality trait value corresponding to an arbitrary 

percentile, the same equation can also be used to estimate an upper and lower bound of 

interest.  If 99% of the population should be within the desired range, then the lower 

bound for trait i will be at 0.5%, and will correspond to ii σµ *58.2− , and the upper 

bound will be at 99.5%, which corresponds to ii σµ *58.2+ . For example, for 99% of 

the population centered about mean, 79.1, the lowest Neuroticism value will be:  

1342.21*58.21.79*58.2 =−=−= NeurNeurNeurlowest σµ   (2)  

3.2.2.2 Determining Robotic Behavior using Personality Traits 

As was mentioned earlier, different personalities may have resulted from adaptation 

to different kinds of environments and tasks; therefore it may be advantageous to 

provide robots with similar capabilities. For example, in a mobile robot, a higher level of 

Neuroticism may be expressed as exhibiting more prominent obstacle avoidance (i.e., 

keeping a greater distance between robot and obstacles). This would be suitable for 

more dangerous environments and in cases where the survival of the robot is more 

important than expeditious task performance. A number of behavioral parameters are 

involved in producing an obstacle avoidance response, including an obstacle avoidance 

gain, and obstacle avoidance sphere of influence. In general, we will define the set of all 

behavioral parameters that may be influenced by any one or more traits to be the 

behavioral space. In this section, as part of our research, we will investigate a functional 

mapping f(x) from the trait space to the behavioral space.   

Initially, we use a polynomial mapping. In order to achieve such a mapping, two or 

more pairs of corresponding data points from both the trait and behavioral spaces are 

required. In particular, with 2 pairs of data points we can provide a linear 

correspondence by fitting them to a line, and 3 pairs of data points allow us to fit them to 

a 2nd degree polynomial. The default values of behavioral parameters provide a natural 
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correspondence to the default (average) trait values. The second data point in 

behavioral parameters could be the lowest possible/desirable value of a particular 

parameter, with 0 being the simplest case (e.g., for the majority of parameters negative 

values don’t make sense). For certain behaviors, the highest possible/desirable 

parameter values could also be obtained – e.g., sensor range would provide an upper 

limit for Obstacle Avoidance Sphere of Influence parameter. For gains, for example, the 

highest desired value would correspond to a value that would allow a particular behavior 

to dominate other currently active behaviors. By necessity, these lowest and highest 

possible/desirable parameter values will be obtained experimentally and might differ for 

different robotic platforms.  

For the present, for parameters for which 3 data points are available, a second 

degree polynomial of the form cbxaxy ++= 2 is advantageous, as it accounts better for 

cases where the default behavior lies closer either to the lowest or highest allowable 

parameter value (see Figure 4 and section 3.2.2.2.1 for more detail.) For example, in 

the case where the default behavior lies closer to the lowest desirable parameter value, 

the mapping function will grow slower up to the default parameter value, and faster 

afterwards. The resulting trait-based behavior parameter will replace the default values: 

Bi,trait=fij(pj), where Bi,trait is the new behavioral parameter, and fij(pj) is the functional 

mapping from the trait j to the behavioral parameter i. 

In order to provide the mapping from each trait to the behavioral space, we need to 

know which parameters a trait affects, as well as the direction of its influence: direct or 

inverse. For example, the trait of Neuroticism is directly related to avoidance behavior, 

whereas a trait of Conscientiousness is related to such a behavioral tendency inversely 

(e.g., a more conscientious robot may risk bumping into obstacles more in favor of faster 

task completion). Therefore, a personality-behavior dependency matrix ][ ijpbpb =  is 
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defined, which specifies the presence/absence and direction of influence of personality 

traits on behavioral parameters: { }1,0,1−∈ijpb , where 0 signifies absence of influence 

of trait j on behavior i, +1 means direct influence, and -1 is inverse influence. This matrix 

influences the creation of the functional mapping fij. In particular, the bounding trait 

values will be inversed for those traits that provide an inverse influence; and, if pbij = 0, 

then the mapping fij(pj) = 0 for all values of pj. 

3.2.2.2.1 Obstacle Avoidance Example 

Looking at an example of obstacle avoidance, the magnitude of the obstacle 

avoidance vector is defined as follows:  
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where S is the default sphere of influence, R is the radius of the obstacle, G is the 

default avoidance gain, and d is the distance of robot to center of obstacle.   

The personality dimension of Neuroticism has been found to influence avoidance 

behavior [119], which in the case of a mobile robot may be expressed as a tendency to 

stay away from obstacles. The obstacle avoidance gain G is therefore directly affected 

by this trait: it grows as the value of Neuroticism increases. Once the new trait-based 

obstacle-avoidance gain is calculated through the functional mapping fG,Neur(pNeur), the 

default gain is replaced with the new Gtrait value to calculate the magnitude of the 

obstacle avoidance vector for the duration of the robot’s life-cycle (or task completion).  

Let’s suppose that there are two different configurations for default/lowest/highest 

parameter values, with both the lowest and the highest values kept constant (

4,1.0 == ObsObs highestlowest ), but the default value is varying: 
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2,1 2,1, == ObsObs defaultdefault  The result of fitting these data points to a 2nd degree 

polynomial is displayed in Figure 4. The Neuroticism values are plotted along the 

horizontal axis, and the resulting Obstacle Avoidance Gain values are plotted along the 

vertical axis. When the default parameter value is located as mid-point between the 

lowest and highest values, the mapping approaches a line. However, when the default 

value is closer to the lowest value, the result is more of a parabola, which provides for a 

smoother mapping between traits and behavioral parameters, avoiding discontinuities.  

 

Figure 4: Mapping of Neuroticism to Obstacle Avoidance Gain 

For the purposes of illustration, suppose that Neuroticism also inhibits the exploration 

tendency, that is, it produces an inverse influence on Wander gain. This gain is involved 

in producing Wander behavior, which generates a random direction vector, thus adding 

an exploration component to a robot’s overall behavior. The Wander behavior has two 

Default =1 

Default =2 

Mean =79.1 
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parameters: random vector magnitude called “Noise_Gain”; and “Noise_Persistence” 

which controls the rate of directional switching of the vector. An example of both inverse 

and direct influences of Neuroticism on Wander gain and Obstacle Avoidance gain, 

correspondingly, is presented in Figure 5 (the same desired upper and lower values for 

both behavioral parameters are shown for clarity). As we can see, as the value of 

Neuroticism grows the Wander gain becomes smaller (inverse influence), and vice versa 

for the Obstacle Avoidance gain. 

 

Figure 5: Comparison of Direct and Inverse Influences of Neuroticism on a Behavioral 
Parameter  

3.2.2.3 Influence of Multiple Personality Traits on a Single Behavioral Parameter 

Finally, each behavioral parameter may be affected by multiple traits. In such a case, 

first the trait/behavior mapping for each of the influencing traits is calculated according to 

the chosen function fij(pj), where trait i influences behavior j, a polynomial in this case. 

Mean =79.1 

Default =1 

Highest parameter 

value at the lowest 

trait value Highest parameter 

value at the highest 

trait value Wander gain 

Obstacle 

Avoidance 

gain 
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Then, the results are averaged across all influencing personality traits to produce the 

final parameter value:  

∑
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where Bj is a particular behavioral parameter, fij(pi) is the function that maps personality 

trait pi to Bj, N is the total number of traits, and pb   is personality/behavior dependency 

matrix. As was mentioned earlier, if there is no influence by trait j on behavior i, the result 

of fij = 0. 

An example of multiple traits influencing the same parameter is given in Figure 6.  

 

Figure 6: Obstacle Avoidance Gain as a Function of Both Neuroticism and 
Conscientiousness 

Value of Conscientiousness is 
low: 0.5% 

Value of Conscientiousness is 

high: 99.5% 
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The Neuroticism values are plotted along the horizontal axis, and the resulting 

Obstacle Avoidance Gain values are plotted along the vertical axis. The default, lowest 

and highest parameter values for Obstacle Avoidance gain are: 

4,1.0,2 === ObsObsObs highestlowestdefault  The range of traits of Neuroticism and 

Conscientiousness is within 99%. The resulting Obstacle Avoidance gain is plotted for 

the following values of Conscientiousness: Mean, Mean +/- 1 SD, Mean +/- 1.96 SD (95 

%) and Mean +/- 2.58 SD (99%). As shown in the figure, as the Conscientiousness 

score grows higher, the corresponding behavior parameter is lower, and vice versa for 

the Neuroticism values. 

As trait values remain invariant throughout execution, the corresponding behavioral 

gains/parameters are computed only once at the beginning of execution. The resulting 

trait-defined parameters are now the base parameters upon which other affective 

components will provide their influence. 

The same trait/behavior mechanism can be used for specifying expressive behavior 

for humanoid robots as well. In particular, given the minimum and maximum allowable 

angles for certain joints, and minimum and maximum desired frequency for some body 

movements and gestures, we can provide a mapping between personality traits and 

robot gestures, movements, and body posture. For example, an extraverted individual is 

characterized by more expansive and frequent gestures; therefore, high levels of 

extraversion would be mapped to more extreme joint angles (away from the body), and 

higher frequency, and vice versa for a introverted robot. Finally, in cases where it is not 

feasible to provide a smooth, safe trajectory for body movements, a number of variations 

of gestures/posture can be coded a priori (e.g., those representative of Low, Average, 

and High levels of Extraversion), and a simpler discretized mapping can be used (e.g., 

Average gestures for Mean +/- 1 SD, High for > 1 SD, and Low for < 1 SD).   
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3.2.3 TRAITS SUMMARY 

In this section the psychological foundations for the trait component were presented, 

which serve as a basis for both translating user-defined trait combinations into an 

internal representation, and for defining a mapping from these configurations to 

behavioral parameters. In addition, potential applications of different traits to human-

robot interaction have been discussed. Personality Traits is the only component in the 

TAME framework that does not vary over time, and therefore defines the baseline 

behavioral parameters.  

3.3 EMOTIONS 

“…our ignorance concerning emotions so grossly outweighs our 
knowledge.” 

Jaak Panksepp  [120] 

 

The construct of emotion has attracted significant interest in the area of computing in 

general, and robotics in particular, and is perhaps the most explored among other types 

of affect. Although our knowledge of emotions and their functionality is far from 

complete, as evidenced by the quote from Jaak Panksepp [120], we know enough to 

begin experimenting with a mechanism that has proven to be of a great adaptive value in 

mammals.  

3.3.1 PSYCHOLOGICAL FOUNDATIONS 

Given the complexity of the phenomenon, it should come as no surprise that there’s 

a plethora of definitions of emotions [17, 121-124] – almost as many perhaps as there 

are emotion theorists. In different definitions, different aspects of emotions are 

emphasized – their adaptive significance, their components, the role of appraisal in 

emotion generation, etc. Some representative definitions can be found in Table 6. 

Although different, these definitions are not contradictory, and can be summarized with a 

set of points relevant for any autonomous agent, human or artificial. Emotions can be 
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described as a coherent and organized mechanism or system that, under environmental 

contingencies, provides an organism with a fast, flexible, adaptive response by guiding, 

organizing, or coordinating behavior and perception.  

Table 6: Representative definitions of Emotions 

Researcher Definition 

Panksepp [124] “… emotions are posited to be evoked under conditions having 
adaptational significance to the individual and to physically 
prepare and motivate the individual to contend with the 
adaptational implications of the eliciting situation.” 

Scherer [123] 
 

Emotion is “an evolved, phylogenetically continuous mechanism 
that allows increasingly flexible adaptation to environmental 
contingencies by decoupling stimulus and response and thus 
creating a latency time for response optimization” 

LeDoux [17] 

 

“Basic building blocks of emotions are neural systems that 
mediate behavioral interactions with the environment, particularly 
behaviors that take care of fundamental problems of survival.” 

Johnson-Laird 
[122] 
 

“… each of the discrete emotions serves distinct functions in the 
way it organizes perception, cognition, and actions (behavior) for 
coping and creative endeavors.” 

 

There are a number of features of emotions that should be considered while 

designing an artificial emotional system. Is there a set of distinct, separate emotions, 

each with its own distinct adaptive function, or can they be better described along a 

number of dimensions? What are the functions that emotions perform? Are emotions 

fast, hard-wired responses, or slower, more flexible cognitive ones? In the subsections 

below, we will touch upon these questions and try to identify the features that can help 

us in the consequent design. 

3.3.1.1 Dimensional vs. Categorical Approaches 

In the current psychological research, there are two main groups: those who define 

emotions not as separate mechanisms but as differing along a number of global 

dimensions (such as pleasant vs. unpleasant, low vs. high arousal, and approach vs. 
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avoidance), and those who contend that there exist distinct categories of emotions, each 

one with its own adaptive function which should be achieved from fundamentally distinct 

responses [125]. The theorists adhering to the dimensional view usually consider 

emotions as being socially learned and culturally variable [125]. In contrast, proponents 

of the categorical approach view emotions as innate, evolutionary predetermined 

mechanisms indispensable for the survival of the organism. The evidence for the 

existence of discrete emotions is multi-faceted. Keltner et al. [125] provide evidence 

indicating that facial expressions are perceived categorically and linked to distinct brain 

regions, autonomic activity, and evoked responses in others. Izard et al. [121] describe 

the adaptive functions of discrete emotions that provide evidence for usefulness of the 

approach. Finally, Panksepp [120] postulates there are basic emotional systems in the 

brain that  produce emotions as natural kinds; these systems are: seeking/expectancy 

(perhaps Interest emotion); rage/anger; fear/anxiety; panic/separation (possibly related 

to Sadness), play/joy, care/nurturance, and lust/sexuality.  

Although these two views approach emotion differently, they are not necessarily 

contradictory [123, 125, 126]. For our purposes, we find the categorical approach to 

emotions more suitable, as it allows modeling each emotion as a mechanism with its 

own adaptive function, antecedents, and a set of responses. However, on occasion, the 

dimensional view may prove useful as well, e.g., when establishing the influence of 

personality on emotions: in particular, neuroticism has been linked to a propensity for 

experiencing negative emotions, and extraversion – positive.  

3.3.1.2 Functions of Emotions 

There is a certain number of functions characteristic of emotions as a whole, and 

there are those that are more or less specific to distinct emotions.  Although the list of 

common functions of emotions can be very long, as it would include those related to 

organizing, motivating and managing physiological, expressive and cognitive processes, 
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as well as generating and coping with subjective feelings, we will restrict the one in this 

section to those functions that are relevant for autonomous behavior-based systems, 

namely those that relate to perception and action.  

1. Coordination of attention and perception. Emotions generally arise in 

response to a situation relevant for survival, and serve to focus the attention of 

an individual to such a situation, making it salient, and allow examining it more 

closely (figuratively and literally), for a better choice of action. For example, fear 

narrows the focus of attention to potentially dangerous objects and makes the 

individual more sensitive to perceiving disturbing cues; interest provides a 

mechanism of selective attention, which keeps attention from straying more or 

less randomly through a wide variety of stimuli [121]. 

2. Motivating and guiding action. This function is implicitly present in most 

definitions of emotion, as many of them include a behavioral response to an 

environmental contingency. Emotions also allow flexibility of behavioral 

responses to stimuli – they provide a simple interface between sensory inputs 

and action systems [127]. As we strive to improve robotic behavior by providing a 

flexible link between perception and action, this function is of primary interest.  

3. Expressive and communicative function. The external display of emotions via 

facial expressions, voice and body posture may be used to read an individual’s 

emotional state and therefore anticipate imminent behavior, better assess the 

current situation, or respond to an individual’s needs [126]. E.g., sadness 

communicates a need for help, fear – an external, situational threat, and anger – 

a potential threat from the one expressing it. Social bonding may be viewed as 

an extension of this function, where, e.g., sadness and empathy would promote 

bonding at the time of grief, and joy – at the time of success.  
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Functions that are specific to certain emotions can provide us with an understanding 

of what influence an emotion would make on the current state of an autonomous robot, 

given an appropriate stimulus. Table 7 lists a number of emotions, their functions, and in 

addition to functions, a core relational theme which provides a summarized, overall 

meaning or cause for most of these emotions, as described by Lazarus [128], with the 

exception of Interest for which no core relational theme was provided.  

Table 7: Functions and Core Relational Themes for Select Emotions 

Emotion Function Core Relational 

Theme 

Interest  Motivates exploration and learning; 

guarantees engagement in the environment; 

provides a mechanism of selected attention; 

motivates approach responses [121] 

Not available 

Joy Heightens an openness to experience; 

contributes to affilliative behaviors and 

strengthening of social bonds; smile signals 

friendly interaction [121]; also invites others 

to participate [129] 

Making reasonable 

progress towards 

realization of a goal 

Sadness Strengthens social bonds; slows cognitive 

and other processes that allows to look for 

the source of the problem and perhaps avoid 

it in the future; signals a need for help [121] 

Having experienced an 

irrevocable loss 

Anger Mobilizes and sustains energy (resources) 

[121]; organizes and regulates processes 

related to self-defense and mastery; 

regulates social and interpersonal behaviors 

[130] 

A demeaning offense 

against me and mine 

Fear Promotes escape/avoidance behavior; 

organizes and directs perceptual and 

cognitive processes [121] 

An immediate, concrete, 

and overwhelming 

physical danger (Fright); 

facing uncertain, 

existential threat 

(Anxiety) 

Disgust Promotes distancing from the offending, 

potentially contaminating, stimuli [131]  

Taking in or being too 

close to an indigestible 

object or idea 
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3.3.1.3 Primary vs. Secondary Emotions 

Emotions also differ in the way they are generated. A subdivision widely accepted 

among emotion theorists is that between primary and secondary emotions. Although the 

exact emotions that belong to each category, as well as the number of categories itself 

differ between various researchers, the main idea remains the same: emotions can be 

separated into fast, automatic, hard-wired reactions and slower, cognitive and more 

flexible ones. For example, Panksepp [120] differentiates between “the Blue-Ribbon, 

Grade-A Emotions” and “the Higher Sentiments”. The “Grade-A emotions” have 

evolutionarily evolved earlier and are conceptualized as sensorimotor emotional 

command circuits in the brain (they include emotions like fear, anger, sadness, joy, and 

interest). The Higher Sentiments, such as shame, guilt, pride, gratitude and others, are 

more subtle social emotions that result from a more recent evolutionary expansion of the 

brain. LeDoux [17] distinguishes between “low road”/”fast pathway” of emotion 

generation that bypasses the cortex and results in “quick and dirty” processing and “high 

road” that benefits from cortical processing that is more detailed and accurate, albeit 

slower.  

For this work, we will be mostly concerned with primary emotions, as they present a 

more straightforward link to behavior, and, providing faster responses, are more suitable 

for the robotics domain. However, as this research progresses, we may consider 

including “more subtle social emotions”, especially for the benefit of human-robot 

interaction domain.  

3.3.1.4 Influence by Traits 

Personality has a profound influence on emotions. Lazarus [30] says that an emotion 

is a result of not just a property of the environment, but depends on the conjunction of 

the situation and personality. There are a number of ways where the personality 

influence comes into play. First of all, people with different personalities may find 
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different events more salient than others, thus generating emotions in response to 

different events. Some individuals may view situations in a more negative or positive 

light, and therefore be more prone to experiencing more negative or positive emotions, 

respectively. Another way for personality to influence emotions is in lowering thresholds 

for response patterns characterizing a particular emotion [3]. For example, those who 

score high on Anxiety (a facet of Neuroticism) are more prone to experiencing and 

exhibiting fear than low-scorers. Likewise, the Positive Emotions facet of Extraversion 

dimension reflects a propensity of an individual to experience positive emotions. 

Response patterns often include action tendencies – impulses to engage in a certain 

behavior; personality may govern both the type of tendencies brought about by an 

emotion, and the extent to which these tendencies will result in a particular behavior. 

Personality also contributes to coherence, consistency and predictability in emotional 

reactions and responses [132].  

Finally, Davidson [133] proposes that the following variables, influenced by 

personality, describe “affective chronometry” – the temporal dynamics of emotional 

responses: 

1. Threshold of eliciting stimuli for a particular emotion (an activation point); 

2.  Peak or amplitude of the response; 

3. Rise time to peak (how long it takes the emotions to reach its peak);  

4. Recovery time (decay rate); 

In this research, we will provide the means to account for personality differences in 

the first three of the aforementioned variables. 
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3.3.1.5 Influence by Moods 

Although no systematic data exists, the supposition is that moods may influence 

emotions by: 1) increasing the probability that similarly valenced emotions may be 

triggered [10]; 2) lowering the thresholds for experiencing a particular emotion [3]. For 

this research, the moods will increase the sensitivity of certain emotions to emotion-

eliciting stimuli. 

3.3.1.6 Influence by Attitudes 

As far as emotions are concerned, according to [3], they stand in a “close and 

reciprocal relationship” with attitudes, where a sentiment may originate in an comparable 

emotion, and emotions can be brought about by meeting or thinking about the object of a 

sentiment. In a sense, affective attitudes carry with them latent emotions that can be 

brought to life when their objects become salient. For this research, an attitude may 

invoke a corresponding emotion by adding emotion-eliciting characteristics to a stimulus; 

in particular, attitude strength will be one of the components used in calculating the 

overall stimulus strength. 

3.3.1.7 Implications for TAME 

The aforementioned psychological findings allow us to make the following design 

decisions:  

1. The emotion component will be modeled as a set of distinct emotions, each 

having a different function and different effects on action, and expressive 

behavior (in the case of human-robot interaction).  

2. The primary emotions to be modeled are: Anger, Fear, Disgust, Sadness, 

Interest and Joy. In terms of their interaction with other affective components, 

Anger, Fear, Disgust and Sadness will be regarded as negative, and Joy and 
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Interest as positive. In accordance with the “fast pathway” view of emotion 

generation, no cognitive reasoning will be involved in emotion generation.  

3. Being short-term and object-specific, the emotions will be invoked in response to 

environmental stimuli, and will last either until the stimulus disappears (with a 

short-term lingering effect), or until they decay in time, whichever is faster. The 

inputs to this component are: stimuli characteristics (sensor data or processed 

stimuli information) and the values of traits, moods and attitudes. 

4. Personality, mood and attitude influences will be taken into account. In particular, 

traits will affect sensitivity to stimuli (activation point), amplitude, and time rise to 

peak; moods will only influence sensitivity to stimuli for similarly valenced 

emotions (negative mood will affect negative emotions, and positive mood will 

affect positive ones); finally, attitude will play a part in determining the stimulus 

strength and the type of emotion generated. 

3.3.1.8 Application to HRI 

Emotions have an immense potential in the field of human-robot interaction, as 

evidenced by the number of robotic systems which include emotions in one way or 

another. First, emotions have a high expressive value, providing interacting humans with 

cues not only regarding the internal state of the robot, but also regarding the situation 

they are in. Second, emotions play a crucial role in interpersonal relationships, 

promoting a sense of camaraderie, rapport and acceptance. Finally, emotional 

expressiveness can help make robots less alien, more understandable, and contribute to 

creating a greater illusion of life. Table 8 provides examples of how each of the emotions 

can be utilized in the human-robot interaction domain, along with the thematic roles it 

can play. 
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Table 8: Examples of applying emotions to Human-Robot Interaction 

Emotion Example Role 

Joy If the robot rejoices in events others find happy, it 

could promote the team spirit, and facilitate the 

robot’s acceptance as a part of the team. 

Co-worker 

Co-inhabitant 

Interest May help attract people’s attention to certain points 

of interest otherwise not immediately salient to 

humans; expressing interest in the lives of those 

around it on a daily basis would help increase 

acceptance and attachment. 

Co-explorer 

Co-inhabitant 

Fear May signal imminent danger to nearby people, and 

be more persuasive than words alone, in case, for 

instance, an evacuation is required. 

Co-protector 

Disgust May alert a human to the presence of some noxious 

stimulus, which, though not necessarily hazardous, 

would still be best avoided. 

Co-protector 

Co-worker 

Co-inhabitant 

Anger By showing a willingness to protect “its own”, the 

robot may alleviate some fear its “charges” may 

experience in a dangerous situation. 

Co-protector 

 

Sadness Similarly to joy, may promote a sense of belonging to 

a group, through empathizing with a goal failure, or 

with problems a team/family member is 

experiencing. 

Co-worker 

Co-inhabitant 

 

3.3.2 REPRESENTATION AND GENERATION 

Emotion values are not user-defined, but are dynamically generated throughout a 

robot’s mission based on the presence and strength of environmental stimuli. Picard [20] 

identifies a number of properties of emotions that would be desirable to model in 

affective systems. The following subset of them will be modeled in TAME:  

1. A property of activation, which refers to certain stimulus strength below which the 

emotional circuits are not activated. 

2. A property of saturation, which refers to the upper bound of an emotion, after 

which, regardless of the increasing stimulus strength, the emotion doesn’t rise 
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any more. This upper bound can be defined by physical capabilities (e.g., the 

heart can beat only so fast in response to an emotion).  

3. A property of response decay, which states that emotions decay naturally over 

time unless they are re-stimulated.  

4. A property of linearity. Picard [20] suggests that emotions can be modeled as 

linear under certain conditions; due to the properties of activation and saturation, 

the emotions will approximate linearity only for certain stimulus strength range, 

and will approach a sigmoid at the edges of this range. Picard proposes a 

sigmoidal non-linearity [20] to account for a number of these properties. 

Each emotion’s intensities are stored in the emotion intensity matrix: 

][ iEE =
r

 

where ii gE ≤≤0  , the value Ei represents the intensity of a currently active emotion, 

with 0 being the absence of emotion, and gi is the experimentally defined upper bound 

for emotion i.  

The basic emotions to be modeled in TAME are Fear, Disgust, Anger, Sadness, Joy 

and Interest, therefore:  
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3.3.2.1 Eliciting Environmental Stimuli 

The exact nature of environmental stimuli will depend on a particular environment; 

however, we can identify certain general features that can be attributed to a majority of 

stimuli that an autonomous robot may encounter. These features will be used to identify 



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 61

the type of emotion generated and its intensity. First, type of stimulus refers to the 

intrinsic quality of a stimulus to invoke a particular emotion. It could be determined by a 

certain property that the stimulus possesses, e.g., color or shape, or a combination of 

qualities (e.g., a receding likable object may lead to sadness). Additionally, the result of 

a cognitive assessment of a situation can also serve as a stimulus type – for example, a 

successful accomplishment of a goal can be interpreted as a joyful stimulus. As a 

simplifying assumption, type signifies that an emotion-eliciting object is present, but does 

not determine the intensity of emotion. The same stimulus may cause multiple emotions; 

for example, anger and fear often appear in response to the same object.  

Other stimulus features, such as the size of stimulus, its brightness, shape, distance 

to it, and others determine the intensity of the generated emotion. According to 

McFarland et al. [134], certain stimulus features add a specific contribution independent 

of other features; such features are additive in their effect. These additive 

heterogeneous features can be combined into a single index, called “cue strength”, and 

represented along a single dimension. Other independent features may be represented 

along a different dimension (e.g., distance), and can be combined multiplicatively with 

the cue strength. Although this characterization of stimulus properties was originally 

applied to motivational space, it seems reasonable and applicable in emotion generation 

as well. The more permanent object attributes, e.g., size, category, shape, etc. also 

serve as determinants for forming long-lasting attitudes towards these objects (described 

in detail in subsection 3.5.2, Representation and Formation). 

For the robotics domain, the following cues (i.e., dimensions) can be identified:  

1. Physical Properties Cue. This category will refer to physical properties of a 

stimulus. Depending on different robotics platforms and sensors, it can include a 

number of features: 



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 62

(a) Object size – can be determined as relative to robot size; 

(b) Brightness/hue (e.g., if a certain color category serves as an elicitor of a 

particular emotion, then the extent to which the object color falls within this 

category can be a feature included into the overall physical properties cue); 

(c) Loudness (for auditory sensors); 

(d) Shape and others, as applicable, depending on the environment and 

physical platform. 

2. Position Cue. This category refers to the relative position and orientation of the 

eliciting stimulus to the robot and may include the following:  

a) Distance to the stimulus – the upper bound can be determined by sensor 

range; the closer the stimulus, the greater the cue; 

b) Velocity of stimulus approach and withdrawal, and its 

acceleration/deceleration (in case of a moving stimulus); 

c) Stimulus orientation (e.g., if there’s a clear “front” and “back” of the eliciting 

stimulus, then the object with its “back” to the robot may not present as much 

danger as the one oriented towards the robot); 

d) Others, as applicable, depending on the environment and physical platform. 

3. Attitudinal Cue. If the robot had developed an attitude towards a particular 

object, then the strength of this attitude can be used in calculating the overall 

stimulus strength. These attitudes towards particular objects can be based on 

certain more or less permanent object attributes, and the resulting attitude 

strength for a particular emotion serves as attitudinal cue. E.g., if a robot “likes” 

an object/person, then the resulting overall stimulus strength will be greater when 

generating positive emotions, than without this attitude, all other cues being 

equal. Attitude can also serve as the only cue involved in emotion generation.  
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4. Situational Cue. A cognitive assessment of a situation can serve as a cue, even 

if a physical object is not present. For example, a successful accomplishment of 

a goal would illicit Joy, and withdrawal of a “loved” object would cause Sadness. 

The strength of this cue can be determined by goal importance, degree of 

success, and other intrinsic situational properties.  

As a simplifying assumption, only one stimulus at a time is considered for a particular 

emotion, therefore at any point in time the stimuli strength is stored in the stimulus 

strength matrix, ][ iss =
v

, where ∞<≤ is0 , si is the stimulus strength for emotion I; 0 

signifies absence of a stimulus. The stimulus strength for emotion i is then defined as a 

product of all available stimulus cues, each of which is an additive combination of 

stimulus features comprising a particular cue: 

∏ ∑
= =
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where si is stimulus strength for emotion i, m is the number of cues for the stimulus in 

question, n is the number of features in cue c, and k is a scaling factor to bring each 

feature to the same units. Although in theory the total stimulus strength si could go to 

infinity, in practice it is likely that the features will have certain lower and upper bounds 

(e.g., the sensors can only reach so far in identifying the distance to the object, or to 

discern an object of a very small size). These bounds would be empirically determined 

and will depend on both the platform and the environment. 

3.3.2.1.1 Stimuli Strength Illustration 

Suppose a large robot presents a source of threat to a robot augmented with 

emotional capabilities. The affective robot’s available sensor data allows to determine 

the threatening robot’s size and loudness, comprising together a Physical Properties 

Cue, and the distance to it, which represents a Position Cue. To illustrate the 
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combination of these cue strengths into the total stimulus strength, several isoclines for 

total stimulus strengths were plotted in Figure 7.  

 

Figure 7: Stimulus Strength Isoclines Based on Distance and Physical Properties Cues. 

In this figure, physical Properties Cue is plotted along the Y axis; decreasing 

distance is used as the only feature of Position Cue for clarity and is plotted along the X 

axis. The isoclines correspond to different relative stimulus strengths. As the stimulus 

strength is the primary determinant of emotion, this figure also illustrates what relative 

effect the multiplicative combination of cue strengths will have on emotion generation. In 

particular, the graph shows that as the distance grows increasingly smaller, only a low 

intensity physical properties cue (e.g., a small size of an object) would be needed to 

produce an equivalent stimulus strength (and consequently, emotion), and vice versa, at 

a great distance, objects with greater physical properties cue will be required to reach 

the same stimulus strength. For certain emotions and tasks, an inverse relationship 

Higher Stimulus Strength 

Lower Stimulus Strength 
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between some of the cues and stimulus strengths is also true; for example, it is possible 

that for some tasks a smaller object would be of more interest than a large one (Physical 

Properties Cue).  

An alternative mechanism for calculating the overall stimulus strength can be a 

weighted average of all present cues (normalized). Although not biologically inspired, 

this method is simpler to implement, and has an advantage of taking relative importance 

of cues into account; for example, object orientation may be more important for 

generation of Fear, but not of Disgust. This latter approach was taken during the 

software design and implementation stage.  

3.3.2.2 Emotion Generation 

Now that the strength of the eliciting stimulus is known, the base emotion can be 

calculated. The desired function for base emotion generation resembles a sigmoid 

curve. This function supports the aforementioned properties of emotions and the 

influences by traits and moods in the following way:  

1. The property of activation. The function has a lower bound (that corresponds to 

the absence of emotion), and at very small inputs, the output will be close to the 

lower bound until a certain activation point, after which it will grow slowly at first, 

but approximate linear closer to the mid-point of the curve. 

2. The property of linearity. In the middle section of the curve (for average inputs) 

the output will be approximately linear.  

3. The property of saturation. As the input stimulus grows to infinity, the resulting 

emotional value should approach a finite upper bound. 

4. Personality and Mood Influences. This function also incorporates influences 

from other affective components by allowing variations in the amplitude, 

maximum slope and activation point.  
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Picard [20] proposes an inverse exponential function to account for these properties. 

Although inspired by it, we chose a combination of two exponential functions as the 

desired function, as it can accommodate the influences due to personality and moods in 

a way that fits our overall framework better. The following equation calculates the base 

emotion value, based on the current stimulus strength and mood and personality 

influences:  
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where Ei,base is the base emotion value for emotion i, si  is the strength of stimulus eliciting 

emotion i, ai is the variable that controls the activation point for emotion i, di is the 

variable that controls the maximum slope for emotion i, g is the amplitude of emotion i, 

and bi  is the break-point, at which the emotion reverses its rate of growth. As variables 

a, d and g can change with personality and mood influences, they will be referred to as 

“emotion generation variables” from now on. 

Figure 8 presents a general shape of the resulting curve. When the stimulus 

strength is very low, no emotion is generated; then, as the stimulus strength increases, 

the emotion starts rising slowly, becomes approximately linear in the middle where the 

rise is faster; finally, as the stimulus strength gets larger, the growth of emotion slows 

down, until the emotion value reaches its peak. After that, further increases in stimulus 

strength will not produce any additional increase in the emotion.  
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Figure 8: Emotion Generation Based on Stimulus Strength.  

Figure 9 presents an illustration of how emotion is generated for different stimuli 

strengths at a single point in time, as the emotion generation variables (amplitude, 

activation, and slope) are held constant (neutral). In this figure, four different stimuli 

appear and disappear as time progresses; their proximity in time is for illustration 

purposes only, and does not reflect the frequency with which emotions are normally 

generated. Scaled values of stimuli strength are plotted in blue dotted line, and the 

generated emotion values are plotted in red solid line. We can see that at low stimulus 

strength, the generated emotion grows slowly, and is significantly lower that the 

corresponding stimulus strength. As the stimulus strength is closer to the middle of the 

curve, the generated emotion grows significantly faster. Finally, as the emotion 

approaches its saturation point with higher stimulus strength, the growth slows down 

again until the emotion reaches its saturation. 

Amplitude (g) 

Activation Point 

(controlled by a) 

Point of 

Maximum Slope 

(controlled by d) 
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Figure 9: Effect of different strength stimuli on emotion generation. 

3.3.2.2.1 Personality Influence on Base Emotion Generation 

Personality may affect each of the emotion generation variables. The peak, or 

amplitude, of an emotion can be varied by changing the upper bound (g). The sensitivity 

to stimulus can be varied by changing the activation point (controlled by a). This variable 

will vary the point at which the emotion will start to rise; e.g., for individuals high in 

neuroticism, even smaller stimulus strengths will produce a certain level of emotion, 

whereas in those with a lower value of neuroticism, the activation point at which a 

stimulus will start generating emotion generation will be higher. Finally, the maximum 

slope of the curve can be varied to affect the “rise time to peak”, controlling the rate at 

which an emotion rises with increasing stimulus strength.  Although the function is not 

time-based, due to the fact that the stimulus strength is expected to vary with time (e.g., 

Slow growth 

close to 

activation 

point 

Approaches 

Saturation 

Level 

Slow Growth 

Time 

Fast 

growth/decrease 
Stimulus 

1 
Stimulus 

2 

Stimulus 
3 

Stimulus 
4 



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 69

distance will be increasing or decreasing), varying the slope will also vary how long it will 

take for the emotion to rise to a certain level. 

For the present, a linear mapping from personality traits to each of these variables 

will be used, and can be reevaluated later. In order to obtain such a mapping, two sets of 

data points are required. The upper and lower bounds for each trait have been 

established earlier, in section 3.2.2; the upper and lower bounds for the emotion 

generation variables will need to be determined experimentally, based on a variety of 

robotic platforms and potential stimuli. Given these two sets of data points, we can fit 

them into a line of a general form of y=ax+b, thus providing a mapping from the trait 

values onto the emotion generation variables. Therefore, each of the traits can be 

mapped to each of the variables through linear functions that produce a line: fi,g(pj) for 

the amplitude, fi,d(pj) for the maximum slope, and fi,a(pj) for the activation point. 

Although very little systematic research exists on how specific individual differences 

influence emotion generation [29], Watson et al. [4] provide evidence for more general 

correlations between the Big Five personality dimensions and Positive and Negative 

Affect. For example, both Neuroticism and Agreeableness may influence the generation 

of fear, where the trait of Neuroticism produces a direct influence (has a strong positive 

correlation with Negative Affect), and the trait of Agreeableness produces an inverse 

influence (has a negative correlation with Negative Affect). To allow greater flexibility, 

each trait can have a direct, inverse, or no influence on each emotion generation 

variable (activation point a, maximum slope d, and amplitude g). For clarity, three 

personality-emotion dependency matrices are defined, one for each variable:  

][ ijpgpg = , where }1,0,1{−∈ijpg ; 

][ ijpdpd = , where }1,0,1{−∈ijpd ; 

][ ijpapa = , where }1,0,1{−∈ijpa ; 
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In each of these matrices, 0 specifies an absence of influence of trait j on emotion 

generation variables (g, d, and a, correspondingly) for emotion i, +1 refers to direct 

influence, and –1 to inverse influence. For example, following our prior example of Fear 

generation, pgFear, Neuroticism = 1 (direct influence of Neuroticism on fear amplitude), 

pgFear, Agreeableness = -1 (inverse influence of Agreeableness on fear amplitude), and 

pgFear, Openness, pgFear, Extraversion, and pgFear, Conscientiousness = 0 (no influence). This 

representation allows for a greater flexibility in specifying the relationship between 

personality and emotion generation, useful for when either psychological data become 

available, or for adaption to different robotic tasks and environments. In case of 

activation point a, however, we would expect an opposite relationship: the activation 

point would be lower with higher values of Neuroticism (thus increasing the sensitivity to 

fear-invoking stimuli), and with lower values of Agreeableness (lowering the sensitivity).  

Taking into consideration personality/emotion dependency matrices, the linear 

relationship between personality traits and emotion generation variables g (amplitude), d 

(slope) and a (activation variable) can be expressed by the following functions:  
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(7) 

where ( )jgi pf ,  is the linear mapping function relating personality trait j to amplitude g for 

emotion i, upperig ,  and lowerig ,  are upper and lower bounds for amplitude for generating 

emotion i,  upperjp ,  and lowerjp ,  are upper and lower bounds for trait j, jp is the intensity 

value for trait j, and pg  is the personality-emotion amplitude dependency matrix.      
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(8) 

where ( )jdi pf ,  is the linear mapping function relating personality trait j to slope d for 

emotion i, upperid ,  and lowerid ,  are upper and lower bounds for slope for generating 

emotion i, upperjp ,  and lowerjp ,  are upper and lower bounds for trait j, jp is the intensity 

value for trait j, and pd  is the personality-emotion slope dependency matrix. 
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(9) 

where ( )jai pf ,  is the linear mapping function relating personality trait j to activation point 

a for emotion i, upperia ,  and loweria ,  are upper and lower bounds for activation point for 

generating emotion i, upperjp ,  and lowerjp ,  are upper and lower bounds for trait j, jp is the 

intensity value for trait j, and pa  is the personality-emotion activation point dependency 

matrix. 

Continuing with the example of Fear generation, let’s suppose Neuroticism (N) 

produces a direct effect on Fear amplitude; Neuroticism upper and lower bounds are 

within +/- 2 SD of mean ( upperNp ,  = 79.1+2*21.2 = 121.5 and lowerNp ,  = 79.1-2*21.2 = 

36.7), Fear amplitude upper bound upperFearg , =10 and lower bound lowerFearg , = 6. Then, 

if the robot’s Neuroticism value Np is 94, the value for amplitude NFearg ,  is:  
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( ) 7.867.3694*
7.365.121

610
, =+−









−

−
=NFearg  

The trait of Agreeableness (A), on the other hand, has an inverse effect on Fear 

amplitude. Supposing Agreeableness upper and lower bounds are within +/- 2 SD of 

mean ( upperAp ,  = 124.3+2*15.8 = 155.6 and lowerAp ,  = 124.3-2*15.8 = 92.4), Fear 

amplitude upper bound upperFearg , =10 and lower bound lowerFearg , = 6, and 

Agreeableness current value Ap  is 100 (low), then the resultant value for amplitude 

AFearg ,  is:  

( ) 5.964.92100*
7.365.121
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, =+−
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Figure 10 shows the difference in the shape of the base emotion generation function 

as the influencing personality trait goes from the lowest to the highest. In this figure, a 

trait has a direct influence on emotion generation (e.g., Neuroticism’s influence on Fear) 

and the value of mood is kept constant. As the value of the influencing trait goes up, the 

amplitude of the emotion gets bigger, the slope is steeper, and the activation point is 

lower (the sensitivity to the stimulus is higher). For example, if the trait under 

consideration is Neuroticism, and the resulting emotion is fear, then the individuals with 

the low value of Neuroticism will not be as sensitive to fear-inducing stimuli (it will take a 

stronger stimulus for them to start experiencing emotion), the resulting peak emotion will 

not be as high, and it won’t rise quite as fast with increasing stimulus strength as that of 

their High Neuroticism counterparts.  
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Figure 10: Effect of Personality on Emotion Generation in terms of emotion amplitude, 
activation point and slope. 

It is possible that multiple traits may affect the same emotion generation variable. 

Then the overall personality influence on an emotion generation variable is defined as 

the average emotion generation variable of all personality traits influencing that emotion 

(given the linear mapping functions fi,g(pj) , fi,d(pj), and fi,a(pj) that map personality values 

to emotion generation variables g, d and a, respectively):   

∑
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where gi  is the amplitude  for emotion i, fi,g(pj) is the function that provides a linear 

mapping between trait j and the emotion generation variable g, N is the total number of 

traits, i.e. 5,  in the trait intensity matrix p
r

,  and jp  is the intensity value for trait j. 
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where di  is the maximum slope variable for emotion i, fi,d(pj) is the function that provides 

a linear mapping between trait i and the emotion generation variable d, N is the total 

number of traits, i.e. 5,  in the trait intensity matrix p
r

,  and jp  is the intensity value for 

trait j. 

∑
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where ai, trait  is the activation point variable  for emotion i, fi,a (pj) is the function that 

provides a linear mapping between trait j and the emotion generation variable a, N is the 

total number of traits, i.e. 5,  in the trait intensity matrix p
r

,  and jp  is the intensity value 

for trait j. The activation point variable a is influenced both by personality and moods, 

and ai,trait presents the trait-based portion of this variable. 

Finally, to conclude our example of calculating trait effect on Fear amplitude, 

suppose Neuroticism and Agreeableness are the only traits that exert an influence on 

Fear amplitude. Then the overall trait-based Fear amplitude Fearg  is the average of 

AFearg ,  and AFearg ,  = (8.7+9.5)/2 = 9.1.  

3.3.2.2.2 Mood Influence on Base Emotion Generation 

According to Frijda [3], moods may influence emotions by lowering the threshold for 

their elicitation. Therefore, for the present, mood intensity will affect sensitivity to eliciting 

stimuli by changing the activation point for a corresponding emotion. In particular, the 

negative mood will make the robot more sensitive to negatively valenced stimuli (those 

eliciting negative emotions), and the positive mood will make the robot more sensitive to 

positively valenced stimuli. Other potential effects may also be explored later, should 

further readings or experimentation prove them useful. 
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The mood-based activation variable ai,mood can be calculated in a similar manner to 

personality influence on emotion generation variables. In particular, given a mood 

intensity mj (see section 3.4.2, Representation and Generation of Moods), the desired 

upper and lower bounds for mood intensity and the desired upper and lower bounds for 

the activation point variable, ai,mood can be produced by linear mapping from the 

corresponding mood intensity. In order to flexibly specify mood influence on activation 

point variable (a), a mood/activation point matrix reflecting correlation between emotion i 

and mood j is defined:  

][ ijmama = , where }1,0,1{−∈ijma ; 

In this matrix, 1 stands for direct influence, -1 for inverse influence, and 0 for 

absence of influence. Suppose negative mood has an inverse impact on activation point 

used for generating negative emotions (Fear, Anger, Disgust and Sadness): the higher 

the Negative Mood, the smaller stimulus strength would be required to initiate generation 

of negative emotions. Similarly, positive mood would affect positive emotions (Joy and 

Interest) in the same manner. The mood/activation point dependency matrix reflecting 

this relationship is given in Table 9. 

Table 9: A sample mood/activation point dependency matrix 

 Fear Anger Sadness Disgust Joy Interest 

Positive Mood 0 0 0 0 -1 -1 

Negative Mood -1 -1 -1 -1 0 0 

 

The function mapping mood to activation point is similar to the one providing linear 

mapping between traits and activation point (subsection 3.3.2.2.1, Personality Influence 

on Base Emotion Generation), and is expressed as follows:  
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(13) 

where ( )jai mf ,  is the linear mapping function relating mood j to activation point a for 

emotion i, upperia ,  and loweria ,  are upper and lower bounds for activation point for 

generating emotion i, upperjm ,  and lowerjm ,  are upper and lower bounds for mood j, jm is 

mood j current intensity, and ma  is the mood-emotion activation point dependency 

matrix. This function produces the value for mood-based portion of the activation point 

variable, ai, mood. 

In Figure 11, the higher mood value results in a lower activation point, and 

consequently, in higher sensitivity to the emotion-eliciting stimuli, and vice versa. For 

example, if an individual in a highly negative mood encounters a disgust-eliciting 

stimulus, then a stimulus of a lower strength will be sufficient to activate the emotion of 

Disgust. Similarly, for an individual in a highly positive mood, a lower-strength positive 

stimulus will activate a positive emotion of Joy, compared to neutral or low positive 

mood. 



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 77

 

Figure 11: Effect of similarly valenced mood on the activation point of emotion 
generation. For example, higher negative mood will result in greater sensitivity to fear. 

3.3.2.2.3 Combined Personality and Mood Influence 

Finally, as both personality and moods influence the activation variable a, its overall 

value is the average of both personality and mood-based activation variables:  

ai, overall  = (ai, trait+ai, mood)/2  (14) 

where ai, overall  is the activation variable for generation of emotion i, ai, trait is the 

personality-based activation variable, and ai, mood is the mood-based activation variable. 

Figure 12 shows graphically the combined effect of mood and personality on 

emotion generation. As previously, a higher value of a trait producing a direct influence 

on emotion results in a greater sensitivity to an eliciting stimulus, higher amplitude, and 

steeper slope; and a higher mood value for the same trait intensity results in yet greater 

sensitivity (lower activation point). For example, for a high-neuroticism individual in a 
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Higher Mood Value 

Neutral Mood Value 

Shifts the entire curve from right to left, 

increasing the sensitivity to stimulus as 

the mood value is bigger  



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 78

predominantly negative mood, even a low-strength fear-eliciting stimulus will result in a 

significant emotional experience (“afraid of its own shadow” effect), whereas in a low-

neuroticism individual in a positive mood a similar strength stimulus will hardly produce 

any fear. 

 

Figure 12: Combined Mood and Trait Influence on Base Emotion Generation 

3.3.2.2.4 Attitude Influence on Emotion Generation 

As was noted earlier in section 3.3.2.1, any attitude a robot might have towards an 

attitude-invoking object is taken into account while calculating the stimulus strength. 

Thus, instead of producing a change in specific emotion-generation variables (activation 

point, slope or amplitude), the intensity of an attitude will be reflected directly in 

generating a corresponding emotion.  
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Neutral 

Mood Value Higher Trait Value 

Lower Trait Value 



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 79

3.3.2.3 Emotion Decay and Filtering 

The base emotion generation described above took into account the current 

stimulus, and personality and mood influences. However, to account for short-term 

duration of emotions, their decay over time should also be modeled. Picard [20] 

compares an emotional response to ringing of a bell, where striking a bell initiates a 

response with a fast rise time and a more gradual decay. As a starting point, the 

following slowly decreasing exponential was chosen to model this gradual emotional 

response decay for this research: 

dtt

basetdecayti eEE
)*(

,,,
0−−=  (15) 

where Ei,t,decay is the intensity of emotion i at time t, to is the time at which emotion is 

activated (becomes greater than 0), and d is a variable that controls the rate of decay. 

Although it is not done at present, the decay rate variable could be different for every 

emotion, and could also be dependent on a particular personality trait, as response time 

(or decay rate) is likely to be influenced by intrinsic differences between individuals; for 

example, after a fear-provoking encounter, some people recover quickly, while others 

slowly [133].  

Finally, in order to smooth the emotion change in cases of sudden appearance and 

disappearance of eliciting stimuli, a weighted averaging filter of the following form will be 

used:  

)/()**( ,1,,,,, priorcurrentfilteredtipriordecayticurrentfilteredti wwEwEwE ++= −   (16) 

where Ei,t,filtered  is the final intensity of emotion i at time t after filtering, wcurrent and wprior 

are weighting variables controlling the relative importance of current and previous 

emotional states. This filtering function will help to account for short-term lingering 

emotions even after the eliciting stimulus has disappeared. 
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Figure 13 shows the effect of decay and filtering on emotion generation. For 

illustration purposes, as a stimulus of a medium strength (plotted in blue dashed line) 

suddenly appears, grows, continues at same strength, subsides, and finally just as 

suddenly disappears, base emotion grows according to the aforementioned base 

emotion generation function (plotted in green dotted line). Due to the emotion decay, the 

emotion begins to slowly decrease (black solid line) as the stimulus strength stays at the 

same level (suggesting a habituation effect). Finally, after the stimulus disappears, due 

to the filtering, the emotion still lingers for a short time (red dashed line).    

 

Figure 13: Effect of Decay and Filtering Functions on Base Emotion  

3.3.3 INFLUENCE ON BEHAVIOR 

Once the emotion is being generated dynamically with the presence of eliciting 

stimuli, how does it proceed then to influence the behavior? For this research, we plan to 

explore both the expressive/communicative function of emotion (especially significant for 
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HRI), and that of guiding action. By definition, emotion is a high activation state that may 

disrupt the current behavior and even hijack it if a strong threat to survival is 

encountered. Therefore, as an emotion is activated, it may in its turn drastically affect an 

active task behavior by changing the behavioral parameters. Such a behavior could a 

actually have been latent to begin with (i.e., with a gain of 0), but could be affected 

strongly enough that it will rise to dominate other behaviors feeding into the coordination 

mechanism. Although not addressed in this dissertation, an additional mechanism may 

also be developed by which an emotion of certain intensity can serve as a perceptual 

trigger for behavioral transitions (similarly to release mechanisms described in [135-

137]).  

3.3.3.1 Mapping from Emotions to Emotion-Specific Behaviors 

As the proposed emotion-generation mechanism may be fairly complex, a simpler 

linear mapping from emotion to emotion-specific behavior parameters will suffice for the 

present, to be reexamined in future work. In order to obtain such a mapping, two sets of 

data points are required. The upper and lower bounds for emotions have been 

established earlier (0 is the lower bound, and the amplitude, g, is the upper bound). As 

with the task-specific behaviors, modified by traits, it is possible to establish both lower 

and upper desired values for emotion-specific behavioral parameters. For example, the 

highest desired value for a gain may be such that it could overwhelm all the other 

behavioral input in the coordination mechanism. By necessity, these upper and lower 

bounds should be determined empirically. Given these two sets of data points, we can fit 

them into a line of a general form of y=ax+b, thus providing a mapping from the emotion 

levels onto the emotion-specific behavior parameters. This provides a linear scaling 

mechanism for each parameter through linear functions that produce a line, where fij(Ej) 

is the mapping function between emotion j and behavioral parameter i. Similar to traits, 

an emotion can have no, direct, or inverse influence on a behavioral parameter. A 



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 82

behavior-emotion dependency matrix ][ ijebeb = , where }1,0,1{−∈ijeb is defined; 0 refers 

to the absence of influence, +1 to direct influence, and –1 to inverse influence. The 

resulting emotion-based behavioral parameters will be used in the corresponding 

emotion-specific behaviors once they are activated. 

3.3.3.1.1 Object Avoidance Gain Example 

Consider an example of an object avoidance behavior. This behavior is similar to an 

obstacle avoidance behavior, but objects, as opposed to obstacles, are designated as 

emotion-eliciting stimuli (e.g., color-coded, with a color linked to a particular emotion). 

The magnitude of the object avoidance vector is defined as follows:  
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where S is default sphere of influence, R is radius of the object, G is the default gain, 

and d is the distance of the robot to the center of the object in question.  

This particular behavior is a good candidate for fear response, therefore in this 

example we will map the emotion of Fear to Object Avoidance gain. Fear has a direct 

influence on the Object Avoidance behavior: the stronger the Fear, the stronger the 

avoidance response. Thus, as Fear grows, so does the Object Avoidance gain; similarly, 

as Fear subsides, so does the gain. In Figure 14, Fear intensity and Object Avoidance 

gain are plotted with the following upper and lower bounds: lowerfear=0; upperfear=10; 

lowerObj=0; upperObj=15; stimulus strength is shown for clarity. 
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Figure 14: Example of Fear to Object Avoidance Gain Mapping 

A similar emotion/behavior mapping mechanism can be used for specifying 

prototypical emotional expressions for humanoid robots as well. In particular, given the 

minimum and maximum allowable angles for certain joints, and minimum and maximum 

desired frequency for repeated gestures, we can provide a mapping between emotion 

strength and robotic gestures, movements, and body posture. For example, an 

expression of Joy often includes raising arms and shaking them; therefore, higher levels 

of Joy would result in a higher height to which the arms would be raised, and higher 

frequency of repeated arm movements, and vice versa for lower Joy levels. Finally, in 

cases where it is not feasible to provide a smooth, safe trajectory for body movements, a 

number of variations of gestures/body movements/posture can be coded a priori (e.g., 

those representative of Low, Medium, and High levels of Joy), and a simpler discretized 

mapping can be used. The latter approach is described in Chapter 5, software 
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architecture and implementation, as applied to generation of emotional expressions in a 

small humanoid robot.  

3.3.4 EMOTIONS SUMMARY 

In this section, along with the psychological foundations which serve as an 

inspiration for the Emotion component, various aspects of emotion generation and its 

influence on behavior were discussed. In particular, mechanisms for stimulus strength 

calculation; for initial emotion generation based on stimulus strength, and personality 

and moods; and for emotional response decay were provided. The Emotion component 

is the most time-varying of all in the TAME framework. This variation is two-fold: 1) due 

to the time-varying nature of the eliciting stimuli; and 2) due to the response decay 

process. Stimuli can appear, stay present, and disappear at various points in time and 

will determine the change in emotion intensity. Emotions are by nature short-lived, 

therefore a separate time-based mechanism is used that allows emotions to subside 

even in the prolonged presence of stimuli. The overall result are short-term, high 

intensity spikes, usually rather separated in time, as only a small portion of objects serve 

as emotion-eliciting stimuli.  

3.4 MOODS 

Although references to moods permeate our daily lives, laypeople often use the 

terms “mood” and “emotion” interchangeably, to refer to a positively or negatively 

valenced state. However, there is a significant number of differences between these two 

phenomena, and in this section we will attempt to disambiguate moods from emotions, 

show their effects, and their potential usefulness in the robotics domain.  

3.4.1 PSYCHOLOGICAL FOUNDATIONS 

Both emotions and moods are generally viewed as affective states, where states 

refer to temporary conditions of an organism reflected in multiple systems [111]. The 
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most recognized differences between these affective states lie along two dimensions, 

namely, duration and object specificity. In particular, moods last significantly longer than 

emotions, and provide an affective background, or “emotional color”, whereas emotions 

can be viewed as “phasic perturbations on this background activity” [10]. In accordance 

with this view is also that of Watson et al. [4], who views mood is a continuous variable 

affective state, or “stream of affect”. In terms of object specificity, emotions are object-

focused, whereas moods can be often characterized as being diffuse or global [3, 111]. 

In addition, Watson et al. [4] suggest that mood represents a low activation state and is 

less intense, and thus expends less energy and bodily resources than emotion. Finally, 

as opposed to providing a fast, adaptive response to environmental contingencies, mood 

seems to provide “goodness” or “badness” information about a situation or environment 

[138], and consequently biases information processing [10].  

3.4.1.1 Negative and Positive Affect 

Watson et al. [31] suggest an approach that focuses on two broad mood factors: 

Positive Affect and Negative Affect, where Negative Affect refers to the extent to which 

an individual is presently upset or distressed, and Positive Affect generally refers to 

one’s current level of pleasure and enthusiasm. Isen [139] also contends that mild 

positive affect is not just an inverse of negative affect in its effects. Therefore, the moods 

will be represented along two different dimensions, positive and negative.  The level of 

arousal for both categories can vary from low to high, which affects the nature of 

subjective feeling experience.  

According to Watson’s theory, these two categories are not mutually exclusive 

and are largely independent of one another at moderate levels of affect; therefore, their 

combinations can form four basic types: high positive/low negative (e.g., happy); high 

positive/high negative (e.g., a mixture of fear and excitement, similar to feelings on a 
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roller-coaster); low positive/high negative (e.g., depressed); low positive/low negative 

(e.g., disengaged). Table 10 gives a comparative view of these factors and their level.  

Table 10: Comparative View of Mood Levels 

Valence Level of Affect Description 

Positive Low Sluggish, Unenergetic, Disinterested in the 
Environment 

Positive High Cheerful, Excited, Energetic, Alert, Self-Confident 

Negative Low Calm, Relaxed 

Negative High Nervous, Dissatisfied, Discouraged, Irritable 

 

Although it may seem counterintuitive at first that a low positive mood value has a 

negative connotation (“sluggish”, “disinterested”), it refers to an insufficient level of 

pleasure and enthusiasm, rather than just a low level. Conversely, as negative affect 

signifies how upset or distressed an individual is, low level of negative mood would 

suggest that the individual is calm, rather than distressed.  

3.4.1.2 Causes of Mood Changes 

There are two main groups of factors that influence the current mood. The first one 

refers to an individual’s external and internal environment. Moods often follow a 

biological rhythm, and display variation dependent on time of the day, patterned variation 

across the days of the week, and seasonal fluctuations [4]. For example, energy levels, 

and consequently moods, may change throughout a day in a circadian cycle, which 

differs from individual to individual. An example of extreme seasonal fluctuations is 

Seasonal Affective Disorder, which may be linked to scarce sunshine in winter and fall 

[140]. From an evolutionary viewpoint, daily rhythmic mood changes may be partly due 

to the poor lighting conditions at night (which made any activity less successful and more 

dangerous). A body’s overall well-being is another factor that produces mood changes; 

lack of exercise, food or sleep and the general state of illness vs. health can influence 
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the feeling of well-being. Finally, social interactions can also influence an individual’s 

mood, and the amount of interaction needed would depend on the individual’s 

personality [140].  

Another group of factors refers to changes in short-term situational and 

environmental variables, including emotional episodes experienced throughout the day. 

Weather can be one of such variables; e.g., a dreary, rainy day can lead to a depressed 

mood, and a warm, sunny day may bring about a positive, happy mood [141]. A series of 

negatively valenced events can cumulatively produce a negative effect on mood, and 

vice versa, a number of pleasant interactions can shift the mood in the positive direction 

[10]. Many theorists also acknowledge the influence of emotions on moods, but the 

exact nature of this influence is unknown. Ekman [28] proposes that moods can be 

generated by “dense” emotional experience, where a specific emotion occurs with high 

intensity several times within a short time period. Another view is that every emotion 

tends to lead to general, diffuse responsiveness, and thus results in a mood change [3].  

3.4.1.3 Mood Effects 

Among various effects of moods on cognition, and, correspondingly, behavior, the 

following four have been repeatedly observed in a number of studies [142]. Not all of 

these effects are readily applicable to the robotics domain – they are presented here for 

completeness.  

1. Mood-congruent recall. This finding suggests that while in positive mood, an 

individual finds positive aspects of a situation more salient, and therefore in 

subsequent recall these positive aspects feature more prominently. Similar 

effects are observed with negative moods, although to a smaller extent. 

2. Mood-congruent evaluation/judgment. In accordance with the “feelings-as-

information” model, people may judge a person, object or situation by asking 
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themselves “How do I feel about it?”, and may treat their general preexisting 

mood state as the answer to this question. Thus, more positive judgments would 

result under happy, rather than sad, moods [111].  This may be a significant 

determinant in attitude formation. 

3. Mood and systematic vs. flexible processing of information. Schwarz [143] 

suggests that moods reflect the state of the environment: being in a bad mood 

signals a problematic situation, and being in a good mood suggests a benign 

one. It has been repeatedly observed that individuals in a negative affective state 

engage in a more systematic, analytical, and detail-oriented processing, perhaps 

in order to understand and correct for a failure or a problem. In contrast, good 

mood seems to engage more heuristic, routine, and general-knowledge 

processing, which may involve greater use of existing knowledge structures and 

stereotypes, and be more flexible [143]. In task-oriented situations, moods may 

serve as feedback about one’s performance, where positive affective cue may be 

perceived as an incentive, a “go” signal to pursue current inclinations, and 

negative affective cues as an inhibitive, or “stop” signal [111] . Thus success 

feedback should lead to the use of existing knowledge, whereas failure feedback 

should trigger learning and detailed analysis. Although this effect mainly refers to 

information processing, we apply it to behavioral styles, e.g., negative mood will 

cause the robot to behave more cautiously and systematically, whereas positive 

mood will encourage exploration and interaction. The reflection of the general 

situation through moods may also provide cues to humans about 

environmental/situational conditions, causing them, perhaps subconsciously, to 

reassess the situation. 
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4. Mood and creativity. According to Schwarz [143], creative thinking which 

involves exploration of novel situations and flexible use of diverse elements 

should be impeded by bottom-up, detail-oriented and narrow-focus style induced 

by negative moods, and facilitated by heuristic, flexible and top-down processing 

fostered by positive moods. Indeed, in various experiments, participants in a 

happy mood outperformed their sad counterparts in problem-solving and 

association tasks requiring creative solutions [144]. 

In addition, the Influence Infusion Model [145] suggests that moods have an effect on 

strategic social behaviors, namely, positive affect may bring about more confident, 

friendly and cooperative “approach” behaviors, whereas negative mood should lead to a 

more avoidant, defensive and unfriendly style. 

For this research, we will explore, to a certain extent, mood influence on social 

behaviors, and also its effect on systematic vs. flexible behavioral styles. 

3.4.1.4 Influence by Traits 

Not only do people differ in their appraisal of situations, they also are different in their 

circadian rhythms, their ability to handle lack of sleep and food, the amount of social 

interaction they require, etc. It is not surprising, therefore, that each of the five 

personality dimensions is correlated with positive and/or negative affect. In particular, 

according to Watson et al. [4], Neuroticism, but not Extraversion, is strongly correlated 

with Negative Affect, Extraversion, but not Neuroticism with Positive Affect; 

Conscientiousness is moderately correlated with Positive Affect, and low negatively 

correlated with Negative Affect; and Agreeableness is negatively correlated with 

Negative Affect, and somewhat with Positive Affect. In addition, the Openness 

dimension is somewhat correlated with higher measures of both Negative and Positive 

Affect. 
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3.4.1.5 Influence by Emotions 

As has been noted previously, emotional experiences bring about changes in the 

mood state, with positive emotions raising the scale of positive mood, and negative 

emotions causing the negative mood to rise. The resulting mood would depend on the 

current mood level, and the intensity of the same-valenced emotion experienced within a 

relatively short period of time (e.g., a day). 

3.4.1.6 Implications for TAME 

The aforementioned psychological findings allow us to make the following design 

decisions:  

1. We will explore a number of types of mood change causes: internal well-being 

(e.g., battery level), environmental conditions (e.g., light level) and emotional 

influence.  

2. The variable mood states are represented by two mood intensities: positive and 

negative, represented as two independent dimensions. The Mood component 

constantly monitors for any inputs the combination of which constitutes the base 

mood level. 

3. The inputs to the module will consist of internal robotic states (e.g., battery level), 

environmental conditions (e.g., noisy sensor conditions), and emotion values. 

4. The output of this module will consist of modified behavioral parameters 

(although an alternative approach was taken during the software design and 

implementation stage for computational simplicity, where moods produce a bias 

in trait values, influencing behavioral parameters in a more indirect way).  

5. Emotions will influence mood change: positive emotions will affect positive mood, 

and the negative ones – negative. However, for this work we will leave out the 
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personality’s influence on mood initially. The reason for this is that traits already 

influence a wide range of behaviors, including those affected by moods. As the 

primary influence of moods (as modeled here), is on the behavior of the robot, 

the effect of personality on moods will show indirectly through behavioral 

responses. In the future, we plan to identify other ways that traits could produce a 

difference in mood generation.  

3.4.1.7 Application to HRI 

Moods are by nature very subtle, but always present, and their effect on HRI is 

persistent, though less pronounced than that of personality and emotions. As a person’s 

mood changes according to the situation or biological rhythms, changing the robot’s 

mood accordingly may provide benefits not only in terms of decreased frustration and 

annoyance on the part of the person, but also in more objective task performance. For 

example, Nass et al. [146] explored the effect of affect in a car voice on driver’s 

performance, and found that drivers who interacted with voices that matched their own 

affective state (happy and energetic voice for happy drivers, and sad and subdued voice 

for upset drivers) had less than half as many accidents on average. This application of 

moods to HRI is also in line with the similarity-attraction theory which predicts that users 

will be more comfortable with computer-based characters that exhibit properties similar 

to their own [147]. 

Robotic moods can also be used to induce a corresponding mood in humans, where 

such induction may help influence people’s behavioral and attitudinal responses. For 

example, induction of Negative Affect may be desirable in dangerous situations, to direct 

a person’s attention to the surroundings and prime them to be more receptive of a 

potential evacuation request by the robot (co-protector role). Induction of Positive Affect 
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may be desirable in cases where people need to be encouraged to think creatively – 

e.g., in exploration tasks (co-explorer and co-worker roles).  

Finally, expressive manifestation of robotic moods can alert a person to favorable or 

unfavorable changes in the environment or in the robot itself, especially if perception of 

these changes is based on sensor input not available through human senses. Consider 

the following scenario. A humanoid is guiding a human inspector through a partially 

secured search-and-rescue site, when the lights become dim. Although no immediate 

danger is visible, the robot’s negative mood rises, and it displays the signs of anxiety 

and nervousness; no action per se is warranted yet, but the inspector, picking up the 

cues from the robot, becomes more alert and ready for action. This scenario is described 

in more detail in Chapter 6, where it was used for an HRI study. 

3.4.2 REPRESENTATION AND GENERATION 

Similarly to emotions, moods are not user-defined, but rather are updated 

continuously based on changing environmental conditions and a robot’s internal state. 

The mood intensity matrix is defined as follows:  

][ lmm =
v

,  

where ∞<<∞− lm . Smaller mood intensities refer to “low positive” or “low negative” 

moods. As was mentioned earlier, low levels of negative mood are more desirable (they 

refer to being “calm, relaxed”), whereas low levels of positive mood are undesirable 

(they refer to being “sluggish, unenergetic, uninterested in the environment”, lacking 

energy).   

As there are only two dimensions of moods, positive and negative,  
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3.4.2.1 Mood Generation  

Environmental, internal and emotional influences combine together to produce mood 

values. Environmental influences include level of light, noise level, temperature, 

humidity, and any other conditions that may affect proper functioning of a robot, 

depending on a particular environment (e.g., indoors or outdoors) and a physical 

platform. For HRI, environmental influences may also include any changes in the 

environment that may affect humans, even if they are not detectable by them (e.g., 

increased level of radiation or presence of potentially hazardous gas). Internal influences 

include battery (energy supply) level, internal temperature of the robot, sensor state 

(e.g., broken vs. in good working order). Some of these conditions – e.g., the light level 

outdoors or battery level – are cyclical, and can account partially for the cyclical nature of 

moods. For example, if light levels during day and night vary cyclically, so will the mood, 

as a function of light level. These influences together comprise mood generation 

variables. Finally, emotional influences represent the non-cyclical portion of moods, and 

are a part of a larger category of negatively or positively valenced events (the broader 

category may be explored further in future work).  

In order to better define the role of these various influences on mood, it is helpful to 

define a neutral point for each environmental and internal variable. Such a point would 

represent absence of influence of the variable on the mood, e.g., if the battery is half-

charged, then the mood is not affected. This neutral point may be different for different 

robots – e.g., the level of light sufficient to successfully recognize objects may be 

different depending on the types of cameras used. Depending on the direction of 

influence of these variables, below this point one of the moods will start to decrease, 

while the other will rise; similarly, above this point the opposite mood will start to rise, 

and its counterpart will decrease. Some of these conditions may affect only one mood, 

and not the other, in which case their influence is set to 0. 
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As no findings exist that would specify the nature of the relationships between moods 

and environmental and internal influence variables, as a starting point we will define the 

current level of mood as a weighted summation of these variables. Assuming that the 

same variables can affect both positive and negative moods, strengths of environmental 

and internal influences can be represented in a matrix ][ ill =
r

, where ii bl <<0 , where 

bi is the hardware-dependent upper bound (e.g., battery level has a hard limit on how full 

it can be, etc.). The relative weights for each variable are stored in the mood generation 

matrix ][ ijmgmg = . The values in this matrix are unit conversion factors, to convert the 

various mood generation variables to the same unit, and will be found experimentally for 

each variable. In addition, negative mgi stands for inverse influence of the variable on 

the mood, positive mgi stands for direct influence, and 0 signifies no influence. As moods 

are continuous, always present streams of affect, the base mood is continuously 

generated based on the current environmental and internal influences as follows:  

∑
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where mg  is the mood generation matrix, l
r

 is the mood generation variable strength 

matrix, and N is number of mood generation variables. Although in theory, moods could 

range from negative infinity to positive infinity, in practice they will be theoretically bound 

by the (weighted) sum of the highest possible values of each mood generation variable. 

Figure 15 illustrates an effect of one of the mood generation variables on mood. In 

this example, the cyclically varying light levels affect positive and negative mood 

intensities differently. It produces a strong direct influence on the positive mood, and so 

as the light level goes up, so does the positive mood level, with high amplitude. The light 
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level produces a much smaller, inverse effect on the negative mood (e.g., it is more 

dangerous to move around in darkness). 

 

Figure 15: Different Effect of Light on Positive and Negative Mood Intensities 

For the present, similarly valenced emotions will affect the corresponding mood 

intensities additively. Emotion intensities are given in the emotion intensities matrix 

][ jEE = , defined in section 3.3.2, Representation and Generation of Emotions. The 

emotion influence adds to the existing base mood level in the following manner:        
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where mpositive  is the emotion-based intensity of positive mood, mpositive  is the emotion-

based intensity of positive mood, and E
r

 is the emotion intensity matrix.  
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Finally, as mood is a low-activation, slow-varying affective state, a filter will be used 

to smooth the influence of emotions and environmental and internal influences. In 

particular, using a filter to average the moods within the last 10-15 minutes will ensure 

that no particularly strong influences will be singled out and lead to overstimulating the 

moods.   

Additionally, from an HRI perspective, in robots that are designed for sharing living 

conditions with humans for a prolonged time, circadian variations in mood may be 

introduced to provide mood congruency with the human, where user-defined cyclical 

daily, weekly and seasonal high and low points would be superimposed onto the base 

mood values. This method was explored in more detail by our research group in Park et 

al. [148]. 

3.4.3 INFLUENCE ON BEHAVIOR 

Moods are mild by definition, and would only produce a mild effect, or a slight bias, 

on the currently active behaviors. Unlike emotions, which activate their own emotions-

specific behaviors, moods will only influence active task behaviors. Unlike traits, which 

determine default behavior parameter values via scaling, moods produce an incremental 

effect on these parameters. Similar to traits and emotions, moods can have direct, 

inverse, or no, influence on a behavioral parameter. A behavior-mood dependency 

matrix ][ ijmbmb = , where }1,0,1{−∈ijmb is defined, where –1 corresponds to inverse 

influence, +1 to direct influence, and 0 to absence of mood influence on behavior. 

Positive and negative mood may influence the same behavioral parameters, but most 

likely in opposite directions, thus to some extent canceling each other out. This 

combined influence is treated as additive for the present. As moods are updated 

continuously, new mood-based values of behavioral gains/parameters replace the 

existing trait-based values in the following manner:  
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where moodiB ,  is the updated behavioral parameter i, mbij is the mood-behavior 

dependency matrix value for mood j, mj is the current value of mood j,  N is the total 

number of mood categories (2), and K is a scaling factor. The scaling factor K is to be 

selected experimentally for each behavior parameter, to ensure that the moods produce 

only incremental effect as opposed to overpowering any of the parameters.  

Figure 16 shows an example of incremental effects of moods on behavior. Suppose 

mood can bias the robot’s obstacle avoidance behavior. For example, if visibility is poor, 

it may be advantageous to stay farther away from obstacles to accommodate sensor 

error, and vice versa, in good visibility it may be better to concentrate on task 

performance. Therefore, negative mood can bias the obstacle avoidance gain by raising 

it, and positive mood by lowering it. As established earlier, the trait of Neuroticism also 

affects obstacle avoidance by setting the default parameters to be used throughout the 

life-cycle, and the incremental effect of moods is shown against the space of trait-based 

defaults (plotted in solid blue line).   

Alternatively, moods could affect behavior indirectly, through biasing personality 

traits. As personality traits specify behavioral parameters for the behaviors affected by 

moods, it may be computationally simpler to temporarily “change” the robot’s personality 

which, in its turn, will bias the behavior via the mechanism described in section 3.2.2.2. 

This alternative solution has been explored by our research group in Park et al. [148], 

and was used during the software design and implementation stage (Chapter 5). 
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Figure 16: Direct and Inverse Effects of Moods on Obstacle Avoidance Gain at Different 
Neuroticism Values   

3.4.4 MOOD SUMMARY 

In this section, positive and negative dimensions of the Mood component from a 

psychological perspective, their update mechanism based on external, internal and 

emotional influences, and their effect on robotic behavior were discussed. In humans, 

moods vary cyclically with time of day, day of the week, and season. However, the 

underlying cause of such cyclical variation is not the passage of time per se, but rather 

environmental and internal conditions, such as changes in light intensity and energy 

expenditures. With this in mind, the mechanism for cyclical variation of moods over time 

in TAME will be dependent on such variation of the aforementioned variables. The slow, 

smooth nature of mood changes will then be achieved through a time-based filter in 

which previous mood states will be taken into account; the filter duration can be varied 
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depending on the type of environment, physical platform and task requirements. The 

filter will also smooth out any drastic emotional influences. 

3.5 AFFECTIVE ATTITUDES 

Surprisingly, attitudes, such an integral component of human affective space, have 

been largely overlooked by the robotics community.  People have an attitude towards 

everything – the latest political nominee, a distasteful flavor of ice-cream, their favorite 

pet, or a neighbor’s annoying dog. If we intend for robots to be a part of our everyday 

lives, their sharing of our attitudes towards relevant objects around us would go a long 

way in establishing trust and communicational ease.  For example, a child playing with a 

robot nanny or tutor may feel greater affinity towards the robot that acknowledges the 

child’s likes and dislikes in toys and games. Our goal of providing affective attitudes for 

robots is two-fold. First, such attitudes would express a robot’s current state in reference 

to a specific object or situation, and thus give a person cues of what the robot’s 

impending behavior might be: for example, a robot expressing liking towards a certain 

object may be expected to approach and spend time with it. Second, robotic attitudes 

would reflect those of a human it interacts with on an everyday basis, thus building 

affinity and rapport in prolonged interactions. In this section, psychological foundations 

for the attitude component are described, and two alternative approaches for attitude 

generation, reflecting the aforementioned goals, are presented. 

3.5.1 PSYCHOLOGICAL FOUNDATIONS 

From a multitude of definitions of attitude, the following two provide the suitable 

emphasis for this research. Fishbein and Ajzen [8] define an attitude as a “learned 

predisposition to respond in a consistently favorable or unfavorable manner with respect 

to a given object”. Another definition by Petty and Cacioppo [8] states that an attitude is 

“a general and enduring positive or negative feeling about some person, object or issue”.  



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 100

These definitions stress relative time-invariance (“enduring”), object/situation specificity, 

and the role of affect/affective evaluation in the attitude concept. In general, according to 

James Olson [149], most attitude theorists agree that: 1) evaluation constitutes a central 

part of attitudes; 2) attitudes are represented in memory; and 3) affective, cognitive and 

behavioral antecedents of attitudes can be distinguished, as well as corresponding 

consequences.  

3.5.1.1 Representation and Structure.  

Two potential ways of attitude representation in memory have been proposed: 

representation as knowledge structures, and as associative networks of interconnected 

evaluations and beliefs. The latter implies that elicitation of one attitude will make closely 

related attitudes more accessible. 

Although no widely accepted taxonomy of attitude structure exists, the tripartite view 

of attitudes has been so far the most prominent [149, 150]. It suggests that attitudes can 

be formed based on affective information (accompanying affective states), cognitive 

information (knowledge-based evaluation), and behavioral information (influence of prior 

actions). Similarly, attitude-generated responses can be of affective (expression of 

like/dislike), cognitive (expression of beliefs), or behavioral (actions/action tendencies 

toward the target) nature. As this research is primarily concerned with affect, only the 

affective component of attitudes will be examined. 

3.5.1.2 Functions of Attitudes.   

A number of functions that attitudes may serve has been identified: adaptive or 

utilitarian function, knowledge or economy function, expressive or self-realizing function, 

ego-defensive  and social-adjustive function [8, 151]. Adaptive function serves to guide 

behavior toward desirable goals and away from aversive events or actions. Knowledge 

function refers to managing and simplifying information processing tasks (e.g., 

stereotypes and prejudices). Expressive function refers to attitudes as a means of 
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expressing personalities and values to others, and finally, ego-defensive function of 

attitudes serves to protect from self-threatening thoughts or urges (e.g., by denigrating 

others). Finally, social-adjustive function posits that attitudes facilitate the maintenance 

of relationships with others. Depending on the function a particular attitude serves, it 

may be formed and may influence actions differently. For our purposes, the most 

relevant functions are expressive and social-adjustive, as these are deemed the most 

useful for human-robot interaction: robot attitudes would both provide human participants 

with clues for impending robot behavior and help establish and maintain rapport. Both 

adaptive and knowledge functions would be advantageous to explore in the future: for 

behavior selection and regulation, and for facilitation of decision-making by reducing 

decision state space by automatically rejecting outcomes connected to undesirable 

entities/events (e.g., dislike or hatred), or providing incentive for choosing those 

connected to desirable entities/events.  

3.5.1.3 Characteristics of Attitudes, and Attitude-Behavior Relation. 

Attitudes can be characterized by their accessibility – the more easily accessible are 

the attitudes, the more influence they have; their strength (extremity) – similarly, the 

stronger the attitudes, the more direct influence on behavior they are capable of 

producing [149]; their complexity – the extent to which attitude-relevant information 

represents a number of distinct underlying dimensions; and their ambivalence - whether 

the attitude includes both negative and positive evaluations [151]. Accessibility refers to 

ease of retrieval of attitudes from memory, and the stronger the association between an 

attitude and its object is, the faster the attitude can be activated (associative networks 

representation may be particularly suitable to model this effect). The degree to which an 

attitude is held is represented by its strength, or extremity; strong attitudes resist change 

and produce widespread effects on both perception and behavior.  
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According to a number of theorists (Fishbein and Ajzen, Fazio [149]), attitude and 

behavior are correlated, and under certain conditions attitudes have a fairly high 

predictive power. Ajzen’s  [150] Theory of Planned Behavior suggests a causal chain 

from beliefs to attitudes to intentions to behavior. Attitude strength is determined as a 

function of the belief, i.e., the subjective probability that the object/stimulus has the 

attitude-inducing attribute (in practical terms, it could be translated into confidence level 

of smile recognition by a face recognition software). Attitudes in this model produce an 

indirect effect on behavior through intentions – action tendencies to behave in ways that 

are consistent with one’s attitudes. The theory also proposes two other determinants of 

behavior: subjective norms (social approval of intended behavior) and perceived 

behavioral control. Although the direct effect of attitudes on behavior is beyond the 

scope of this work, the theory suggests directions for future research. 

3.5.1.4 Attitude Formation and Antecedent Categorization.  

Snyder and DeBono [152] identify three variables influencing attitude formation: 

individual differences/personality traits; target objects and their attributes (e.g., a smile); 

and situation types (e.g., stressful situations versus relaxed). As mentioned previously, 

cognitive (beliefs) and affective (affective states) processes, as well as past actions can 

serve as antecedents in attitude formation. It’s been also shown that repeated exposure 

to a stimulus results in heightened positive evaluations [149], perhaps mediated by 

increase in positive mood due to such exposure. 

According to Greenwald’s Levels of Representation (LOR) system [153], there are 

five major representational levels: features (primitive sensory qualities), objects (a 

unified set of features), categories (groups of objects), propositions (abstract category 

types, such as action, instrument, target), and schemata (rule-governed groups of 

propositions). Attitude antecedents are argued to belong to the four out of five 
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categories, excluding features; however, for this research, only objects and categories 

are easily applicable, and features are used as object components (attributes). 

3.5.1.5 Influence by Emotions and Traits 

Affective attitudes are closely related to emotions [3], and may even originate in a 

comparable emotion. From a computational perspective, if a certain object causes an 

emotion, then such emotion becomes one of the features of the object, and is used as 

an attribute that affects attitude formation. Negative emotions influence the attitude in the 

negative direction, while positive produce a positive influence. 

The influence of personality traits on attitudes is multifaceted, but largely unexplored; 

therefore it will be left out of the framework for the time being. 

3.5.1.6 Influence by Moods  

It has been stated earlier (subsection 3.4.1.3, Mood Effects) that current affective 

state influences evaluative judgments, and thus attitude formation; in particular, a person 

in a more positive mood will form a more favorable impression of a person or an object 

than one in a more negative mood. Clore [154] claims that the ease with which these 

affective biases can be shown suggests that people may often base their judgments and 

decisions on how they feel at the moment. 

3.5.1.7 Implications for TAME 

Taking into account the psychological foundations, we can make the following design 

decisions: 

1. As we are only concerned with affective attitudes, and those have a strong 

connection to emotion elicitation, attitude component will have no direct influence 

on behavior. Rather, it will serve as a part of emotion generation, both in terms of 

helping to determine the type of emotion invoked, and its intensity. However, as 
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this work progresses, we plan to identify the areas of influence of attitudes on 

behavior and provide a mechanism for doing so. 

2. We will explore three sources of attitude formation: attitude-inducing object 

attributes, current emotions, and the current mood state. Therefore, the inputs 

into the attitude component will consist of object attributes (features), robot’s 

emotional state, and its mood level. 

3. The attitude component will monitor sensor data for potentially attitude-inducing 

objects, and, if such are present, will output an attitude value for that object to 

serve as an input into the emotion component. 

3.5.1.8 Application to HRI 

The main application of affective attitudes to HRI lies in their potential to promote 

rapport, trust and attachment in prolonged interactions, in which robotic attitudes would 

reflect those of its interaction partner. For example, a child playing with a robot nanny or 

tutor may feel greater affinity towards the robot that acknowledges the child’s likes and 

dislikes in toys and games. 

3.5.2 REPRESENTATION AND FORMATION 

Given the dual goal of providing robotic attitudes for HRI – expressing the robot’s 

own attitudinal state in some cases, and the user’s attitudes in others – we propose two 

distinct methods for attitude generation. The first one is more general, does not require 

input from the interacting human, and reflects a learned attitude a robot holds towards 

an object. The second method is based on the attitudes held by the interacting human, 

and therefore, the expression of resulting attitudes would be different for each user, even 

if the objects are the same. The former method is preferred for affinity building with a 

number of people the robot would be expected to interact with on an everyday basis.  
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3.5.2.1 Attitudes Reflecting the Robot’s State 

For an autonomous robot regularly operating among people it would be 

advantageous to express certain attitudes to surrounding objects, to both make it appear 

more life-like, and provide cues for behavior prediction. Such an affective attitude can be 

represented as a single value A, ranging from ∞−  to ∞ , where 0 represents a neutral 

(or absence of) attitude, negative values represent an increasingly strong negatively 

valenced attitude (ranging from a mild dislike to hatred), and positive values refer to an 

increasingly strong positively valenced attitude (e.g., from a subtle like to adoration). 

Attitudes are object-specific, and an initial attitude for a particular object (y) would 

consist of a combination of positive and/or negative attributes (features) of this object. 

These object attributes or features are similar to those used in the calculation of stimulus 

strengths for emotion generation (subsection 3.3.2.1, Eliciting Environmental Stimuli), 

but reflect the more permanent properties, such as size, color, category, etc., rather than 

distance or orientation. Object attributes for attitude formation can be represented as a 

matrix ][ iyy oo =
v

, where ∞<<∞− iyo . Such attributes are not limited to properties of 

the object only; for example, an emotion invoked by the object and any actions taken by 

the object may be considered “attributes”.  

The initial value of the attitude for object y (Ay,init) is calculated as follows:  

∑
=

=
N

i

iyinity oA
1

,   (21) 

where Ay,init is the newly-formed attitude for object y, oiy is an attribute i of object y that is 

involved in the attitude formation, and N is the number of attributes for object y.  

For purposes of illustration, suppose a robot encounters a small purple coffee table 

for the first time. The robot “loves” purple (color), “likes” furniture (category) and 

“dislikes” anything small (size); color and category for this particular object are positive 
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attributes, and size is negative. Provided the attribute values are normalized to fit 

between -10 and 10, and the color feature is assigned 9, category 5, and size -5, then 

the attitude of the robot toward the newly encountered coffee table will be positive 

overall:  

9)5(59  , =−++=initcoffeTableA  

Assuming that initial impression is the strongest, substantial changes in attitude are 

fairly hard to achieve, therefore any subsequent exposure to the same object would 

result only in incremental change. This will be achieved through discounting any 

additional positive or negative object attributes (features) to a certain extent. The 

updated attitude value for object y for n-th encounter (Ay,n) would then be calculated as 

follows:  
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1

1,, ∑
=

− ⋅+=
N

i
iynnyny oAA λ  (22) 

where Ay,n-1 is the attitude towards object y at encounter n-1, n the total number of 

encounters up to date, yo
v

is the matrix of attributes for object y, and λ  is the discount 

factor.  

Following the same coffee table example, suppose the next time the robot 

encounters it, the coffee table has been painted orange instead of purple. If orange is a 

color the robot “dislikes”, (the color attribute = -6, size = -5, category = 5, and λ = 0.1), 

then the overall attitude will shift towards negative, but only slightly:  

9.8)1(*1.09))5)5()6((*21  ,2  , =−+=+−+−+= λcoffeTablecoffeTable AA  

In the framework, the current mood states modify either an existing or forming 

attitude. According the finding on mood-congruent judgment, a positive mood increases 

the value of the attitude ( ya ) towards an object y, and the negative mood – decreases it 

as follows:  
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)(, negativepositiveymoody mmKAA −+=  (23) 

where Ay,mood is mood-enhanced value of robot’s attitude towards object y, Ay is the 

original value of robot’s attitude towards object y, mpositive is the current positive mood 

value, mnegative is the current negative mood value, and K is a scaling factor to bring 

moods and attitudes to the same units.  

The mood effect is usually stronger when there are only few other attributes to 

influence the attitude towards an object. In some situations, this effect does not last 

beyond the situation itself, therefore it is important not to overestimate it by making it 

incremental. 

Once the overall attitude for an object is calculated, it is forwarded to the Emotion 

component, where it serves as an attitudinal cue for stimulus strength calculation 

(subsection 3.3.2.1, Eliciting Environmental Stimuli); a negatively-valenced attitude 

would contribute to generation of negative emotions (fear, anger, sadness and disgust), 

and a positively-valenced one to positive emotions (joy and interest). Figure 17 depicts 

the overall algorithm for computing attitudes reflecting the robot’s state graphically. 

Given that this method of attitude generation is less relevant for human-robot interaction 

than the one reflecting users’ attitudes (case-based method), and it presupposes object 

permanence (which is a hard problem in its own right), it was not explored further in this 

dissertation.  
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Figure 17: Process View for Formation of Attitudes Reflecting Robot’s State 

3.5.2.2 Case-Based Attitudes 

For a robot involved in everyday interactions with a few of the same people in the 

same environment, it would be advantageous to learn those people’s attitudes towards 

certain objects or even situations that may be repeatedly encountered, in order to 

promote bonding and rapport. With this in mind, the following properties of attitudes are 

taken into consideration: attitudes are learnable and are derived from experience (be it 

human or robotic), are widely variable across people, and they may be expressed as 

emotions towards specific objects, albeit more enduring and persistent. These properties 

make case-based reasoning (CBR) methods applicable for attitude formation, where an 

initial set of cases would be provided by each user, with a possibility of correcting 

erroneous attitudes for newly-encountered objects, and where the resulting attitudes 

would be expressed through corresponding emotions by the robot. 
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Instance-based reasoning, a highly syntactic CBR approach, is the most appropriate 

one for our work, as our aim is not problem-solving, and general knowledge would be of 

rather limited use, given the wide differences in attitudes between people. A flat index 

structure is employed, with apparent syntactic similarity only (without relying on general 

domain knowledge), relying on user interaction, especially in the beginning. Incremental 

supervised learning is used to adjust feature weighting scheme based on user input to 

learn relative importance of object features. 

The case-based method for attitude generation follows the four steps typical of a 

case-based system [155]: 1) retrieve the most similar case or cases; 2) reuse the 

information in the case to solve the problem (display the attitude-based emotion from the 

best case); revise the proposed solution (based on user input); and 4) retain the parts of 

this experience likely to be useful in the future. The high-level process of using CBR for 

determining robotic attitudes is presented in Figure 18. The input data from the robot are 

interpreted into a feature vector for each object, which serves as an index for case 

retrieval along with a user ID; once an index is assembled, a similarity score is 

calculated for each case in the case base, and the best case is selected based on this 

metric; the case is then applied by providing the emotion component with attitude-based 

stimulus strength for each affected emotion; finally, if the user input is solicited, a new 

case based is added to the case library and feature weights are adjusted if the user 

disagrees with the displayed attitude. 

As the total number of cases continuously maintained is not expected to be high 

(typically involving only a handful of people a robot would interact with in the same 

surroundings), memory, storage and computational complexity issues are not explored 

in this context. 
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Figure 18: A High-Level Process View of CBR for Robotic Attitudes 

3.5.2.2.1 Case Structure 

A case library maintains a collection of cases containing information about user-

specified or previously encountered objects along with attitudes towards them. A case C 

consists of an index vector I, and an output valence vector �� of attitude-based emotion-

stimulus strengths for an object o. The index vector is composed of User ID, to 

differentiate between users, a time stamp (for possible future linking attitudes and 

moods) and an Object Feature vector OF (20): 
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(24) 

Inputs from the robot include user ID, and a set of object features, either derived 

directly from raw sensor data, or interpreted from object identifiers, as is more often the 

case with current robotic systems. Object features refer to certain attributes an object 

might posses which would be relevant for attitude formation, for example, color, size, 

material, shape and category/object type. These features can be either continuous 
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numeric values or categorical features, for example, wood, metal, glass or cloth are 

possible values for the material feature, and cubes, spheres and cones are possible 

values for the shape feature. Sometimes, certain features may not be applicable to an 

object (e.g., cars are not generally described in terms of cubes or cones), and 

sometimes, certain features may be hard to discern (e.g., it may not be possible to figure 

out whether a moving car has a cloth or leather interior, or a color may not be 

discernable in the dark); in both of these cases a feature is characterized as ‘Not 

Applicable/Not Apparent’. In other cases, certain features may not play a role in attitude 

formation for a certain user; in this case, they are characterized as ‘Don’t Care’. These 

special values are used differently during similarity score calculation. Once object 

features are identified, they are combined with a User ID into an index for case retrieval. 

The output vector represents an attitude towards object o and is defined as:  

�� � �����, 
�����, ����, �������, ���, ����������, �� � �0 � �� (25) 

where S is the maximum stimulus strength.  

The output for attitudes represents attitude-based emotion stimulus strengths. This 

allows for an emotion to be generated based on an experienced attitude alone. The 

positive and negative aspects of attitudes (e.g., love or hate) are expressed through 

corresponding positive (joy or interest) or negative (sadness, fear, disgust, and anger) 

generated emotions. This representation allows to model attitudinal ambivalence – 

mixed feelings some people might have towards certain objects or issues, which contain 

both negative and positive evaluations.  

Sample cases and object feature descriptions can be found subsequently in 

subsection 5.2.2.1.1., The Attitude Component Implementation and Testing.  
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3.5.2.2.2 Retrieval 

During retrieval, first each case is assigned a score which reflects how similar this 

case is to the new object encountered by the robot. Based on this similarity score, a set 

of best-matched cases is retrieved (initial match). Finally, the best case is selected using 

a number of methods. The retrieval process is depicted graphically in Figure 19.  

 

Figure 19: Retrieval Step 

1. Similarity Metric 

For this work, we are using syntactic similarity assessment to provide a global 

similarity metric based on surface match; this method has an advantage where domain 

knowledge doesn’t exist or is difficult to acquire [155]. The similarity score is assigned to 

each case to determine a set of cases for the initial match; only the cases with a 

similarity score above a certain threshold are included into the initial match set. It is from 

this set that the best matching case is chosen.  The threshold is determined 



 ARCHITECTURAL FRAMEWORK                                                                                               CHAPTER 3 

 

 113

experimentally, and may be different during the weights learning stage to draw from a 

wider base.  

To obtain a similarity score for each case for a particular user, a Manhattan distance 

calculation is used to compute the shortest distance between the two vectors of Object 

Features (for the current object, and for each case in the library). The case with the 

shortest distance receives the highest similarity score. As not all features may be equally 

important in determination of attitude, each feature is weighted to indicate its relative 

importance; these weights are the same initially, but are learned incrementally from user 

input throughout the interactions. The similarity score between a new case and each 

existing case in the library is calculated as follows: 

����� , ��!"#$"�%& � ∑ �" ( )""�*∑ )""�*  
(26) 

where  �" is a similarity score for feature i in the set P of predictor features (features 

valued ‘Don’t Care’ or N/A’ (not applicable) are excluded from this set); and )" is a 

weight for the feature i.  

A similarity score for each feature is calculated as follows: 

�" �
+,-
,.1 � 012",�� � 2",�!"#$13" 4 ,
1,                                            0,                                          

� 
�6 2"�� ��7���8 

 

  �6 2",�� � 2",�!"#$   ��� 2"  �� � ���8���� 8������ 
 

    if otherwise 

 

(27) 

 

where 2",��  and 2",�!"#$ are values of feature i for new and existing cases, respectively, 

and 3" is the range for numerically valued features for normalization purposes. 

As was mentioned earlier, features valued as ‘Don’t care’ and ‘N/A’ are excluded 

from the set P of predictor features used for calculation of the similarity score. However, 

excluding ‘Don’t Care’ feature from the calcultion would create an overgeneralization 

bias, as the remaining features would be naturally weighed more heavily than otherwise, 
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thus favoring cases with fewer features present. In order to reduce this bias, we use a 

discount factor  9 for each feature valued ‘Don’t Care’. Thus, for each ‘Don’t Care’, the 

overall similarity score for an existing case would be reduced as follows:  

����� , ��!"#$"�%&:"#;<=�$�: 

�    ����� , ��!"#$"�%& � ����� , ��!"#$"�%& ( 9 ( > 

 

(28) 

where ����� , ��!"#$"�%&:"#;<=�$�:is the new discounted similarity score; ����� , ��!"#$"�%& 
is the initial, non-discounted similarity score, 9 is the discount factor (as 9 gets smaller, 

more general cases will receive a higher similarity score); and N is the number of feature 

pairs valued ‘Don’t Care’. 

Additionally, each case with a non-discounted similarity score above a predefined 

threshold  is assigned a feature ranking, where the cases with the least number of ‘Don’t 

Cares’ get the highest ranking (e.g., a case with no ‘Don’t Cares’ will be ranked as (1). 

This is an alternative method for controlling the generality/specificity issue. 

2. Final Case Selection  

Once the initial matching is performed and the set of best cases is identified (those 

with a similarity score above an experimentally defined threshold), the best case is 

selected. A number of methods for selecting the final case are provided, of which the 

most appropriate to a particular situation should be used:  

• The case with the highest similarity score is selected. This works well for a set 

where a clear winning case is present (the top score is much higher than the 

rest). 

• A randomized roulette algorithm which probabilistically favors higher scores. This 

algorithm addresses the local minima problem, and is especially useful for cases 

with close similarity scores. 
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• Selection can be based on feature ranking, where a case with the highest score 

within the highest ranked cases is selected. This method is an alternative to the 

discounting method used for calculating similarity score for feature vectors with 

‘Don’t Cares’, and should be used in its stead. 

A graphical view of the final case selection process is provided in Figure 20. 

 

Figure 20: Final Case Selection: Alternative Methods 

3.5.2.2.3 Reuse 

As the attitudes in TAME result in a corresponding emotion expressed by the robot, 

once the best case is selected, its output is passed on to the Emotion component. The 

highest (dominant) attitude-based stimulus strength is then used to generate a 

corresponding emotion; as stated earlier, the output of the Attitude component both 

specifies the emotion to be generated, and the stimulus strength for it. If this particular 

object is also emotion-inducing, irrespective of any attitudes, then the output constitutes 

the attitudinal cue for overall stimulus calculation for generating corresponding emotions 

(subsection 3.3.2.1, Eliciting Environmental Stimuli). 
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3.5.2.2.4 Revision 

Naturally, however, the best case selected and applied by the robot may not reflect a 

user’s current attitude. In order to identify the attitude a user actually has for the 

presented object, a simple graphical user interface (GUI) can be utilized to solicit such 

input (see subsection 5.2.2.1.1, The Attitude Component Implementation and Testing, 

for examples). If revision/retention phases are desired (during supervisory learning 

stage, or when a new object is introduced), a user is asked whether the emotion 

displayed by the robot reflects what he/she may feel for that object. If the answer is 

“Yes”, then the selected case is deemed adequate, and a new case is formed which 

combines the Object Feature vector from the new object, and the Output vector from the 

applied case (unless a case with exactly the same object features already exists, in 

which case no changes are made). If the user disagrees with the robot’s emotional 

response, he/she is then asked whether the presented object is liked or disliked. After 

like/dislike selection, the user is asked to mark the intensity of each invoked emotion 

(Fear, Disgust, Anger and Sadness for dislike, and Joy and Interest for like) on a likert-

type scale. To reduce the workload for the user, the information regarding the relative 

importance of features for determining the output is not requested; rather, the feature 

weights are incrementally learned during the retention phase. 

There could be a number of reasons for a discrepancy between the final selected 

case and the user’s input:  

1. The new object may be too dissimilar to any of the cases in the case library.  

2. The similarity metric was not sensitive enough to pick out the best matching 

case. 

3. Even if the object has exactly the same features as a prior case, the user may 

have changed his/her attitude since the case library was initially filled.  
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Reasons 1) and 2) are addressed during the retention phase. Reason 3) suggests 

that a revision of a currently existing case is required. Assuming that an initial impression 

is the strongest, substantial changes in attitude would be fairly hard to achieve, 

especially for a strong original attitude [151], therefore any subsequent exposure to the 

same object would result only in incremental change. Therefore, the output of an existing 

case for which the user suggested a different attitude is modified only slightly, by adding 

to or subtracting from the original value a fraction of the value provided by the user:  

�",?�@ � A�",�!"#$ B �",=#�? ( 9,�",�!"#$ � �",=#�? ( 9,�",�!"#$,                         � 
�6 �",�!"#$ C �",=#�? �6 �",�!"#$ C �",=#�? �6 �",�!"#$ � �",=#�? (29) 

where �",?�@ is the revised value of attitude output i,  �",�!"#$is the existing value, �",=#�?is 

the new user-supplied value, and 9 is the discount factor, by which the influence of the 

new input is reduced. The resulting values are kept within the output bounds.  

Once the new values are calculated for the entire Output Vector, the existing case is 

updated in the case library. Figure 21 presents the flow of the Revision step graphically. 

 

Figure 21: Revision Step 
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3.5.2.2.5 Retention 

After user input is received, unless a case with the same feature values already 

exists, a new case is formed and added to the case library under a new case number 

and the user ID identifying the interacting user. The new case contains the Object 

Feature Vector for the newly presented object, and the Output Vector - provided by the 

user in case of disagreement with the robot’s expression, or copied from the final 

selected case if the user agrees with it.  

One way to improve the similarity metric and thus the overall performance of the 

system is to incrementally adjust feature weights to change the relative importance of 

each feature involved in similarity computation. These weights should be adjusted for 

each user, as people may have different preferences, and won’t attach the same 

importance to the same features. Every time a user specifies a different output, an object 

feature needs to be identified that played the most important role in determining this 

output. In order to identify such a feature, the set of best cases selected originally is 

examined – the initial match, consisting of a number of cases with a similarity score 

above a certain threshold. First, from this set, only those cases are selected where 

output has the same dominant emotion as the output specified by the user. Then, a 

dissimilarity score is calculated for every feature across the set of cases with the same 

dominant emotional output. This calculation is similar to the one used during retrieval, 

except the scores are calculated per feature, and not per case, as we are interested in 

the features that contributed the most to produce the desired output. The average 

dissimilarity score D is calculated for each feature as follows: 


���� , ��!"#$"�%& �    ∑ �""�D>  
(30) 
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where �" is a dissimilarity score for feature i in set C of cases with the same dominant 

output and N is the number of features in the set; features marked as ‘N/A’ or ‘Don’t 

Care’ are excluded from the calculation.  

Dissimilarity �" for each feature i per case is calculated as normalized Manhattan 

distance:  

�" �
+,-
,.12",�� � 2",�!"#$13"  ,1,                          0,                         

� 
�6 2"�� ��7���8 

  �6 2",�� � 2",�!"#$ ��� 2"  �� � ���8���� 8������ 
 

       if otherwise 

(31) 

where 2",��  and 2",�!"#$ are values of feature i for new and existing cases, respectively, 

and 3" is the range for numerically valued features for normalization purposes. 

Finally, the feature with the smallest dissimilarity score is deemed to be slightly more 

important than the other features for this particular user. In the case of a number of 

features with the same dissimilarity score, the feature shared by the largest number of 

cases is the best predictor of the output. The weight for this feature is then incremented, 

and the weights table is updated:  

)E�#$,=F:G$�: � )E�#$,�!"#$"�% B )E�#$,�!"#$"�% ( H (32) 

where )E�#$,�!"#$"�%is the existing weight for the best case, and H is the increment factor.  

The next time the robot is presented with a new object, the learnt weighting scheme 

is used for calculating the similarity scores. Figure 22 depicts the retention step 

graphically. 
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Figure 22: Retention Step: Retaining New Cases and Learning New Feature Weights 

3.5.3 ATTITUDES SUMMARY 

This section described the psychological basis behind the Attitude component, and 

two distinct mechanisms for attitude generation – one reflecting robot’s attitudes 

irrespective of its social surroundings, and the other adjusting to its interaction partners. 

For the present, attitudes are modeled as persistent across time: once an initial attitude 

is formed, it stays the same unless the object of attitude is encountered again. In such a 

case, the attitude is reexamined, but the change is only incremental and is discounted as 

a function of the number of encounters. In the future, slow “fading” of attitudes over time 

will be examined, where the attitude intensity will decrease with prolonged absence of 

the attitude-invoking object (“out of sight, out of mind” phenomenon). The issue of 

“forgetting” old cases which are no longer appropriate for new environments has been 
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previously explored in the robotics domain by Kira et al. [156], and the proposed 

solutions could be used as a starting point for designing a mechanism for attitudinal 

“fading”.  

3.6 CHAPTER 3 SUMMARY 

In this chapter, the first subquestion of the main research question has been 

addressed: “How can each of the aforementioned phenomena be represented, 

generated, and applied to robotic behavior, and what are the interactions between them 

that can provide additional benefit beyond that of each individual component?” In 

particular, an overview of the TAME framework was presented, including psychological 

foundations for each of its components (sections 3.2.1, 3.3.1, 3.4.1 and 3.5.1, for each of 

the affective phenomena), their mathematical representation, mechanisms for their 

generation and influence on behavior (sections 3.2.2, 3.3.2, 3.4.2 and 3.5.2), and the 

interactions between them (throughout the chapter).  Of these components, traits and 

attitudes constitute time-persistent dispositions towards behavioral patterns and 

emotionality (traits), and objects (attitudes). Traits do not change across the robot’s life-

span; here, life-span can be defined as referring to the duration of a single mission; a 

period of time during which the robot is expected to perform a certain type of task (this 

may span across multiple missions); or physical life of the robot, if its capabilities make a 

certain personality configuration particularly beneficial. Once specified, the trait 

combinations remain time-invariant until the human designer intervenes by changing the 

robot’s “personality”; consequently, their influence on behavior and emotions will not 

change until such an intervention.  Unlike traits, attitudes can change, albeit slowly. An 

initial attitude is formed when a corresponding object is encountered for the first time and 

remains the same until the next encounter. At that time, the update in either direction, 

towards either affection or dislike, is small. The change over time in attitudes will then 
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depend on multiple encounters the objects for which an attitude already exists, rather 

than the passage of time per se. Alternatively, a robot can share the attitudes of those 

people it continuously interacts with, by maintaining a case base of attitudes for each 

interaction partner. 

Unlike traits and attitudes, which are persistent over time, moods and emotions 

constitute the robot’s ever-changing affective state. Moods can be described as 

continuous “streams of affect” [4], and, unlike emotions, can be neutral (neither high, nor 

low), but never altogether absent. Cyclical variations in moods over time will be 

determined based on the underlying variations in environmental and internal conditions; 

any sudden changes will be smoothed out by taking into consideration a number of prior 

mood states – filtering over a longer period of time will result in slower and smaller mood 

changes. Filtering will also help tone down any drastic spikes in the mood due to 

emotional episodes. Mood intensities will be continuously updated based on the current 

emotional state of the robot, in addition to the environmental and internal conditions; the 

most recent values will be used in calculating behavioral parameters and influence on 

emotion generation. Finally, as emotions are reactions to significant events (such as, for 

example, appearance of a dangerous object), they are expected to be relatively rare, but 

occur with high intensity and high impact. The changes in emotion intensity are the most 

immediate among those in all other components: emotions can go from nothing to very 

high in fractions of a second, provided a high-strength stimulus and suitable trait 

configuration; they can similarly drop just as fast with the stimulus’s disappearance. A 

decay function is provided to account for habituation effects; a filter is used to help 

oscillations due to irregular perceptual input and to provide “lingering” emotional effect if 

the stimulus disappears very suddenly.  

A summary of time-varying aspects of each TAME component is given in Table 11: 
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Table 11: Summary of time-varying aspects of the TAME components 

 Traits Attitudes Moods Emotions 

Duration Life-long A few days to 
a few years 

A few hours to a few 
weeks 

A few seconds to a 
few minutes 

Change 
in Time 

Time-
invariant 

Persistent 
across time; 
change slowly 
with the 
number of 
times an 
object of 
attitude is 
encountered. 

Change cyclically as a 
variable of time-
varying underlying 
environmental and 
internal influences; 
any drastic changes 
are smoothed by 
taking into account 
previous mood states 
across a period of 
time; mood states vary 
faster than attitudes, 
but slower than 
emotions. 

1) emotion intensity 
changes as eliciting 
stimuli appear, 
disappear, and get 
closer or farther 
away; occur as short-
term peaks in 
response stimuli. 

2) response decay 
describes decay of 
emotion as the time 
passes, even in the 
presence of stimuli.  

 

The differences between the affective components in TAME are numerous and multi-

faceted and each component provides a unique advantage. Traits, Emotions, Moods 

and Attitudes differ in their psychological, cognitive, and behavioral functions; their 

antecedents and generation mechanisms; their influence on behavior and application for 

human-robot interaction; and their duration and changes they undergo with time. 

Individually, each of them has a notable yet limited potential for robotics. Together, they 

provide a stepping stone for transforming machines into companions, and creating a 

richer and more vibrant illusion of life. 
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4 EXPLORATORY EXPERIMENTAL STUDY 

In order to explore the issues of feasibility and potential usefulness of the TAME 

framework, as well as to inform the design of the software architecture incorporating the 

computational model, a longitudinal human-robot interaction (HRI) experimental study 

has been designed and conducted.  Expressions of emotions of Joy, Interest, Anger and 

Fear, as well as manifestations of an open and extraverted personality were designed 

specifically for this experiment and then adapted to the physical platform: a Sony 

entertainment robotic dog, AIBO ERS-210A. The choice of the robot platform was 

determined by its safety around humans, and the variety of expressive features it 

possesses, such as variable gaits, movable mouth, ears, tail, and LED display. 

4.1 IMPLEMENTATION 

4.1.1 BASIC FEATURES 

The high-level controller was implemented in MissionLab, a robotics software toolkit 

[157], and the lower-level implementation was done in OPEN-R SDK-1.1.3, an open-

source programming environment provided by Sony. When a user uttered a command, it 

was passed up to a Finite State Acceptor (FSA) in MissionLab by an administrator’s key 

press, and then the processed command was passed on to the low-level controller on 

the robot. 

There were a total of seven commands available: “Stop”, “Go Play”, “Follow the Ball”, 

“Kick the Ball”, “Follow Me”, “Come to Me”, and “Sic’ em”.  

• “Stop” command stops the robot in a suspended state, ready to continue at any 

moment. 
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• “Go Play” makes the robot roam around in random directions and perform 

random stops (no additional user interaction is required for the robot to wander 

around beyond issuing the command once).  

• In “Follow the Ball” mode, the robot looks for a pink ball by walking around in a 

circle, and moves towards the ball once it is detected; if the ball is lost, looking for 

the ball is resumed. Color recognition was used to detect the ball.  

• “Kick the Ball” is similar to “Follow the Ball” except for when the robot is close 

enough to the ball to kick it, it performs a kicking motion.  

• “Follow Me” command was identical to “Follow the Ball” command, but with a 

bouquet of artificial flowers used as a prop to follow instead of the ball.   

• “Come to Me” is similar to the “Follow Me” command, but the robot stops if it 

comes within a certain distance to the prop.  

• In “Sic’ em” command, the robot moves towards the “intruder robot” (ActiveMedia 

Amigobot) and stops next to it.  

This basic set of behaviors was used in the Non-emotional condition, and augmented 

in the Emotional version via a variety of gaits, movement of ears and tail, LED changes, 

and minor behavior sequences, as described below.  

4.1.2 PERSONALITY 

Although a number of studies have established a link between non-verbal behavior 

and personality judgments [158, 159], identifying the specific behaviors characteristic to 

certain personality dimensions has proven to be much harder. Extraversion is the most 

studied personality trait in this respect, and was reported to positively correlate with an 

expressive, animated, and expansive behavioral style [158].  



EXPLORATORY EXPERIMENTAL STUDY                                                                                 CHAPTER 4 

 126

To separate personality from emotion, the encoding of personality was used only in 

the “Go Play” command, and the encoding of emotion was used in all other commands 

in this exploratory study. The personality was determined for the most part by the 

Extraversion dimension, as well as other traits (for some of the parameters). The 

parameters modified for the “Go Play” command were as follows: the proportion of time 

the robot wagged its tail was directly related to its level of Extraversion and 

Agreeableness; the probability of the robot changing gaits (Slow, Normal, Fast or Crawl) 

was directly proportional to its level of Extraversion and Openness, and the proportion of 

time the robot spent walking vs. stopping was inversely proportional to its level of 

Extraversion, and directly to its level of Neuroticism. Our intention was to present an 

energetic, friendly, and curious robot, and therefore the levels of Extraversion, 

Agreeableness and Openness were set to high, and the level of Neuroticism to low.  The 

robot also turned its head as it was walking, which contributed to the display of energy 

and curiosity. 

4.1.3 EMOTION 

A number of sources were used to encode the display of emotions in the robotic dog. 

We conducted two informal surveys (11 and 21 people each) to find out laymen 

perceptions of dog emotions; consulted dog behavior literature [160, 161], and used 

commonsense to adapt the findings to fit within the technical limitations of the platform.  

The expressive features used were as follows: three gaits (Normal, Fast – resembled 

slight jumping, and Crawling - somewhat similar to invitation to play/prowling behavior); 

three tail positions (up, flat, down); tail wagging; two ear positions (up and flat); and red 

illumination of LED screen. 

The emotion expressed was determined by a combination of command type and 

presence of the command object (stimulus), except for the Sic’ em command, where the 
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distance to the intruder robot also played a role. In particular, the following emotions 

were encoded:  

• Interest – during the Ball commands, the dog used the crawling gait; when the 

pink ball was detected, the ears and tail went up. There were two slight variations 

on this emotion; they were expressed via different tail movements:  

o Alert – the tail was up when the pink ball was detected; 

o Friendly – the tail was wagging when the pink ball was detected. 

• Joy – during the Follow Me command after the flowers were detected the dog 

used the Fast walk, and the ears went up. There were two slight variations on 

this emotion; they were expressed via different tail movements: 

o Active - the tail was up; 

o Friendly - the tail was wagging. When the robot was sufficiently close 

to the flowers, the tail was wagging faster. 

• Anger and fear – during the Sic’ em command, the robot used the Fast walk, the 

ears were flat, the tail was up and the LED screen was red until the dog robot got 

close to the intruder robot. After that, the red light went out, the tail and the head 

went down, and the robot backed up using the Crawling gait. A snapshot of the 

robotic dog “scaring off” the “intruder” by displaying “anger” is presented in 

Figure 23.  

As different gaits were used in the Emotional and Non-emotional conditions, there 

were slight differences in performance: it was easier to kick the ball in the Emotional 

condition, and the Come To Me command was performed better in the Non-emotional 

condition. Also, the head following after object behavior was perceived by some subjects 

as emotional, although it was not intentionally encoded as such. 
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Figure 23: AIBO scares off the Amigobot by displaying “anger” 

4.2 STUDY DESIGN AND ANALYSIS 

The goal of the study two-fold: 1) to find out whether the presence of emotions and 

personality would increase the perceived ease of use and pleasantness of interaction, 

and 2) to identify whether the current implementation was sufficient to differentiate 

between a robot with emotions and personality from one without them. A longitudinal 

study allowed us to observe the human-robot interaction beyond a single short session, 

thus letting the “novelty” of a human subject interacting with a new robot to wear off. 

4.2.1 EXPERIMENT DESIGN AND HYPOTHESES 

The study was set up within a “robot as pet and personal protector” scenario, 

allowing for the exploration of relevant phenomena in a relatively constrained domain. 

During each session, the participants were requested to interact with the robot by asking 

it to perform certain tasks, with a new task introduced at each of the first three sessions. 

The participants were also encouraged to interact with the dog by petting it, playing with 

it, addressing it, and otherwise engaging with it if they so chose.  

The study followed 1-factor independent design with two conditions: Non-Emotional 

and Emotional. In the Emotional condition, the robot’s basic set of behaviors was 

augmented with a display of emotions and personality via head, ear and tail position, a 
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variety of gaits, and LED display (as described earlier in the implementation section), 

whereas in the Non-Emotional condition, the basic set of behaviors was left intact. 

The following form the hypotheses of this experimental study: 

1. Hypothesis 1: The display of emotions and personality will increase the perceived 

ease of use of autonomous robots; 

2. Hypothesis 2: The display of emotions and personality will increase the 

pleasantness of interaction with autonomous robots and will generate greater 

attachment to them; 

3. Hypothesis 3: The expression of emotions and personality will be more 

recognizable in the Emotional condition; 

4. Hypothesis 4: The display of emotions and personality will result in higher 

Positive Mood and lower Negative Mood in the participants. 

4.2.2 EXPERIMENT SETUP AND PROCEDURE 

The study took place in a small quiet office. A Dell Latitude laptop was used to send 

subject-given commands to the AIBO wirelessly, and a Dell Precision 610 desktop was 

used to teleoperate the intruder Amigobot via RF. A green carpet was used to specify 

the borders within which the robot was to be kept by the users; they had an option of 

themselves staying on or off the carpet while interacting with the robot, and on or off a 

wheeled office chair The video camera was positioned on a desk overlooking the carpet, 

and the entire interaction between the participants and the robot was captured on video 

tape within the bounds of the carpet (prior to the experiment, the participants signed a 

video release form, allowing the researchers the use of their video footage). Figure 24 

gives a general overview of the setup.  
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Figure 24: Experiment Setup: the user is watching AIBO perform the “Kick the Ball” 
command on the green carpet.  

In this longitudinal study, the subjects participated in four 20-60 minute interaction 

sessions. There were at least 3, but no more than 7 days between the sessions, for a 

total span of up to a month. Session duration included filling out questionnaires and the 

interaction with the dog per se, and depended on the willingness of the participants to 

interact with the robot. The overall goal behind the interaction was entertainment; 

however, some structure was provided, to both ensure that the participants could 

observe the entire range of affective expressions, and to make the sessions comparable 

across the participants.  

The sessions resembled a series of dog-training exercises combined with some 

voluntary free play. Each session thus provided semi-structured interaction between 

participants and the robot, where new tasks for participants to perform were introduced 

at each session but the last (which was cumulative). Such semi-structured sessions 

allowed more control over participant’s actions, and thus made the conditions the same 

in everything but the robot’s affective behavior. In the affective condition, each task was 

associated with a different robotic emotion (or a variation of it), and with each session 

participants could observe a wider range of affect exhibited by the dog. At the end of 
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each session the participants were also given a chance of interacting with the robot as 

they wished, using any commands they had trained the robot on. The combination of 

structured tasks (teaching the robot performing specific commands) and unstructured 

“play” time insured that the participants spent some minimum time interacting with the 

robot, but were not restricted to that time. Limiting the number of commands “taught” to 

the robot prevented the sessions from being overwhelming and overly long. A schematic 

view of the sessions’ overall structure is provided in Figure 25. 

 

Figure 25: A Schematic View of the Sessions 

At the beginning of the first session the participants were asked to sign a consent 

form (Appendix A), and fill out a demographics questionnaire (Appendix C) and a 

personality questionnaire (Appendix E); then they were introduced to the robot and told 
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that they could make the robot stop or “play” on its own, without requiring user 

interaction (“Stop” and “Go Play” commands, respectively). After that they were taught 

two more commands they could give the robotic dog: “follow the ball” and “kick the ball”. 

Each command was first introduced, and then the participants were asked to repeat it 

three more times. These commands were to be separated by either “Stop” or “Go Play” 

commands. After the command that was introduced second (“kick the ball”) was 

repeated three times, the subjects had an option of either continuing to interact with the 

robot, or completing the experiment by filling out the mood questionnaire (this 

questionnaire was filled out at the end of each of the four sessions; Appendix G).  

In the second session, two new commands (“follow me” and “come to me”) were 

introduced in the same manner as those in the first session. In Figure 26, you can see a 

subject getting the AIBO to perform the “Come to Me” command (Emotional Condition). 

After both of the commands were repeated three times, the subjects were asked to 

interact with the dog for at least five more minutes practicing the commands from this 

and the previous sessions. After this the participants, again, had an option of continuing 

the interaction or completing the session.  

 

Figure 26: AIBO is performing the “Come to me” command in the Emotional Condition. 

During the third session an “intruder robot” was introduced (another small robot, an 

Active Media robot Amigobot that was used for the purpose of testing the robot’s role as 
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a protector). As the Amigobot was teleoperated onto the carpet, the subjects were 

instructed to hide their props (the pink ball and the flowers) and give the AIBO a “Sic’ 

em” command. After the robotic dog successfully performed the “Sic’ em” command, the 

Amigobot was guided back off the carpet. Subsequent to the initial introduction of this 

command, the administrator brought out the “intruder robot” three more times, every four 

minutes. The participants were asked to interact with the dog using any of the 

commands they knew while waiting for the intruder robot to appear. After the last 

appearance of the Amigobot, the subjects could either continue the interaction, or 

complete the session.  

Finally, during the last session the participants were asked to interact with the robot 

for at least fifteen minutes using any of the commands they knew in any order. The 

“intruder robot” was brought in from time to time (approximately every 3 to 4 minutes) 

throughout this session. At the end of the fifteen minutes the users could either continue 

the interaction, or proceed to fill out the rest of the questionnaires. The questionnaires 

were the mood questionnaire (Appendix G), the personality questionnaire regarding the 

robotic dog (Appendix F), and the post questionnaire (Appendix D). After all the 

questionnaires were filled out, some of the participants were given a choice of briefly 

interacting with the robot in the opposite condition than the one they were exposed to for 

all prior sessions (e.g., emotional instead of non-emotional). The administrator script can 

be found in Appendix B. 

4.2.3 MEASURES 

Evaluation was performed using both self-reports (questionnaires) and observation 

(videotapes analysis) methods with respect to the aforementioned study hypotheses.  

The post questionnaire (Appendix D) was designed to assess hypotheses 1-3. It 

consisted of six 5-point Likert scale questions with three subquestions, with “Strongly 
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Agree” anchored at 5, and “Strongly Disagree” anchored at 1. The questions were as 

follows:  

1. It was easy to get the robotic dog perform the commands;  

2. It was easy to understand whether the robot dog was performing the command 

or not;  

3. The robotic dog showed emotional expressions;  

4. The robotic dog had a personality of its own;  

5. With every session, I was getting more attached to the dog;  

6. Overall, I enjoyed the interaction with the robotic dog.  

If the participants answered “Agree” or “Strongly Agree” to question 3 or 4, they were 

also asked to answer questions 3a,b and 4a, respectively. The subquestions were as 

follows:  

3a. Emotional expressions exhibited by the dog made the interaction more 

enjoyable;  

3b. Emotional expressions exhibited by the dog made the interaction easier;  

4a. I enjoyed interacting with the robot, partly because it possessed some 

personality.  

Questions 1, 2 and 3b were used as measures for Hypothesis 1; questions 3a, 4a, 5, 

and 6 were used as measures for Hypothesis 2; and questions 3 and 4 served as 

measure for Hypothesis 3. In addition, at the end of the questionnaire the participants 

were asked a series of open-ended, free-response questions (Figure 27). The answers 

to these questions provided a less structured, qualitative approach of obtaining data.  
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Please use the space below (attach additional sheets if needed) to describe 
your interactions with the robotic dog. Specifically, did the dog seem to have 
a personality? If so, what kind of personality? Also, describe any emotional 
states that you think the dog exhibited during your interaction. Please 
describe your own state during the interaction: e.g., entertained, bored, 
curious, etc. Did your attitude change to the robotic dog throughout the 
sessions? How? Finally, would you prefer robots that interact with humans 
to express some emotion and personality? Why? 

Figure 27: Free-response Questions from the Post Questionnaire 

To analyze Hypothesis 4, separate Positive and Negative scores from the   PANAS-

T (Positive/Negative Emotionality Schedule, or “mood”) questionnaire [162] were 

calculated for each session, as well as averaged across the four sessions.  

Finally, the participants were also asked to fill out two personality questionnaires: the 

one regarding their personality was filled out at the beginning of the first session, and the 

one regarding the robotic dog’s personality at the end of the last session. Both were 

based on a brief version of Goldberg’s Unipolar Big-Five Markers (personality 

questionnaire) [163]; the dimensions assessed were Extraversion, Agreeableness, 

Conscientiousness, Emotional Stability (Neuroticism) and Openness to 

Experience/Intellect. Pearson’s Correlation analysis was conducted on the participants’ 

and the robot’s personality to identify whether the subjects projected their own 

personality on the robot, but none of the dimensions had significant correlations. 

4.2.4 PARTICIPANTS 

A total of 20 people participated in the study: 10 males and 10 females, distributed 

equally between the two conditions. The subjects were recruited via flyers posted on and 

around the Georgia Institute of Technology campus, and they varied widely in the 

demographics according to age (from between 20 and 30 to over 50 years old), their 

educational level and backgrounds (from High School diploma to working on a Ph.D., 

with majority having either a Bachelor’s or Master’s degrees), and computer experience. 

Most of the participants had owned pets at some point in their lives (18 out of 20), and 
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had either no or very limited robot interaction experience (only 2 out of 20 had interacted 

with mobile or entertainment robots prior to the study). 

4.2.5 POST QUESTIONNAIRE ANALYSIS AND RESULTS 

1-tailed Independent Samples T-tests were conducted on all the measures, and 

Pearson’s correlations were computed where applicable. 

4.2.5.1 Hypothesis 1: Perceived Ease of Use 

The result of the analysis of question 1 (“Easy to get the robot perform the 

commands”) was statistically significant (Mnon-emotional=3.7, Memotional=4.5, F=0.02, 

p<0.004). The result is presented visually in Figure 28.  
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Figure 28: Standard Error/Means Plot for “Ease of Performing Command”; it was easier 
to make the robotic dog perform the commands in the Emotional condition 

Although the analysis shows that the participants found it easier to get the robotic 

dog to perform the commands in the Emotional condition, this result is somewhat 

confounded by the slight performance differences for two of the commands. In particular, 

due to a difference in gaits, it was more difficult for the robot in the non-emotional 

condition to kick the ball, and vice versa, due to more frequent head movements 

performed by the robot in the emotional condition, it had more difficulty in accurately 

tracking the flowers during “Follow Me” command. Therefore the result could potentially 



EXPLORATORY EXPERIMENTAL STUDY                                                                                 CHAPTER 4 

 137

be due to two factors: the performance difference and the emotionality; further study 

would be needed to disambiguate it. Special care was taken in the subsequent HRI 

experiments to ensure the same task performance in all conditions. 

There was no significant effect of Emotionality on the answers to question 2 (“Easy 

to understand if the robot was performing the command”). As for question 3b (“Emotional 

expressions made the interaction easier”), the average answer was 3.48 (between 

Neutral and Agree), suggesting that those who thought that the robot displayed 

emotional expressions (5 out of 10 in the Non-Emotional condition, and 8 out of 10 in the 

Emotional condition), considered emotional expression somewhat helpful in making the 

interaction with the robot easier.  

4.2.5.2 Hypothesis 2: Pleasantness of Interaction and Level of Attachment 

The analysis of the answers to questions 5 (“Getting more attached”) and 6 

(“Enjoyed the interaction overall”) did not show any significant difference between the 

two conditions with respect to the overall pleasantness of interaction and the degree of 

attachment to the robot. However, those who believed that the robot displayed emotions 

and/or personality (6 out of 10 in each condition), also believed that these features made 

their interaction with the robotic dog more pleasant: the average answer for question 3a 

(“Emotional expressions made the interaction more enjoyable”) was 4.46, and for 

question 4a (“Robot’s personality influenced the level of enjoyment”) was 4.25, both 

between Agree and Strongly Agree. These results are shown graphically in Figure 29. 
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Figure 29: Average of the answers to questions 3a and 4a: the subjects thought the 
perceived robotic emotions or personality made their interaction more enjoyable. 

There were also a number of significant correlations between questionnaire 

responses regarding the pleasantness of the interaction:  

1. The response to question 4 (“Robotic dog had a personality”) had a strong 

positive correlation (r = .66, p=0.02) with the response to question 5 (“Getting 

more attached”);  

2. The response to question 3a (“Emotional expressions made the interaction more 

enjoyable”) had strong positive correlations with responses to questions 5 (r=617, 

p=.025) and 6 (r=.749, p=.003).  

Overall, the participants mostly enjoyed their interaction with the robot, as evidenced 

by the average score of 4.27 out of 5 in answer to question 6 (“Enjoyed the interaction 

overall”), and the perceptions of the robot’s emotionality and personality seem to make 

the interaction more enjoyable and result in greater attachment.  

+/- 1 Std 

Deviation 
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4.2.5.3 Hypothesis 3: Recognition of Emotions and Personality 

There was no significant difference between the two conditions regarding perceived 

emotional (Mnon-emotional=2.7, Memotional=3.6, F=.693, p<0.088), and personality 

(Mnon-emotional=3.1, Memotional=3.56, F=.1, p<0.324) display (questions 3 and 4). 

However, a 2-factor ANOVA on Gender and Emotionality resulted in a significant main 

effect of Gender on the answer to question 3: display of emotions (Mfemale=3.8, 

Mmale=2.5, F =4.829, p<0.043). The following graph presents this result (Figure 30): 
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Figure 30: Standard Error/Means Plot for “Displayed Emotions” by Gender: Women 
perceived the robot as more emotional than men, regardless of the condition. 

In a related study, Yan et al [60] manipulated the encoded Introversion and 

Extraversion dimensions of personality successfully, suggesting that people do pick up 

nonverbal and verbal personality cues in robots, even though this was not confirmed in 

our study. One of the reasons we did not see any difference in perceived personality 

between the two conditions in our study may lie in the fact that the personality was 

encoded only in one task, “Go Play”, and the subjects did not have sufficient exposure to 

its display. Another reason could be that our encoding was broader and less specific 

than in the aforementioned study, and thus did not produce the expected effect.  
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4.2.5.4 Hypothesis 4: Changes in Positive and Negative Moods 

Although there was no significant result of Emotionality on the Positive Mood, the 

Negative Mood was significantly lower in the Emotional condition (Mnon-emotional=13.9, 

Memotional=12.125, F=6.462, p<0.048). See Figure 31 for the plot.  
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Figure 31: Standard Error/Means Plot for Negative Mood: on average, the subjects 
experience less negative mood in the Emotional Condition 

In the Positive/Negative Emotionality measure (PANAS-T, [162]), negative mood 

refers to the extent to which an individual is presently upset or distressed, and positive 

mood refers to one’s current level of pleasure and enthusiasm. Therefore, a lower 

negative mood experienced by participants signifies lower levels of distress and 

frustration, and in turns signals a more pleasant interaction. Additionally, a significant 

positive correlation (r=.598, p=.007) between average Positive Mood and the response 

to question 4 (“Robot displayed personality”) was observed, thus providing a link 

between perceived robotic personality and users’ improved mood.  

4.2.5.5 Other Observations 

We have also observed that the subjects in the Emotional condition rated the robotic 

dog higher on the dimensions of Conscientiousness and Openness, and in the 1-tailed 

independent samples T-test this difference was statistically significant (p<.034, and 
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p<.026, respectively).  The last finding, however, may also be convoluted by the 

aforementioned difference in the performance. In the future, extensive testing will be 

done to eliminate potential task performance differences. 

4.2.5.6 Summary and Discussion 

To summarize, two of the hypotheses were confirmed in this study, and a number of 

interesting and encouraging observations were made: 

1. The participants found it easier to get the robot in the Emotional condition to 

perform commands; 

2. The Negative Mood reported by the participants in the Emotional condition was 

lower than by those in the Non-emotional condition; a lower negative mood 

signifies lower levels of distress and frustration, suggesting that affective 

behavior contributes to the quality of interaction. 

3.  Those participants who believed that the robot displayed emotions and/or 

personality also believed that these features made their interaction more 

pleasant. This is encouraging, as it suggests that people value expression of 

emotion and personality in their interaction with an autonomous entertainment 

robot.  

4. Women were found to be more attuned to emotional expressions and more ready 

to attribute emotions to the robot than men, which should be taken into 

consideration for systems adapted to groups with gender-biased compositions. 

There are a number of reasons why no differences were observed in the post 

questionnaire in the area of pleasantness of interaction and perception of emotions and 

personality. First, the sample size, due to the technical complexity of the study, was 

rather small; in the future studies, a larger number of participants per condition will be 



EXPLORATORY EXPERIMENTAL STUDY                                                                                 CHAPTER 4 

 142

used. Second, people without extensive robotics experience seem to have substantial 

preconceptions of robots, and may project their own affective state onto the robot they 

interact with. Finally, the physical platform, designed for entertainment, may be a more 

decisive factor than the actual differences in the robot behavior, and may have 

influenced the perceptions of the robot as that of a playful, expressive toy dog. 

4.2.6 FREE-RESPONSE QUESTIONNAIRE ANALYSIS AND RESULTS 

As a reminder, the free-response portion of the questionnaire went as follows:  

 

 

 

 

 

The summary of the participants’ responses to these questions is provided in 

Appendix H.  In order to better understand the opinions given by the participants by 

means of the free-response portion of the post questionnaire and to obtain quantitative 

data, two independent coders (neither of whom was the experimenter) were asked to 

rate the participants’ responses according to a number of scales. These scales 

correspond to the hypotheses presented in subsection 4.2.1, Experiment Design and 

Hypotheses. In particular, questions 1 and 2 measure how well participants could 

recognize emotions and personality in the robot, and correspond to hypothesis 3 

regarding participants’ perception of emotions and personality in the robot; and 

questions 3-6 measure the participants’ state throughout the interaction and correspond 

to hypothesis 2 regarding pleasantness of interaction. These scales are anchored at 

“Very Low” at 1 and “Very High” at 7.  

Please use the space below (attach additional sheets if needed) to describe your 
interactions with the robotic dog. Specifically, did the dog seem to have a personality? 
If so, what kind of personality? Also, describe any emotional states that you think the 
dog exhibited during your interaction. Please describe your own state during the 
interaction: e.g., entertained, bored, curious, etc. Did your attitude change to the 
robotic dog throughout the sessions? How? Finally, would you prefer robots that 
interact with humans to express some emotion and personality? Why? 
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1. On a scale from 1 to 7, please rate the level to which the participant perceived 

emotions and/or personality in the robot; 

2. On a scale from 1 to 7, please rate the level of detail in the descriptions of 

emotions and personality are; 

3. On a scale from 1 to 7, please rate the participant’s boredom during the 

interaction; 

4. On a scale from 1 to 7, please rate the participant’s enjoyment during the 

interaction; 

5. On a scale from 1 to 7, please rate the participant’s frustration during the 

interaction; 

6. On a scale from 1 to 7, please rate the participant’s contentment during the 

interaction. 

In addition, to assess whether the participants’ attitude towards the robot changed 

throughout the study, the coders were also asked to provide a rating for Question 7:  

7. On a scale from 1 to 7, please rate the change in participant’s attitude towards 

the robot throughout the sessions.  

This scale was anchored at “Overwhelmingly to the Worse” at 1 and 

“Overwhelmingly to the Better” at 7. The instructions given out to the coders can be 

found in Appendix I. 

4.2.6.1 Analysis and Discussion 

The scores obtained from both coders were averaged, and the values marked as 

“Not Reported” by either coder were considered missing data and excluded from the 

analysis. A one-tailed T-test was conducted on the scores for all the questions but two: 

questions 5 (measuring level of frustration) and 7 (level of change) were excluded from 



EXPLORATORY EXPERIMENTAL STUDY                                                                                 CHAPTER 4 

 144

the analysis due to a high percentage of “Not Reported” scores (50% and 30%, 

respectively). No statistically significant differences were found in the scores of the 

analyzed questions between the emotional and the non-emotional conditions; this 

confirms earlier findings from the Likert-style portion of the questionnaire regarding 

perceived emotions and personality in the robot (subsection 4.2.5.3) and the level of 

enjoyment (subsection 4.2.5.2). However, given the exploratory nature of the study, one 

interesting observation can be made: across both conditions, the average score for 

question 1 (level to which participants perceived emotions and/or personality in the 

robot) was 4.3, between medium and somewhat high (see Appendix I). This suggests 

that people were prone to see some affect in the robot, whether it was encoded or not 

and in line with the earlier discussion (subsection 4.2.5.6) that the physical platform may 

have biased the perception of affective behavior. It was also interesting to see that 

overall the participants enjoyed their extended (over 2 hours combined in some cases) 

interaction with the robot to a medium/somewhat high level (score of 4.48) and were only 

slightly bored (to a low/somewhat low level with a score of 2.56); this can be seen 

graphically in Figure 32.  

 

Figure 32: Average score of participants’ boredom and enjoyment, surmised from the 
free-response questionnaire 
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In addition to analyzing the data provided by the coders, participants’ responses to 

whether they would prefer robots that interact with humans to express some emotion 

and personality were also counted. The responses to this question were rather 

straightforward: either yes or no, or both yes and no; in case of the ambivalent 

responses, a justification was given; two of the participants didn’t answer the question. 

The majority of participants (15 out of 20) would prefer robots that interact with people to 

express some emotions and/or personality, at least in certain cases. Their responses 

are summarized in Figure 33. Among those who were ambivalent (two in the non-

emotional condition, where no robotic affect was expressed, and 4 in the Emotional 

condition), four reported that emotions and personality would be desirable for some 

purposes and applications, but not for others; one was concerned with people forming 

attachment to emotional robots; and yet another one said that better implementation of 

such features would be useful (as compared to Microsoft’s Paperclip). Finally, none of 

those in the emotional condition said a definite “no” to robotic affect. 

 

Figure 33: Response to the Question on whether Participants Prefer Robots to Express 
Emotions and/or Personality 
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Finally, the reasons given for including personality and emotions in robots can be 

subdivided into three somewhat overlapping categories: 1) for certain applications for 

which they contribute to the overall goal; 2) to make the interaction more pleasant, 

enjoyable, personal and creative; 3) because humans use and need emotions in their 

interaction. There were two responses that did not quite fit within these categories: one 

person suggested that emotional response in robots would improve usability and 

communication of commands (thus contributing to the ease of interaction); and the other 

one touched the issue of trust: people would be less intimidated and more comfortable 

dealing with robots. The primary justification for not using affect in robots was using it for 

“inappropriate” tasks, such as strictly functional or mundane, while others (two 

responders) were more concerned with ethical issues, such as causing attachment in 

humans and the fact that robots are not human.  

4.2.6.2 Summary 

Overall, the results of the analysis of the free-response portion of the questionnaire 

were in line with the results obtained in the analysis of the Likert-scale questions. 

Although there were no statistically significant differences in the levels of enjoyment, 

boredom and contentment between the two conditions, and in the reported expressions 

of emotions and personality, it was found that the subjects expected manifestation of 

affect in a robotic dog:  

8. The participants were prone to attribute affect to the robot, whether it was 

intentionally encoded or not; 

9. The majority (15 out 20 participants) would prefer robots that interact with people 

to have emotions and/or personality, at least for certain applications. 
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4.2.7 VIDEO ANALYSIS 

As video analysis by independent coders is both time- and resource-consuming, a 

partial video coding was done by the experimenter to address the feasibility and 

usefulness of engaging at least 2 independent coders to confirm or refute any significant 

findings (the entire set of recorded sessions would be coded independently by such 

individuals). The video sessions of 12 out of 20 participants (equally distributed between 

the conditions and randomly selected per condition) were coded for a number of 

measures presented below, and the obtained data were collected and partially analyzed.  

4.2.7.1 Coding Measures 

The measures for video coding were selected prior to the experiment. The main 

focus was on assessing the level of interaction with the robotic dog, which could be 

indicative of the quality of interaction, in particular, pleasantness (Hypothesis 2). 

Unfortunately, the facial expressions of the participants were not recorded; therefore we 

could not assess the level of enjoyment or interest directly. The following measures were 

used during the coding of the video sessions: 

1. Total Time was recorded for each session. It excluded the time during which the 

robot may have been unresponsive or down (this happened in one out of 48 

coded sessions). Although not a direct measure of interactivity, it could be 

indicative of how long the subjects were willing to interact with the robot. 

However, this measure could be only used as supportive, as it would also reflect 

how hard it was to perform the commands: the harder it was to get the robot to 

perform commands, the longer the participants would take.  

2. Extra Time was recorded for each session. At the end of each session, after all 

the mandatory tasks were completed, the participants were given an opportunity 
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to interact with the robot longer if they so desired. This was thought as a primary 

indicator of how much people enjoyed their interactions.  

3. Percentage of Time on the Rug. The participants were instructed to keep the 

robotic dog on the provided green rug; at the beginning of the first section they 

were also encouraged to walk on the rug if they wanted. While selecting this 

measure, it was hypothesized that those who stayed on the rug for longer portion 

of a session were more interactive. 

4. Percentage of Time spent closer to the Level of the robot. During the sessions, 

some of the participants were either sitting/squatting on the floor, bending down 

while standing, or bending down in the chair provided off the rug. It was 

hypothesized that those who were purposefully closer to the level of the dog 

were more interactive.  

5. He vs. it. Some participants referred to the dog as he, and some as it. It was 

hypothesized that those who called the dog “he” viewed it as more animate and 

life-like. 

6. Positive Speech Utterances. Those included praise/approval (“good boy”, “good 

job”, “there you go”, and more generic “Yeay!”, “Wow!”, etc.), expressions of 

concern (“Oooh”, “ouch!”, etc.), and talking to the robotic dog directly, but 

perhaps in more neutral terms (this shows attempts at reciprocity [70]). These 

were hypothesized to be an indicator of participants’ enjoyment, perception of the 

robot as life-like, as well as their general attitude towards the robot; in pet 

interactions, such remarks show approval and affection. 
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7. Negative Speech Utterances. Those would include discouragement/punishment 

statements, such as “bad dog”, etc. In the 48 coded sessions no such negative 

statements were made by the participants. 

8. Positive Actions. A number of participants petted the dog, pointed in the direction 

of the prop as if encouraging the dog to follow, leaned close to the robot, and 

moved the “flowers” prop back and forth in front of the robot to watch it follow 

with its head (some seemed to enjoy this a lot). These actions indicate affection 

and attempts at reciprocity as discussed in Dautenhahn et al. [70] .  

9. Negative Actions. On very few occasions participants would make motions as if 

they’d hit the robot, either with their foot or the “flowers” prop; would pick up the 

robot into the air, turn it over and watch it move its legs; watch the robot trample 

the flower prop or walk into an obstacle. These occasions were classified as 

mistreatment [70] and were viewed as a sign of general dissatisfaction and 

treating the robot as fully inanimate. 

10. Duration and number of commands. Although this measure would not assess the 

interactivity and enjoyment directly, it would allow identification of particular 

commands (if any) that participants enjoyed the most, and whether they differed 

between the conditions. If any differences were found, we could concentrate on 

specific commands to identify the reasons for the differences. 

4.2.7.2 Preliminary Analysis and Discussion 

 Means and Standard Deviations were calculated for each measure, except for those 

dealing with speech (positive utterances and he vs. it measure), and positive and 

negative actions. The latter measures were fairly infrequent, and to an extent subjective; 

they seemed to depend greatly on individuals. For example, some participants could be 

using a lot of speech and a fair number of actions, whereas others would be mostly 
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silent throughout the sessions, even though all the participants were equally encouraged 

to articulate their feelings prior to the experiment. In addition, the measures of Time on 

Rug and Time Level Down were fairly subjective, as a judgment call had to be made for 

borderline cases (e.g., one foot on the rug; squatting, but not leaning towards the dog or 

interacting with it, etc.) 

Unfortunately, the initial results were not encouraging: the obtained data for 48 

sessions were not normally distributed, and had very high standard deviations (in some 

cases they exceeded the means). This variation in results can have a number of 

possible explanations, or more likely, a combination thereof: 1) individual differences in 

the participants were on the extreme side, with some people scoring very high and some 

very low; 2) the chosen measures were not fully adequate; 3) the number of sessions 

coded was too low to provide adequate results; 4) insufficient pilot testing, in particular, 

with regards to metrics. For the time being, due to the time-consuming nature of the task 

and high data variation in the preliminary analysis, it was not feasible to obtain the 

services of two independent coders to complete the video analysis of the study.  

4.3 SUMMARY AND LESSONS LEARNED 

To summarize, the hypotheses, regarding the ease of interaction and effects on 

participant’s mood, were confirmed in this study, and a number of interesting and 

encouraging observations were made: 

1. The participants found it easier to get the robot in the Emotional condition to 

perform commands. 

2. The Negative Mood reported by the participants in the Emotional condition was 

lower than by those in the Non-emotional condition; a lower negative mood 

signifies lower levels of distress and frustration, suggesting that affective 

behavior contributes to the quality of interaction. 
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3.  Those participants who believed that the robot displayed emotions and/or 

personality also believed that these features made their interaction more 

pleasant. This is encouraging, as it suggests that people value expression of 

emotion and personality in their interaction with an autonomous entertainment 

robot.  

4. The participants were prone to attribute affect to the robot, whether it was 

intentionally encoded or not.  

• Women were found to be more attuned to emotional expressions and 

more ready to attribute emotions to the robot than men, which should 

be taken into consideration for systems adapted to groups with 

gender-biased compositions; 

5. The majority (15 out 20 participants) stated that they would prefer robots that 

interact with people to have emotions and/or personality, at least for certain 

applications. 

Most importantly, a number of lessons were learned for future experiment design 

with affective robots. Although they may seem obvious in retrospect, the aspects 

addressed below were not intuitive, especially given the dearth of work done in the area 

of assessing user perceptions of affective robots at the time. Some of the points listed 

below can be applicable to any experimental design, but are especially important for the 

domain of HRI. These lessons are discussed below, along with improvement 

suggestions for future HRI experiments. 

1. Physical platform. It is fairly clear from the results that the choice of the physical 

platform can dominate user perception of the robot’s personality and emotion, as 

well, perhaps, as their enjoyment level. Sony’s AIBO was designed for 
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entertainment, and many users described it as “cute” and “puppy-like” before the 

actual interaction with the robot. Therefore it was easier to attribute personality 

and emotionality to the robotic dog from the onset, as the participants were 

primed by the robots’ shape and movements. For future studies, a more neutral 

platform should be chosen, and an extensive pilot study should be done to 

assess the recognition of affective robotic expressions by participants before the 

actual experiments are performed. It is also likely that with a physical platform 

that is on the other side of the spectrum – openly mechanical and non-

interactive, an opposite effect may be observed: participants may be less likely to 

attribute any human/animal-like qualities to the robot, and enjoy the interaction 

less.  

2. Robot Performance Differences. There were slight differences in performance 

of certain tasks (“Kick the Ball” and “Follow Me”), due to which some of the 

results regarding ease of use were convoluted. In particular, due to a difference 

in gaits, it was more difficult for the robot in the non-emotional condition to kick 

the ball, and vice versa, due to more head movements performed by the robot in 

the emotional condition, it had more difficulty in accurately tracking the flowers 

during “Follow Me” command. For future studies, special care should be taken to 

avoid such differences, and the robot’s movement and task performance should 

be tested and compared between the conditions prior to the pilot study.  

3. Strength of affect encoding. This aspect refers to how different the conditions 

appear to the subjects, and is related to the chosen physical platform. In 

particular, in a neutral platform, even smaller programmed differences may 

produce a desired effect, whereas in a biased platform the differences may need 

to be more pronounced. Increasing the differences between conditions will also 
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improve the statistical power of the experiment [164], or the probability that the 

null hypothesis will be rejected when it is false. Again, extensive pilot studies 

should be performed to assess whether the strength of encoding was sufficient to 

produce the desired manipulation.  

4. Sample size. A larger sample size would be needed to produce more statistically 

significant results, especially given that the differences between the conditions 

were perceived as small. Due to difficulties in conducting experiments with real 

robot platforms, small sample size is a common pitfall for HRI studies. For future 

studies, all efforts should be made to obtain a larger number of participants per 

condition. 

5.  Within-subject vs. between-subject design.  At the end of the study, some of 

the participants were shown the opposite condition, and most of them at that 

point could identify the differences between the conditions, and point out the 

emotional expressions in the Emotional condition. It would seem, then, that 

structuring the study as a within-subject design (where the same subjects 

participate in both conditions) would bring out the differences between the 

conditions clearer. Within-subject design would also reduce variability due to 

individual differences, thus also increasing the power of the experiment while 

requiring fewer participants that between-study designs [164]. However, if the 

physical robot is the same, the subjects might get confused if they see the same 

robot behaving differently, and it also may not be appropriate for certain tasks.   

6. Individual differences. Unlike the majority of experiments, where the user base 

is comprised of predominantly undergraduate psychology students (or often 

fellow computer scientists, in the area of HCI), the participant composition of this 

study was quite varied. If the sample size were substantially larger, this variety 
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would have been desirable; however, with a smaller sample size, it may have 

resulted in the observed high variation of subjects’ interaction with the robot.  

7. Data Collection. One aspect the data were missing were videos of participants’ 

faces, which could provide information on smiles and other facial expressions 

indicative of positive or negative emotions. For any video analysis attempting to 

assess the levels of enjoyment and satisfaction it would be advisable to include 

faces in the recording. 

8. Metrics. A special effort should be made to provide metrics that can indeed 

measure the effect of affective behavior on human-robot interaction. First of all, 

the proposed metrics should be tested in a pilot study and refined prior to the 

experiment proper. Whenever possible, an expert opinion should be obtained on 

any designed measures to ensure they are free of bias, and protocols for coding 

video recordings should be developed prior to the experiment and refined as a 

result of the pilot study. 

The lessons learned as a result of this exploratory study were carefully examined 

and taken into consideration during the design and administration of the subsequent HRI 

experiments used to evaluate the TAME framework. In particular:  

• An affect recognition survey was conducted prior to the experiments to increase 

the probability that the encoded affective expressions would be recognized by 

the subjects; 

• Performance differences were brought to a minimum; 

• Novel subjective metrics were developed and combined with compliance and 

task performance objective measures; 
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• The affective robotic expressions were exaggerated to increase the difference 

between conditions; 

• Number of participants per condition was increased; 

• Extensive pilot testing was performed. 
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5 SOFTWARE ARCHITECTURE AND IMPLEMENTATION1 

In chapter 3, a computational theory and psychological foundations behind the TAME 

framework were presented, and chapter 4 described an exploratory study undertaken to 

inform the development process of the framework and assess people’s attitude towards 

robotic affect. This chapter describes the software architecture and implementation of 

the computational theory, and, as such, it addresses the first research subquestion, 

“How can traits, attitudes, moods and emotions be modeled computationally in a robotic 

system”, by grounding the theory into a particular software system and implementation. 

Additionally, this chapter presents an online survey performed to evaluate the 

recognition of affective robotic expressions [165], as implemented on a humanoid robot. 

The survey provides an initial testing step, necessary to confirm that the designed 

affective behaviors are recognized as intended by independent participants and can, 

therefore, be used in subsequent HRI studies.  

5.1 SOFTWARE ARCHITECTURE DESIGN 

The software architecture incorporating the TAME framework was designed as a 

stand-alone process to achieve platform-independence and generalizability [166]. With 

an interface to connect to the system’s TAME Communication Manager (to supply 

sensory data), and appropriate configuration files, this software can potentially be 

integrated into any robotic platform or an autonomous agent system without a 

substantial redesign. The architecture itself is fairly straightforward, and consists of: 

TAME Manager (the central module of the system), TAME Communication Manager 

(receives sensor data and passes the updated affective values to the robot), a module 

                                                 
1 To a significant extent the software design and implementation of the framework was 

performed under a 2-year grant from Samsung Electronics Co., Ltd, with the generous help of 
Sunghyun Park, Hyunryong Jung and Chien-Ming Huang who were supported through this grant. 
The project resulted in a number of conference and journal publications [163-165], portions of 
which were used in the write up of this chapter. 
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for each of the affective components, and Stimuli Interpreter (processes incoming 

sensory input). In addition, 2 configuration files, Affect Configuration and Stimuli 

Configuration, specify: interdependencies between the affective components; bounds for 

affective variable parameters; and mapping between sensor data types and affect 

generation. These configuration files provide a way of adjusting affect generation 

parameters to particular platforms and environments without reprogramming, thus 

increasing software flexibility. Finally, Case Library stores a set of attitude cases for each 

user interacting with the system. Figure 34 provides a high-level view of the TAME 

module. 

 

Figure 34: High-level View of the TAME Software Architecture. 

5.1.1 AFFECTIVE COMPONENTS 

These are comprised of four different affective components of the TAME framework 

(namely Trait, Attitude, Mood, and Emotion), and run as separate threads. Each module 
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processes sensory data and internal information (current values of other affective 

components) received from TAME Manager and calculates the updated affective 

variables, passing them back to TAME Manager, and eventually to a robot or agent 

controller. In order to provide flexibility and adaptation to individual users and situations, 

each component is preloaded with some initial default values from the Affect 

Configuration file. An annotated sample Affect Configuration file can be found in 

Appendix J.  

5.1.1.1 Trait Component 

For the Trait component, a default value is specified in the Affect Configuration file 

(see Appendix J for a sample configuration) for each of the five personality dimensions: 

Openness (O), Agreeableness (A), Conscientiousness (C), Extraversion (E), and 

Neuroticism (N). Psychological findings of the normal distribution of human personality 

scores from the Five-Factor model tests serve as a point of reference for selecting the 

trait intensity and range values, as described in subsection 3.2.2.1, Grounding Trait 

Intensity in Psychological Data. The means and Standard Deviations (SD) of these 

scores are presented in Table 12: Normal distribution statistics for FFM personality 

scores  

Table 12: Normal distribution statistics for FFM personality scores 

Personality Trait Mean Standard Deviation (SD) 

Openness 110.6 17.3 

Conscientiousness 123.1 17.6 

Extroversion 109.4 18.4 

Agreeableness 124.3 15.8 

Neuroticism 79.1 21.2 

 

For example, if the desired personality is highly agreeable and slightly neurotic, then 

a value of 148 (mean + 1.5 SD) can be assigned for Agreeableness, and a value of 89.7 
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(mean + 0.5 SD) for Neuroticism. Table 13 presents the personality configuration for 

such a robot, where the rest of the traits are set as average (mean). The same 

personality configuration is presented graphically in Figure 35: A sample personality 

configuration: Agreeableness is moderately high, and Neuroticism is slightly elevated 

 Table 13: A sample personality configuration for a highly agreeable and slightly neurotic 
robot 

Trait Value 

Openness 110.6 

Conscientiousness 123.1 

Extroversion 109.4 

Agreeableness 148 

Neuroticism 89.7 

 

 

Figure 35: A sample personality configuration: Agreeableness is moderately high, and 
Neuroticism is slightly elevated 

Once the trait values are specified, they become available to Trait component and to 

the TAME Manager; the latter in turn provides them whenever they are needed by other 
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components. Trait values remain unchanged throughout execution since personality is 

generally regarded to be time-invariant. There is one exception to this, however: for 

computational simplicity, as moods affect the same behaviors as traits, instead of 

providing a direct influence on behavior, the moods temporarily bias trait values, which, 

in their turn, provide an adjustment to the underlying behaviors. This exception will be 

discussed in more detail in subsection 5.1.1.3, Mood Component. 

5.1.1.2 Emotion Component 

This component contains six primary emotions (Fear (F), Anger (A), Disgust (D), 

Sadness (S), Interest (I) and Joy (J)). From the TAME Manager, it receives emotion-

specific stimuli strengths (calculated in Stimuli Interpreter) and current trait and mood 

values. The values of each emotion are generated continuously throughout the 

execution whenever emotion-eliciting stimuli strengths are relayed to the emotion 

component by the TAME Manager; the updated emotion intensities are then passed 

back to the TAME Manager. 

At the start, the Emotion component is initialized with default settings from the Affect 

Configuration file (Appendix J). These settings are used during the execution for emotion 

generation and would differ depending on a particular task, mission or an environment 

(although an administrator/user can provide a set of generic defaults as well). They 

include:  

• Upper and lower bounds for all emotion generation variables for each emotion: 

amplitude (controlling the peak of emotion), activation point (controlling emotion 

sensitivity is to an eliciting stimulus), and slope (controlling how fast emotion 

rises in response to a stimulus); see subsection 3.3.2.2.1, Personality Influence 

on Base Emotion Generation for details on these variables ;  

• Emotion Decay Rate (subsection 3.3.2.3, Emotion Decay and Filtering); 
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• Filtering variables: Prior Weight and Current Weight for a weighted averaging 

filter (subsection 3.3.2.3, Emotion Decay and Filtering); 

• Personality/emotion dependency matrix (a sample matrix is presented in Table 

14). This matrix specifies how each trait influences each of the emotions: 1 

stands for direct influence, -1 for inverse influence, and 0 for absence of 

influence. For example, the sample matrix in Table 14 specifies that 

Agreeableness has an inverse influence on Anger generation, indicating that a 

robot high on agreeableness would experience anger to a lesser extent than its 

more disagreeable counterpart. Thus, for each different personality configuration, 

the emotions are generated using different values of emotion generation 

variables. 

Table 14: Sample Personality/Emotion Matrix specifying the influence traits have on the 
emotion generation variables 

  
O 

Openness 

 
A 

Agreeableness 

 
C 

Conscientiousness 

 
E 

Extraversion 

 
N 

Neuroticism 
Interest 1 0 0 1 0 

Joy 1 1 0 1 0 

Fear 1 0 0 0 1 

Anger 1 -1 0 0 1 

Sadness 1 0 0 0 1 

Disgust 1 0 0 0 1 

 

Although it would be possible for an advanced user to select the settings in the Affect 

Configuration file to suit a particular task, in general, providing these defaults would be 

best left to the designer or administrator, as they would influence complex interactions 

within the module.   

Throughout mission execution, whenever emotion-eliciting stimuli information is 

received by the TAME Manager, it sends an update request to the Emotion component, 

TRAITS 

EMOTIONS 
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along with the stimulus strength data and current mood and trait values. Every time an 

update request is received by the Emotion component, the following steps are taken for 

each emotion:  

1. Calculate emotion generation variables: amplitude, maximum slope and 

activation point;:  

• Calculate trait-based emotion generation variables: amplitude (eq. 7 

and 8), slope (eq. 9 and 10) and activation point (eq. 11 and 12), as 

described in subsection 3.3.2.2.1, Personality Influence on Base 

Emotion Generation; 

• Calculate mood-based portion of the activation point variable, as 

described in subsection 3.3.2.2.2, Mood Influence on Base Emotion 

Generation, using eq. (13); 

• Calculate the overall activation point variable using equation (14), as 

described in subsection 3.3.2.2.3, Combined Personality and Mood 

Influence; 

2. Generate base emotion intensity taking into consideration the stimulus strength 

and emotion generation variables (equation (6), subsection 3.3.2.2, Emotion 

Generation). 

3. Update the emotion intensity in accordance with decay function and filtering, 

using equations (15) and (16), respectively, as described in subsection 3.3.2.3, 

Emotion Decay and Filtering; 

4. Pass the emotion intensity values to TAME Manager after they have been 

updated.  

The pseudocode for Emotion update can be found in Appendix L.1. 
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5.1.1.3 Mood Component 

The Mood component maintains the levels of Positive and Negative moods based on 

the perceptual information regarding environmental and internal conditions obtained 

through the TAME Manager. The values of each mood are updated continuously 

throughout the execution whenever new environmental/internal condition levels are 

relayed to the Mood component by the TAME Manager; the updated levels are then 

passed back to the TAME Manager.  

During the software design, a slight variation in how the base mood is calculated was 

made: a weighted average of all environmental and internal conditions which are of 

relevance to a particular mood is used (eq. 35) as opposed to a weighted summation of 

these influences (eq. 18, subsection 3.4.2.1, Mood Generation). This was primarily done 

for computational simplicity, and does not affect the overall design. In this case, the base 

mood level is calculated not within the Mood component itself, but is rather assigned the 

overall environmental/internal conditions level computed as a weighted average by the 

Stimuli Interpreter (subsection 5.1.3, Stimuli Interpreter). Once the base mood is once 

assigned, a sliding window averaging filter is applied to it, to smooth the effect of any 

sudden changes in conditions.  

In addition to maintaining the mood levels, the Mood component also temporarily 

adjusts the trait intensities. Originally, the Mood component was designed to produce a 

direct, albeit small influence on behavioral parameters (subsection 3.4.3, Influence on 

Behavior), while traits specified the base parameters to be used for the entire mission. 

However, for computational simplicity, a deviation from the original framework design 

was made, without the loss of generality. In particular, given that both mood and traits 

affect the same set of behaviors, and there is a strong connection between mood and 

personality, the changes in mood are reflected in the personality bias, which in its turn 

biases the robot’s behavior. The differences between the original computational design 
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and the software architecture are depicted graphically in Figure 36: the original design is 

presented on top, showing a large direct influence by traits, and a small, incremental 

influence by moods; the modified design is presented on the bottom, showing moods 

influencing the behavior through traits. In this design, trait values need to be 

continuously adjusted as mood levels change, in accordance with psychological findings 

on correlations between Positive and Negative affect and Big 5 personality traits ([4]).   

 

Figure 36: Top: original design, where both traits and moods produce a direct effect on 
behavior. Bottom: modified design, where influence the behavior indirectly, through 

biasing traits 

The correlations between mood and personality [4] are summarized in Table 15: 

Table 15: Correlations between mood and personality (from Watson [4]) 

  
O 

Openness 

 
A 

Agreeableness 

 
C 

Conscientiousness 

 
E 

Extraversion 

 
N 

Neuroticism 
Negative Weak, 

Direct 
Strong, 
Inverse 

Weak, Inverse None Strong, 
Direct 

Positive Weak, 
Direct 

Weak, 
Direct 

Moderate, 
Direct 

Strong, 
Direct 

None 

 

TRAITS 

MOODS 
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Thus, we could say that an individual in a highly negative mood becomes temporarily 

more neurotic and less agreeable. Both the direction (inverse or direct) and strength 

(ranging from Strong to None) of this influence of moods on traits is taken into 

consideration during the calculating this adjustment. Also, as moods are subtle by 

nature, the change in trait intensity they produce should be kept within a small range. 

The change ijT∆ exerted by mood i onto trait j is computed as follows:  

j
upperjij

ij
ij M

moodr

magnitude
T

,*

*2
=∆  

 
(33) 

where ijT∆ is the magnitude of adjustment mood j produces on trait i, ijr  reflects the 

direction of the relationship: direct (1) or inverse (-1), jM is the current level of mood j, 

upperjmood ,  is the upper bound for mood j, and ijmagnitude describes the relative overall 

strength of the correlation between mood j and trait i within the bounds icσ . In our 

implementation, we discretized this space into 4 possible values: none, weak, moderate, 

and strong, and assigned the following values:   
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(34) 

where icσ  bounds the range within which this adjustment can take place, through the 

number of Standard Deviations of Mean for trait i. For example, the user could specify 

that the desired range of change should be within +/- 1 SD of the base trait value, then 

icσ = 1 iσ .  

The Affect Configuration file (Appendix J) specifies both the direction (r) and strength 

of the adjustment as a percentage, as well as the desired range icσ . Figure 37 provides 

a portion of the file showing the settings for Negative Mood. 
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Figure 37: Settings for Negative Mood from a sample Affect Configuration file 

Overall, the steps taken by the Mood component every time the TAME Manager 

requests an update (providing the most recent average level of environmental/internal 

influences) are as follows: 

1. Assign the received environmental/internal condition level to base mood level for 

positive and negative moods (eq. 35 is used to generate conditions level in the 

Stimuli Interpreter); 

2. Apply a weighted averaging filter to the updated base mood intensities; 

3. Calculate the bias that mood exerts on each personality trait (eq. 33 and 34); 

4. Pass both the updated mood levels and the temporary trait values to TAME 

Manager. 

The pseudocode for Mood update can be found in Appendix L.2. Additionally, under 

the Samsung TAME project, an extension of the Mood component was completed to 

include circadian mood changes (Park et al. [167]), but it is beyond the scope of this 

dissertation.  

<RangeSD> 1 </RangeSD>  // +/- SD range for mood adjustment ( icσ ) 

 
<NegativeMood> 
   <DependencyForTrait_O> 1 </DependencyForTrait_O> // direction r 
   <DependencyForTrait_C> -1 </DependencyForTrait_C> 
    <DependencyForTrait_E> 0 </DependencyForTrait_E> 
    <DependencyForTrait_A> -1 </DependencyForTrait_A> 
    <DependencyForTrait_N> 1 </DependencyForTrait_N> 
    <InfluencePercentForTrait_O> 0.2 </InfluencePercentForTrait_O> // relative 
strength of influence of negative mood on Openness  
    <InfluencePercentForTrait_C> 0.2 </InfluencePercentForTrait_C> 
    <InfluencePercentForTrait_E> 0 </InfluencePercentForTrait_E> 
    <InfluencePercentForTrait_A> 0.9 </InfluencePercentForTrait_A> 
    <InfluencePercentForTrait_N>0.9</InfluencePercentForTrait_N> 
</NegativeMood> 
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5.1.1.4 Attitude Component 

The Attitude component generates appropriate attitudes towards attitude-inducing 

objects via case-based reasoning methods. A case library maintains a collection of 

cases for which attitudes towards certain objects are known; these cases are different 

for each user interacting with the system. Whenever a robot encounters an attitude-

invoking object, it compares it to all cases in the library, selects the best matching case, 

and displays an emotion generated based on the retrieved attitude. If a user is present 

and willing to give feedback on how well the displayed emotion matches the user’s, a 

new case reflecting the user’s input is stored in the case library. The overall software 

flow for the Attitude component is provided in Figure 38. 

The Affect Configuration file (Appendix J) contains a number of variable parameters 

used in this case-based reasoning process, such as:  

• Similarity threshold (for similarity score calculation); 

• Specificity factor (between 0 and 0.15: the lower the specificity factor, the more 

general the best case; used for similarity score calculation, see subsection 

3.5.2.2.2., Retrieval); 

• Case selection mode (highest similarity score, random roulette or highest 

ranking; subsection 3.5.2.2.2., Retrieval); 

• Revision marker, which specifies whether or not the revision and retention stages 

involving user interaction should take place. 
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Figure 38: Software Flow diagram for Attitude Component 

Throughout execution, whenever an attitude-invoking object data are received by the 

TAME Manager, it sends an update request to the Attitude component, along with the 

object data. The Attitude component performs the following steps whenever an update 

request is received:  

1. Retrieve the case that best matches the object present from the case library (as 

described in subsection 3.5.2.2.2, Retrieval) 

• Calculate a similarity score for every case (equations 26 and 27); 
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• Discount similarity scores according to specificity factor to overcome 

overgeneralization bias (eq. 28); 

• Identify the cases with a score above the similarity threshold; 

• Select the best matching case using one of the case selection modes; 

2. Reuse (apply) the best case – pass the attitude-based emotion strength stored in 

the case to the Emotion Component via the TAME Manager for corresponding 

emotion generation; 

3. If Revision/Retention stages are desired, and a user is present: 

• Revise the case if the user disagrees with the attitude displayed by 

the robot (equation 29); 

• Retain the case if the object is different from the one stored in the best 

matching case; 

• Update the weighing scheme used in calculating the similarity score, 

as described in subsection 3.5.2.2.5, Retention, equations (30-32). 

The pseudocode for Attitude update is available in Appendix L.3. 

5.1.2 TAME MANAGER AND TAME COMMUNICATION MANAGER 

TAME Manager is the central module in the system, and runs as a threaded process 

to manage all the affective components. It receives processed perceptual information 

from Stimuli Interpreter (via TAME Communication Manager) and sends an update 

request to corresponding affective components. This request includes relevant 

perceptual data (processed as emotion-eliciting stimuli, environmental/internal 

conditions, or attitudinal objects) and/or necessary values of certain variables from other 

affective components. For example, if stimulus strength for an emotion-eliciting stimulus 

is received, then Emotion Update request is sent by TAME Manager. These update 
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requests return updated values for corresponding affective variables, such as the Joy 

variable in the Emotion component or the Negative Mood variable in the Mood 

component; these variables are called the TAME variables in the system. Once the 

TAME Manager receives the updated values of the TAME variables, it relays them to 

Robot Controller via TAME Communications Manager (see Figure 34 for overall data 

flow, and Appendix L.4 for pseudocode).  

TAME Communication Manager is a separate thread that is responsible for receiving 

sensor data from the robot and relaying them to Stimuli Interpreter, and then passing 

appropriately processed sensory information into TAME Manager. It also receives the 

most up-to-date values of the TAME variables from TAME Manager and communicates 

the information to the Robot Controller (see Figure 34 for data flow, and Appendix L.5 

for pseudocode).  

To maintain platform- and architecture-independence of the TAME module, 

behavioral arbitration and any changes to behavioral parameters according to different 

affective states are performed on the robot controller side. By avoiding direct 

manipulation of behavioral parameters within the TAME module, the design of the 

affective system also allows for greater portability. On the robot side, depending on the 

capabilities of a particular platform or specifics of a robotic architecture, corresponding 

affective behaviors can be implemented in either continuous or discrete manner.  

In the continuous case, affect can be expressed through a number of methods:  

• by linearly mapping emotion and trait intensities onto behavioral parameters, or 

velocity and expansiveness of gestures and posture, in a manner similar to that 

described in subsections 3.2.2.2 (Determining Robotic Behavior using 

Personality Traits) and 3.3.3.1 (Mapping from Emotions to Emotion-Specific 

Behaviors) of this dissertation;  
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• through behavioral overlay method proposed by Brooks et al. [168]; 

• by direct mapping of emotion intensities onto an animated robot face in 

accordance with Ekman’s FACS [41, 55]; 

• or by using other continuous mapping methods, e.g., the one presented by the 

designers of Robovie [56].  

In the discrete case, multiple variations of differing in intensity affective expressions 

(gestures/body movements/posture) can be designed on a robot a priori, and then an 

appropriate expression can be selected based on the actual value of a TAME parameter. 

This method is especially useful in cases where it is not feasible or prohibitively time-

consuming to provide a smooth, safe trajectory for body movements, and a simpler 

discretized mapping is called for. Figure 39 illustrates this method for emotional 

expressions: 3 levels of emotional intensity (high, medium and low) are mapped 

respectively to 3 different variations of Joy expression (intense, moderate and subdued). 

This discrete approach to affect/behavior mapping was implemented on a humanoid 

robot Nao for this research. 

 

 

 

 

 

 

 

Figure 39: A schematic view of the discrete approach to affect/behavior mapping: three 
levels of Joy intensity are mapped to three types of Joy expression programmed a priori. 
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5.1.3 STIMULI INTERPRETER 

The title “Stimuli Interpreter” is somewhat of a misnomer, and is used here for 

brevity; in addition to emotional stimuli, the component also processes perceptual 

information relevant for moods (environmental and internal conditions) and attitudes 

(attitude-inducing objects). Stimuli strengths of emotion-eliciting objects and overall 

environmental and internal condition levels for moods are determined in the same 

general manner, using a weighted average approach. The method replaces both 

stimulus strength calculation for emotion generation (described earlier as a complex 

combination of cues and properties, subsection 3.3.2.1, Eliciting Environmental Stimuli) 

and base mood calculation (described earlier as an additive combination of 

environmental and internal conditions; subsection 3.4.2.1, Mood Generation) in order to 

reduce computational complexity and promote generalizability of perceptual processing. 

A Stimuli Configuration file provides contextual information for interpretation of 

incoming perceptual data, and allows for flexible adaptation to different types of 

environments and available sensors. For each emotion and mood the file provides a 

scaling/weighting factor for each available percept, which specifies 1) whether the 

percept is relevant for generation of a particular TAME variable (0 signifies no influence), 

2) a scaling constant to bring different percept types within the same range; and 3) 

percept’s relative weight (see Figure 40 for a portion of the file specifying Interest 

stimulus settings). An annotated sample Stimuli Configuration file is provided in 

Appendix K. The following default settings are supplied in this file:  

• Number of available percepts; 

• A combination scaling/weighting variable for each percept for each emotion and 

mood to bring different sensor data types within the same range and to specify 
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relative importance of each. Setting this variable to 0 signifies that this particular 

percept is not relevant for stimuli strength/condition level calculation; 

• An overall scaling (mapping) variable for each emotion and mood. 

 

 

 

 

 

Figure 40: A portion of Stimuli Interpreter file specifying stimuli settings for fear 
generation 

As emotions are invoked in response to specific stimuli, certain object properties are 

used for stimulus strength calculation. These properties may correspond to 

preprocessed incoming sensor data, such as distance, size, approach angle and 

acceleration, or color of an object; they can also include more abstract properties, such 

as friendliness or disapproval of a person. The Stimuli Configuration file (Appendix K) 

specifies which of these are relevant for generating a particular emotion, the scaling 

factors necessary for normalization purposes and relative weights for each percept. For 

example, for fear, object size and speed of approach may play a larger role, whereas an 

interacting person’s personal attributes may be more important in case of joy. It should 

be noted that objects are processed sequentially, and only one stimulus strength is 

calculated at a time.  

For moods, incoming external and internal sensor data can include battery level, 

internal and external temperature, brightness and noise level, and other potential 

influences. For example, positive mood is more susceptible to energy consumption, and 

negative mood to lighting conditions; these differences are reflected through assigning 

<Interest> 
  <MappingFactor>1</MappingFactor> // overall scaling factor for fear 
  <Stimulus0>5</Stimulus0> 
  <Stimulus1>0</Stimulus1> 
  <Stimulus2>21</Stimulus2> 
  <Stimulus3>-7</Stimulus3> 
  <Stimulus4>0</Stimulus4> 
</Interest> 
… … … 

Scaling/weighting 
factors for each type of 
percept 
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appropriate weight for each in the configuration file. Finally, for attitudes, an object 

identifier is used (such as an AR marker), which encodes specific object attributes, e.g., 

color, size, shape, category and material. 

Throughout execution, the Stimuli Interpreter continuously monitors the data from the 

robot controller (passed via TAME Communication Manager) for relevant perceptual 

information. If, according to the settings specified in the Stimuli Configuration file, the 

incoming data are relevant, the output is calculated based a weighted average method.  

The weighted averaging method is appropriate for most situations, as it reflects the 

relative impact of all relevant object properties of a stimulus for emotions or 

environmental and internal conditions for moods. The equation for this method is as 

follows:  

N

gp
rs

N
j ij

ii

∑ =
=

1
 (35) 

where si is the resultant stimulus strength/condition level value for generating TAME 

variable i, ri is the overall scaling factor for si, N is the number of relevant percepts 

currently present affecting i, pj is the raw value of a relevant percept j, and gj is the 

scaling/weighting factor for pj. 

Figure 41 provides an illustration of perceptual processing performed by Stimuli 

Interpreter. In this figure, according to Stimuli Configuration settings, P3 percept is the 

only one relevant for calculating stimulus strength for Fear, and a weighted average of 

percepts P1, P2, and P5 is used to produce the stimulus strength value for Joy. 

As the output, the component provides overall stimuli strengths for emotion 

generation, condition levels for mood updating, and object attributes/object identifier for 

attitude determination (currently, an object ID is derived on the robot controller side and 

passed to the Stimuli Interpreter). 

The pseudocode for Stimuli Interpreter is available in Appendix L.6. 
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Figure 41: A schematic illustration of Stimuli Interpreter 

5.2 IMPLEMENTATION 

The TAME Module was incorporated into MissionLab, a Multiagent Mission 

Specification and Execution robotic software toolset [157, 169]2, and tested on 

Aldebaran Robotics’ Nao humanoid platform (Figure 42). This robot is capable of biped 

locomotion, has 25 degrees of freedom, and is equipped with Ultrasound sensors, a 

video camera, 4 microphones, Wi-Fi, LEDs and bumpers.  

 

Figure 42: Aldebaran Robotics’ Nao humanoid robot (source Aldebaran Robotics) 

                                                 
2 MissionLab is freely available for research and development and can be found at http://www.cc.gatech.edu/ai/robot-

lab/research/MissionLab/ 
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5.2.1 MISSIONLAB OVERVIEW 

The MissionLab system is based on a version of AuRA (Autonomous Robot 

Architecture) [170]; this hybrid architecture consists of a low-level schema-based 

reactive behavioral control system combined with a high-level deliberative component. 

On the reactive level, a robot’s control program consists of a collection of behaviors and 

coordination mechanisms. Primitive behaviors have a set of defining parameters (e.g., 

obstacle avoidance sphere-of-influence) and these behaviors can themselves be 

combined into behavioral assemblages, where each of the primitive behaviors’ outputs 

are weighted and combined, resulting in coherent motor actions. On the deliberative 

side, the task FSA (Final State Acceptor) specifies the transition function for temporal 

sequencing of the task-related behaviors directly affecting robot movement. 

MissionLab allows an operator to easily create and configure a multi-robot mission 

using a graphical user interface. An operator uses the Configuration Editor (cfgEdit) to 

specify a mission using a graphical representation of an FSA [171]. In FSA 

representation, a mission is composed of a combination of various actions (behaviors) to 

perform, and perceptual triggers act as conditions for moving from one action to the 

next. In Figure 43, an example of a back-and-forth robot mission is shown, in which 

robot moves between two specified locations.  

The resulting mission is translated into C++ code and compiled to make Robot 

Executable. Then, it can be deployed on a wide variety of simulated and real robot 

platforms, and the operator can monitor the execution of the mission in real-time using 

mlab GUI display. HServer [169] is a control interface to a variety of robotic hardware, 

and it is separate from Robot Executable to enable more flexible coordination with 

different robotic platforms, such as in this case Nao robot. 
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Figure 43: An FSA showing a back-and-forth robot mission 

5.2.2 INTEGRATION WITH MISSIONLAB AND NAO ROBOT 

Figure 44 presents a graphical view of the integration. Here, HServer acts as a 

bridge to the Nao robot to communicate between Robot Executable (which contains the 

actual control code for the robot’s current mission) and the TAME Module (see Figure 

34 for the module software architecture).  

 

Figure 44:  Architectural view of the TAME Module integrated with MissionLab and Nao 
humanoid robot. 
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In HServer, an interface for the Nao robot has been created using Nao’s API for 

hardware control. When Robot Executable is in a certain behavioral state within a given 

mission, the generated motor commands are transmitted to HServer, which controls the 

Nao robot at the hardware level. HServer also continuously receives perceptual data 

from the robot; for example, Nao provides distance to object and object color (for 

emotion elicitation), brightness and battery levels (for mood generation), and video 

stream from which an object ID (for attitudes) is extracted in HServer. Upon receiving the 

data, HServer sends them to both Robot Executable and the TAME Module. Robot 

Executable needs the sensor data for performing certain behaviors and for determining 

when to transition from one state to the next in the mission. When sending the sensor 

data to the TAME Module, HServer organizes the data according to perceptual types 

(e.g., distance, color, brightness, etc.), and sends each type of sensor data with a unique 

ID.  

The TAME Module interprets each datum in context using its Stimuli Interpreter (as 

described in subsection 5.1.3, Stimuli Interpreter) and then the updated values of its 

TAME variables are calculated accordingly. Robot Executable the up-to-date values of 

the TAME variables, which are updated at 3 hertz (to ease computational burden) by the 

TAME Module. These variables influence the robot’s behaviors by changing appropriate 

behavioral parameters or selecting from a predefined set of expressive affective 

behaviors. For example, as Negative Mood level rises in response to growing darkness, 

the corresponding raise in the Neuroticism level triggers an expressive behavior 

displaying signs of Negative Mood (nervousness and anxiety).  

5.2.2.1 Affective Components 

All of the affective components have been implemented and tested on a Nao Robot; 

the Mood, Trait and Emotion components were used in HRI experiments described 

subsequently in Chapter 6.  To provide a user with a visual representation of a robot’s 
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current affective state at run-time, charts displaying emotion and trait intensities over a 

set period of time have been added to MissionLab’s run-time interface, Mlab. Figure 45 

presents a screenshot displaying a robot’s emotion level.  

 

Figure 45: A screenshot of Emotion Intensities at run-time, displaying the values over a 
number of cycles. 

In addition, for testing purposes, an ability to manually change emotion and traits 

parameters at run-time was provided in Mlab (see Figure 46 for a screenshot). 
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Figure 46: A screenshot of emotion modification window 

A set of expressive behaviors for a number of affective phenomena was created and 

evaluated on the Nao robot. These behaviors and the results of the evaluation are 

presented in subsection 5.3. The implementation and testing of the Attitude Component, 

the only one not utilized in the HRI studies, is described below. 

5.2.2.1.1 The Attitude Component Implementation and Testing 

The Attitude Component was implemented according to the specifications proposed 

in subsection 3.5.2.2, Case-Based Attitudes. The process/dataflow view of attitude 

determination and learning is given in Figure 47, and the overall software flow diagram 

is presented in Figure 38 (subsection 5.1.1.4, Attitude Component). 
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Figure 47: Attitude Component Process View. Dashed line separates outside 
components. 

The Attitude Component maintains a case library which contains a set of cases 

unique to each user of the system. A case consists of an index vector, and an output 

valence vector of attitude-based emotion-stimulus strengths for the object of interest. 

The index vector is composed of User ID, to differentiate between users, and an Object 

Feature vector. Figure 48 provides a graphical representation of case structure. 



SOFTWARE ARCHITECTURE AND 

 

Figure 48

A set of ARToolkit markers
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48: A graphical representation of case structure

it markers serve as object identifiers and encode a variety of object 

features; a marker mapping table is maintained to be able to interpret these features. 

These markers simplify visual processing by providing easily recognizable patterns; a 

sample marker is shown in Figure 49.  

 

Figure 49: A Sample AR Marker 
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are relative rather than absolute; they range between 0 and 100 for computational ease. 
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For example, a car of a size 100 would not be the same size as a toy of a size 100 in 

absolute terms; rather, 100 would mean as large as cars generally go. The Color feature 

represents a continuous spectrum of rainbow colors (ROYGBIV), ranging from the 

shortest frequency (red) to the longest (violet).  See Table 16 for relative color mapping. 

Table 16: A mapping table for color and data value ranges 

Color Red Orange Yellow Green Blue Indigo Violet 

Range (up to) 14 29 43 58 72 86 100 

 

Shape, Material and Category are categorical features, and can be extended as 

desired. Object categories (namely, furniture, toy and car) were chosen for their 

capability of invoking attitudes and being likely to be encountered in everyday 

environments. Sometimes, certain features may not be applicable to an object (e.g., cars 

are not generally described in terms of cubes or cones), and sometimes, certain features 

may be hard to discern (e.g., it may not be possible to figure out whether a moving car 

has a cloth or leather interior, or a color may not be discernable in the dark); in both of 

these cases a feature is assigned a special value to mark it as ‘Not Applicable/Not 

Apparent’. In other cases, certain features may not play a role in attitude formation; in 

this case, they are assigned a ‘Don’t Care’ value. These special values are used 

differently during similarity score calculation. Once object features are related to an 

ARToolkit marker, they are combined into an index for case retrieval. Table 17 provides 

the actual values used for each feature and Figure 50 shows an object feature vector 

graphically. 

Table 17: Object Feature mapping table for Material, Shape and Category 

Material Shape Category 
Type Value Type Value Type Value 
Metal 0 Cone 0 Furniture 0 
Wood 1 Cube 1 Toy 1 
Leather 2 Sphere 2 Car 2 
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Table 17 (continued) 

Cloth 3 Pyramid 3 N/A -1 
Glass 4 N/A -1 Don’t 

Care 
-2 

Plastic 5 Don’t Care -2   
N/A -1     
Don’t Care -2     
 

 

Figure 50: A graphical representation of an object feature vector 

Table 18 shows an example of a marker mapping table, where a marker ID 

corresponds to a set of object features:  AR Marker ID 1 encodes an Orange Wooden 

Toy Sphere with a relative Size of 72 (out of 100). 

Table 18: An example of marker ID mapping table: Orange Wooden Toy Sphere with 
Size of 72 

Marker ID Size Color Category Shape Material 

1 72 23 1 2 1 
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The output vector of a case represents an attitude towards an object; the actual 

values for attitudes represent attitude-based emotion stimulus strengths. This allows for 

an emotion to be generated based on an experienced attitude alone. The positive and 

negative aspects of attitudes (e.g., love or hate) are expressed through corresponding 

positive (joy or interest) or negative (sadness, fear, disgust, and anger) generated 

emotions. Table 19 presents a sample case library of 3 cases. For example, the index 

for Case 1 consists of User ID 1, and a set of object features: a Red Leather Car of Size 

92; please note that for cars shape is not applicable (-1).  The output of the case shows 

high levels of Fear and Anger (7 and 8, respectively), and a low level of Sadness – 

signifying, perhaps, a strong dislike for large bright cars, mixed in with a bit of nostalgia. 

Table 19: Sample Case Library (first three cases) 

 Sample Case Entries 
Case ID 1 2 3 
User ID 1 1 1 
Size 92 10 56 
Color 13 35 80 
Category 2 1 -2 
Shape -1 2 3 
Material 2 5 0 
Fear 7 0 0 
Disgust 0 0 0  
Anger 8 0 0 
Sadness 2 0 6 
apJoy 0 9 0 
Interest 0 3 0 

 

To enable Revision and Retention stages, a simple GUI was created to solicit user 

input. Figure 51 provides a snapshot of the GUI dislike page, which allows a user who 

disagrees with the attitude displayed by the robot towards a presented object, and would 

like to specify a particular emotional output corresponding to his/her dislike. Snapshots 

of the rest of the GUI are presented in Appendix M. The user input GUI is initiated by the 

Attitude component if user input is desired, and is terminated once the input is received.  
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Figure 51: A Snapshot of Dislike Input Page 

For testing purposes, a case library was populated with 25 cases for a single user. 

26 alphabet ARMarkers (see Figure 49 for an example) were created, to allow for a total 

of 26 new objects. Retrieval and reuse were tested on 26 randomly generated object 

feature vectors, a subset of which was applied on the robot (in particular, those resulting 

in Joy and Fear), and the rest – in simulation. Revision and retention have been fully 

implemented, but not tested with actual users to date.  

Figure 52 presents a typical result of an initial match at similarity threshold of 0.7 

and specificity factor of 0.05. Please note that in the case with the highest similarity 

score feature Shape had a value of ‘Don’t Care’, the next highest had all but Material 

feature valued as ‘Don’t Care’ (i.e., the user dislikes anything plastic), and the third case 

had both Shape and Material as ‘Don’t Cares’. Figure 53 shows the best case selected; 

in this particular case, the one with the highest similarity score (although different case 

selection modes, such as random roulette and highest ranking were also implemented). 

 

Figure 52: An example of a typical initial match; threshold = 0.7, specificity = 0.05. 
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Figure 53: A screenshot of a sample final selected case. 

We have observed a clear effect of specificity factor on both the cases that make it 

into the initial match set, and the best case selected. For example, if we reduce the 

specificity factor to 0.0 (no correction for overgeneralization bias), then Case 16 (Plastic 

as the only available feature) becomes a clear winner with similarity score of 1 – as the 

object we are comparing it to is also plastic. This would be useful in cases where users 

have clear preference within each feature – e.g., red is the favorite color, and therefore 

anything red is a source of joy almost by default. However, for those who are prone to 

evaluate each object individually, an even higher specificity factor would be more 

appropriate. If we raise it to 0.1 for the small plastic cube toy in the example above, then 

only Case 11, the most specific one, makes the initial match.  

For the retention phase, where learning of a new weighting scheme occurs, we have 

used a lower threshold to increase the size of initial match, therefore increasing the pool 

of cases which may have similar outputs to the one the user chooses (see Figure 54 for 

an example). In this example, the case with the highest similarity score of 0.813 

suggests that the dominant attitude strength for a medium-sized blue plastic (vinyl 

interior) car should be Interest. Suppose the user disagrees with this output, and 

chooses Disgust instead. The initial match contains 3 cases where Disgust is dominant: 

cases # 16, 13, and 11. The feature with the least dissimilarity is Material – all three 
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cases have Plastic as the Material feature, whereas other features differ. Therefore, the 

weight of Material is incrementally increased (subsection 5.1.1.4, Attitude Component), 

suggesting that for this particular user and attitudinal output (Disgust) this feature may 

be more important than others.  

 

Figure 54: An example of an initial match set with a lower threshold; threshold = 0.5, 
specificity = 0.05 

5.3 ONLINE SURVEY ON RECOGNITION OF AFFECTIVE ROBOTIC BEHAVIOR 

In order to determine whether the affective behaviors implemented on Nao robot 

were correctly recognizable by potential users, an online survey was conducted. Testing 

the recognition is important not only for the purposes of testing the implementation, but 

also for the purposes of improving the quality and reliability of any HRI experiments 

employing these behaviors.  

5.3.1 DESIGN AND IMPLEMENTATION OF NONVERBAL AFFECTIVE BEHAVIORS 

For this survey, a set of specific affective robotic behaviors has been implemented in 

the integrated TAME Module. In designing these nonverbal behaviors we employed:  

• Kinesics – movement of the body either as a whole or in part; this includes 

general walking behavior, gestures, posture shifts, etc. 

• Static Postures – certain posture attributes are indicative of affective state, and 

are recognizable even without movement  
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• Proxemics – the distance maintained between interaction partners 

• Paralinguistic cues – voice qualities, such as pitch, pitch variation, speech rate 

and volume 

Although color does possess affective potential, color as an expression of affect has 

not been extensively researched by either psychological or robotics communities [172]; 

moreover, the same color can be indicative of multiple affective states – such as, red 

can be viewed as a sign of either anger or love and affection [173],  making the use of 

color for affect expression ambiguous.  Besides, the most prominent display of color in 

Nao robot is through LEDs in its eyes, and an informal evaluation showed that the use of 

eye color produced an unwanted result, making the robot look somewhat unnatural and 

strange to the observer. Finally, facial expressions were not used, because Nao 

humanoid lacks actuators in the face to produce variable expressions. 

The nonverbal displays for the following affective phenomena were implemented for 

this work:  

• Personality Traits: dimension of Extraversion, with individuals on one end of the 

scale characterized as outgoing, sociable, lively, assertive, and those on the 

opposite end as quiet, shy, withdrawn, passive and introverted.  

• Emotions: Fear and Joy. 

• Moods: Positive (high level), and Negative (high level).  

These robotic behaviors were videotaped as short scenarios for use in the online 

survey described below. The video clips are available online at 

http://www.cc.gatech.edu/ai/robot-lab/tame/index.html, under the Multimedia heading. 
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5.3.1.1 Nonverbal personality display 

The dimension of Extraversion was chosen for this work for two reasons: 1) it’s an 

interpersonal dimension of personality, and, as such, important for human-robot 

interaction 2) it has been successfully implemented in both computer-generated speech 

[174], and on a robotic dog Aibo [175], giving a precedent and a source of useful ideas.  

For the survey purposes, we implemented a short sequence of actions, which were 

the same for a highly extraverted and a highly introverted robot (at the opposite ends of 

the Extraversion scale): the robot walked up to a person, stopped some distance away, 

and engaged in a scripted dialogue with the person. To show distinction between an 

introverted and extraverted robot, we differentiated: kinesics (walking style and 

gestures), proxemics, and paralinguistic cues. 

 From a kinesics point of view, extraverts use larger, faster and more frequent body 

movements than introverts [176, 177]. Additionally, extraverts are characterized by 

boldness, friendliness and a positive disposition. Therefore, we programmed the 

extraverted Nao to have a more erect posture, raised head, swinging arms during 

walking, and more frequent and expansive gestures during the conversation. In 

particular, extraverted Nao uses an above-the-head waving gesture in greeting, raises 

both arms shoulder length while praising the weather, and makes an open hand gesture 

at the end, whereas its introverted counterpart only raises its arm chest-high in greeting, 

keeps its head down during introduction, and its arms along the body at the end. 

In terms of paralinguistic cues, [174] found that manipulating pitch, pitch range, 

speech rate and volume via a TTS engine (CSLU toolkit [178]) allowed them to 

successfully produce recognizable introverted and extraverted synthetic voices, where 

extraverted speech was louder, higher and more varied in pitch, and faster.  We used 

the same toolkit to produce introverted and extraverted speech according to the 

suggested variations [174]. In addition, being talkative is a defining characteristic of an 
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extravert, therefore in the script Extraverted Nao produced more phrases than 

Introverted Nao (5 vs. 3). 

Finally, from a proxemics perspective, as introverts are described as aloof and 

reserved, the introverted Nao stops father away from its interaction partner than does 

the extraverted Nao. 

Figure 55 displays the ending poses for extraverted (left) and introverted (right) Nao. 

Although static poses are not sufficient to recognize the level of Extraversion, they are 

indicative of the general trend we followed; in particular, please note the difference in the 

head level, arm position, and distance from the camera.  

 

 

 Figure 55: (Left) Ending pose for extraverted Nao. (Right) Ending pose for Introverted 
Nao. 

5.3.1.2 Nonverbal emotion display 

Emotions of Joy and Fear were selected due to the importance of the functions they 

perform for interpersonal communication. Joy’s affiliative function strengthens mutual 

bonds and attachment, making interaction more pleasant, and fear communicates 

potential danger and serves as a warning signal.  
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Several researchers from fields of Psychology, Communication and Computer 

Animation identified certain characteristic aspects for expression of these emotions. Our 

design for body language for fear and joy was guided by the following findings:  

• According to Atkinson [179], expression of fear almost always involves moving 

away from the contact point, contracting or cowering movements, often including 

raised hands, especially in front of the face. Wallbott [180] suggests that fear is 

manifested nonverbally by an individual’s crouching down, shrinking, with arms 

violently protruding as if to push away and head sinking between shoulders.  

• Happy expressions often include raising the arms, accompanied by shaking of 

the fists [179], jumping and dancing for joy, clapping hands, performing various 

purposeless movements, and holding body erect and head upright [180]. Also, 

Coulson [181] provides a picture of a static posture for joy, displaying a stick 

figure standing upright, with straight arms raised up and to the side overhead.  

As these manifestations of emotions are rather prototypical, only a short sequence of 

movements was required to encode them on Nao. For joy, when presented with a 

desirable object, Nao opened its palms, lifted its head up, raised arms overhead and to 

the side, and emphasized the latter movement by bending the arms at the elbows and 

straightening them again, as if shaking them. For fear, when a loud sound was heard, 

Nao crouched low to the ground, lowered its head down, and placed one hand in front of 

the face, as if covering it. Figure 56 presents the static poses for Fear and Joy. 
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Figure 56:  (Left) Static pose for Joy (Right) Static pose for Fear 

5.3.1.3 Nonverbal mood display 

Only limited information could be found on nonverbal display of moods. According to 

Mehrabian [182], distress can be characterized by an increase in percentage of walking 

and object manipulation, and greater arm position asymmetry; anxiety is expressed 

through fidgeting or hiding movements [173]. The design of positive mood expression 

was guided by descriptive adjectives taken from PANAS-T (positive/negative 

emotionality measure, or “mood”) questionnaire [162], such as ‘happy’, ‘excited’, 

‘attentive’, ‘enthusiastic’, and others. 

The expression of mood in Nao was mainly achieved through gestures and posture 

while walking. To show highly positive mood, the robot walked with body erect, head up, 

arms rhythmically swinging; after a few seconds, the robot stopped and enthusiastically 

waved with its hand, with an upraised arm overhead. To show highly negative mood 

(nervous, scared), the robot walked with its head lower down, periodically turning the 

head left and right as if looking for threats, with fists opening/closing, and wrists turning; 

for the video clip, the robot started out a neutral walk, then, as the lights were dimmed, it 

stopped to scan the environment first, and then continued its “anxious” walk, as 
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described earlier. Although photographs do not do justice to the expression of mood, 

they still convey the general idea (Figure 57). 

 

Figure 57: (Left) Static segment for Positive Mood: confident and energetic. (Right) 
Static segment for Negative Mood: fidgety and dejected. 

5.3.2 SURVEY DESIGN AND RESULTS 

5.3.2.1 Design 

In order to test the recognition of the nonverbal affective behaviors, we designed an 

online survey in which participants were asked to judge 6 short video clips according to 

the manner the robot behaved in them (the video clips are available online at 

http://www.cc.gatech.edu/ai/robot-lab/tame/index.html, under the Multimedia heading). 

The survey objective was to determine whether participants without significant robotics 

experience can correctly recognize the affective state or trait presented in each clip via 

nonverbal behavior. The video clips were organized according to the affective 

phenomena they represented, into 3 sets (traits, moods, emotions), with 2 clips per set 

(Extraverted/Introverted personality, Positive/Negative mood, Joy/Fear). The sets and 

the clips within the sets were counterbalanced to avoid presentation order bias. The 

survey was IRB-approved, and hosted by SurveyGizmo, an online survey company. The 

screenshots of the survey as presented to participants online can be found in 

APPENDIX N. 
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 After each clip was presented, the participants were asked to describe the manner 

in which the robot behaved in the video in their own words, and only on the next page 

they were given a list of adjectives/nouns for rating.  

In particular, for Extraversion/Introversion set, the Extraversion subset of the brief 

version of Goldberg’s Unipolar Big-Five Markers [163] (personality questionnaire) was 

used. The participants were asked to rate the robot behavior in the clip using a 9-point 

Likert scale (ranging from “Extremely Inaccurate” to “Extremely Accurate”) according to 

the following traits: ‘extraverted’, ‘talkative’, ‘bold’, ‘energetic’, ‘quiet’, ‘bashful’, 

‘withdrawn’, ‘shy’. The first four traits describe extraverts, and the latter four introverts. 

To rate the recognition on the Positive/Negative mood set, a shortened version of the   

PANAS-T [162] (positive/negative emotionality measure, or “mood”) questionnaire was 

used. The participants were asked to rate the feelings the robot was experiencing in the 

clip on a 5-point Likert scale (ranging from “Very Slightly or Not at All” to “Extremely”) 

according to the following adjectives: ‘happy’, ‘active’, ‘excited’, ‘interested’, 

‘enthusiastic’, ‘determined’, ‘depressed’, ‘irritable’, ‘distressed’, ‘afraid’, ‘upset’, ‘nervous’.  

The first five adjective indicative of experiencing positive affect, and the last five 

negative. 

For the Joy/Fear set, the participants were asked to select the emotion most likely 

expressed by the robot in the clip (from the list containing ‘joy’, ‘fear’, ‘anger’, ‘disgust’, 

‘interest’,  ‘sadness’, ‘none’, and other); if an emotion (other than none) was selected, 

they were asked to rate the extent to which it was expressed on a 4-point Likert scale 

(ranging from ‘a little’ to ‘extremely’).  

At the end of the survey the users were asked a few demographics questions, such 

as their gender, age, education level, and technology and robotics experience. 
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5.4 RESULTS AND DISCUSSION 

A total of 26 people participated in the survey. Demographically, they were 

distributed as follows: 38% female, between 18 and 40 years old (69% in their twenties), 

and well-educated (88% had a Bachelor’s degree or higher). Only 4 participants claimed 

to have prior robotics experience. Due to missing data, one response was excluded in 

the analysis of personality display and 3 responses in the analysis of mood display. 

2-tailed paired T-tests were conducted to compare recognition of Extraversion and 

Introversion, and Negative and Positive moods. Overall, the results of the survey show 

that all of the affective constructs were successfully recognized. 

For judgment of personality, a single Extraversion score was calculated for each 

response, ranging from 1 (the least extraverted/highly introverted) to 9 (extremely 

extraverted). The average scores for Nao displaying extraverted/introverted behaviors 

were 7.1 and 3.6, respectively, and these scores were significantly different (p<0.001, 

see Table 20 for Mean and Standard Deviation and Figure 58 for Mean/SE plot).  This 

demonstrates that the affective behaviors added to even a limited robotic platform were 

sufficient to differentiate between expression of extraversion and introversion. The 

portrayal of this trait would be useful for different tasks – e.g., a museum guide could 

display friendly and engaging extraverted behavior, and a robot engaged in a human-

robot task requiring concentration would serve better as an introvert. 

Table 20:  Mean Scores and Standard Deviations for Personality and Mood 

 Extraverted 
Robot 

Introverted 
Robot 

Negative Affect/ 
Negative Mood 

Clip 

Positive Affect/ 
Negative Mood 

Clip 

Negative Affect/ 
Positive Mood 

Clip 

Positive Affect/ 
Positive Mood 

Clip 

Mean 7.1 3.6 15.6 12.3 8.6 21 

SD 1.1 1.2 4.5 4.1 4.1 4.8 
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Figure 58: Plot of Extraversion scores: extraverted robot was rated much higher on 
Extraversion dimension. 

For judgment of mood, a cumulative score was calculated for Negative and Positive 

Affect separately [162]; the lowest possible score was 6, and the highest possible 30. 

Each of the mood clips was scored for both Negative and Positive Affect. The robot 

displaying positive mood was rated low on Negative and high on Positive Affect; the 

robot displaying negative mood was rated medium on Negative and low-medium on 

Positive Affect (Table 20).  For the positive robot mood, Positive Affect score was 

significantly higher than that for the negative robot mood (21 vs. 12.3, p<0.001, Figure 

59 Left), and vice versa, its Negative Affect score was significantly lower than that of 

negative robot mood (8.6 vs. 12.3, p<0.001, Figure 59 Right).  The medium, rather than 

high, level of Negative Affect in the negative mood clip can be possibly explained by 

some participants’ interpreting ‘looking around’ gestures as indicative of curiosity and 

interest, and movements of fingers and wrists as a sign of being active and determined, 

as indicated by some open-ended responses; this finding should be taken into 

consideration while developing further nonverbal mood expressions. 
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Figure 59:  (Left) Plot of Positive Affect for both videos: the robot displaying positive 
mood was rated higher on Positive Affect. (Right) Plot of Negative Affect for both videos: 

the opposite effect is observed.  

 Finally, the recognition rates for emotions of joy and fear were high – 85% and 81%, 

respectively. These rates are comparable to those obtained in judgments of joy and fear 

portrayals by human actors in movie clips (facial features obscured), which were 87% 

and 91%, respectively [179]. Figure 60 shows the distribution of recognition rates for 

fear (left) and joy (right). In those responses where joy and fear were correctly 

recognized, they were deemed to be expressed “quite a bit”, with mean scores of 3.2 

and 2.9, respectively. Display of these emotions by robots, especially given the high 

recognition rates, serves as a step towards more natural, enjoyable and productive 

human-robot interaction. 

 

Figure 60:  (Left) Recognition rates for fear. (Right) Recognition Rates for joy. 
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These findings show that it is, indeed, possible to successfully encode a variety of 

affective expressions on a humanoid robot lacking variable facial features. These 

behaviors were used in subsequent HRI studies to test the effectiveness of use of 

robotic affect in facilitating interaction with humans. 

5.5 SUMMARY 

This chapter provided the groundwork for exploring the research question posited in 

the beginning: “Does integration of coordinated time-varying affective processes 

(namely, emotions, moods, affective attitudes and personality traits) into behavior-based 

robotic systems generate more effective robotic behavior from the human-robot 

interaction standpoint?” It also addressed the first subquestion in particular, by 

grounding the psychological and mathematical theory into a particular software 

architecture and robotic platform. Additionally, the work reported in this chapter provides 

an essential stepping stone for evaluating the TAME framework in formal HRI 

experiments.  

In particular, this chapter presented a software architecture embedding the TAME 

framework, described its integration into an existing robotic system (MissionLab) and 

implementation on a humanoid robot (Aldebaran Robotics’ Nao), and confirmed the 

recognition of a number of nonverbal affective robotic behaviors produced by the system 

by means of an online survey.  
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6 EVALUATING ROBOT AFFECT IN HRI EXPERIMENTS 

The TAME framework is intended as a first step towards natural, intuitive, beneficial 

and satisfying interaction between robots and humans, as robots become more and 

more prevalent in our lives. Therefore, this research would not be complete without 

formal HRI experiments designed to determine whether the inclusion of certain types of 

robot affect is beneficial and has a noticeable effect on potential users of this technology. 

Due to the complexity of the framework, a representative subset of TAME components 

has been selected for evaluation with a physical robot interacting with participants face-

to-face in formal HRI studies. This subset was chosen for the potential practical impact 

the selected affective manifestations might have on real-life tasks and scenarios 

involving autonomous systems.  

 This chapter presents two HRI experiments, one of which evaluates the effect of 

Negative Mood and Fear, and the other one assesses the value of the personality trait of 

Extraversion. Through these experiments, subquestion 2 of the research question is 

explored: “What are the implications for Human-Robot Interaction? Does complex 

affective robotic behavior lead to more natural, effective, and satisfying interaction 

between humans and robots?” Both subjective and objective metrics are used in these 

studies, providing a multi-faceted picture of the effect robot affect has on novice users; 

this aspect addresses the third subquestion: “What are the metrics for evaluating 

affective robotic behavior?”   

A number of lessons learned during the exploratory AIBO study were taken into 

consideration in the design and administration of these experiments:  

• In order to ensure that affective robotic behaviors used in these experiments are 

recognizable, an online recognition survey was conducted, in which participants 

were asked to identify expressions of Negative and Positive mood, Fear and Joy, 
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and Extraversion and Introversion from video clips (described in detail in 

subsection 5.3, Online Survey on Recognition of Affective Robotic Behavior). The 

clips pictured the same robot (Nao) and the same or similar set of nonverbal 

expressions that were used in the HRI studies described in this chapter. The 

results of the survey were taken into account during the design and 

implementation of the sequences of behaviors the robot performed in the actual 

experiments.  

• Extensive pilot testing was conducted prior to the start of the experiments, which 

resulted in iterative refinement of experimental tasks and setup, robot’s actions, 

experimenter’s script and evaluation measures.  

• The performance differences between the conditions were brought to a minimum: 

the only differences were those imposed by suitable affective behaviors, as 

intended. This was done to limit any confounding variables, and improve the 

quality of the results. 

• The affective expressions on the robot were exaggerated to increase recognition 

rates.  

• To the extent feasible, the number of participants per condition was increased. 

• Given the difficulty and time- and resource-consuming nature of the video 

analysis performed in the AIBO study, alternative objective measures, namely 

request compliance and task performance, were employed. 

6.1 EVALUATING EXPRESSIONS OF NEGATIVE MOOD AND FEAR IN A SEARCH-AND-
RESCUE SCENARIO 

Human are very well adept at reading nonverbal affective displays; in fact, they can 

recognize negative affective state from as short an exposure as 5 seconds [183] . This 
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ability is not limited to human expressions only: people are sensitive to even minimal 

social cues displayed by computers [12], and can recognize affective robotic behaviors 

from video clips of a humanoid robot [165]. This becomes particularly important in 

potentially hazardous environments and situations, where expression of fear may signal 

impending danger, and be more persuasive than words alone, in case an evacuation is 

required. Similarly, although on a more subtle level, the display of negative affect alerts 

individuals to unfavorable changes in the environment, and prompts them to be more 

vigilant. For this experiment, expressions of Fear and Negative Mood were chosen, as 

their impact in such situations could provide a practical benefit: for example, if perception 

of danger is based on sensor input not available through human senses, and a very fast 

response would be required to escape a possibility of a fatal incident. There were a total 

of three experimental conditions: Control (no affective expressions were displayed by the 

robot), Negative Mood, and Combined (the robot exhibited both Negative Mood and 

Fear). As it was deemed unlikely that a single expression of fear over a short time would 

be sufficient to invoke measurable response in participants, Fear Only condition was not 

considered in order to conserve resources.  

6.1.1 EXPERIMENT SCENARIO AND SETUP 

Search-and-rescue presents an example of such a potentially dangerous situation. 

For this experiment, the participant played a role of an inspector at a simulated partially 

stabilized site of a recent explosion, with a humanoid robot being his/her guide. During 

the “tour” of the site, the robot briefly described the accident, then shortly after noticed a 

potentially hazardous abnormality in the surroundings, and requested the participants to 

evacuate. The subjects were not aware that such a request would be forthcoming, and 

were not specifically instructed to either obey or disobey the robot. The robot interaction 

part, from the robot’s greeting to its request to “proceed to the exit”, lasted 2-3 minutes, 
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and the entire experiment, including filling out questionnaire, lasted approximately 25-30 

minutes. 

The study was conducted in the Mobile Robot Lab at the Georgia Institute of 

Technology, where the shorter end of an L-shaped basement lab was separated from 

the rest of the rest of the room with temporary partitions, creating a rectangular area with 

a single exit (see Figure 61 for a schematic view). The space was arranged to resemble 

a mock-up search-and-rescue site, with boxes, trash cans, foam and other debris 

scattered around; a pair of stand-alone construction lamps was positioned not far from 

the exit, and the site of “a recent explosion” was cordoned off by police barriers and 

bright-yellow caution tape. The exit (the same door through which participants entered) 

was clearly marked as such in large red lettering. A video camera was positioned in a 

corner to take footage of the participants’ movements, but not their faces. Special care 

was taken not to make the setup look appear exceedingly dangerous, so that the anxiety 

induced by the environment itself would not overwhelm the subjects’ response to the 

robot.  

 

 

 

 

 

 

 

 

 

Figure 61: Schematic view of Mobile Robot Lab and experimental setup. 
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The biped humanoid robot (Aldebaran Robotics’ Nao) used in this experiment is 

rather short (58 cm), and therefore a platform was placed in the middle of the setup to 

raise the robot closer to human eye level, so that people could observe it comfortably 

and perceive it less as a toy. In order to prevent the robot from accidentally falling off the 

platform, a 4’x8’ arena was constructed, in which 12 wooden poles were placed around 

the perimeter, with rope and planking around them at two height levels (just above the 

robot’s midsection at the highest level). Please note that robot could navigate only within 

the confines of the arena, and this fact was clearly evident to the participants. Figure 62 

provides the view of the setup from the entry point. 

  

Figure 62: Experiment setup: view from the entry point. 
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6.1.2 EXPERIMENT PROCEDURE 

This subsection describes the experimental procedure, from greeting a subject to 

providing compensation for participation (the experimenter’s script is provided in 

Appendix Q). After greeting the subject at the entrance to the building where the lab was 

located, he/she was first asked to read over and sign a consent form (Appendix O) and a 

video release form (Appendix P), allowing the researchers to use the video footage for 

publications. Next, the participant was asked to fill out Negative/Positive Affect 

questionnaire ([162]) to establish the baseline mood. Then, the participant was invited 

into the lab, advised that a recent accident caused a lot of damage to the farther corner 

of the lab and that he/she was assigned a role of a search-and-rescue site inspector. 

The floor next to the robot’s platform was marked with two red crosses, one at the corner 

closest to the entrance, and the other at the farthest end along the same side; these 

markers served both to specify the designated spot for participants to stand on (for 

repeatability), and as identifiers for processing the video footage. After a few seconds of 

“taking the scene in”, the participants were asked to proceed to the first cross marker; it 

was then explained that during the next few minutes the robot would be the participant’s 

guide. They were also asked not to touch the robot and to save any questions for later. 

The experimenter then informed the subject that the robot possesses sensors that can 

detect properties of the environment that are beyond human senses. After the 

explanation, the participants were asked to proceed to the second cross marker.  

At the beginning of the experiment, both the overhead lights and one of the 

construction lamps were on, and the robot was standing up on top of the platform, in the 

middle of the end of the arena closest to the entrance. Figure 63 provides the view from 

the position where the participants were located for most of the experiment (at the 

second cross marker).  
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Figure 63: Experiment setup: view from the participants’ position. 

Once the participants reached the designated spot, Nao began its “tour” of the site: 

• First, Nao greeted the subjects (to give them some time to familiarize themselves 

with the robot, and get used to its artificial speech). The greeting scene is 

depicted in Figure 64. The entire speech given by the robot during the tour can 

be found in Appendix R. 

• Then, Nao started walking across the platform towards the far end, while 

describing in brief the search-and-rescue site to the participant. At about midway 

point, the overhead lights went out.  

• After the lights went out, the robot stopped for 3 seconds (Figure 65), 

announcing that “this was unexpected”, and then continued with the tour.  
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Figure 64: Nao is greeting the participants; the overhead lights are on.  

 

Figure 65: Nao stopped; overhead lights are off. 

• At approximately 1.5 feet from the edge of the platform, the robot stopped and 

pointed towards the “accident site”, saying “Something is wrong”. 
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• After the pointing gesture, Nao turned towards the participant and said: 

“Inspector, the structural integrity of this site has been compromised, and we 

need to evacuate immediately”. This was the first time the robot mentioned the 

need for evacuation, and it will be referred to henceforth as an “indirect request” 

for participants to leave. 

• The robot then turned another 90 degrees, to face the exit, and said: “Please 

proceed to the exit”. This was the second (direct) request to leave.  

• Finally, Nao walked towards the exit for 6-7 seconds, and stopped.  

At this point, the participants were either at or beyond the first cross marker, were 

walking towards it, or just standing in the same place. When they stopped (or earlier, if 

they came all the way to the door), the experimenter informed them that the interaction 

part of the experiment was over, and a number of questionnaires to be filled out were 

waiting for them. The questionnaires (described in detail in subsection 6.1.4.2, 

Measures) were presented in the following order: mood questionnaire with regards to the 

participant, mood questionnaire with regards to the robot, post questionnaire, and 

demographics questionnaire. At the end, the subjects took part in a brief interview, and 

then were compensated for their time and effort. 

6.1.3 ROBOTIC IMPLEMENTATION 

Aldebaran Robotics’ humanoid robot Nao was used for this experiment; the 

behaviors and affective expressions were programmed as described in Chapter 5, 

Software Architecture and Implementation, using MissionLab and the integrated TAME 

module. The sequence of behaviors was put together as an FSA (Figure 66), and was 

the same for all three conditions; the behaviors in the sequence had a TAME Variable 

parameter, which was set as Neutral (for Control condition), Negative Mood (for Mood 

condition), or Negative Mood and Fear (for Combined condition). The corresponding 
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affective expressions were triggered by the change in lighting (Negative Mood), and a 

simulated stimulus (Fear). Originally, we intended to use a loud explosive noise as a 

stimulus, but decided against it to avoid any adverse reactions in the participants. 

 

Figure 66: FSA used for sequencing Nao’s behavior in the Search-And-Rescue 
experiment 

The expressions of Negative Mood were almost identical to those used for the online 

recognition survey. To reduce the reported confusion with a more energetic and curious 

demeanor characteristic of Positive Affect, the robot’s head was lowered even further, 

and the head turns to the side were faster and jerkier, to impart an impression of anxiety 

and vigilance, rather than interest and curiosity. The display of Fear was the same as in 

the survey (Figure 67). In both Mood and Combined conditions, the robot’s walk towards 

the exit was faster than in the Control condition, to suggest a sense of urgency.  
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Figure 67: Expression of Fear on Nao robot 

Additionally, paralinguistic cues were used to express Negative Affect and Fear 

through a synthesized male voice (speech was absent in the survey). For Negative 

Mood and Fear, the pitch was raised, and the rate of speech was increased [184] with 

the help of a TTS engine (CSLU toolkit [178]); the difference was more pronounced with 

Fear (“Something is wrong!” was the only phrase affected by fear, as emotions are short-

lived). Table 21 summarizes expressive differences between the conditions for each 

section of the robot’s “tour”.  

Table 21: Expressive differences between the conditions, Mood experiment 

Tour Section Control Mood Combined 

Before the 
overhead 
lights went out 

A basic medium-speed walk with slightly swinging arms; default TTS 
voice; no differences between the conditions 

After the lights 
went out, but 
before 
pointing 

No 
changes 
from the 
basic 
behaviors 

Head lowered down; hands 
clenching/ unclenching and  
wrists turning left or right 
periodically; fast head 
movements to the left and to 
the right, as if checking what 
was going wrong; higher-
pitched and faster speech. 

 

Same as Mood 
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Table 21 (continued) 

Saying 
“Something is 
wrong” and 
pointing 

No 
changes 

No bodily expressions; the 
speech is higher-pitched and 
faster than default. 

After the pointing 
gesture, the robot 
crouched low to the 
ground, lowered its head 
down, and placed one 
hand in front of the face, 
as if covering it; the voice 
was higher-pitched and 
faster than in the Mood 
condition 

Indirect and 
direct 
requests 

No 
changes 

No bodily expressions; the 
speech is higher-pitched and 
faster than default. 

Same as Mood. 

Walking 
towards the 
exit 

No 
changes  

Walking slightly faster than 
before 

Same as Mood. 

 

6.1.4 EXPERIMENT DESIGN 

The goal of this experiment was to identify the effect of display of mood (negative) 

and emotions (fear) by a humanoid robot on participants’ perception of the robot and on 

their compliance with the robot’s request, in the context of a mock-up search-and-rescue 

scenario. The study followed 1-factor between-subject design with three conditions: 

Control (no affective expressions were displayed by the robot), Negative Mood (the robot 

displayed sings of Negative Affect), and Combined (the robot exhibited both Negative 

Mood and Fear). The between-subject design was necessitated by the fact that this 

study relied on the element of surprise (the participants did not expect to be ordered to 

evacuate), which would be lost in within-subject design.  

6.1.4.1 Hypotheses  

The following formed the hypotheses for this HRI experiment: 

1. The interaction would be judged as more natural, persuasive and understandable 

in the mood and combined conditions, compared to control, and more so in the 

combined condition than in the mood condition. 
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2. The compliance with the robot’s request would be the least in the control 

condition, followed by the mood condition, and the most in the combined 

condition. We hypothesized that the expression of robot’s affective state would 

help the subjects assess the environment better and thus they would be more 

inclined to perform the robot’s request. 

3. The participants would experience greater Negative Affect in the mood and 

combined conditions than in control. 

4. The participants would be able to recognize the display of negative mood and 

fear by the robot. 

6.1.4.2 Measures 

Evaluation was performed using both subjective (a variety of questionnaires) and 

objective (compliance) methods with respect to the aforementioned study hypotheses.  

Hypothesis 1 was evaluated using three psychological scales designed for this 

experiment. Each scale consisted of 5 semantic differential subscales, where each 

subscale asked the respondent to indicate his/her position on a rating scale anchored by 

two bipolar words. The terms with negative connotation were placed on the left (at “1”) of 

each 5-point subscale, and those with positive connotation on the right (at “5”); thus, 

higher scores signify a more positive report. The subscales within a scale were designed 

to measure the same overarching concept, as evidenced in the following scales used in 

this study:  

• Understandability scale, designed to assess how understandable the robot’s 

behavior was (Figure 68); 

• Persuasiveness scale, designed to assess how persuasive the robot’s request to 

leave was (Figure 69); 
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Figure 68: Understandability Scale 

Figure 69: Persuasiveness Scale 

• Naturalness scale, designed to assess how natural the robot appeared to the 

participants. This scale combines a number of subscales of two overlapping 

1. In your opinion, the robot’s BEHAVIOR was:  

Confusing      Clear  

 

 

 

Unreadable      Easy to Read 

 

 

 

Inconsistent    Consistent 

 

 

 

Hard to Understand      Easy to Understand 

 

 

 

Inexpressive      Expressive 

 

 

 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1. In your opinion, the robot’s REQUEST TO LEAVE was:  

  Ignorable    Compelling  

 

 

 

Inappropriate    Appropriate   
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Unconvincing      Convincing 
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scales, Anthropomorphism and Animacy, presented in Bartneck et al. [80], and 

eliminates redundancy (Figure 70). 

Figure 70: Naturalness Scale 

 Hypothesis 2 was evaluated by analyzing the video footage with respect to the 

following metrics:  

• Whether a subject complied with robot’s request by moving towards the exit, and 

the relative distance he/she traversed with respect to the cross markers (see 

Figure 71 for location of the markers): 

o Moved to the first red cross marker, but not past; 

o Moved a little past the marker (subject still visible in the video); 

o Moved significantly past the marker (subject not visible in the 

video); 

1. In your opinion, the robot APPEARED:  

Fake      Natural 

 

 

 

Machinelike    Humanlike 

 

 

 

Unconscious    Conscious 

 

 

 

Artificial    Lifelike 
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• How fast the subject traversed the distance (how much time elapsed between the 

robot’s request to “proceed to the exit” and the subject’s reaching the first 

marker); 

 

Figure 71: Location of the markers (from camera footage). 

• How soon the participants reacted to the robot’s request: in some cases, they 

moved a few steps in response to the indirect request, and reached the closest 

quarter-point marker or beyond (see Figure 71 for marker location); 

To assess the participants’ mood (Hypothesis 3), an established psychological 

measure of mood PANAS-T (Positive/Negative Emotionality Schedule [162] was used 

(Appendix G), once before the experiment, and once right after the interaction part was 

over. 

Finally, the following measures were used to assess robot affect recognition 

(Hypothesis 4): 

Second red 
cross marker 

First red cross 
marker 

Quarter-point 
markers 

Mid-point marker 
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• The same mood questionnaire, PANAS-T (Positive/Negative Emotionality 

Schedule [162] (Appendix S), used previously to assess participants’ mood, only 

now with regards to the robot; 

• A post-questionnaire question, requesting that participants specify whether the 

robot exhibited any of the following 6 emotions during the experiment: Anger, 

Joy, Fear, Disgust, Sadness and Interest, on a likert-style scale ranging from 1 

(Not at all) to 5 (Extremely). 

Additionally, the extent to which the robot’s behavior affected the participants’ 

decision to leave was measured by a 5-point likert-style scale, anchored with “Not at All” 

at 1 and “Extremely” at 5. This question, the three aforementioned scales and the 

emotion recognition question were combined together into a single post questionnaire 

(Appendix T). An open-ended question regarding the overall interaction with the robot 

concluded the post questionnaire which was followed by a short demographics 

questionnaire (Appendix U). 

At the very end, the subjects were also requested to participate in a brief semi-

structured interview, designed to uncover any misunderstandings, unexpected opinions 

and systematic inconsistencies (Appendix V).   

6.1.5 ANALYSIS AND RESULTS 

A total of 48 people participated in the experiment. The data for two of them were 

excluded from the analysis due to poor English and inability to understand the robot; one 

participant could not complete the experiment due to a technical problem. After an outlier 

analysis, data of two more participants were excluded due to either an overly positive or 

overly negative bias: the cumulative score on the post-questionnaire scales was outside 

of +/- 2 Standard Deviations of Mean.  This left a total of 43 participants with valid 
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questionnaire data, 14 each in control and mood conditions, and 15 in the combined 

condition. 

6.1.5.1 Participant Demographics 

The participants were recruited by two methods: 1) through Experimetrix, a GA Tech 

undergraduate psychology experiment pool (the students who completed the experiment 

were given ½ class credit for 30 minutes of participation), and 2) through flyers/word of 

mouth advertising (Appendix W) on GA Tech campus ($10 Starbucks gift cards served 

as compensation). Not surprisingly, the majority of the participants were undergraduate 

(60%) and graduate (21%) GA Tech students, in their 20s or younger (81%), or in their 

30s (16%). In terms of gender composition, there were more males (60%) than females 

(40%), mostly equally distributed between the conditions (6 females each in control and 

combined conditions, and 5 in mood). The vast majority considered themselves either 

technical (67%), or somewhat technical (23%), and all of the participants were computer-

savvy, at least at the level of advanced user. Finally, most of them had either no (28%) 

or limited (47%) robot experience, with only 6 participants having had experience with 

more than one robot type. 

6.1.5.2 Hypothesis 1: Understandability, Persuasiveness and Naturalness 

1-way ANOVAs were performed on the scores of each scale and subscale 

(Understanding, Persuasiveness, and Naturalness) in the post-questionnaire.   

For Understandability, no significant differences at 0.05 level were observed either 

overall or for each individual subscale. Appendix X.1 provides descriptive statistics 

(number of cases, mean, Standard Deviation, and Standard Error) for Understandability 

construct. Overall, the participants found the robot’s behavior during the experiment 

fairly understandable (average score of 18.33 out of 25), and the affective robotic 

expressions did not add to or subtract from this assessment. One interesting observation 

is that the subjects also did not find the robot’s behavior in the affective conditions (mood 
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and combined) any more expressive than in the control (Meancontrol, expressive = 3.1, 

Meanmood, expressive = 3, and Meancombined, expressive = 3.7, Appendix X.1). 

For Persuasiveness, no significant differences at 0.05 level were observed overall; 

however, some differences on the subscale level were found (see Appendix X.2 for 

descriptive statistics).  

In particular, the differences between the conditions in the scores of Compelling and 

Sincere subscales were significant at 0.05 level, with Fcompelling = 4.1, p<0.023 and 

Fsincere = 3.3, p<0.47, respectively, and the difference between Convincing subscale 

scores was weakly significant at Fconvincing = 2.8, p<0.73. Post-hoc comparisons (Least 

Significant Differences test, LSD hereafter) were performed on these subscales to 

identify more specific differences between the conditions. It was found that:  

1. the robot in Mood and Combined conditions was perceived as more compelling 

than in Control (p<0.013 and p<0.023, respectively);  

2. the robot in Mood condition was viewed as more sincere than in Control 

(p<0.016); 

3. the robot in Combined condition was perceived as more convincing than in 

Control (p<0.025).  

Figure 72-74 show Standard Error/Mean plots for Compelling, Sincere and 

Convincing subscales, respectively. Overall, the robot’s request to leave was found to be 

rather persuasive (19.88 out of 25, as averaged between the 3 conditions). 
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Figure 72: Standard Error/Means Plot for Compelling subscale: participants in Mood and 
Combined conditions found the robot’s request the most compelling. 

 

Figure 73: Standard Error/Means Plot for Sincere subscale: participants in Mood 
condition found the robot’s request the most sincere. 
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Figure 74: Standard Error/Means Plot for Convincing subscale: participants in 
Combined condition found the robot’s request the most convincing. 

Finally, for Naturalness, no significant differences at 0.05 level were observed 

overall; however, some differences on the subscale level were found (see Appendix X.3 

for descriptive statistics).  

In particular, the difference between the conditions in the scores for Conscious 

subscale was significant at 0.05 level: Fconscious = 4.48, p<0.018. Post-hoc 

comparisons (LSD) revealed that the robot in Combined condition appeared more 

conscious than in Control, p<0.005. Figure 75 shows Standard Error/Mean plot for 

Conscious subscale. Overall, Nao in this experiment appeared neither natural nor 

unnatural (average score of 15.59 out of 25); however, the participants found it appeared 

particularly conscious (4.07 out of 5) in the Combined condition.  
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Figure 75: Standard Error/Means Plot for Conscious subscale: participants in Combined 
condition viewed the robot as more conscious than those in Control. 

Additionally, Pearson’s Correlation test revealed a significant correlation (2-tailed) at 

0.001 level between the scales of Persuasiveness and Naturalness (see Table 22 for 

results on all three scales), indicating that those who found the robot more natural also 

found its request to leave more persuasive. Interestingly, the same effect was not 

observed with Understandability, indicating that the participants did not connect their 

understanding of the robot’s behavior with either persuasiveness of its request or 

naturalness of its appearance. 
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Table 22: Correlations between the scales of Understandability, Persuasiveness and 
Naturalness: Persuasiveness and Naturalness scales are strongly correlated  

  Understandability Persuasiveness Naturalness 

Understandability Pearson Correlation 1 .097 .281 

Sig. (2-tailed)  .537 .068 

N 43 43 43 

Persuasiveness Pearson Correlation .097 1 .412
**
 

Sig. (2-tailed) .537  .006 

N 43 43 43 

Naturalness Pearson Correlation .281 .412
**
 1 

Sig. (2-tailed) .068 .006  

N 43 43 43 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

To summarize, although the respondents’ understandability of the robot’s behavior 

was not better in the affective conditions, the participants:  

1.  found the robot’s request to leave more compelling and sincere in the Mood 

condition than in Control; 

2. found the robot’s request more compelling and convincing in the Combined 

condition than in Control;  

3. rated the robot in the Combined condition as more conscious than the one in 

Control;  

4. in general, found the robot more Persuasive when it appeared more Natural. 

6.1.5.3 Hypotheses 2: Request Compliance 

Video recordings were available for 14 participants in Control and Mood conditions 

each, and for 13 in Combined (due to technical difficulties, two sessions could not be 

filmed, and were treated as missing data). To evaluate whether the subjects complied 



EVALUATING ROBOT AFFECT IN HRI EXPERIMENTS     CHAPTER 6 

 

 223

with the robot’s request better in the affective conditions, the available video recordings 

were analyzed in a number of ways:  

1. Time elapsed (in seconds) between the robot’s direct request to leave, “Proceed 

to the exit”, and the moment of subject reaching the first cross marker was 

calculated, and 1-way ANOVA was performed on this variable (called “Time To 

Cross” from now on). This metric shows how fast the participants reacted to the 

robot’s request; the marker was chosen as the end point because: 1) the 

subjects were already familiar with it (they were asked to stand on it in the 

beginning), 2) it signified the point beyond which the robot could not physically 

move, and 3) it was easily and reliably identifiable from video recordings. The 

ANOVA results were weakly significant, with FTimeToCross =2.61, p<0.09 (see 

Table 23 for means and SDs). 

Table 23: Descriptive Statistics for Time To Cross variable 

Dependent  

N Mean 

Std. 

Deviation Std. Error Variable Condition 

Time To Cross Control 11 6.7273 2.32770 .70183 

 Mood Only 12 5.4167 2.39159 .69039 

 Mood and Emotion 11 4.0000 3.54965 1.07026 

 Total 34 5.3824 2.93376 .50314 

 

Post-hoc comparisons (LSD) revealed a significant difference between Control 

and Combined conditions, p<0.029, indicating that the participants in Combined 

condition took less time from the time the robot issued its direct request to leave 

until the time they reached the cross marker; Figure 76 presents this result 

visually. Finally, given that our original hypothesis predicted that the participants 

in either of the affective conditions would be faster, a planned orthogonal 
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comparison was performed, where the Control condition was compared against 

the average of both affective conditions (contrast coefficients used: -1; 0.5; 0.5). 

The result was significant at 0.05 level, p<0.044, indicating that together the 

affective conditions resulted in faster compliance. Overall, the participants took 

over a second less on average in Mood condition than Control (5.4 vs. 6.7, 

respectively), and over 2.5 seconds in Combined condition that Control (4 vs. 

6.7, respectively) to reach the cross marker.   

 

Figure 76: Standard Error/Means Plot for Time To Cross variable: participants in 
Combined condition took less time from the robot’s request to proceed to the exit to 

reaching the first cross marker. 

2. The relative distance the subjects traversed in response to the robot’s request 

was determined from video recordings. The distance fell into one of four 

categories: 1) the participants did not move at all or did not reach the first cross 

marker (“No Walk”); 2) the participants stopped at the first cross marker (“At 
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Cross”); 3) the participants went a little past the marker, but were still visible in 

the video (“A Little Past”); 4) the participants moved fully outside of the camera 

view, and had to be stopped by the experimenter (“A Lot Past”). Due to wide 

difference in the participants’ number in each of the categories, it was not 

possible to perform statistical analysis; however, Figure 77 presents the 

differences between the conditions graphically. As we can see, only half (50%) of 

those in Control condition went past the cross marker, whereas in the affective 

conditions this percentage was higher: over 70% in Mood condition, and over 

75% in Combined. This suggests that more participants in the affective 

conditions felt compelled to go further, thus complying with the request to a 

greater extent. 

 

Figure 77: Percentage distribution of relative distance. 

3. Finally, we noted at which point in time the participants started to react to the 

robot’s requests. As you may recall, there were two separate requests made by 

the robot to the same end: in the first one, the robot uttered a less direct phrase 

“We need to evacuate immediately”, and in the second one, the robot made a 

direct request: “Please proceed to the exit”. We observed an interesting 

phenomenon: not a single participant in the Control condition reacted to the first 

(indirect) request, whereas 29% (4 out of 14) of those in the Mood condition and 

31% (4 out of 13) of those in Combined took a few steps towards the exit after 
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the first (indirect) request, reaching or passing the closest quarter-point marker, 

and then stopped to wait for further instructions (most of them actually asked the 

robot what they should do next). This finding is displayed graphically in Figure 

78. It appears, therefore, that the robot’s expressive behavior in the affective 

conditions made the subjects more sensitive to the robot’s message, more alert 

and eager to act even in response to an indirect request. It should be noted that 

the actions taken by the robot and the wording were exactly identical in all three 

conditions.  

 

Figure 78: Percentage of participants who responded to robot’s indirect request to 
evacuate: almost a third of the participants in the affective conditions responded to the 

indirect request, while none in the Control condition did. 

To summarize, almost a third of the participants in the affective conditions seemed to 

respond to the robot’s indirect request (with none in the Control condition); and a larger 

percentage of them were willing to go further when requested to leave, than those in 

Control. Also, the subjects in the Combined condition took less time between the robot’s 

direct request and reaching the first marker than those in Control, suggesting a greater 

compliance, and even potential practical benefits, for example, in cases where mere 

time could make a difference between life and death.  
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6.1.5.4 Hypothesis 3: Participants’ Negative Affect 

It was hypothesized that the participants in the affective conditions will experience 

greater Negative Affect, as they might pick up on the anxiety and nervousness cues 

exhibited by the robot. To evaluate this hypothesis, a 1-way ANOVA was performed on 

the cumulative averaged Negative Affect score on PANAS-T test taken immediately after 

the interaction with Nao. The result was weakly significant (FNegativeAffectAfter = 2.58, 

p<0.081), and LSD post-hoc comparison revealed that the participants reported a higher 

level of Negative Affect in Combined condition than in Control (p<0.031); see Appendix 

X.4 for descriptive statistics.  

As PANAS-T includes multiple facets, some of which (e.g., depressed or hostile) are 

of no specific interest to this study, we also performed an ANOVA on more relevant 

facets. In particular, the difference between the scores of Nervous facet was significant 

at 0.05 level, with FNervousAfter = 4.71, p<0.015; and post-hoc LSD comparison showed 

that the participants in the Combined condition felt more nervous than in Control 

(p<0.004) after they interacted with the robot (Appendix X.4 and Figure 79). Those in 

Control and Mood conditions reported feeling nervous at between “not at all” and “a little” 

level (with Mood condition reports closer to “a little”: Meanmood, NervousAfter = 1.8, and 

Meancontrol, NervousAfter = 1.5), whereas those in Combined condition felt “a little” to 

“moderately” nervous (Meancombined, NervousAfter = 2.5). No statistically significant 

differences were observed for scores of Negative Affect (p<0.389) and Nervousness 

(p<0.107) obtained as baseline mood ratings before the experiments (see Appendix X.4 

for means and SDs), indicating that the differences were induced through the interaction 

with the robot.  
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Figure 79: Standard Error/Means Plot for Nervous facet of PANAS-T test after their 
interaction with the robot: participants in the combined condition felt significantly more 

nervous than those in control. 

Additionally, a 2x3 ANOVA was performed on Order (Before or After robot 

interaction) and Affect (Control, Mood and Combined) on Nervous facet; a significant 

main effect of Order (FNervousOrder = 7.4, p<0.008) and a significant interaction effect 

(FNervousInteraction = 3.6, p<0.031) were observed. These effects are displayed 

graphically in Figure 80; we can see a downward curve from Control to affective 

conditions before the experiment, and an upward curve after. A simple main effect of 

Order at Combined condition was also significant (FNervousCombined = 9.4, p<0.005), 

showing that those in Combined condition became more nervous after their interaction 

with the robot.  
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Figure 80: Means Plot of the Nervous scores by Order and Affect conditions. A main 
effect of order and an interaction effect were observed – the curve is downward from 

Control to affective conditions before the experiment, and upward after.  

To summarize, the expressions of both Negative Mood and Fear on the robot did 

induce increased nervousness in the participants; however, the expressions of 

Negative Mood alone were quite not enough to do so.  

6.1.5.5 Hypothesis 4: Robot’s Negative Affect and Fear 

To determine whether negative affect and fear in the robot were recognized by the 

participants, 1-way ANOVAs were performed on the average score for Negative Affect 

from PANAS-T questionnaire, and on Fear score from the post questionnaire. No 

statistically significant differences at the 0.05 level were found between the conditions, 

suggesting that the differences in the affect expression between the conditions were not 

consciously identified. Table 24 presents descriptive statistics for these variables. 

Overall, the subjects believed that the robot experienced low levels of Negative Affect, 
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and a small to moderate level of Fear (from 2.36 out of 5 in Control condition to 2.93 in 

Combined), but these levels did  not differ significantly between the conditions. 

Table 24: Descriptive Statistics for Robot Affect variables: participants reported low 
levels of robot’s Negative Affect, and a small to moderate level of fear 

Dependent  

N Mean 

Std. 

Deviation Std. Error Variable Condition 

Robot Negative Affect Control 14 1.6104 .41034 .10967 

Mood Only 14 1.7662 .50768 .13568 

Mood and Emotion 15 1.8121 .51479 .13292 

Total 43 1.7315 .47733 .07279 

Robot Fear Control 14 2.3571 1.00821 .26945 

Mood Only 14 2.7143 1.43734 .38414 

Mood and Emotion 15 2.9333 1.27988 .33046 

Total 43 2.6744 1.24825 .19036 

 

6.1.5.6 Other Observations 

Although the following observations did not address the study hypotheses directly, 

they are nonetheless useful to obtain a more detailed picture of the results:  

• Respondents’ scores on question 5 of the post-questionnaire, “To what extent, if 

any, did the robot’s behavior, and not its words, influenced YOUR DECISION to 

comply with the request to leave?”, were strongly positively correlated with their 

scores on Persuasiveness scale at 0.01 level, and moderately negatively 

correlated with Time to Exit variable at 0.05 level, as evidenced by the results of 

Pearson’s Correlation tests (Table 25). This indicates that those participants who 

thought the robot’s behavior influenced their decision, also found the robot’s 

request more persuasive and took less time between the robot’s direct request to 

leave and reaching the first marker. 
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Table 25: Correlation results between Decision To Leave, Time to Cross, and 
Persuasiveness variables 

  Decision To 

Leave Time To Cross Persuasiveness 

Decision To Leave Pearson Correlation 1 -.380
*
 .518

**
 

Sig. (2-tailed)  .027 .000 

N 43 34 43 

Time To Cross Pearson Correlation -.380
*
 1 -.249 

Sig. (2-tailed) .027  .155 

N 34 34 34 

Persuasiveness Pearson Correlation .518
**
 -.249 1 

Sig. (2-tailed) .000 .155  

N 43 34 43 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

• A significant correlation at 0.05 level was observed between the levels of 

participants’ Negative Affect after their interaction with the robot and their ratings 

of robot’s Negative Affect. Similarly, there was a correlation at 0.05 level between 

how Nervous the participants felt after their interaction, and how they rated the 

robot on its overall Negative Affect, and the nervous subscale (Table 26). This 

indicates a link between subjects’ assessment of their own affective state, and of 

the robot’s; it may mean that either they are projecting their own feelings onto the 

robot, or that the robot’s behavior was instrumental in inducing a greater level of 

Negative Affect and nervousness in humans. It should also be noted that there 

were no significant correlations between the ratings on participant’s Negative 

Affect and nervousness before their interaction with the robot, and 

corresponding robot affect. 
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Table 26: Correlation between participants’ and robot’s Negative Affect: there was a 
correlation between how nervous subjects reported feeling after their interaction with the 

robot, and their reports of robot’s Negative Affect and nervousness 

  Subject  

Negative 

Affect, After 

Subject 

Nervous, After 

Robot 

Negative 

Affect 

Robot 

Nervous 

Subject 

Negative Affect, 

After 

Pearson Correlation 1 .830
**
 .366

*
 .267 

Sig. (2-tailed)  .000 .017 .087 

N 42 42 42 42 

Subject 

Nervous, After 

Pearson Correlation .830
**
 1 .348

*
 .389

*
 

Sig. (2-tailed) .000  .024 .011 

N 42 42 42 42 

Robot Negative 

Affect 

Pearson Correlation .366
*
 .348

*
 1 .715

**
 

Sig. (2-tailed) .017 .024  .000 

N 42 42 43  

Robot Nervous Pearson Correlation .267 .389
*
 .715

**
  

Sig. (2-tailed) .087 .011 .000  

N 42 42 43  

 

6.1.6 SUMMARY AND DISCUSSION 

The goal of this experiment was to determine whether robotic expressions of mood 

and emotions – Negative Mood and Fear in this specific case – may provide identifiable 

benefits for human-robot interaction. The first three of the hypotheses posited a priori 

were in regards to this goal, and were for the most part validated in the results of the 

study (with the exception of the subjects’ ratings of the robot’s Understandability, where 

no significant differences between the conditions were observed). In particular:  

• the participants found the robot’s request to evacuate more compelling, sincere 

and convincing in one or both affective conditions than in control; 

• they complied with the robot’s request to “evacuate” to a greater extent in the 

affective conditions:  
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o the subjects were faster in complying with the robot’s request to 

leave the “dangerous” zone (in the Combined condition); 

o they were more prone to respond to an indirect request to 

evacuate in both of the affective conditions; 

o more of those in the affective conditions walked further towards 

the exit than in the control.  

• the participants reported feeling more nervous after interacting with the robot in 

the Combined condition than in control, potentially making them more alert to any 

unfavorable changing in the surroundings.  

These were the expected results; the rest of the subsection will focus on the findings 

that were less straightforward.  

1. Understandability. It was hypothesized that the participants would find the 

robot’s behavior more understandable in the affective conditions, but this did not 

happen. One potential reason for why this was the case could be as follows: as 

understanding is a conscious cognitive process, and affect recognition occurs on 

a more automatic, even visceral level, the finding that the participants could not 

consciously identify the expressions of negative mood and fear in the robot could 

have contributed to their not finding the robot’s behavior more understandable. 

Another possible explanation behind this finding lies, perhaps, in the perceived 

dissonance between the robot’s acting anxious and the subjects’ assurances 

regarding the safety of the environment – it was just an experiment, after all.  

2. Negative Mood and Fear recognition. The lack of differences between 

conditions in subjects’ ratings of robot’s Negative Affect and Fear was rather 
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unexpected, given the positive results of a prior affect recognition survey. There 

could be a number of explanations for this discrepancy:  

• In the survey, the respondents were attending to the robot’s behavior only, 

whereas in the search-and-rescue experiment, the robot’s behavior was a 

part of a more complex situation, and the attention was split between the 

mock-up accident site setup, the information provided by the robot’s speech, 

robot’s actions, all this making any expressions the robot exhibited much less 

salient.  

• Within-subject design was used in the survey, to reduce individual 

differences. This design was not possible for the search-and-rescue 

experiment, as the participants would not respond in the same manner if they 

have knowledge of a future evacuation request. However, it would stand to 

reason that a within-subject design would increase the recognition: during 

pilot testing, a third of the participants were showed one of the other 

conditions after they completed one, and most of the time, they could identify 

the differences. 

3. Negative Mood Only vs. Mood + Fear. Perhaps not surprisingly, the results for 

the Combined condition were overall stronger. It was predicted that the response 

would be less pronounced in the Mood only condition, but, unfortunately, in many 

cases the differences between Mood and Control, and Mood and Combined 

conditions did not reach statistical significance, even though they were in a 

predicted direction. Given the subtle nature of mood expressions, it is possible 

that the power would have been increased with a greater number of participants.  
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6.2 EVALUATING EXPRESSIONS OF EXTRAVERSION AND INTROVERSION IN A ROBOT 

AS A GUIDE SCENARIO  

Different personality traits allow people to adjust to different environments, tasks and 

jobs they perform in life. In particular, it was found that Extraverts are better suited for 

jobs that require gregariousness and energy, such as teaching and leadership [185-187]. 

People are also very good at recognizing nonverbal expressions of Extraversion, even 

based on short exposure [183], as well as are capable of correctly differentiating 

between an extraverted and introverted humanoid robot from video clips [165]. However, 

the same characteristics that would be beneficial to a task requiring engagement and 

gregariousness (e.g., teaching or guiding), may be detrimental to a task that calls for 

concentration from its participants (e.g., problem solving). Therefore, the trait of 

Extraversion (at two ends of the continuum, high and low) was chosen for evaluation in 

the second HRI experiment due to its potential practical applicability and proven 

recognizable characteristics, with the goal to determine whether different personality 

manifestations in a humanoid robot are more suitable for different types of tasks.  There 

were a total of two between-subject experimental conditions: Extraverted (the robot 

behaved in a manner characteristic of highly extraverted individuals) and Introverted (the 

robot behaved in a manner characteristic of one low in extraversion).  

6.2.1 EXPERIMENT SCENARIO AND SETUP 

In this experiment, a humanoid robot (Nao) played the role of a guide at a mock-up 

building demolition exhibit. The “guided tour” consisted of two parts: 1) a robot 

presentation on the building demolition process followed by a subject-matter quiz taken 

by the participants; and 2) robot’s supervision of a problem solving task. Prior to robot 

interaction, the participants performed similar baseline tasks to both familiarize 

themselves with the types of tasks expected of them and to establish a baseline for 

comparison (to reduce the impact of individual differences). The entire experiment, from 
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greeting to compensation, lasted 45-60 minutes, and the interaction with the robot took 

approximately 10 minutes.  

The experiment took place in the same lab as the search-and-rescue study, but the 

setup was modified to resemble a building demolition exhibit. In particular, a number of 

posters with images of explosive building demolition were placed around, to provide a 

museum-like setting. The setup is shown in Figure 81. The same small humanoid robot 

(Aldebaran Robotics’ Nao) was used, and placed in the same arena as in the previous 

experiment, to avoid any accidental falls. The robot was set facing the participants, who 

were instructed to stand in front of the robot at a marker for the duration of the 

interaction.  

 

Figure 81: Mock-up Building Demolition exhibit setup.  

6.2.2 EXPERIMENT PROCEDURE 

This subsection describes the experimental procedure, from greeting a subject to 

providing compensation for participation. After greeting the subject at the entrance to the 

building where the lab was located, he/she was first taken to the portion of the lab which 

Explosive Building 
Demolition Images 

Robot’s Arena 
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was separated from the experiment setup. There, the participants were asked to read 

over and sign a consent form (Appendix Y) and a video release form (Appendix P). 

Those without an equivalent of at least high school education and English language 

proficiency were excluded from this study (the task in the study required a good 

command of English and a basic knowledge of algebra). The subjects were then told 

that they would perform two baseline tasks to prepare them for similar tasks during their 

interaction with the robot; they were also asked to remember that the tasks were not a 

competition or a race, and that they should work at their own pace (to put them at ease). 

The tasks presented to the subjects were as follows:  

1. Memory Retention (Quiz). For this task, the participants listened to a 

presentation given either by a male undergraduate GA Tech student in a video 

recording (baseline task), or by the robot (experimental task). The subject matter 

between the presentations was slightly different, but comparable in difficulty and 

length and within the same general area (building construction practices for the 

baseline text, and explosive building demolition for the experimental one). After 

the presentation, the subjects took a short quiz consisting of 5 multiple-choice 

questions; they were instructed to answer based on the material in the 

presentation, and not any general knowledge they may have. Both presentations 

and quizzes were pilot-tested previously to make sure the difficulty was 

appropriate, and that the two tasks (baseline and experimental) were 

comparable. Please see Appendix Z.1 for the baseline presentation and quiz, 

and Appendix Z.2 for the experimental presentation and quiz (2 presentation 

versions: Extraverted and Introverted). The presentations took approximately 6-7 

minutes, and answering the quizzes took 84 seconds on average (as timed by 

the experimenter).   
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2. Problem Solving (Math). For this task, the subjects were asked to solve a 

simple math problem. The experimental problem was taken from a Kaplan SAT 

practice math test (multiple-choice), and was rated of medium difficulty. It was 

then modified for wording but not for numbers to fit the subject matter of the 

presentation, to create a more consistent experience for the participants. The 

baseline problem was similar, but both numbers and wording were modified to 

insure enough differentiation between the problems. In the baseline case, the 

experimenter gave the problem instructions to the participants, and was present 

during the problem solving (timing the duration). The experimental task was a 

variant of a dual-task problem [188], where the participants were expected to 

perform two things simultaneously: solve the math problem, and attend to the 

robot. During this task, although it was the experimenter who provided the 

physical sheet of paper with the problem on it, the robot gave the instructions, 

and the participants were asked to follow the robot’s instructions carefully, thus 

constantly attending to the robot. There was a time limit of 180 seconds on the 

experimental problem. The baseline math problem can be viewed in Appendix 

AA.1, and robot’s instructions (Extraverted and Introverted versions) and the 

experimental problem in Appendix AA.2.  

After both baseline tasks were completed, the participants took a brief personality 

test [163], while the experimenter prepared the robot behind the partition. After they 

were done, the participants were asked to imagine they were at a fun building demolition 

exhibit in an industrial museum where a humanoid robot would serve as their guide. 

They were then were taken to the mock-up exhibit setting through a separate entrance. 

Once inside, the subjects were instructed to stand in front of the robot (at a marker to 

maintain consistency) and to follow its instructions carefully.  
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Both tasks (presentation and math) were preceded by a short (under a minute) 

greeting from the robot, introducing itself and the exhibit (see Appendix BB for 

Extraverted and Introverted greeting). This allowed the participants to familiarize 

themselves with the robot and its artificial speech. At the end of the greeting, Nao 

encouraged the participants to look around the “exhibit”, and to return when they were 

done. After each task, a series of task-specific questionnaires was given to the subjects, 

and an overall post-questionnaire, a personality questionnaire with regards to the robot, 

and a demographics questionnaire were given after both tasks were completed. Once all 

the questionnaires were filled out, the experimenter thanked the participants and 

provided the compensation. 

6.2.3 ROBOTIC IMPLEMENTATION 

Aldebaran Robotics’ humanoid robot Nao was used for this experiment; the 

behaviors and personality expressions were programmed as described in Chapter 5, 

Software Architecture and Implementation, using MissionLab and the integrated TAME 

module. The same nonverbal characteristics of Extraverted and Introverted individuals 

were taken into account while programming the expressions of Extraversion and 

Introversion as described in subsection 5.3.1.1, Nonverbal personality display. However, 

additional gestures and static poses were designed and implemented on the robot due 

to a longer duration of the robot’s performance than what was used for the affect 

recognition survey.  

In addition to gestures and body posture characteristic of this personality trait 

(hunched, close to the body, low energy for introverts, and erect, expansive, and 

energetic for extroverts), there was also a difference in the speed with which these 

gestures and posture shifts were performed: faster and more forceful on Extraverted 

Nao, and slower on Introverted. Finally, in terms of differences in interpersonal distance, 

the Introverted robot was placed 6” (1.5 times) farther away from the edge of the 
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platform than Extraverted. Figure 82 and 83 show initial poses for Introverted and 

Extroverted Nao, respectively, as well as relative distance from the participants (the 

camera was positioned in the same spot). Figure 84 gives an example of a shy 

introverted pose, with hands brought together at the torso level, and Figure 85 shows, 

from left to right, a progression of a chopping gesture used by Extraverted Nao for 

emphasis, from the highest point (chest level) to the lowest. 

 

Figure 82: Initial static pose for Introverted Nao 

  

Figure 83: Initial static pose for Extraverted Nao. 

Arms and hands 
close to the body 

Knees slightly bent, 
adding to a 

“hunched” look 

Head turned downward 
and to the side, not 

looking directly at the 
participant 

Positioned farther 
from the participant 

Head up, straight, 
looking directly at the 

participant 

Positioned closer to 
the participant 

Knees straight and 
posture erect 

Arms open and 
farther away from the 

body 
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Figure 84: Introverted Nao’s shy pose 

 

Figure 85: Progression of an emphatic chopping gesture on extraverted Nao, from the 
highest point to the lowest (from left to right).  

The sequences of poses and gestures were scripted in an FSA and manually 

matched to the speech. There was a difference in frequency of gesturing and posture 

A semi-extended arm is 
raised to chest level… 

And is forcefully brought 
down for emphasis 
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shifts during greeting, presentation and math instructions: the Extraverted robot 

performed a gesture or changed its pose every 1-6 seconds, whereas the Introverted 

one every 4 – 15 seconds. During the math task, after the participants started working 

on the problem, Extraverted Nao moved (including taking several steps along the arena 

and back), gestured or uttered an engaging phrase (Appendix AA) every 8-20 seconds, 

whereas Introverted Nao did so only occasionally (every 30-40 seconds), and did not 

engage in any walking behaviors, only posture shifts.   

A TTS engine (CSLU toolkit [178]) was used to record Nao’s speech on a male 

voice, and to encode paralinguistic cues: Extraverted Nao’s speech was faster, louder, 

higher-pitched and more varied in pitch than Introverted Nao’s. Additionally, short 

phrases or words were inserted into Extraverted robot’s text for emphasis (e.g., “isn’t it 

exciting?”, “boom-boom”, “I’ve been waiting for you”, etc.), but factual information 

remained the same for both personalities (Appendix Y). Extensive pilot testing was done 

to ensure that the speech was equally intelligible in both cases, and easily identifiable 

differences were present (e.g., the faster the speech the harder it is to understand, so a 

balance had to be found). Table 27 shows expressive differences between conditions. 

Table 27: Expressive differences between Extraverted and Introverted conditions 

Expression Type Extraverted Robot Introverted Robot 

Posture Erect, legs straight, head up 
and looking directly at the 
participants, arms away from 
the body 

Hunched over, legs slightly bent, 
head down and to the side, arms 
close to the body 

Gestures Expansive, exaggerated, fast 
and forceful 

Narrow, subdued, slow and weak 

Movement 
Frequency 

Frequent and varied Infrequent and monotonous 

Speech Loud, fast, high-pitched and 
with wide pitch variability 

Quieter (but loud enough to be 
heard distinctly), slow, low-
pitched and with narrow pitch 
variability. 
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6.2.4 EXPERIMENT DESIGN 

The goal of this experiment was to identify the effect of Extraverted and Introverted 

personality display by a humanoid robot on participants’ task performance (to establish 

whether some traits are task-appropriate) and their perception of robot’s 

appropriateness, friendliness, intrusiveness and naturalness in the context of a mock-up 

building demolition scenario. The study followed a 1-factor between-subject design with 

two conditions: Extraverted and Introverted, where the display of Extraversion or 

Introversion served as independent variables. Two experimental tasks were performed 

by participants in both conditions, with one task hypothesized to be better suited for an 

Extraverted robot, and the other for an Introverted robot. The experimental tasks were 

counterbalanced for order in both conditions; the baseline tasks were performed in the 

same order as the experimental tasks.  

6.2.4.1 Hypotheses 

 The following formed the hypotheses for this study:  

1. The Extraverted robot would be judged as more friendly (welcoming) and 

appropriate, and the facts presented by it as more appealing during the quiz task; 

2. The Introverted robot would be judged as more appropriate and less obtrusive 

during the math task, and the task itself would appear easier in this condition. 

3. The performance on the math task (correctness, completion time and reduction 

in completion time between baseline and experimental tasks) would be greater in 

the Introverted condition, as we hypothesized that the robot would provide fewer 

distractions and less annoyance, thus suggesting that a task requiring 

concentration would be more congruent with an introverted personality of the 

companion. Vice versa, the performance on the quiz task would be greater in the 
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Extraverted condition, in accordance with findings on correlation between 

extraversion and teaching and leadership effectiveness [185-187].   

4. The participants would be able to recognize the display of Extraversion and 

Introversion in the robot. 

6.2.4.2 Measures 

Evaluation was performed using both subjective (a variety of questionnaires) and 

objective (task performance) methods with respect to the aforementioned study 

hypotheses. 

Hypothesis 1 was evaluated using three psychological scales designed for this 

experiment, structurally similar to those in the previous experiment. Each scale 

consisted of 5 semantic differential subscales, where each subscale asked the 

respondent to indicate his/her position on a rating scale anchored by two bipolar words; 

the terms with negative connotation are placed on the left (at 1) of each 5-point scale, 

and those with positive on the right (at 5). The subscales within a scale were designed to 

measure the same overarching concept, as evidenced in the following scales used in 

this study: 

• Appropriateness scale, designed to measure how well the robot’s behavior 

matched the task it was performing; this scale was used for both experimental 

tasks, quiz and math (Figure 86); 

• Welcome scale, designed to determine how welcome the robot made the 

participants feel (Figure 87); 

• Appeal scale, designed to identify how appealing the participants found the facts 

presented by the robot (Figure 88). 

Together, the three scales formed a post-quiz questionnaire (Appendix CC). 



EVALUATING ROBOT AFFECT IN HRI EXPERIMENTS     CHAPTER 6 

 

 245

Figure 86: Appropriateness scale 

Figure 87: Welcome scale 

1. In your opinion, FOR THIS TASK, the robot’s behavior was:  

Inappropriate     Appropriate 

 

 

 

Wrong for Task    Right for Task 

 

 

 

Ill-suited    Well-suited 

 

 

 

Improper    Proper 

 

 

 

Mismatched    Matched to Task 

 

 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 
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1. In your opinion, YOUR PRESENCE during the interaction with the robot was:  

Unwelcome      Welcome 

 

 

 

Undesired    Desirable 

 

 

 

Disliked    Liked 

 

 

 

Tolerated      Encouraged 

 

 

 

Unwanted      Wanted 

 

 

 

3 4 5 1 2 

3 4 5 1 2 

3 4 5 1 2 

3 4 5 1 2 
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Figure 88: Appeal scale 

To evaluate Hypothesis 2, the Appropriateness semantic differential scale (Figure 

86) was used, along with two other scales:  

•  Unobtrusiveness scale, designed to measure how distracting the robot was 

during the math task. In this scale, the higher the score, the less distracting (or 

more unobtrusive) was the robot (Figure 89); 

• Ease scale, designed to identify how easy the math problem was perceived to be 

(Figure 90). 

Together, Appropriateness, Unobtrusiveness and Ease scales formed a post-math 

questionnaire (Appendix DD).  

1. In your opinion, THE FACTS the robot presented to you were:  

Boring      Interesting 

 

 

 

Not Fun    A Lot of Fun 

 

 

 

Useless    Useful 

 

 

 

Dull    Exciting 

 

 

 

Tedious    Entertaining 
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Figure 89: Unobtrusiveness scale 

Figure 90: Ease scale 

In addition, an established multidimensional measurement tool, Task Load Index 

(NASA-TLX [189], Appendix EE) was used to assess the perceived difficulty/workload of 

the math task. It provides an overall workload score based on a weighted average of 

1. In your opinion, during this task, the ROBOT WAS:  

Distracting      Easy to Tune Out 

 

 

 

Interfering    Minding its own business 
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1. The MATH PROBLEM you have just solved was:  

Hard      Easy 

 

 

 

Complicated    Simple 

 

 

 

Demanding    Undemanding 

 

 

 

Long    Short 

 

 

 

Complex    Basic 
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ratings on six 21-point subscales: mental demand, physical demand, temporal demand, 

performance, effort and frustration. The reason for using this tool was two-fold: 1) to 

obtain greater detail and more insights on subjects’ perceptions of the task demands, 

and 2) to compare the results of this more involved and time-consuming tool with a much 

shorter Ease scale, especially when used on such a simple task as a SAT-level math 

problem. 

To evaluate Hypothesis 3, the quizzes and math problems (both experimental and 

baseline), were graded for correctness: “correct” or “incorrect” for math, and an overall 

cumulative score for each of the quizzes, with one point given for each correct answer. 

The experimenter also timed how long it took the participants to compete each task, 

from the moment they were told: “You can start now” till they announced they were 

done. Some practice effects were observed in the math task, so in addition to completion 

time, a percentage of improvement over the baseline completion time was also 

calculated.  

Hypothesis 4 was assessed by analyzing the Extraversion scores of the brief 

version of Goldberg’s Unipolar Big-Five Markers questionnaire (Mini-Markers) [163] with 

regards to the robot (Appendix FF).  

Finally, the participants were also asked to fill out a post-questionnaire after both 

tasks were completed (Appendix GG). It contained a slightly modified Naturalness scale 

(Figure 70), where “inert/interactive” word pair was replaced with “inanimate/animate”, 

and two open-ended questions, asking to compare the robot’s behavior and subjects’ 

perceptions between the two tasks, as well as to compare their prior expectations of 

robots with the impressions from the experiment. As usual, a demographics 

questionnaire was given at the end of the session (Appendix HH). 
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6.2.5 ANALYSIS AND RESULTS  

There were a total of 30 participants in this study, 15 per condition. In one session 

(Extraverted condition), the robot malfunctioned during the math task (after the quiz task 

was completed), and the math task data from this session were treated as missing. In 

another session (Introverted condition), a participant was not able to complete the math 

task within the time limit. As this was the only participant not being able to complete the 

task within the allotted time, and given that the time limit (180 seconds) was outside of 

+/- 2 SD of the mean, the math task data were excluded from the analysis as an outlier. 

Therefore, the data of 15 participants in each condition were available for analysis for 

the quiz task, and the data of 14 participants in each condition for the math task. 

Additionally, one participant (Extraverted condition) completed the TLX questionnaire 

incorrectly, and these data were treated as missing for TLX score calculation. 

To identify any task order effects, 2(Order) x 2(Trait) ANOVAs were performed on all 

dependent variables. No significant effects due to Order (quiz first vs. math first) were 

found, with two notable exceptions which are described in detail in subsection 6.2.5.2, 

Hypothesis 1: Appropriateness, Welcome and Appeal in quiz task and subsection 

6.2.5.4, Hypothesis 3: Task Performance. 

6.2.5.1 Participants’ Demographics 

The study participants were recruited by two methods: 1) through Experimetrix, a GA 

Tech undergraduate psychology experiment pool (the students who completed the 

experiment were given 1 class credit for 60 minutes of participation), and 2) through 

flyers/word of mouth advertising on GA Tech campus ($15 Starbucks gift cards served 

as compensation). Not surprisingly, the vast majority of the participants were 

undergraduate GA Tech students (87%), in their 20s (63%) or younger, but over 18 

(33%). In terms of gender composition, there was the same number of women as men, 

equally distributed between the conditions. The vast majority considered themselves 
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either technical (50%), or somewhat technical (40%), and all of the participants were 

computer-savvy, at least at a level of advanced user (with 1 exception). Most of them 

had either no (23%) or limited (43%) robot experience, with only 4 participants having 

had experience with more than one robot type. Finally, for 20% of the participants 

English was not a native language; however, they did have the required English 

language proficiency. 

6.2.5.2 Hypothesis 1: Appropriateness, Welcome and Appeal in quiz task 

It was hypothesized that for the quiz task, the participants in the Extraverted 

condition would find the robot more appropriate and welcoming, and the presentation 

facts more appealing. To analyze this hypothesis, 2- and 1-tailed (where appropriate) 

independent samples T-tests were performed on Appropriateness, Welcome and Appeal 

scales, as well as on the corresponding subscales. 

For the Quiz Appropriateness scale, no statistically significant differences were found 

at 2-tailed level either for the overall scale or for the subscales (see Table 28 for 

descriptive statistics). However, the differences between the conditions on Appropriate 

and Well-suited subscales were significant at 1-tailed level, with tappropriate = 1.77, 

p<0.044, and twell-suited = 1.97, p<0.029.  This indicates that the participants found the 

Extraverted robot more appropriate and well-suited for the quiz task (giving a 

presentation) than the Introverted robot. Overall, the participants found the Extraverted 

robot largely appropriate (average score of 20.53 out of 25) for the quiz task, and the 

Introverted robot moderately so (18.4 out of 25).  

Table 28: Descriptive statistics for Appropriateness scale with regards to quiz task 

 Condition N Mean Std. Deviation Std. Error Mean 

Appropriate (quiz) Extraverted 15 4.3333 .61721 .15936 

Introverted 15 3.7333 1.16292 .30026 
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Table 28 (continued) 

Right for Task (quiz) Extraverted 15 4.0000 .84515 .21822 

Introverted 15 3.5333 1.12546 .29059 

Well-suited (quiz) Extraverted 15 4.2000 .77460 .20000 

Introverted 15 3.5333 1.06010 .27372 

Proper (quiz) Extraverted 15 4.0667 .88372 .22817 

Introverted 15 4.0000 1.06904 .27603 

Matched to Task (quiz) Extraverted 15 3.9333 .88372 .22817 

Introverted 15 3.6000 1.29835 .33523 

Appropriateness 

(quiz), Overall 

Extraverted 15 20.5333 3.41983 .88300 

Introverted 15 18.4000 5.01142 1.29394 

 

Interesting Order (quiz first vs. math first) effects were found on the Appropriateness 

variable. A 2x2 (Order x Trait) ANOVA showed a significant interaction effect (Finteraction 

= 7.66, p<0.01) and a weakly significant main effect of Order (Forder = 4.11, p<0.053). 

Figure 91 displays the interaction effect graphically: those who completed the math task 

first, found the introverted robot less appropriate (for the subsequent quiz task) than the 

extraverted, but those who were given the quiz task first, found the two personalities 

almost equally appropriate (Table 29).  

Table 29: Descriptive statistics for Quiz Appropriateness for math first or quiz first task 
order 

 Condition N Mean Std. Deviation Std. Error Mean 

Appropriateness, 

math first 

Extraverted 8 21.0000 2.72554 .96362 

Introverted 8 15.3750 4.03334 1.42600 

Appropriateness, 

quiz first 

Extraverted 7 20.0000 4.24264 1.60357 

Introverted 7 21.8571 3.67099 1.38750 

This finding is confirmed by a significant simple main effect of Trait on 

Appropriateness for math first: tappropriatenessAtmathFirst =3.27, p<0.006; the difference 
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for quiz first was not significant. Please note that it was the ratings of Introverted robot 

that changed so drastically between different task orders. One potential explanation for 

this curious finding could be as follows: it is possible that the Introverted robot’s apparent 

suitability for the math task made its shortcomings during the presentation more obvious. 

 

Figure 91: Trait x Order Means plot; in math first order, the introverted robot was found 
less appropriate for quiz task. 

For Welcome scale, a 2-tailed independent samples T-test was significant at 0.01 

level in the predicted direction, with tWelcome = 3.3, p<0.003 (Figure 92 presents this 

result graphically). The results for each subscale were significant as well, at either 0.01 

or 0.05 level, with the exception of welcome subscale (see Table 30 for descriptive 

statistics).   
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Figure 92: Standard Error/Means Plot for Welcome scale: participants in Extraverted 
condition felt more welcome overall. 

Table 30: Descriptive statistics for Welcome scale 

 Condition N Mean Std. Deviation Std. Error Mean 

Welcome Extraverted 15 4.2667 .79881 .20625 

Introverted 15 3.8000 .94112 .24300 

Desirable Extraverted 15 4.2667 .70373 .18170 

Introverted 15 3.2667 .79881 .20625 

Liked Extraverted 15 4.2667 .70373 .18170 

Introverted 15 3.2667 .70373 .18170 

Encouraged Extraverted 15 4.4000 .63246 .16330 

Introverted 15 3.5333 .99043 .25573 

Wanted Extraverted 15 4.0667 .88372 .22817 

Introverted 15 3.4000 .82808 .21381 

Welcome, 

Overall 

Extraverted 15 21.2667 3.15021 .81338 

Introverted 15 17.2667 3.53486 .91270 
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For Appeal scale, the result of a 2-tailed independent samples t-test was significant 

at 0.05 level in the predicted direction, with tAppeal = 2.7, p<0.012 (see Figure 93 for the 

Standard Error/Means plot, and Table 31 for descriptive statistics). On the subscale 

level, the differences between the conditions for Fun and Exciting ratings were 

significant at 2-tailed level (tfun = 2.7, p<0.011, and texciting = 3.2, p<0.003), and for 

Interesting at 1-tailed level (tInteresting = 1.9, p<0.033). This suggests that the 

participants perceived the same explosive building demolition facts as being more fun, 

exciting, interesting, and appealing (overall) when they were presented by the 

Extraverted robot.  

 

Figure 93: Standard Error/Means Plot for Appeal scale: participants in Extraverted 
condition found the facts presented by the robot more appealing 
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Table 31: Descriptive Statistics for Appeal scale 

 Condition N Mean Std. Deviation Std. Error Mean 

Interesting Extraverted 15 4.2667 .79881 .20625 

Introverted 15 3.4667 1.40746 .36341 

Fun Extraverted 15 3.4667 .74322 .19190 

Introverted 15 2.6000 .98561 .25448 

Useful Extraverted 15 3.8667 1.06010 .27372 

Introverted 15 3.2667 1.16292 .30026 

Exciting Extraverted 15 3.4667 .74322 .19190 

Introverted 15 2.5333 .83381 .21529 

Entertaining Extraverted 15 3.2000 .77460 .20000 

Introverted 15 2.7333 1.09978 .28396 

Appeal, 

Overall 

Extraverted 15 18.2667 3.23964 .83647 

Introverted 15 14.6000 4.13694 1.06815 

 

Additionally, Pearson’s Correlations test revealed a significant correlation (2-tailed) at 

0.001 level between the scales of Welcome and Appeal (see  

Table 32 for results on all three scales), suggesting that those who felt more 

welcome during the presentation also found the facts more appealing. The scales of 

Appropriateness and Appeal were also found to be moderately correlated at the 0.05 

level, thus linking the perceptions of task appropriateness with presentation appeal.  

To summarize, it was found that, as predicted:  

• the participants reported that the Extraverted robot in the quiz task made them 

feel as if their presence during the tour was more liked, encouraged, wanted 

and desirable;  

• the facts presented by the Extraverted robot appeared more fun, exciting and 

interesting than those given by the Introverted robot.  
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Additionally, those who participated in the math task first, also found the Extraverted 

robot more appropriate for the quiz task, as compared to its introverted counterpart.  

Table 32: Correlations between Quiz Appropriateness, Welcome and Appeal scales: 
those participants who felt welcome (overall) also found the facts given by the robot 

more appealing 

  Appropriateness (quiz) Welcome Appeal 

Appropriateness (quiz) Pearson Correlation 1 .238 .419
*
 

Sig. (2-tailed)  .205 .021 

N 30 30 30 

Welcome Pearson Correlation .238 1 .508
**
 

Sig. (2-tailed) .205  .004 

N 30 30 30 

Appeal Pearson Correlation .419
*
 .508

**
 1 

Sig. (2-tailed) .021 .004  

N 30 30 30 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

6.2.5.3 Hypothesis 2: Appropriateness, Unobtrusiveness and Ease in math task. 

It was hypothesized that for the math task, the participants will find the Introverted 

robot more appropriate and unobtrusive, and the math problem easier. To analyze this 

hypothesis, 2- and 1-tailed (where appropriate) independent samples T-tests were 

performed on Appropriateness, Unobtrusiveness, Appeal, and TLX scales, as well as on 

the corresponding subscales. 

The results of 2-tailed independent-samples T-tests on Appropriateness scale with 

respect to math task and on all its subscales were statistically significant at 0.01 level, 

with tMathAppropriateness = -4.2, p<0.0001 (see Table 33 for descriptive statistics). As 

hypothesized, the Introverted robot was found more appropriate for the math task than 

its extraverted counterpart; Figure 94 presents this result visually for the overall scale. 
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Table 33: Descriptive statistics for Appropriateness scale with respect to math task 

 Condition N Mean Std. Deviation Std. Error Mean 

Appropriate (math) Extraverted 14 2.7857 1.36880 .36583 

Introverted 14 4.2857 .72627 .19410 

Right for Task (math) Extraverted 14 2.5714 1.15787 .30945 

Introverted 14 4.2143 .80178 .21429 

Well-suited (math) Extraverted 14 2.7143 1.13873 .30434 

Introverted 14 4.0000 1.03775 .27735 

Proper (math) Extraverted 14 2.5714 1.15787 .30945 

Introverted 14 4.3571 .84190 .22501 

Matched to Task (math) Extraverted 14 2.4286 1.15787 .30945 

Introverted 14 3.7857 .89258 .23855 

Appropriateness 

(math), Overall 

Extraverted 14 13.0714 5.66316 1.51354 

Introverted 14 20.6429 3.58645 .95852 

 

 

Figure 94: Standard Error/Means Plot for Appropriateness scale: the participants found 
the Introverted robot more appropriate for the math task. 
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The results on Unobtrusiveness scale and all its subscales were similarly significant 

at 0.01 level in the predicted direction, with tUnobtrusiveness = -5.4, p<0.000 (see Table 

34 for descriptive statistics). This finding shows that the Introverted robot was perceived 

as less obtrusive than the Extraverted one (Figure 95): it was more inoffensive, 

undemanding and quiet, easier to tune out, and minding its own business. 

Table 34: Descriptive Statistics for Unobtrusiveness scale 

 Condition N Mean Std. Deviation Std. Error Mean 

Easy to Tune Out Extraverted 14 2.5000 1.34450 .35933 

Introverted 14 4.5714 .51355 .13725 

Minding its Own Business Extraverted 14 2.3571 .84190 .22501 

Introverted 14 4.1429 .94926 .25370 

Inoffensive Extraverted 14 2.8571 1.02711 .27451 

Introverted 14 4.1429 .94926 .25370 

Undemanding Extraverted 14 3.0714 1.07161 .28640 

Introverted 14 4.2857 .82542 .22060 

Quiet Extraverted 14 2.7143 .91387 .24424 

Introverted 14 4.0714 .82874 .22149 

Unobtrusiveness, 

Overall 

Extraverted 14 13.5000 4.23811 1.13268 

Introverted 14 21.2143 3.26234 .87190 

 



EVALUATING ROBOT AFFECT IN HRI EXPERIMENTS     CHAPTER 6 

 

 259

 

Figure 95: Standard Error/Means Plot for Unobtrusiveness scale: the participants found 
the Introverted robot less distracting. 

The results on the Ease scale and its subscales were not as clear-cut: 1-tailed 

independent-samples T-tests were significant at 0.05 levels only for the Ease scale 

(tEase = -1.7, p<0.048), and Easy (teasy = -1.9, p<0.033) and Short (tshort = -1.9, 

p<0.034) subscales; see Table 35 for descriptive statistics. 

Table 35: Descriptive statistics for Ease scale 

 Condition N Mean Std. Deviation Std. Error Mean 

Easy Extraverted 14 4.4286 .75593 .20203 

Introverted 14 4.8571 .36314 .09705 

Simple Extraverted 14 4.6429 .63332 .16926 

Introverted 14 4.8571 .36314 .09705 

Undemanding Extraverted 14 4.5000 .75955 .20300 

Introverted 14 4.8571 .36314 .09705 
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Table 35 (continued) 

Short Extraverted 14 4.1429 1.02711 .27451 

Introverted 14 4.7143 .46881 .12529 

Basic Extraverted 14 4.6429 .63332 .16926 

Introverted 14 4.7143 .61125 .16336 

Ease, Overall Extraverted 14 22.3571 3.17701 .84909 

Introverted 14 24.0000 1.61722 .43222 

The overall average TLX score presents a stronger result on perceived difficulty of 

the math problem: the 2-tailed independent samples T-test result was significant at 0.01 

level, with tTLXtotal = 3.8, p<0.001. See Table 36 for descriptives for both the overall and 

the weighted subscale scores, and Figure 96 for a standard error/means plot showing 

that the participants in the Extraverted condition found the problem more demanding. 

Table 36: Descriptive statistics for TLX measure 

 Condition N Mean Std. Deviation Std. Error Mean 

Mental Demand Extraverted 13 21.3077 16.57500 4.59708 

Introverted 14 12.5000 12.63542 3.37696 

Physical Demand Extraverted 13 1.0000 2.23607 .62017 

Introverted 14 1.5714 1.94992 .52114 

Temporal Demand Extraverted 13 34.1538 17.85519 4.95214 

Introverted 14 8.5000 8.99359 2.40364 

Performance Extraverted 13 19.1538 14.60506 4.05071 

Introverted 14 6.8571 7.49212 2.00235 

Effort Extraverted 13 24.0769 16.14756 4.47853 

Introverted 14 14.9286 16.26447 4.34686 

Frustration Extraverted 13 23.3077 26.40197 7.32259 

Introverted 14 3.7143 3.72989 .99686 

TLX Total Extraverted 13 7.6872 3.69488 1.02478 

Introverted 14 3.2190 2.40433 .64258 
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Figure 96: Standard Error/Means Plot for TLX score: the participants in the Extraverted 
condition found the math problem more demanding. 

More interesting findings come from examining the subscales, as the distribution of 

ratings between them was different for each condition. In particular, there were no 

statistically significant differences in the ratings of Mental Demand, Physical Demand, 

and Effort, but the differences in the ratings of Temporal Demand, Performance and 

Frustration were significant at 0.01 and 0.05 levels. The relative ratings on the subscales 

are presented graphically in Figure 97: Temporal Demand was rated 4 times higher and 

Frustration 6.3 times higher when the Extraverted robot supervised the math problem. 

Based on these results our conjecture is that the participants may have felt rushed 

(Temporal Demand) and frustrated (Frustration) when a gregarious and energetic robot 

tried to engage them in small talk while they were concentrating on a problem solving 

task. Please note that the math task was found rather undemanding overall: the score of 

7.69 out of 21 possible for Extraverted condition, and only 3.22 for Introverted. This 
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could explain the weaker result on the Ease scale: it had only 5 points compared to 21 of 

TLX, therefore the difference, though still present, was less pronounced. 

 

Figure 97: Distribution of weighted TLX subscale scores: Temporal Demand and 
Frustration were rated much higher in the Extraverted condition. 

Additionally, Pearson’s Correlation test was performed to compare Appropriateness 

(math task), Unobtrusiveness, Ease and TLX scales (Table 37). TLX and Ease ratings 

were strongly negatively correlated at the 0.01 level: the easier the subjects found the 

problem, the less demanding it appeared. TLX score was also strongly negatively 

correlated with both Appropriateness (math) and Unobtrusiveness scores (at the 0.01 

level), suggesting that those who found the robot more appropriate and unobtrusive, also 

perceived the math problem as less demanding. Finally, Unobtrusiveness was strongly 

correlated with Appropriateness (at the 0.01 level) and moderately with Ease (at the 0.05 

level). 
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Table 37: Correlations between Appropriateness, Unobtrusiveness, Ease and TLX 
scales 

  Appropriateness 

(math) Unobtrusiveness Ease TLX Total 

Appropriateness 

(math) 

Pearson Correlation 1 .807
**
 .370 -.685

**
 

Sig. (2-tailed)  .000 .052 .000 

N 28 28 28 27 

Unobtrusiveness Pearson Correlation .807
**
 1 .392

*
 -.751

**
 

Sig. (2-tailed) .000  .039 .000 

N 28 28 28 27 

Ease Pearson Correlation .370 .392
*
 1 -.518

**
 

Sig. (2-tailed) .052 .039  .006 

N 28 28 28 27 

TLX Total Pearson Correlation -.685
**
 -.751

**
 -.518

**
 1 

Sig. (2-tailed) .000 .000 .006  

N 27 27 27 27 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

To summarize, the hypothesis stating that the Introverted robot would be found more 

appropriate for and unobtrusive during the math task, and that the task itself will be 

perceived as less demanding when proctored by the Introverted robot rather than its 

extraverted counterpart was confirmed. In particular,  

• The Introverted robot was found to be more appropriate, right for task, well-

suited, proper and matched to task than the Extraverted one with regards to 

the math task; 

• The Introverted robot was also rated as easier to tune out, quieter, less 

demanding and offensive, and better at minding its own business than the 

Extraverted one;    
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• The math task was perceived as more demanding overall (based on TLX 

scores) when it was supervised by the Extraverted robot, and in particular it was 

rated higher on Temporal Demand, Performance and Frustration; also, those 

who perceived the robot as more appropriate for the math task and 

unobtrusive also found the problem itself less demanding. 

6.2.5.4 Hypothesis 3: Task Performance 

It was hypothesized that subjects’ performance on the quiz task will be better in the 

Extraverted condition. This hypothesis was not confirmed, as either 2- or 1-tailed 

independent-samples T-tests on quiz score and quiz completion time did not show any 

significant difference between the conditions. No practice effects were observed on the 

quiz task – that is, neither the quiz score nor completion time improved significantly in 

the experimental task compared to the baseline task (see Table 38 for descriptive 

statistics). Although the participants found the facts presented by the Extraverted robot 

more fun, exciting and interesting, this difference in perception did not result in objective 

improvement in quiz performance.  

Table 38: Descriptive statistics for task performance 

 Condition N Mean Std. Deviation Std. Error Mean 

Quiz Score (experimental) Extraverted 15 3.7333 .96115 .24817 

Introverted 15 4.0000 .84515 .21822 

Quiz Score (baseline) Extraverted 15 3.6000 1.12122 .28950 

Introverted 15 3.3333 .89974 .23231 

Quiz Completion 

(experimental) 

Extraverted 15 96.3333 45.12311 11.65074 

Introverted 15 74.4667 30.13272 7.78024 

Quiz Completion (baseline) Extraverted 15 76.6000 25.35970 6.54785 

Introverted 15 86.8667 25.51993 6.58922 

Math Completion (baseline) Extraverted 14 115.7143 36.69506 9.80717 

Introverted 14 138.3571 47.33938 12.65198 
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Table 38 (continued) 

Math Completion 

(experimental) 

Extraverted 14 89.2143 29.75070 7.95121 

Introverted 14 76.3571 22.60227 6.04071 

Completion Time 

Improvement  (math) 

Extraverted 14 .2210 .17490 .04674 

Introverted 14 .4123 .22724 .06073 

 

It was also hypothesized that subjects in Introverted condition would perform better 

on math task, as they would be less distracted by the robot. Overall, the participants 

performed exceedingly well on the math problem: only 2 out of 15 participants per 

condition solved the baseline problem incorrectly, and 1 out of 15 participants in 

Extraverted condition and 2 out of 15 in Introverted solved the experimental problem 

incorrectly; therefore, statistical analysis on correctness was not possible. However, 

some practice effects in terms of completion time were observed, as evidenced by a 

2x2, Practice (Baseline vs. Experimental task) x Trait (Extraverted vs. Introverted) 

ANOVA: there was a significant main effect of Practice (FPractice = 22, p<0.000) on 

completion time, suggesting that the experimental problem took less time to solve 

(Figure 98).  

In order to examine this finding further, we calculated percentage of improvement in 

completion time, and found that Completion Time Improvement was more pronounced in 

the Introverted condition, as confirmed by a 2-tailed T-test, with tCompletionTimeDifference 

= -2.5, p<0.019; see Figure 99 for the standard error/means plot. This observation 

shows that the participants in the Introverted condition improved more from baseline to 

experimental task in terms of completion time, even though there was no statistically 

significant difference in completion time of experimental task per se. Table 38 provides 

descriptive statistics for all performance metrics.   
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Figure 98: Practice x Trait means plot: regardless of the condition, it took participants 
less time to complete the experimental math task.  

 

Figure 99: Standard Error/Means Plot for Completion Time Improvement for math task: 
the participants in the Introverted condition improved their completion time more. 

Additionally, a significant main effect of Order (baseline vs. experimental) on 

Completion Time Improvement on the math task, as a result of 2x2 (Order x Trait) 



EVALUATING ROBOT AFFECT IN HRI EXPERIMENTS     CHAPTER 6 

 

 267

ANOVA (FOrder = 4.8, p<0.039). It shows that the participants improved their time more 

when the math task was presented first (see Table 39 for descriptive statistics, and 

Figure 100 for a means plot).  

Table 39: Descriptive statistics for Completion Time Improvement, Order x Trait 

Condition Order Mean Std. Deviation N 

Extraverted Math First .2902 .16781 8 

Quiz First .1288 .14917 6 

Total .2210 .17490 14 

Introverted Math First .4917 .07705 7 

Quiz First .3330 .30207 7 

Total .4123 .22724 14 

Total Math First .3842 .16570 15 

Quiz First .2387 .25714 13 

Total .3167 .22154 28 

 

 

Figure 100: Order x Trait means plot for math Completion Time Improvement: the time 
improvement was less pronounced in both conditions when the quiz task was given first. 
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To summarize, the task performance hypothesis was confirmed for the math task, 

but not for the quiz. In particular:  

• despite the Extraverted robot’s better ratings as a presenter (the participants felt 

more welcome, and found the facts it presented more appealing), no differences 

were found on the quiz performance;  

• for the math task, as predicted, the Extraverted robot’s engaging and bold 

demeanor during the math task was detrimental, and resulted in a lower 

percentage of completion time improvement between the baseline and 

experimental tasks. 

6.2.5.5 Hypothesis 4: Extraversion Recognition 

It was hypothesized that the display of Extraversion and Introversion will be 

recognized on a humanoid robot. Indeed, this hypothesis was confirmed, as the 

participants rated the Extraverted robot as significantly higher on Extraversion scale of 

the robot personality questionnaire (Appendix FF) than the Introverted robot, as 

evidenced by the results of a 2-tailed T-test, with tExtraversion = 4.5, p<0.000. In 

particular, they found Extraverted robot very high on Extraversion (mean score 7.38 out 

of 9, SD = 0.81), whereas the robot in the Introverted condition was rated as medium 

(mean score 5.74 out of 9, SD = 1.14); see Figure 101 for a plot.  

Pearson’s Correlations test was also performed to determine whether the 

participants projected their personality on the robot, and no correlation was found 

between the subjects’ and robot’s ratings on Extraversion, suggesting that they rated the 

robot according to its own personality manifestation. 
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Figure 101: Standard Error/Means Plot for Extraversion score: the Introverted robot was 
rated significantly lower on the Extraversion dimension of the personality test. 

6.2.5.6 Other observations  

Although the following observations did not address the study hypotheses directly, 

they are nonetheless useful to obtain a more detailed picture of the results: 

• No predictions were made a priori regarding the perception of Naturalness, as 

both Introverted and Extroverted individuals are common. No significant 

differences on this scale or its subscale were found, with one notable exception: 

the Extraverted robot was rated as more Humanlike, as evidenced by the result 

of a 2-tailed T-test, with thumanlike = 3.1, p<0.004 (see Table 40 for descriptive 

statistics).  
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Table 40: Descriptive statistics for Naturalness scale 

 Condition N Mean Std. Deviation Std. Error Mean 

Natural Extraverted 15 3.3333 1.17514 .30342 

Introverted 15 2.9333 1.09978 .28396 

Humanlike Extraverted 15 2.9333 1.03280 .26667 

Introverted 15 1.9333 .70373 .18170 

Conscious Extraverted 14 3.2857 .82542 .22060 

Introverted 15 2.8000 1.08233 .27946 

Lifelike Extraverted 15 2.9333 .88372 .22817 

Introverted 15 2.4667 .83381 .21529 

Animate Extraverted 15 3.8667 .83381 .21529 

Introverted 15 3.8000 1.01419 .26186 

Naturalness, 

Overall 

Extraverted 15 16.1333 4.08598 1.05500 

Introverted 15 13.9333 3.30512 .85338 

 

In addition, there was a positive correlation at the 0.05 level between the ratings 

of Humanlike and those of Quiz Appropriateness, Appeal and robot Extraversion,  

suggesting that the participants who found the robot more humanlike, also found 

it more appropriate for the quiz task, its presentation more appealing, and its 

extraversion more pronounced.  Table 41 presents these findings.  

Table 41: Correlations between the Humanlike subscale, the scales of Quiz 
Appropriateness and Appeal, and Extraversion score 

  Humanlike Appropriate (quiz) Appeal Robot Extraversion 

Humanlike Pearson Correlation 1 .375
*
 .454

*
 .362

*
 

Sig. (2-tailed)  .041 .012 .050 

N 30 30 30 30 

Appropriate (quiz) Pearson Correlation .375
*
 1 .441

*
 .292 

Sig. (2-tailed) .041  .015 .117 

N 30 30 30 30 
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Table 41 (continued) 

Appeal Pearson Correlation .454
*
 .441

*
 1 .387

*
 

Sig. (2-tailed) .012 .015  .034 

N 30 30 30 30 

Robot Extraversion Pearson Correlation .362
*
 .292 .387

*
 1 

Sig. (2-tailed) .050 .117 .034  

N 30 30 30 30 

*. Correlation is significant at the 0.05 level (2-tailed). 

• Pearson’s correlations test revealed a strong negative correlation (at the 0.01 

level) between Extraversion and Completion Time Improvement in the math task, 

and a moderate correlation (at the 0.05 level) between Extraversion and 

Completion Time for experimental math problem (Table 42). This indicates that 

those who perceived the robot as more Extraverted, improved less between the 

baseline and experimental math problems, and took longer to solve the problem.  

Table 42: Correlations between Extraversion, math Completion Time, and Improvement 
in math Completion Time 

  Math Completion 

(experimental) 

Completion Time 

Improvement (Math) 

Robot 

Extraversion 

Math Completion 

(experimental) 

Pearson Correlation 1 -.585
**
 .434

*
 

Sig. (2-tailed)  .001 .021 

N 28 28 28 

Completion Time 

Improvement (Math) 

Pearson Correlation -.585
**
 1 -.601

**
 

Sig. (2-tailed) .001  .001 

N 28 28 28 

Robot Extraversion Pearson Correlation .434
*
 -.601

**
 1 

Sig. (2-tailed) .021 .001  

N 28 28 30 

**. Correlation is significant at the 0.01 level (2-tailed);   *. Correlation is significant at the 0.05 level (2-tailed). 
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To summarize, the following observations outside of the previously stated 

hypotheses were made:  

• the Extraverted robot rated as more humanlike than the Introverted one; 

• those participants who found the robot more humanlike, also found it more 

appropriate for the quiz task, its presentation more appealing, and its 

extraversion more pronounced; 

• those who perceived the robot as more Extraverted, improved less between the 

baseline and experimental math problems, and took longer to solve the problem. 

6.2.6 SUMMARY AND DISCUSSION 

The goal of this experiment was to determine whether certain personality traits are 

better suitable for certain types of tasks. The first three hypotheses posited a priori for 

this study were with regards to this overall objective. The results of the experiment have 

validated all three, to a large extent. In particular: 

• The Extraverted robot made the participants feel more welcome (overall) during 

the quiz task, and made the same building demolition facts appear more 

appealing. This capability would certainly be welcome for a robot engaging in 

intrinsically people-oriented jobs, such as a receptionist, a guide (museum or 

otherwise), a nurse bot.  

• However, the same characteristics that were well-suited for an engaging task 

were detrimental to one requiring concentration. In particular, the Extraverted 

robot was found to be less appropriate and more obtrusive (overall) during the 

math task, and the problem it supervised appeared more demanding; it also 

affected the performance on the math task negatively:  
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Those were the expected results; the rest of the subsection will concentrate on the 

findings that were less straightforward. 

1. Quiz Appropriateness. There was a strong Order effect on Appropriateness 

ratings for the quiz task. In case of Introverted robot, it was rated significantly 

less appropriate for the quiz task (as neither very appropriate nor very 

inappropriate) only when the quiz task followed the math. On the other hand, the 

task order didn’t make much of a difference in the Extraverted condition: the 

robot was rated as equally highly appropriate. It is difficult to make a conjecture 

at this point of why this was the case, and additional experimentation with more 

participants would help uncover the underlying cause. However, it is possible that 

the Introverted robot’s apparent suitability for the math task made its 

shortcomings during the presentation more obvious. 

2. Quiz Performance. No differences were observed between the conditions on 

quiz performance. It appears that subjective perceptions of feeling more welcome 

and enjoying the presentation better in the Extraverted condition did not directly 

translate into objective performance improvement. There could be a number of 

reasons behind this finding:  

• The advantages of extraverted personality in teaching and leadership may be 

more pronounced over a longer span, in which case the short presentation 

simply was not enough to produce such benefits;  

• The Extraverted robot’s frequent gestures and pose shifts may have been 

distracting to an extent, forcing the participants to pay attention to the robot’s 

behavior rather than words. This reason was mentioned informally after the 

experiments by a number of the participants, and the disadvantage could 

possibly be ameliorated by more prolonged exposure, when the novelty effect 
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wears off. On the contrary, the participants in the Introverted condition 

reported (informally, in conversations with the experimenter after the session 

was over) noticing their mind wander during the presentation, thus also 

causing them to pay less attention, which is unlikely to change with longer 

interaction.   

6.3 SUMMARY 

This chapter described design, implementation, administration and results of two HRI 

experiments intended to evaluate formally a subset of affective phenomena modeled in 

the TAME system. Both experiments identified potential benefits of including affect into 

robotic systems: Negative Mood and Fear in the first study and trait of Extraversion in 

the second.  

In particular, the goal of the first experiment was to determine whether robotic 

expressions of mood and emotions – Negative Mood and Fear in this specific case – 

may provide identifiable benefits for human-robot interaction. The results of the study 

showed a number of advantages the affective robot had over its non-affective 

counterpart:  

1. The participants found the robot’s request to evacuate more compelling, 

sincere and convincing in one or both affective conditions than in control. 

2. They complied with the robot’s request to “evacuate” to a greater extent in the 

affective conditions:  

• the subjects were faster in complying with the robot’s request to leave 

the “dangerous” zone (in the Combined condition); 

• they were more prone to respond to an indirect request to evacuate 

in both of the affective conditions; 
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• more of those in the affective conditions walked further towards the 

exit than in the control.  

3. The participants reported feeling more nervous after interacting with the robot in 

the Combined condition than in Control, potentially making them more alert to 

any unfavorable changing in the surroundings. 

The overarching goal of the second experiment was to determine whether certain 

personality traits are better suitable for certain types of tasks, and would thus be 

beneficial for human-robot interaction. The results showed that the Extraverted robot 

was found to be better suited for a people-oriented task – giving a presentation as part of 

an exhibit tour, and vice versa, the Introverted robot was more appropriate for a task 

requiring concentration from the participants - math task. These finding are summarized 

below:  

1. Extraverted Robot was more suited for the quiz task:  

• The participants reported that the Extraverted robot in the quiz task 

made them feel as if their presence during the tour was more liked, 

encouraged, wanted and desirable.  

• The facts presented by the Extraverted robot appeared more fun, 

exciting and interesting than those given by the Introverted robot. 

2. Introverted Robot was more suited for the math task:  

• The Introverted robot was found to be more appropriate, right for 

task, well-suited, proper and matched to task than the Extraverted 

one with regards to the math task. 
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• The Introverted robot was also rated as easier to tune out, quieter, 

less demanding and offensive, and better at minding its own 

business than the Extraverted one.    

• The math task was perceived as less demanding overall (based on 

TLX scores) when it was supervised by the Introverted robot, and in 

particular it was rated lower on Temporal Demand, (concern over) 

Performance and Frustration; also, those who perceived the robot as 

more appropriate for the math task and unobtrusive also found the 

problem itself less demanding. 

• Introverted robot’s performance as a math task proctor resulted in a 

higher percentage of completion time improvement between the 

baseline and experimental tasks. 

Finally, one final observation is worth emphasizing. Based on our experience in 

evaluating robot affect in the context of human-robot interaction, people may not always 

be able to recognize affective robotic expressions on a conscious, reportable level, 

especially from short interactions. However, active recognition may not be necessary to 

obtain a desired response; for example, although the participants in the mood and 

emotion experiment did not report any significant differences between the robot 

expressing negative mood and/or fear, and the one that was not, they still reacted to the 

cues sent out through the display of affect by complying with the robot’s request to a 

greater extent and rating it as more compelling. This finding does not obviate the need to 

test the recognition of affective nonverbal robotic behaviors prior to conducting human-

robot interaction evaluations; on the contrary, such testing is a good experimental 

practice, as it would be more likely to produce successful recognition results due to a 

greater salience the affective behavior would obtain in a more focused study. 
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This difficulty in robot affect recognition may stem in part from the subtle and volatile 

nature of affect: the relative infrequency and short duration of emotions, subtlety of 

moods, and slowly changing nature of attitudes. All these make evaluating affective 

robotic behavior through HRI studies challenging, though not impossible. Longer 

interaction time, exaggerated affective expressions, use of multiple affective phenomena 

(where applicable) and a priori robot affect recognition studies would help overcome this 

challenge. 
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7 MEASURING SOCIAL RESPONSE TO AFFECTIVE ROBOTS 

One of the major challenges facing affective HRI is effective evaluation. In the task- 

or function-oriented areas of HRI (such as collaborative endeavors between people and 

robots, or learning by imitation) measuring robot performance is more or less 

straightforward: for example, whether the presence of a robot as a partner improved the 

task completion time and by what percent, or whether a certain algorithm made learning 

faster or less error-prone. In the case of affective robots, however, it is not the robot 

performance per se that needs to be evaluated, but rather the social response the robots 

invoke in people they interact with. Do people find certain affective behaviors in robots 

more persuasive, natural and welcoming than others? Does robotic personality make 

some collaborative human-robot tasks seem more appealing and less arduous? Are 

these differences in subjective perception reflected in people's compliance with robot's 

requests and in task performance? The social response to affect in robots may be 

measured through a variety of means, both subjective and objective. This chapter will 

provide an overview of such HRI measures, and a more detailed discussion of the 

metrics used in the experiments described in Chapters 4 and 6, thus directly addressing 

the third research subquestion, “What are the metrics for evaluating affective robotic 

behavior?” 

7.1 HRI MEASURES OVERVIEW 

In their review of human study methods in HRI, Bethel et al. [65] point out five types 

of measures commonly used for evaluation in the human-robot interaction community: 

self-assessments, interviews, observational (behavioral) measures, psychophysiology 

measurements, and task performance metrics. In this subsection, each type will be 

discussed briefly, and its advantages and disadvantages will be highlighted. 
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7.1.1 SELF ASSESSMENTS  

These are subjective metrics used to uncover people’s perceptions of and attitudes 

towards their interactions with robots. These methods of evaluation commonly include: 

Likert-style questionnaires designed for evaluating specific goals of a particular study 

(often ad hoc in the HRI community [80]); reusable semantic differential scales or other 

psychometric scales for measuring certain concepts relevant to human-robot interaction 

(also designed specifically for use in HRI); and psychological and sociological measures, 

borrowed from corresponding research communities.  

These latter tests have been developed and validated for use on human subjects, 

and can be employed to assess subjects’ mood, emotional state, attitudes, presence, 

acceptance, and many other subjective states, but they have not as yet been adapted to 

and validated for use in the robotics domain. Examples of such measurement scales 

include: A Brief Version of Goldberg’s Unipolar Big-Five Markers (personality) [163], 

Positive/Negative Affect Schedule  (current mood state) [162], Self-Assessment Manikin 

(emotional response) [190], and the International Affective Picture System (emotional 

response) [191] . The aforementioned instruments are particularly suitable for evaluating 

affective robotics, as they can be used to both assess participants affective state, and 

test their the recognition of robot affect. The first two of these measurement tests have 

been used successfully in a number of TAME HRI experiments ([107, 165] and 

subsections 6.1, Evaluating Expressions of Negative Mood and Fear in a Search-and-

Rescue Scenario and 6.2, Evaluating Expressions of Extraversion and Introversion in a 

Robot as a Guide Scenario of this dissertation). 

Although self-assessments are among the most commonly used methods of 

evaluation in HRI studies, and allow querying people’s perceptions of their interaction 

directly, they suffer from lack of objectivity in a number of ways:  
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•   They are notoriously unreliable, as they might depend on a subject’s cultural 

and educational background, age, gender, religious beliefs, current mood and 

motivational state, reasons for participating in the study, prior knowledge and 

attitudes, and a slew of other individual differences. In our experience, people’s 

expectations of what the robot should (or should not) look like and be capable of 

colored their responses to a great degree: for example, if a person didn’t think 

modern robots could talk or walk, and then observed a robot do exactly that, their 

opinion of the robot would be higher. Similarly, people differed greatly in how 

they interpreted the questions or scales – a person could give praises on how 

lifelike the robot was in their informal comments after the Search-and-Rescue 

experiment, and yet rate it as neither artificial nor lifelike, at best, in the 

questionnaire; and vice versa. Finally, self-assessments may suffer from 

acquiescence bias, where participants are more likely to agree than disagree 

with a statement, or might adjust their answers towards those with positive 

connotation [192].  

• Replication of results and comparison between different studies is difficult; this is 

especially true of questionnaires put together in an ad hoc manner to suit a 

particular study. Such questionnaires are often too specific, and would not be 

readily applicable to other experiments, thus the results would not be comparable 

or repeatable. Reusable scales measuring concepts of common applicability to 

HRI would partially ameliorate this problem, and Bartneck et al. [80] advocate the 

use of such scales over Likert-style questions in developing questionnaires. 

Finally, although accepted psychological measurement instruments do have the 

advantage of confirmed validity across a large number of participants, they may 
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not necessarily be valid for HRI, and at least some tests were found to be less 

reliable when used to rate robots versus humans [68]. 

7.1.2  INTERVIEWS 

This is another subjective method for obtaining user perceptions, opinions and 

attitudes. The advantage of an interview over a questionnaire is the depth and breadth of 

exploration, especially with semi- or unstructured interviews: for example, where a 

questionnaire might ask a respondent to rate a robot’s persuasiveness, an interview 

could go further to uncover what in the robot’s appearance, behavior or words made it 

more or less persuasive, and what the interviewee means by “persuasiveness”. 

Unfortunately, although interviews may provide a bigger picture and a more detailed 

account, they are even harder to compare between studies, or even between 

participants in the same study. They are also more time- and resource-consuming than 

self-assessments, as they require at least 2 trained independent raters to obtain reliable 

data evaluation. However, even without the formal rating, they can provide information to 

the experimenter regarding any confusion participants may have had about the study, or 

any unusual views they might hold.    

7.1.3 BEHAVIORAL MEASURES 

These measures are observational, and refer to an analysis of participants’ micro- 

and macro-behaviors and speech utterances during interaction. In this case, the human-

robot interactions are recorded; the behaviors to watch for are carefully selected and 

accurately described, and then are extracted from the video either automatically, or by 

independent human coders.  For example, suppose that the duration of mutual gaze is a 

good predictor of the quality of interaction – the longer the mutual gaze episodes, the 

more pleasant the interaction. Now we have a quantitative measure that would allow us 

to compare between robots that express affect and those that don’t.  
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As this method does not rely on self-report, it is not subject to the same user bias as 

self-assessments and interviews; however, individual differences in behavioral styles will 

still make it difficult to compare across the participants. From our experience with this 

method in the AIBO study, some participants were extremely talkative and engaging in 

their interactions with the robotic dog, while others hardly uttered one or two phrases, 

and did not participate beyond the required instructions. Unless the number of people 

taking part in a study is rather large, these individual differences may be greater than 

those imposed by experimental conditions.  

This method also suffers from interpretation bias: the definition of what a particular 

behavior or expression consists of (e.g., angles, acceptable percent of deviation, 

minimum duration, etc. for a mutual gaze) needs to be determined ahead of time and 

adapted to the current experiment, as well as what these macro or micro behaviors 

mean in respect to study hypotheses. Finally, another disadvantage of this method is 

that the expense of having independent coders analyze the video recordings becomes 

prohibitive for many research groups.  

7.1.4  PSYCHOPHYSIOLOGY MEASURES 

In this method, certain physiological responses (such as heart rate, skin conductance 

and temperature) can be measured before, during and after the interaction; such 

responses can be correlated with subjects’ emotional state and arousal level. The 

primary advantage of this method is that participants usually cannot manipulate the 

response of their autonomic nervous system, therefore the results obtained by this 

means are free from self-report bias.  

Perhaps the biggest disadvantage of this method is the limitations as to what they 

can measure; for example, they cannot distinguish anger from joy, but rather report the 

overall level of arousal. This method works well when the level of anxiety needs to be 

determined [193, 194], but would need to be supplemented by other measures to obtain 
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cross-validation and additional information. In addition, psychophysiology measures will 

suffer from individual differences in autonomic responses, as well as low reliability 

unless the equipment is individually calibrated. Finally, the equipment is often 

cumbersome and its presence alone may influence the results. 

7.1.5 TASK PERFORMANCE METRICS 

Objective task-related measures allow quantifying benefits a particular robot 

type/behavior/algorithm might have through such variables as accuracy, performance 

success, task completion time, error rate, resource usage and others, depending on a 

particular task and scenario. A clear-cut advantage of this method is the removal, to a 

large extent, of both subject and interpretation bias. From the point of view of affective 

HRI, it means measuring changes in human task performance occurring as a response 

to changes in the robot introduced by experimental conditions, rather than robot 

performance directly.  

One notable example of employing a task performance metric to evaluate the 

effectiveness of robot affect is presented in Scheutz et al. [195] . In this study the 

authors measured changes in task performance as a result of a robot’s expression of 

anxiety during an exploration scenario. In particular, as the robot’s anxiety (expressed 

speech rate and pitch) increased, the participants were alerted to the impending 

deadline, and worked more efficiently. Compliance is another task performance metric 

that has been previously employed in HIR. It was used to evaluate the effect of robotic 

personality (playful or serious) on participants’ compliance with the robot’s request to 

create and perform an exercise routine, measured by the amount of time participants 

exercised by themselves [196].  

Although task performance metrics provide objective and easily quantifiable results, 

their use in affective HRI is far from trivial. The biggest challenge lies in predicting which 
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types of tasks would directly or indirectly benefit from affective robotic behaviors, and 

how the people would respond to them.  

7.1.6 HRI MEASURES SUMMARY 

To summarize, each type of HRI measures described in this subsection has its own 

set of advantages and disadvantages. Self-assessments and interviews provide a wealth 

of information about participant’s perceptions of and attitudes towards robots, but suffer 

greatly from subjectivity and user bias. Behavioral analysis provides a different view of 

interaction and partially reduces subject bias, but is time- and resource-consuming, and 

is prone to interpretation bias. Psychophysiology methods provide a good indication of 

users’ arousal in real time, but are costly and cumbersome to set up, and the information 

they produce is rather limited. Finally, task performance metrics are objective, but reflect 

only one side of the story – how well the participants could perform a task, rather than 

how satisfactory, easy or pleasant their interaction with a robot was. Bethel et al. [65] 

advocate that no single measurement is sufficient to evaluate any interaction, and that it 

is important to include more than one method of evaluation to obtain comprehensive 

understanding and convergent validity.  

7.2 HRI METRICS EMPLOYED IN TAME EXPERIMENTS 

In the course of this dissertation, three HRI studies and one online survey have been 

performed. The measures used to evaluate robot affect in these experiments ranged 

from questionnaires (Likert-style and open-ended questions and semantic differential 

scales) to established psychometric tools to task performance metrics. The rest of this 

subsection will focus on the metrics specifically suitable for affective HRI and which 

present a contribution to the field. 
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7.2.1 ESTABLISHED PSYCHOMETRIC MEASUREMENT TOOLS 

Two psychological tools for measuring mood (PANAS [162]) and personality (“Big-

Five Mini-Markers” [163]) were employed with moderate success in multiple studies, to 

assess both  subjects’ affect, and their recognition (or attribution) of robot affect. These 

are self-assessment tools with proven reliability and validity [162, 163, 197] , but which 

have not been systematically used in the HRI research. Both are discussed in more 

detail below. 

7.2.1.1 PANAS: Positive Affect / Negative Affect Schedule 

PANAS scales were developed by Watson et al. [162] to measure two aspects of 

mood: Positive Affect and Negative Affect, and are applicable for measuring mood for 

different time frames, from “right now” to “today” to “past few weeks” to “in general”. The 

tool consists of two separately scored (but intermixed when presented to respondents) 

10-item scales corresponding to two mood dimensions. Positive Affect (PA) scale 

consists of the following adjective subscales: interested, excited, strong, enthusiastic, 

proud, alert, inspired, determined, attentive, active; Negative Affect (NA) scale is 

comprised of the following items: distressed, upset, guilty, scared, hostile, irritable, 

ashamed, nervous, jittery, afraid. For the studies in this dissertation, a variation of 

PANAS tool, PANAS-T, was used, which contained 2 additional items, one for each 

scale: happy for PA, and depressed for NA. For each 5-point subscale the subjects were 

asked to rate the extent to which they experienced each mood state during the specified 

time frame, ranging from “very slightly or not at all” to “extremely”. For this dissertation, 

“right now” time frame was used, as our concern was subjects’ or robot’s current 

affective state; see Appendix G for the mood questionnaire as applied to a person, and 

Appendix S for one with regards to a robot. 

PANAS-T was used to assess participants’ affect in the AIBO and Search-and-

Rescue experiments (Chapter 4, Exploratory Experimental Study, and subsection 6.1, 
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Evaluating Expressions of Negative Mood and Fear in a Search-and-Rescue Scenario, 

respectively) and to assess robot affect in the Search-and-Rescue experiment and robot 

affect recognition survey (subsection 5.3, Online Survey on Recognition of Affective 

Robotic Behavior; a shortened version of the test was used). In the longitudinal AIBO 

study, the subjects completed PANAS-T at the end of each of 4 sessions; it was found 

that lower Negative Affect was reported on average in the emotional condition (in which 

the robotic dog was programmed to display emotions of Joy, Interest, Fear and Anger, 

and a generally extraverted and agreeable personality). In the recognition survey, the 

respondents could differentiate between positive and negative mood expressed by a 

humanoid robot in two video clips. Finally, in the Search-and-Rescue experiment, the 

participants reported higher levels of Negative Affect and nervousness in the Combined 

(negative mood + fear) condition. These results suggest that PANAS can be successfully 

used for measuring mood state in HRI studies. However, we also observed some 

interesting phenomena, which need to be taken into consideration while using this tool in 

the future.  

1. Individual Subscales. It should be noted that PA and NA scales of the PANAS 

measurement tool assess various aspects of positive and negative mood. For 

example, NA scale has hostile, ashamed and irritable subscales which may not 

be relevant to an experiment objective (e.g., induction of anxiety). In such a case, 

it would be worthwhile to examine individual subscales which would be more in 

line with the nature of the study. In particular, there was a greater difference 

between conditions on the nervous subscale of the NA scale, than on the overall 

scale in the Search-and-Rescue experiment (see subsection 6.1.5.4, Hypothesis 

3: Participants’ Negative Affect for details).  
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Similarly, the PA scale contains both valence and activation terms, with the latter 

reflecting engagement with the stimulus, but not evaluation of it. For example, 

Patrick et al. [198] found an increase in Positive Affect when they showed their 

participants negative pictures, which was due to the activation items of the PA 

scale. In the Search-and-Rescue experiment, we observed that the participants 

viewed the robot as more determined and active in one or both of the affective 

conditions. In particular, ANOVAs on the determined and active subscales were 

significant (fdetermined = 3.64, p < 0.035, factive = 6.12, p< 0.005), and LSD post-

hoc comparisons revealed that the robot was rated as more determined in the 

Mood (p < 0.022) and Combined (p < 0.027) conditions than Control, and more 

active in the Combined condition that in either Mood (p<0.021) or Control 

(p<0.008). Table 43 provides descriptive statistics for this finding. 

Table 43: Descriptive Statistics for Robot determined and active subscales of the PA 
scale 

 Dependent  

N Mean Std. Deviation Std. Error Variable Condition 

Robot Active Control 14 2.9286 .82874 .22149 

Mood Only 14 3.0714 1.07161 .28640 

Mood and Emotion 15 4.0667 .96115 .24817 

Total 43 3.3721 1.06956 .16311 

Robot Determined Control 14 2.7857 1.31140 .35049 

Mood Only 14 3.8571 1.02711 .27451 

Mood and Emotion 15 3.8000 1.20712 .31168 

Total 43 3.4884 1.26061 .19224 

 

As a result, our recommendation with respect to individual subscales of the 

PANAS tool would be to: 1) be as specific as possible while outlining hypotheses 
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regarding positive and negative affect; 2) pay attention to individual subscales in 

addition to overall PA and NA scores.  

Projection of Affective State. During the analysis of the Search-and-Rescue 

experimental data on participant’s and robot mood, it was noted that the subjects 

may have been projecting their positive affective state on the robot. In particular, 

there were strong positive correlations at the 0.01 level between the participants’ 

ratings of their own positive affect both before and after the interaction, and the 

robot’s positive affect (Table 44).  

Table 44: Pearson’s Correlations between participants’ and robot’s positive affect 
ratings: strong correlations between subjects’ positive affect ratings before and after the 
interaction and the robot’s positive affect ratings indicate projection of subject affect on 

to the robot 

  Subject Positive 

Affect, After 

Subject Positive 

Affect, Before 

Robot Positive 

Affect 

Subject Positive Affect, After Pearson Correlation 1 .753
**
 .678

**
 

Sig. (2-tailed)  .000 .000 

N 43 43 43 

Subject Positive Affect, 

Before 

Pearson Correlation .753
**
 1 .510

**
 

Sig. (2-tailed) .000  .000 

N 43 43 43 

Robot Positive Affect Pearson Correlation .678
**
 .510

**
 1 

Sig. (2-tailed) .000 .000  

N 43 43 43 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Interestingly, the same phenomenon was not observed in case of Negative 

Affect:  there were significant correlations between the ratings of participants’ and 

robot’s negative mood after the interaction, but not before (Table 45). This 

suggests that in this particular experiment the negative affect may have been 
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induced on the participants through the interaction, as opposed to being 

projected from people onto the robot.  

Table 45: Pearson’s Correlations between participants’ and robot’s negative affect 
ratings 

  Subject 

Nervous, 

After 

Subject 

Nervous, 

Before 

Subject 

Negative 

Affect, After 

Subject 

Negative 

Affect, Before 

Robot 

Nervous 

Robot 

Negative 

Affect 

Subject 

Nervous, After 

Pearson Correlation 1 .328
*
 .830

**
 .386

*
 .389

*
 .348

*
 

Sig. (2-tailed)  .041 .000 .012 .011 .024 

N 42 39 42 42 42 42 

Subject 

Nervous, 

Before 

Pearson Correlation .328
*
 1 .219 .595

**
 -.024 -.075 

Sig. (2-tailed) .041  .181 .000 .881 .648 

N 39 40 39 40 40 40 

Subject 

Negative 

Affect, After 

Pearson Correlation .830
**
 .219 1 .393

*
 .267 .366

*
 

Sig. (2-tailed) .000 .181  .010 .087 .017 

N 42 39 42 42 42 42 

Subject 

Negative 

Affect, Before 

Pearson Correlation .386
*
 .595

**
 .393

*
 1 .121 .072 

Sig. (2-tailed) .012 .000 .010  .441 .645 

N 42 40 42 43 43 43 

Robot 

Nervous 

Pearson Correlation .389
*
 -.024 .267 .121 1 .715

**
 

Sig. (2-tailed) .011 .881 .087 .441  .000 

N 42 40 42 43 43 43 

Robot 

Negative 

Affect 

Pearson Correlation .348
*
 -.075 .366

*
 .072 .715

**
 1 

Sig. (2-tailed) .024 .648 .017 .645 .000  

N 42 40 42 43 43 43 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

We have noted a similar tendency in the AIBO study, where the participants 

reported AIBO as having emotions when none were expressly exhibited by the 

robot. Together, these findings point to a tendency of people to project their 
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own affective state on a robot if the robot does not exhibit any specific affect 

otherwise. 

7.2.1.2 Big-Five Mini-Markers: a Brief Measure of Personality 

This measure is a brief version of Goldberg’s Unipolar Big-Five Markers [199] 

developed by Saucier [163] to reduce the burden on the respondents without sacrificing 

the robustness. The Mini-Markers consist of 40 adjectives, 8 per each dimension of the 

Five-Factor Model of personality, and respondents are asked to rate themselves or 

others on a 9-point scale for each attribute.  

Mini-Markers were used to measure both participants’ and robot’s personality in two 

experiments: the AIBO study and the Extraversion experiment, and the Extraversion 

subset of the tool was used for determining recognition of a humanoid robot’s level of 

extraversion in the robot affect recognition online survey (subsection 5.3, Online Survey 

on Recognition of Affective Robotic Behavior). Unlike with mood ratings, no correlations 

were observed between the ratings of participants’ and robot’s personality on 

corresponding dimensions, therefore suggesting that people are not likely to project their 

own personality on robots they interact with. On a lighter note, regardless of subjects’ 

personality, Nao robot was described as highly or moderately extraverted (depending on 

the condition), rather conscientious, and not particularly bright (though still more 

intelligent/open than AIBO). 

To evaluate the appropriateness of using Mini-Markers with regards to robots, the 

internal consistency reliability (as measured by Cronbach’s Alpha) of each dimension on 

ratings of robot’s personality (as measured across AIBO and Extraversion experiments) 

was computed. It was found to be somewhat lower than what was reported for human 

data ([163], Cronbach’s alpha ranging from 0.76 to 0.86). However, it was still 

acceptable (above 0.7, as recommended by Nunnally [200] and Bartneck et al. [80]) for 

dimensions of Conscientiousness, Neuroticism and Openness, and just below for 
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dimensions of Extraversion and Agreeableness (Table 46). This decrease in internal 

reliability is not entirely unexpected, as this measure was applied to non-human entities 

rather than humans, and the number of cases was low (51). We also do not believe it 

low enough to preclude this tool from use in HRI experiments – on the contrary, the 

results are rather encouraging and we would recommend Mini-Markers for further use in 

evaluation of affective robots. 

Table 46: Internal Consistency Reliability for Mini-Markers (robot’s personality)  

 Experiment 

AIBO Extraversion Average Dimension  

Extraversion 

(8 items) 

Cronbach’s Alpha .606 .762 .684 

N 21 30 51 

Agreeableness  

(8 items) 

Cronbach’s Alpha .592 .657 .625 

N 21 30 51 

Conscientiousness 

(8 items) 

Cronbach’s Alpha .756 .655 .706 

N 21 30 51 

Neuroticism 

(8 items) 

Cronbach’s Alpha .716 .718 .717 

N 21 30 51 

Intellect/Openness  

(8 items) 

Cronbach’s Alpha .935 .768 .852 

N 21 30 51 

 

7.2.1.3 Summary 

In this subsection, the suitability of two established psychometric tools for measuring 

affect (PANAS for Positive and Negative Affect [162], and Mini-Markers for personality 

[163]) for use in HRI studies was examined. Based on our prior experience with these 

tests in a number of TAME HRI studies we can recommend them as adequate means 

for evaluating both subjects’ and a robot’s affective state and personality. In particular, 

the following observations and recommendations can be made regarding PANAS and 

Mini-Markers use in HRI experiments: 
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• Subscales of the PANAS tool measure different aspects of Positive and Negative 

Affect; for example, PA scale contains both valence and activation terms, with 

the latter reflecting engagement with the stimulus, but not evaluation of it [198]. 

Therefore analyzing individual subscales in addition to the overall ratings would 

provide finer-grained results, especially in cases where a particular aspect of 

mood is of primary interest (e.g., nervousness, hostility, excitement, etc.).  

• People are prone to project their own affective state onto the robot they are 

interacting with, especially if the robot does not display any discernable affect 

otherwise. Interestingly, this phenomenon was not observed with personality 

traits. This finding should be taken into account when analyzing the results of 

these tests, in order to differentiate the recognition of affective behaviors from 

people’s projection of their own affective state. 

• Internal consistency reliability on Mini-Markers used to asses a robot’s 

personality was comparable, if somewhat lower than when that reported for its 

use with human subjects [163], confirming the suitability of using this tool in HRI 

studies.  

7.2.2   SEMANTIC DIFFERENTIAL SCALES 

The semantic differential scale, devised originally by Osgood et al. [201] , is a self-

assessment (rating) tool, and has been used frequently for measuring social attitudes 

and perceptions. Bartneck et al. [80] advocate its use for HRI evaluation over Likert style 

scales due to consistency of presentation and reduction of acquiescence bias (common 

to Likert style scales, which force a respondent to either agree/disagree with or report 

their like/dislike of a statement). In addition, once developed, these scales can be reused 

in other studies, thus allowing inter-study comparison.  
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Typically, semantic differential scale is a 5 to 9 point bipolar rating (sub)scale, with 

opposites at each end, and respondents are required to select the point that most 

closely reflects their opinion; this provides both extreme options as well as more neutral 

ones. By combining 3 to 10 (or sometimes even more) such subscales together, a 

composite scale expressing an overarching concept can be designed.  

As with any evaluation measure, there are certain considerations that need to be 

taken into account in the development of semantic differential scales; in the design of the 

scales for TAME experiments, we paid attention to the points brought up by Al-Hindawe 

[202]. In particular, the following design decisions were made:  

• Both complementary opposites (e.g., sincere – insincere, conscious – 

unconscious) and more subtle, gradable antonyms (e.g., entertaining – boring, 

distracting – easy to tune out) were used, as deemed appropriate. 

Complementary opposites are not always available, and simple negation may 

project an unintended meaning; for example, using a direct opposite of quiet, 

“loud” would not quite relate the idea of “distracting” as opposed to simply “loud”. 

• 5 items (adjective pairs) per scale were chosen to provide enough information 

about the chosen concepts, yet not be overly tedious for the subjects to go 

through.  

• In all the scales, negatively valenced adjectives were placed on the left, and 

positively – on the right. This was done for consistency, to reduce any errors due 

to unexpected (from the subjects’ point of view) reversal of polarity. 

• Five-point scales (as opposed to 7- or 9-point), although course-grained, were 

chosen to reduce the burden on the respondents and make grading less tedious.  
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The rest of the subsection will discuss each scale and present internal reliability 

results. It should be noted, that although these scales were developed with robots in 

mind, they could be applicable to a wider domain, e.g., virtual or other embodied agents. 

7.2.2.1 Semantic Differential Scales Used in Search-and-Rescue Experiment 

Three 5-item semantic differential scales were employed in this experiment: 

Understandability, Persuasiveness and Naturalness. Understandability scale measures 

the extent to which a robot is perceived as understandable, and can refer to: robot’s 

behavior, actions, speech, expressions, “state of mind”, intentions, and other attributes. 

Persuasiveness scale measures to what extent a robot was found to be persuasive, and 

can be applied to: robot’s request, message, speech, actions, etc. Finally, the 

Naturalness scale measures to what extent a robot is judged as natural, and can refer to 

either a robot as a whole, or its appearance, speech or behavior separately. This scale 

was not developed from scratch, but rather combines a number of subscales of two 

overlapping scales, Anthropomorphism and Animacy, presented in Bartneck et al. [80], 

and eliminates redundancy. Table 47 shows the adjectival opposites for the scales, and 

the scales themselves, as presented to respondents, can be found in Appendix T. 

Table 47: Adjectival Pairs comprising Understandability, Persuasiveness, and 
Naturalness Scales 

Understandability Persuasiveness Naturalness 

Confusing – Clear Ignorable – Compelling Fake – Natural 

Unreadable – Easy to Read Inappropriate – Appropriate Machinelike – Humanlike 

Inconsistent – Consistent Ineffective – Persuasive Unconscious – Conscious 

Hard to Understand – Easy to 
Understand 

Insincere – Sincere Artificial – Lifelike 

Inexpressive – Expressive Unconvincing – Convincing Inert – Interactive 

 

Two types of statistical analysis were performed to evaluate these scales: 1) factor 

analysis (principal components) to determine whether all the subscales within a scale 
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refer to the same construct; and 2) internal consistency reliability test (measured by 

Cronbach’s Alpha) which reflects the homogeneity of the scale. As a result of factor 

analysis, two factors (dimensions) were extracted for both Understandability and 

Naturalness scales, and one for Persuasiveness. Further intra-scale correlations 

analysis showed that the “expressive – inexpressive” pair did not correlate with any other 

subscales within the Understandability scale, and removing this item resulted in a single 

dimension returned by a subsequent factor analysis.  Similarly, removal of the 

“interactive – inert” pair (which was correlated with only one other subscale) from the 

Naturalness scale resulted in a single dimension, based on a subsequent factor 

analysis. This adjectival pair was replaced in the Extraversion experiment. 

To determine internal consistency reliability, Cronbach’s Alpha was computed for 

each scale, both for each experimental condition and the experiment overall (see Table 

48 for internal consistency results, and Appendix II for descriptive statistics).  

Table 48: Internal Consistency Reliability for Understandability, Persuasiveness and 
Naturalness scales, by condition and overall. Overall, all scales had acceptable 

reliability. 

 Condition 

Control Mood Combined Overall Scale  

Understandability 

(5 items) 

Cronbach’s Alpha .625 .810 .450 .654 

N 14 14 15 43 

Persuasiveness  

(5 items) 

Cronbach’s Alpha .825 .408 .830 .799 

N 14 14 .15 43 

Naturalness 

(5 items) 

Cronbach’s Alpha .828 .824 .632 .779 

N 14 14 15 43 

Understandability 

(expressive excluded, 

4 items) 

Cronbach’s Alpha .716 .880 .254 .714 

N 14 14 15 43 
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Overall, the scales have acceptable internal consistency (after the “inexpressive – 

expressive” pair was removed from Understandability due to its poor intra-scale 

correlations rating), with Cronbach’s Alpha values ranging from 0.714 for the 4-item 

Understandability scale to 0.799 for Persuasiveness. Although in some conditions the 

reliability was lower, it could be due a small number of respondents (14 or 15 per 

condition), given that the overall results reflecting a larger number of participant are 

better.  

To summarize, the novel semantic differential scales of Understandability (with the 

“expressive –inexpressive” pair removed), Persuasiveness and Naturalness were found 

to have acceptable internal consistency reliability (in an HRI experiment involving 45 

participants), reflect concepts important for the HRI domain, and are flexible enough to 

be used in a variety of scenarios. It should be noted that the exact wording of the 

questions introducing each scale (e.g., “In your opinion, the robot’s request to leave 

was:” preceding the Persuasiveness scale) will need to be adjusted based on the 

experimental procedure and the hypotheses.  

7.2.2.2 Semantic Differential Scales Used in Extraversion Experiment 

Five 5-item semantic differential scales were employed in this experiment: 

Appropriateness (used for two different tasks, quiz and math), Welcome, Appeal, 

Unobtrusiveness, Ease and Naturalness. The Appropriateness scale measures the 

extent to which a robot is perceived as appropriate for a particular type of task or 

process; it can be used in regards to a robot as a whole, or its appearance, behavior, 

capabilities, and other attributes. Welcome scale measures to what extent a robot made 

participants feel welcome, and can be applied to, for example, participants’ participation 

in a joint task, their presence, offer of assistance, etc. The Appeal scale measures the 

extent to which participants find an activity involving a robot appealing; it can refer to 

facts or a presentation given by a robot, a meeting, a joint task, etc. To measure the 



MEASURING SOCIAL RESPONSE TO AFFECTIVE ROBOTS     CHAPTER 7 

 

 297

extent to which a robot is perceived as distracting during a task, a meeting, or any other 

activity, a scale of unobtrusiveness was developed; the lower the score, the higher the 

distraction due to the robot, as the negatively valenced adjectives are anchored at “1”. 

The Ease scale measures the perceived ease of a task, a problem, or a joint project. 

Finally, the same Naturalness scale was used as before, but due to the poor intra-scale 

correlation result, the “inert – interactive” pair was replaced with a different activity-

related pair, “inanimate – animate”. Table 49  shows the adjectival opposites for the 

scales. The scales themselves, as presented to respondents, can be found in 

Appendices CC and DD, and the descriptive statistics for them in Appendix II. 

Table 49: Adjectival Pairs Comprising Appropriateness, Welcome, Appeal, 
Unobtrusiveness, and Ease Scales 

Appropriateness Welcome Appeal Unobtrusiveness Ease 

Inappropriate – 
Appropriate 

Unwelcome – 
Welcome 

Boring – 
Interesting 

Distracting – Easy to 
Tune Out 

Hard – Easy 

Wrong for Task – 
Right for Task 

Undesired – 
Desirable 

Not Fun – A lot 
of Fun 

Interfering – Minding 
its Own Business 

Complicated – 
Simple 

Ill- Suited – Well-
Suited 

Disliked – 
Liked 

Useless – 
Useful 

Annoying – 
Inoffensive 

Demanding – 
Undemanding 

Improper – Proper 
Tolerated – 
Encouraged 

Dull – Exciting 
Irritating – 

Undemanding 
Long – Short 

Mismatched – 
Matched to Task 

Unwanted – 
Wanted 

Tedious – 
Entertaining 

Bothersome – Quiet 
Complex – 

Basic 

 

Similar to the Search-and-Rescue experiment scales, the same two types of 

statistical analysis were performed to evaluate the scales used in the Extraversion study. 

To identify whether any scales should be reduced further, Factor Analysis (principal 

component) was performed; each scale was found to be comprised of a single factor, 

reflecting the same concept. In order to determine the internal consistency reliability, 

Cronbach’s Alpha was computed for each scale, both for each experimental condition 

and the experiment overall (Table 50). Overall, the alpha values showed moderate to 
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high internal consistency for all scales, and the results per condition were all at the 

acceptable level as well. The internal consistency of the Naturalness scale was 

improved from 0.779 to 0.827 with replacement of the “interactive” item with “animate”; 

and only one factor was extracted by factor analysis for the modified scale, indicating 

that it reflects the measured construct better than the original one. 

Table 50: Internal Consistency Reliability for Appropriateness, Welcome, Appeal, 
Unobtrusiveness, Ease and Naturalness scales, by condition and overall 

 Condition 

Introverted Extraverted Overall Scale  

Quiz Appropriateness 

(5 items) 

Cronbach’s Alpha .923 .902 .918 

N 15 15 30 

Math Appropriateness  

(5 items) 

Cronbach’s Alpha .885 .970 .966 

N 14 14 28 

Welcome 

(5 items) 

Cronbach’s Alpha .881 .896 .914 

N 15 15 30 

Appeal 

(5 items) 

Cronbach’s Alpha .796 .837 .848 

N 15 15 30 

Unobtrusiveness 

(5 items) 

Cronbach’s Alpha .847 .970 .927 

N 14 14 28 

Ease 

(5 items) 

Cronbach’s Alpha .777 ..878 .865 

N 14 14 28 

Naturalness  

(5 items) 

Cronbach’s Alpha .724 .813 .827 

N 15 14 29 

 

To summarize, the novel semantic differential scales of Appropriateness, Welcome, 

Appeal, Unobtrusiveness, Ease and Naturalness (where “interactive” item was replaced 

with “animate”) were found to have high internal consistency reliability (in an HRI 

experiment involving 30 participants), reflect concepts important for the HRI domain, and 

are flexible enough to be used in a variety of scenarios. 
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7.2.3 TASK PERFORMANCE METRICS 

Whenever both objective and subjective measures are used in a study, it is important 

to address the question of how these measures relate to each other, and whether 

differences in objective performance are reflected in subjective perceptions. In order to 

answer this question, we examined the correlations between task performance results 

and subjective scale ratings for the Search-and-Rescue and Extraversion experiments.  

In the Search-and-Rescue experiment, the Time To Cross variable measured 

request compliance; specifically, how much time it took the participants from the time the 

robot issued the direct request “Please proceed to the exit” and their reaching the first 

cross marker (see subsection 6.1.5.3, Hypotheses 2: Request Compliance for details). 

This metric was found to be negatively, or inversely, correlated (at the 0.05 level, two-

tailed) with only two subjective variables, both related to how persuasive the robot’s 

request was found: compelling subscale of the Persuasiveness scale, and Decision to 

Leave variable (the extent to which robot’s behavior influenced the participants’ decision 

to leave); see Table 51 for Pearson correlations results. This finding indicates that those 

who found the robot’s request more compelling and the robot’s behavior more of a factor 

in their decision to leave, were also faster to “evacuate”.   

Table 51: Correlations between Time To Cross, Decision To Leave and Compelling 
variables: those who found the robot more compelling and its behavior more influential in 

their decision to leave, were also faster to “evacuate”. 

  

Time To Cross 

Decision To 

Leave Compelling 

Time To Cross Pearson Correlation 1 -.380
*
 -.407

*
 

Sig. (2-tailed)  .027 .017 

N 34 34 34 

Decision To Leave Pearson Correlation -.380
*
 1 .572

**
 

Sig. (2-tailed) .027  .000 

N 34 43 43 
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Table 51 (continued) 

Compelling Pearson Correlation -.407
*
 .572

**
 1 

Sig. (2-tailed) .017 .000  

N 34 43 43 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

In the Extraversion experiment, a number of metrics were used to measure task 

performance: quiz score and completion time for the quiz task, and completion time and 

completion time improvement for the math task (see subsection 6.2.5.4, Hypothesis 3: 

Task Performance, for details). Perhaps not surprisingly, given that no differences in 

quiz performance were found between the conditions, there were no significant 

correlations between the quiz performance metrics and any of the subjective measures. 

On the contrary, some significant correlations were observed between math 

performance metrics and a number of scales/subscales.  

As you may recall, two different sets of semantic differential scales were used to 

evaluate the tasks subjectively: for the quiz task, participants rated the robot on task 

appropriateness, welcome, and appeal, and for the math task, the scales of 

Unobtrusiveness, Ease, and Appropriateness were used, along with the TLX measure 

(subsection 6.2, Evaluating Expressions of Extraversion and Introversion in a Robot as a 

Guide Scenario). Additionally, the robot was rated on the Naturalness scale after both 

tasks were completed. Interestingly, no correlation was found between the math task 

performance metrics and the TLX and Ease ratings, suggesting that the perceived 

difficulty of the math problem was not a good indicator of performance. Completion Time 

Improvement for the math task was not correlated with any other math related scales. 

Math Completion Time, however, did correlate (negatively) at the 0.05 level with the 

“Easy To Tune Out” subscale of the Unobtrusiveness scale, and “Matched to Task” 
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subscale of the Appropriateness (math) scale those participants who thought that the 

robot was matched to task and easy to tune out, also completed the math problem faster 

(Table 52). 

Table 52: Correlations between math Completion Time metric, and Easy To Tune Out 
and Matched to Task subscales 

  Math Completion 

(experimental) 

Matched to Task 

(math) 

Easy to Tune 

Out 

Math Completion 

(experimental) 

Pearson Correlation 1 -.393
*
 -.375

*
 

Sig. (2-tailed)  .039 .050 

N 28 28 28 

Matched to Task (math) Pearson Correlation -.393
*
 1 .694

**
 

Sig. (2-tailed) .039  .000 

N 28 28 28 

Easy to Tune Out Pearson Correlation -.375
*
 .694

**
 1 

Sig. (2-tailed) .050 .000  

N 28 28 28 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Completion Time Improvement for the math task, on the other hand, was correlated 

negatively with the ratings on the Welcome scale and most of its subscales, and on the 

Appeal scale and a number of its subscales (Table 53 and Table 54, respectively); it 

should be noted that both scales were given to the participants after the quiz task. What 

this points to is that the same style of robot behavior that made the subjects feel 

welcome and the presentation appear more appealing was detrimental to the 

improvement they achieved on the experimental math task, as compared to the 

baseline.  Interestingly, the same correlations were not observed for the Completion 

Time metric, with the exception of “Encouraged” subscale of the Welcome scale, for 

which a positive Pearson’s correlation (two-tailed) of 0.383 was found, with p < 0.044. 
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Table 53: Correlations between Completion Time Improvement metric (math) and 
Welcome scale and subscales: the more welcoming the robot appeared during the quiz 

task, the less their math completion time improved. 

  Completion Time 

Improvement 

(Math) Desirable Liked Encouraged Wanted 

Welcome, 

Overall 

Completion Time 

Improvement 

(Math) 

Pearson Correlation 1 -.506
**
 -.536

**
 -.405

*
 -.434

*
 -.495

**
 

Sig. (2-tailed)  .006 .003 .033 .021 .007 

N 28 28 28 28 28 28 

Desirable Pearson Correlation -.506
**
 1 .867

**
 .529

**
 .726

**
 .873

**
 

Sig. (2-tailed) .006  .000 .003 .000 .000 

N 28 30 30 30 30 30 

Liked Pearson Correlation -.536
**
 .867

**
 1 .683

**
 .759

**
 .913

**
 

Sig. (2-tailed) .003 .000  .000 .000 .000 

N 28 30 30 30 30 30 

Encouraged Pearson Correlation -.405
*
 .529

**
 .683

**
 1 .645

**
 .810

**
 

Sig. (2-tailed) .033 .003 .000  .000 .000 

N 28 30 30 30 30 30 

Wanted Pearson Correlation -.434
*
 .726

**
 .759

**
 .645

**
 1 .886

**
 

Sig. (2-tailed) .021 .000 .000 .000  .000 

N 28 30 30 30 30 30 

Welcome, 

Overall 

Pearson Correlation -.495
**
 .873

**
 .913

**
 .810

**
 .886

**
 1 

Sig. (2-tailed) .007 .000 .000 .000 .000  

N 28 30 30 30 30 30 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Table 54: Correlations between Completion Time Improvement metric (math) and 
Appeal scale and subscales: the more appealing the participants found the robot’s 

presentation, the less their math completion time improved. 

  Completion Time 

Improvement (Math) Useful Exciting Appeal 

Completion Time 

Improvement (Math) 

Pearson Correlation 1 -.412
*
 -.450

*
 -.476

*
 

Sig. (2-tailed)  .029 .016 .010 

N 28 28 28 28 

Useful Pearson Correlation -.412
*
 1 .501

**
 .731

**
 

Sig. (2-tailed) .029  .005 .000 

N 28 30 30 30 

Exciting Pearson Correlation -.450
*
 .501

**
 1 .823

**
 

Sig. (2-tailed) .016 .005  .000 

N 28 30 30 30 

Appeal Pearson Correlation -.476
*
 .731

**
 .823

**
 1 

Sig. (2-tailed) .010 .000 .000  

N 28 30 30 30 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Both math task performance metrics were also correlated with “Appropriate” 

subscale of the Quiz Appropriateness scale, positively with math Completion Time, and 

negatively with Completion Time Improvement (Table 55), indicating that the more 

appropriate the subjects found the robot for the quiz task, the worse they did on the math 

problem – they both took longer, and improved the completion time less. Finally, 

Completion Time Improvement variable had a high negative correlation with the “Lifelike” 

subscale of the Naturalness scale (Table 56) – the more lifelike the robot appeared, the 

less the subjects improved their math completion time. 
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Table 55: Correlations between math performance metrics and “Appropriate” subscale 
of the Quiz Appropriateness scale: the more appropriate the participants found the robot 

for the quiz task, the worse they performed on the math task.  

  

Math Completion 

(experimental) 

Completion Time 

Improvement 

(Math) 

Appropriate 

(quiz) 

Math Completion 

(experimental) 

Pearson Correlation 1 -.585
**
 .398

*
 

Sig. (2-tailed)  .001 .036 

N 28 28 28 

Completion Time 

Improvement (Math) 

Pearson Correlation -.585
**
 1 -.378

*
 

Sig. (2-tailed) .001  .047 

N 28 28 28 

Appropriate (quiz) Pearson Correlation .398
*
 -.378

*
 1 

Sig. (2-tailed) .036 .047  

N 28 28 30 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

Table 56: Correlation between Completion Time Improvement (math) and “Lifelike” 
subscale of the Naturalness scale: the more lifelike the participants found the robot, the 

less their math completion time improved. 

  Completion Time 

Improvement 

(Math) Lifelike 

Completion Time 

Improvement (Math) 

Pearson Correlation 1 -.455
*
 

Sig. (2-tailed)  .015 

N 28 28 

Lifelike Pearson Correlation -.455
*
 1 

Sig. (2-tailed) .015  

N 28 30 

*. Correlation is significant at the 0.05 level (2-tailed). 
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7.2.3.1 Summary 

Although the task of selecting or designing appropriate compliance and task 

performance metrics is rather challenging, every effort should be made to include such 

measures into evaluation of affective robotic behavior effectiveness. There are a number 

of reasons for this recommendation: 

1. Task performance metrics provide an objective means for assessing social 

response to affective robots. 

2. Task performance results may not necessarily be reflected in the participants’ 

subjective perceptions and attitudes, thus they provide insights which would not 

otherwise be available. For example, someone who performs very well on a test 

may still find this test difficult and demanding, or someone who finds an 

obnoxious robot distracting may not necessarily perform worse.  In particular, the 

correlations between objective task performance measures in TAME HRI 

experiments were not as obvious and straightforward as might have been 

expected: 

• The correlations between subjective and objective measures in the 

Search-and-Rescue experiment were related to how persuasive the 

participants found the robot’s request to evacuate, but not to how 

understandable its behavior seemed, or how natural the robot 

appeared.  

• In the extraversion experiment, there was hardly any correspondence 

between the subjective ratings of the math task (the robot’s 

appropriateness and unobtrusiveness, and the perceived 

difficulty/workload of the math problem); this finding was especially 

surprising with respect to the TLX score.  
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• Another interesting observation was that Completion Time 

Improvement was linked more often with the subjective measures 

than was the raw Completion Time; perhaps this indicates that the 

improvement variable was less susceptible to individual differences in 

completion time, as it was measured as a percentage.  

• Finally, the link between more positive assessments of the robot 

during the quiz task and the decreased performance during the math 

task strengthens the original hypothesis that some personality traits 

are better suited for some tasks, but not for others.     

Overall, it is important to employ both subjective and objective means of evaluation, 

as only together they can provide a comprehensive picture.    

7.3 SUMMARY AND RECOMMENDATIONS 

This chapter addressed the third subsidiary research question: “What are the metrics 

for evaluating affective robotic behavior?” In it, different types of evaluation measures 

(namely, self-assessments, interviews, observational (behavioral) measures, 

psychophysiology measurements, and task performance metrics), currently in use in the 

HRI research community, were presented, and their advantages and disadvantages 

were highlighted. The overview was followed by a discussion of three different means for 

evaluating affective robotic behaviors, all tested in a number of affective HRI studies: 1) 

established psychometric tools to measure mood and personality; 2) novel semantic 

differential scales, suitable for reuse in other experiments; 3) task performance metrics 

measuring differences in participants’ task performance as a response to affective 

robotic expressions. Based on our experience with these measures with regards to 

evaluating affective robots, the following observations and recommendations can be 

made:  
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1. Evaluating Social Response. While evaluating affective robotic behavior in 

human-robot interaction experiments, it is important to remember that in many 

cases the effectiveness of such behavior cannot be measured directly, by 

evaluating a robot’s performance, but rather through the social response the 

robot invokes in participants. For example, the benefit of robotic expressions of 

nervousness and anxiety is not in how well a robot can evacuate from a 

dangerous zone itself, but rather in how well it can persuade the humans to do 

so.  

2.  Metrics Selection. As measures commonly used for evaluation in the HRI 

domain have their advantages and disadvantages (e.g., self-assessment 

techniques are easy to use, but suffer from lack of objectivity), it is important to 

perform a cost-and-benefit analysis in order to select the metrics most 

appropriate for an experiment. For example, if both time and resources are at a 

premium, then the time- and resource-consuming nature behavioral analysis 

would put it at a great disadvantage; however, if the benefits of such analysis 

outweigh its disadvantages (if experienced coders are readily available and there 

is existing research connecting particular behaviors to the subject-matter of the 

hypotheses), then behavioral analysis would be still suitable for use. For further 

information on evaluation criteria for metrics selection the reader is referred to 

Donmez et al. [203]. 

3. Use of Established Psychometric Tools. Two established psychometric tools 

for measuring affect (PANAS for Positive and Negative Affect [162], and Mini-

Markers for personality [163]) can be recommended as appropriate means for 

evaluating both subjects’ and a robot’s affective state and personality, based on 
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their successful use in a number of TAME HRI experiments. With respect to 

these tests, the following additional findings were observed: 

• Subscales of the PANAS tool measure different aspects of Positive 

and Negative Affect. Therefore analyzing individual subscales in 

addition to the overall ratings would provide finer-grained results, 

especially in cases where a particular aspect of mood is of primary 

interest (e.g., nervousness, hostility, excitement, etc.).  

• It was found that people are likely to project their own affective state 

onto the robot they are interacting with, especially if the robot does not 

display any discernable affect otherwise. Interestingly, this 

phenomenon was not observed with personality traits. This finding 

should be taken into account when analyzing the results of these 

tests, in order to differentiate the recognition of affective behaviors 

from people’s projection of their own affective state. 

• Internal consistency reliability on Mini-Markers used to asses a robot’s 

personality was comparable, if somewhat lower than that reported for 

its use with human subjects [163], confirming the suitability of using 

this tool in HRI studies.   

4. Reusable Semantic Differential Scales. 8 novel semantic differential scales 

measuring a variety of concepts were designed for this dissertation. These 

scales were found to have at least acceptable (over 0.7), but in most cases much 

higher (up to 0.942 for Appropriateness) internal consistency reliability, and 

therefore can be recommended for use in other HRI experiments to promote 

repeatability. These scales cover a variety of concepts relevant to the HRI 

domain, and are flexible enough to be used in a variety of scenarios and robot 
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tasks. For example, Persuasiveness scale can be applied to a robot’s request, 

message, speech, actions, etc., and would be useful in any scenario in which a 

robot attempts to convince participants to perform a certain task (e.g., evacuate 

from a dangerous zone, or perform proscribe rehabilitative exercises). Table 57 

provide a summary of these reusable semantic differential scales, including 

internal consistency reliability score, number of participants tested on, and 

concept measured for each scale.   

Table 57: Summary of Semantic Differential Scales used in TAME HRI experiments 

Semantic 
Differential Scale 

Reliability 
(Cronbach’s Alpha) 

Number of 
Participants 

Concept Measured 

Understandability 0.714 43 How understandable is 
the robot? 

Persuasiveness 0.799 43 How persuasive is the 
robot? 

Naturalness 
(combined) 

0.803 71 How natural does the 
robot appear? 

Appropriateness 
(combined) 

0.942 30 How appropriate is the 
robot for a particular 
task? 

Welcome 0.914 30 How welcome does the 
robot make participants 
feel? 

Appeal 0.848 30 How appealing are facts 
(actions) given 
(performed) by the robot? 

Unobtrusiveness 0.927 28 How unobtrusive was the 
robot? 

Ease 0.875 29 How easy did a task 
performed with a robot 
appear? 

 

5. Importance of Task Performance Metrics. It is particularly important to include 

task performance metrics into evaluation of affective robotic behavior 

effectiveness. The primary reasons for this recommendation are as follows: 



MEASURING SOCIAL RESPONSE TO AFFECTIVE ROBOTS     CHAPTER 7 

 

 310

• Unlike most other measurements, task performance metrics provide 

an objective means for assessing social response to affective robots. 

• Task performance results may not necessarily be reflected in the 

participants’ subjective perceptions and attitudes, thus they provide 

insights which would otherwise be unavailable. 
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8 CONCLUSION 

Step by step the state of the art in robotics advances: visual and auditory perception 

achieves greater precision, communications become more reliable, mobility improves, 

bringing us closer and closer to the time when robots become an indelible part of our 

everyday lives, moving from manufacturing plants into our homes and workplace. As 

robots gain more autonomy and start interacting with people untrained in robotics, it 

becomes increasingly important for them to be able to communicate in a way easily 

understandable and acceptable to nurses and patients in a hospital setting, or elderly in 

their homes, or visitors at museums and exhibitions.  

Humans are inherently social creatures, and apply social rules not only to their 

interactions with one another, but also to those with non-human animals, and even 

inanimate objects. This propensity of people to anthropomorphize certain objects has 

been well established by Nass and his colleagues in an extensive set of experiments 

[12], which showed that people treat computers as social actors, whether they recognize 

it or not, and that even minimal cues evoke social responses. As affect plays a vital role 

in human social interactions (Oatley et al. [13] call emotions “the language of human 

social life”), it would be beneficial for robots to be able to “speak” this language. Giving 

robotic systems the ability to communicate with humans affectively would not only allow 

people to extend their known social models to robots, but would also help robots invoke 

desired responses from their human interaction partners or even passers-by (e.g., 

assisting a stuck robot, or evacuating from a dangerous zone). 

To the end of promoting more natural, satisfying and effective human-robot 

interaction and enhancing robotic behavior in general, an integrative framework of time-

varying affective robotic behavior was designed. This psychologically inspired framework 

(TAME) encompasses 4 different yet interrelated affective phenomena: personality 
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Traits, affective Attitudes, Moods and Emotions. Traits determine consistent patterns of 

behavior across situations and environments and are generally time-invariant; attitudes 

are long-lasting and reflect likes or dislikes towards particular objects, persons, or 

situations; moods are subtle and relatively short in duration, biasing behavior according 

to favorable or unfavorable conditions; and emotions provide a fast yet short-lived 

response to environmental contingencies. The software architecture incorporating the 

TAME framework was designed as a stand-alone process to promote platform-

independence and applicability to other domains and its implementation on a humanoid 

robot was provided. Finally, the effectiveness of affective robotic behavior was explored 

and evaluated in a number of human-robot interaction studies with over 100 participants. 

This chapter revisits each research question posited in the beginning, and underlines 

the contributions, stemming primarily from the exploration of these research questions.   

8.1 RESEARCH QUESTIONS 

The development of the TAME framework followed the entire design cycle for an AI-

based system, from 1) transforming psychological and cognitive science theories into a 

mathematical and computational representation to 2) software design and 

implementation on a humanoid robotic platform to 3) testing and evaluation with over 

100 participants. This was done in order to answer the primary research question: “Does 

integration of coordinated time-varying affective processes (namely, emotions, moods, 

affective attitudes and personality traits) into behavior-based robotic systems generate 

more effective robotic behavior from the human-robot interaction standpoint?” This 

general question was explored through 3 subsidiary questions, which are summarized 

below.  



CONCLUSION      CHAPTER 8 

 

 313

8.1.1 SUBSIDIARY QUESTION 1 

Before any questions regarding effectiveness of a system can be answered, the 

system has to be designed, and this is where the first research subquestion came in: 

“How can the aforementioned phenomena be modeled computationally in a robotic 

system, both individually and relative to each other?” In particular, the following issues 

were addressed through this dissertation, and explored in detail in Chapter 3, 

Architectural framework:  

• What are the psychological foundations for each of the components and their 

interactions? To answer this question, a large number of theories and 

experimental results from the fields of psychology, cognitive science and 

affective computing were carefully examined, and those most appropriate for 

robotics selected and adapted (sections 3.2.1, 3.3.1, 3.4.1 and 3.5.1, for each of 

the affective phenomena). 

• How can these phenomena be represented, generated, and applied to robotic 

behavior? Based on the psychological findings, the generative mechanisms were 

designed for each phenomenon, and multiple methods were provided for their 

application to robotic behavior, including continuous modification of behavioral 

parameters and discreet affective expressions as applied to a humanoid robot 

(sections 3.2.2, 3.3.2, 3.4.2, and 3.5.2, for each of the affective phenomena). 

• What are their functions, and what is their relevance for robotic behavior? The 

relevant functions of affect were described as they apply to human-robot 

interaction (sections 3.2.1, 3.3.1, 3.4.1 and 3.5.1, for each of the affective 

phenomena), and a subset of them was evaluated in HRI experiments, e.g., the 

communicative function of fear and task adaption of extraversion (sections 6.1, 

Evaluating Expressions of Negative Mood and Fear in a Search-and-Rescue 
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Scenario and 6.2, Evaluating Expressions of Extraversion and Introversion in a 

Robot as a Guide Scenario). 

• What are the interactions between them that can provide additional benefit 

beyond that of each individual component? In humans, the affective phenomena 

do not exist in isolation; on the contrary, it is the interplay between them, 

especially in terms of the space they occupy on the time continuum, which 

makes them so pervasive in human behavior. The influence of personality traits 

and current mood on emotion generation, of emotions on mood generation, and 

the manifestation of attitudes through corresponding emotions were modeled 

specifically in the framework. This interconnectedness creates more diverse, 

timely and relevant responses than each phenomenon would separately. These 

interactions were explored throughout Chapter 3, both from a psychological point 

of view and mathematically. 

Chapter 3, Architectural framework, emphasized that the differences between the 

affective components in TAME are numerous and multi-faceted and each component 

provides a unique advantage. One dimension along which they differ is time, including 

both duration and rate of change. Emotions are the most short-lived of the four, and are 

fast to rise and fast to decay; moods are longer in duration and change slowly and 

cyclically; attitudes, once formed, last for a while and are hard to influence; and finally, 

traits are more or less time-invariant. Another dimension of difference is object-

specificity: emotions and attitudes arise in response to a specific object or situation, 

whereas traits and moods are diffuse, global, and apply at all times. In general, Traits, 

Emotions, Moods and Attitudes differ in their psychological, cognitive, and behavioral 

functions; their antecedents and generation mechanisms; their influence on behavior 

and application for human-robot interaction; and their duration and changes they 
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undergo with time. Individually, each of them has a notable yet limited potential for 

robotics. Together, they provide a stepping stone for promoting more natural, satisfying 

and effective interaction between humans and robots, as evidenced by the results of two 

TAME HRI studies conducted as part of this dissertation (sections 6.1, Evaluating 

Expressions of Negative Mood and Fear in a Search-and-Rescue Scenario and 6.2, 

Evaluating Expressions of Extraversion and Introversion in a Robot as a Guide 

Scenario). 

These psychological and mathematical foundations for affective robotic behavior 

were then grounded by translating the theory into a particular software architecture and 

implementation on a physical robot (Chapter 5, software architecture and 

implementation). This step was particularly important in a field as practical as robotics, 

where embodiment adds another layer of complexity. The software architecture 

incorporating the TAME framework was designed as a stand-alone process to achieve 

platform-independence and generalizability. With an interface to connect to the system’s 

TAME Communication Manager (to supply sensory data), and appropriate configuration 

files, this software can potentially be integrated into any robotic platform or an 

autonomous agent system without a substantial redesign.  

The software architecture consists of: TAME Manager (the central module of the 

system), TAME Communication Manager (receives sensor data and passes the updated 

affective values to the robot), a module for each of the affective components, and Stimuli 

Interpreter (processes incoming sensory input). The TAME Module was incorporated 

into MissionLab, a Multiagent Mission Specification and Execution robotic software 

toolset, and tested on Aldebaran Robotics’ Nao humanoid platform (section 5.2.2., 

Integration with MissionLab and Nao Robot).  
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8.1.2 SUBSIDIARY QUESTION 2 

The TAME framework design and implementation provided the groundwork for 

addressing the second research subquestion: “What are the implications for Human-

Robot Interaction? Does complex affective robotic behavior lead to more natural, 

effective, and satisfying interaction between humans and robots?” To evaluate the 

effectiveness of robot affect in HRI, a set of nonverbal affective behaviors was designed 

and implemented on a small humanoid, Aldebaran Robotic’s Nao robot (Chapter 5, 

software architecture and implementation).  

People are very capable of reading nonverbal affective displays; they can recognize 

the traits of extraversion and conscientiousness, and negative affective state from 

exposure as short as 5 seconds, and positive affect, neuroticism, openness and 

agreeableness in 20 seconds of exposure to video clips displaying interpersonal 

interaction [183]. Unfortunately, most robots at present, even humanoids, especially 

those without changeable facial features, lack the wealth of human expressive 

capabilities – for example, shrugging shoulders, wringing hands, or fidgeting with a 

pencil or clothes. Whether or not the affective cues projected by such imperfectly 

expressive robotic platforms would be sufficient for people to recognize them as 

particular expressions of affect was tested in an online survey (subsection 5.3, Online 

Survey on Recognition of Affective Robotic Behavior). The participants were asked to 

judge the display of negative and positive moods, emotions of joy and fear, and 

extraversion and introversion on a humanoid robot from a set of short video clips.   

As a result, it was confirmed that people can indeed correctly recognize a humanoid 

robot’s affective expressions:  

• The recognition rates for emotions of Joy (85%) and Fear (81%) were high and 

comparable to those obtained in judgments of joy and fear portrayals by human 

actors in movie clips; 
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• The Extraverted robot was rated significantly higher on the extraversion 

dimension that the Introverted one; 

•  The Positive Affect score for the robot displaying positive mood was significantly 

higher than that for the negative robot mood, and vice versa, its Negative Affect 

score was significantly lower than that of negative robot mood. 

These manifestations of affect through non-verbal behavior were later used to 

directly address the issue of the implications robotic affect may have for human-robot 

interaction. To this end, two formal HRI experiments were conducted to evaluate a 

subset of the phenomena modeled in the TAME framework: Negative Mood, the emotion 

of Fear, and the trait of Extraversion (Chapter 6, Evaluating Robot Affect in HRI 

Experiments).  

8.1.2.1 Evaluating Mood and Emotions 

The goal of the first of these experiments (subsection 6.1, Evaluating Expressions of 

Negative Mood and Fear in a Search-and-Rescue Scenario) was to identify the effect 

the display of negative mood and fear by a humanoid robot (Aldebaran Robotic’s Nao) 

has on participants’ perception of the robot and on their compliance with the robot’s 

request to evacuate, in the context of a mock-up search-and-rescue scenario, where the 

situation became progressively “dangerous”. After a brief tour of a simulated site of a 

recent explosion, the robot asked the participants to evacuate, using both an indirect 

request first, and then a direct one. It was hypothesized that the participants would find 

the affective behavior more understandable, more persuasive and more natural, and 

would respond to it by 1) experiencing an increase in negative mood (becoming more 

nervous along with the robot) and 2) complying with the robot’s request to proceed to the 

exit to a greater extent.  
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Even though the participants did not consciously recognize either Negative Affect or 

Fear in Nao, they did, nonetheless, react to those expressions as was hypothesized. In 

particular: 

1. The participants found the robot’s request to evacuate more compelling, 

sincere and convincing when the robot was expressing either negative mood or 

both negative mood and fear.  

2. They complied with the robot’s request to “evacuate” to a greater extent in the 

affective conditions:  

• The subjects were faster in complying with the robot’s request to 

leave the “dangerous” zone (when both Negative Mood and Fear 

were exhibited) 

• They were more prone to respond to an indirect request to evacuate 

when Nao was displaying affect; 

• More of those in the affective conditions walked further towards the 

exit than in the case of no robot affect.  

3. The participants reported feeling more nervous after interacting with the robot 

expressing both negative mood and fear than the one showing no affect, 

potentially making them more alert to any unfavorable changing in the 

surroundings.  

4. Finally, the robot expressing both mood and emotion was rated as more 

“conscious”, and those who found Nao appear more natural, also found its 

request to leave more persuasive.  
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8.1.2.2 Evaluating Personality Traits 

Personality traits help people find their niches and excel at their jobs, and particular 

trait configurations may be especially suited for some tasks, but would be detrimental for 

others; similar advantages of personality apply to robots as well. The overall goal of the 

second TAME HRI experiment (subsection 6.2, Evaluating Expressions of Extraversion 

and Introversion in a Robot as a Guide Scenario) was to determine whether certain 

personality traits are better suitable for certain types of tasks, and would thus be 

beneficial for human-robot interaction. More specifically, the objective  was to identify the 

effect of Extraverted and Introverted personality display by a humanoid robot, Nao, on 

participants’ task performance in order to establish whether some traits are task-

appropriate, as well as the effect on their perception of robot’s appropriateness, 

friendliness, intrusiveness and naturalness in the context of a mock-up building 

demolition scenario. Participants were asked to perform two types of tasks: a quiz 

following a presentation given by an Extraverted or an Introverted robot, and solving a 

simple math problem. In addition to the task being performed with the robot serving as a 

guide (“experimental” tasks), the subject also performed similar “baseline” tasks before 

the robot was introduced. It was hypothesized that:  

• Participants would find the extraverted robot more appropriate and welcoming for 

a task requiring gregariousness and engagement from the robot (namely, giving 

a presentation on the building demolition process), and the facts it presented 

more appealing.  

• Participants would find the introverted robot more appropriate for and less 

distracting in a task requiring concentration from the participants (namely, solving 

a math problem), and the problem itself would be perceived as less demanding.  
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• Participants would perform better on quiz task in the Extraverted condition, and 

better on the math task in the Introverted condition. 

 The results of the experiment showed that personality traits do play a role in how 

suitable a robot is found for certain types of tasks. In particular: 

1. The extraverted robot was found to be more suited for the presentation task: 

• The participants reported that the Extraverted robot in the quiz task 

made them feel as if their presence during the tour was more liked, 

encouraged, wanted and desirable.  

• The facts presented by the Extraverted robot appeared more fun, 

exciting and interesting than those given by the Introverted robot. 

2. Introverted Robot was found to be more suited for the math task:  

• The Introverted robot was found to be more appropriate, right for 

task, well-suited, proper and matched to task than the Extraverted 

one with regards to the math task. 

• The Introverted robot was also rated as easier to tune out, quieter, 

less demanding and offensive, and better at minding its own 

business than the Extraverted one.    

• The math task was perceived as less demanding overall (based on 

TLX scores) when it was supervised by the Introverted robot, and in 

particular it was rated lower on Temporal Demand, (concern over ) 

Performance and Frustration; also, those who perceived the robot as 

more appropriate for the math task and unobtrusive also found the 

problem itself less demanding. 
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• When the Introverted supervised the math task, the task time 

completion between the baseline and experimental task improved 

by a higher percentage.   

8.1.3 SUBSIDIARY QUESTION 3 

Unlike other fields of robotics, e.g., vision or gait control, where the goals, tasks and 

measures are straightforward and objective, the advantages of affect are much harder to 

quantify. In the case of affective robots, it is not the robot performance per se that needs 

to be evaluated, but rather the social response the robots invoke in people they interact 

with. The last subsidiary question addressed the issue of measuring this social 

response: “What are the metrics for evaluating affective robotic behavior?”, and was 

discussed in Chapter 7, Measuring social response to affective robots. 

 Based on our experience with a variety of measures with regards to evaluating 

affective robots (Chapter 4, Exploratory Experimental Study, Chapter 6, Evaluating 

Robot Affect in HRI Experiments, and section 5.3, Online Survey on Recognition of 

Affective Robotic Behavior), a number of recommendations can be made:  

1. Two established psychometric tools for measuring affect (PANAS for Positive 

and Negative Affect [162], and Mini-Markers for personality [163]) can be 

recommended as appropriate means for evaluating both subjects’ and a robot’s 

affective state and personality (subsection 7.2.1, Established Psychometric 

Measurement Tools), based on their successful use in HRI studies with over 100 

participants. Internal consistency reliability on Mini-Markers used to asses a 

robot’s personality was comparable, if somewhat lower than that reported for its 

use with human subjects [163]. A number of further recommendations can be 

made regarding the use of these tests:  
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• Subscales of the PANAS tool measure different aspects of Positive 

and Negative Affect. Therefore analyzing individual subscales in 

addition to the overall ratings would provide finer-grained results; 

• It was found that people are likely to project their own affective state, 

but not their personality onto the robot they are interacting with. This 

finding should be taken into account when analyzing the results of 

these tests, in order to differentiate the recognition of affective 

behaviors from people’s projection of their own affective state. 

2. 8 novel semantic differential scales measuring a variety of concepts were 

designed for this dissertation and employed in TAME experiments (Chapter 6, 

Evaluating Robot Affect in HRI Experiments). Given their acceptable internal 

consistency reliability (subsection 7.2.2, Semantic Differential Scales), their 

applicability to a wide variety of HRI scenarios, and their reusability, these scales 

can be recommended for use in HRI experiments. In particular, these self-

assessment metrics which provide participants’ ratings on a number of concepts 

relevant to the HRI domain: Understandability, Persuasiveness, Naturalness, 

Welcome, Appeal, Unobtrusiveness and Ease. 

3. Every effort should be made to include task performance metrics into evaluation 

of affective robotic behavior effectiveness, even though selection and/or design 

of such metrics with respect to measuring social response is particularly 

challenging. The primary reasons for this recommendation are: 

• Unlike most other measurements, task performance metrics provide 

an objective means for assessing social response to affective robots. 
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• Task performance results may not necessarily be reflected in the 

participants’ subjective perceptions and attitudes, thus they provide 

insights which would otherwise be unavailable (section 7.2.3, Task 

Performance Metrics). 

Examples of using task performance metrics to evaluate social response to 

affective robots can be found in section 6.1, Evaluating Expressions of Negative 

Mood and Fear in a Search-and-Rescue Scenario, and 6.2, Evaluating 

Expressions of Extraversion and Introversion in a Robot as a Guide Scenario. In 

particular, the metrics used were request compliance (measured as how fast, 

how soon, and to what extent participants complied with a robot’s request) and 

task performance (correctness, task completion time, and improvement in 

completion time between baseline and experimental tasks).  

4. Finally, while evaluating affective robotic behavior in human-robot interaction 

experiments, it is important to remember that in many cases the effectiveness of 

such behavior cannot be measured directly, by evaluating a robot’s performance, 

but rather through the social response the robot invokes in participants. This 

recommendation should be taking into consideration when selecting and/or 

designing measures to be used in HRI experiments assessing robot affect. 

8.2 CONTRIBUTIONS 

The contributions to the field of robotics produced as a result of this dissertation stem 

directly from the exploration of the aforementioned research issues:  

• An integrative framework to augment behavior-based robotic systems with 

a variety of time-varying affective processes, namely emotions, moods, 

attitudes and personality. Not only was the software design incorporating the 

TAME framework and its implementation on a humanoid robot supported by a 
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grant from a successful commercial company, Samsung, but it was also 

integrated into a robotic planner developed independently from this dissertation 

work [204]. The framework design, initial evaluation in an exploratory longitudinal 

study, software architecture and implementation are described in Chapters 3-5. 

• Means for affective communication to afford more effective human-robot 

interaction. Together, the generative framework (Chapter 3), the design and 

implementation of specific affective expressions on a humanoid robot (Chapter 

5), and the successful evaluation (Chapters 4, 6 and 7) present a tool set for 

designing affective robotic behaviors with the goal of promoting more natural, 

satisfying and effective interaction between humans and robots.  

• Metrics for evaluating effectiveness of affective robotic behavior. The 

measures examined or developed in this dissertation: the psychometric tests of 

mood and personality, semantic differential scales for measuring a number of 

HRI-relevant concepts, and compliance and task performance metrics provide a 

collection of tools which can be employed to evaluate social response to affective 

robots (Chapter 7, Measuring social response to affective robots).  

To conclude, we believe that multi-faceted robotic affect can have far-reaching 

practical benefits for human-robot interaction, from making people feel more welcome 

where gregariousness is expected to making unobtrusive partners for problem solving 

tasks to saving people’s lives in dangerous situations. If measurable effect of affective 

robotic behavior could be obtained as a result of short interactions in experimental 

settings, the impact is likely to be greater in prolonged, everyday exposure to robots.  
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APPENDIX A: CONSENT FORM FOR THE AIBO EXPLORATORY EXPERIMENTAL STUDY 

Georgia Institute of Technology 
Consent to Be a Research Participant  

 
1. Title of Research Project 

Empirical Study for Designing Human-Robot Collaborative Teams. 
 
2. Principal Investigators 

Ronald C. Arkin and Christine M. Mitchell 
 
3. Purpose of Research 
You are being asked to volunteer for a research study. This study is a 
GVU, Georgia Institute of Technology, sponsored exploratory empirical 
study conducted as a part of research for GVU seed grant (College of 
Computing, GA Institute of Technology). The long-term goal of the 
research project is to create, demonstrate, and evaluate methods to 
design human-robot teams that collaborate effectively, and to build a 
framework of affective robotic behavior to facilitate the collaboration. The 
framework is being developed within Mission Lab programming 
environment (software for Multiagent Robotics Mission Specification and 
Control), and will include a number of affective components, such as 
personality traits, emotions, moods and attitudes. The purpose of the 
empirical study is to identify affective attributes of effective human-robot 
collaboration that the framework can incorporate and explore human 
reaction to the interaction with a robot with respect to ease and 
pleasantness of interaction. In particular, we would like to explore the 
change in human attitude over time and the idea of companionship 
between humans and robots. 
 
4. Procedure 
You are asked to participate in the experimental study aimed at identifying 
key affective aspects of human-robot interaction. It involves interacting 
(playing, petting, addressing) with a Sony entertainment robotic dog (AIBO 
ERS-210A) for a total of 4 sessions, 20-45 minutes each. The sessions will 
be conducted in TSRB, room 236, or the Mobile Robot Laboratory, and 
your interactions with the robot will be recorded via a video/audio recorder. 
You will be also asked to answer various written and/or oral questions that 
will help assess your attitude towards the robot, and the quality of 
interaction. A more detailed description of the procedure will be provided 
by the administrator prior to the start of the session. 
 
 
 

5. Foreseeable risks or discomforts: 
This research involves minimal risk. The risks involved are no greater than 
those involved in daily activities such as checking your e-mail or playing 
with a pet. 
 
6. Benefits 
There is no direct benefit to you by participating, however, you will have an 
opportunity of interacting with an entertainment robotic dog, and expand 
your knowledge about robotic pets during the session.   
 
7. Compensation/Costs 
You will be paid for your participation in the study: $10 for each of the first 
three sessions, and $30 for the last session, for a total of $60.  
 
8. Confidentiality 
The following procedures will be followed to keep your personal information 
confidential in this study:  The data that is collected about you will be kept 
private to the extent allowed by law.  To protect your privacy, your records 
will be kept under a code number rather than by name.  Your records will be 
kept in locked files and only study staff will be allowed to look at them.  Your 
name and any other fact that might point to you will not appear when results 
of this study are presented or published. The video/audio tapes of you will 
be stored for archival purposes for the duration of two years at Mobile 
Robot Lab. Only the experimenters and the parties delineated below will 
have access to the tapes. The tapes will be analyzed with respect to your 
attitude towards the robotic dog and the analysis will be included in the 
results of the study; however, neither your name nor your appearance will 
be disclosed in the results. Any additional use of the tapes (e.g., playing a 
video at a conference) will require a written consent from you. 
 
To make sure that this research is being carried out in the proper way, the 
Georgia Institute of Technology IRB will review study records.  The sponsor 
of this study, GVU, Georgia Institute of Technology, has the right to review 
study records as well.  Again, your privacy will be protected to the extent 
allowed by law 
 
9. Injury/Adverse Reactions 
 
Reports of injury or reaction should be made to Ronald C. Arkin at (404) 
894 – 8209. Neither the Georgia Institute of Technology nor the principal 
investigator has made provision for payment of costs associated with any 
injury resulting from participation in this study. 
 
 



APPENDIX  A          

 

 326

10. Contact Person 

If you have questions about the research, call or write to the 
principal investigators at: 

 
Ronald C. Arkin    Christine M. Mitchell 
College of Computing   Industrial & Systems 
Engineering 
Georgia Institute of Technology  765 Ferst Dr. 
Atlanta, GA 30332-0280   Georgia Institute of 
Technology 
(404) 894 – 8209 (voice)   Atlanta, GA 30332-0205 

(404) 894 – 0957 (fax)   404-894-4321 (voice) 
arkin@cc.gatech.edu   404-385-0357 (fax) 

cm@chmsr.gatech.edu 
 
11. Voluntary Participation/Withdrawal 

You have rights as a research volunteer.  Taking part in this study 
is completely voluntary.  If you do not take part, there is no penalty.  You 
may stop taking part in this study at any time with no penalty.  If you have 
any questions about your rights as a research volunteer, call or write: 
 

The Institutional Review Board, 

Office of Research Compliance 

505 Tenth Street, 3
rd

 Floor 

Georgia Institute of Technology 
Atlanta, Georgia 30332-0420 
(404) 894 – 6942 (voice) 
(404) 894 – 00864 (fax) 
IRB@gatech.edu 

 

12. Signatures 
I have read the information above.  The researchers have 

answered all my questions to my satisfaction.  They gave me a copy of 
this form.  I consent to take part in this study. 
 
Participant’s 
Signature: 

 Date:  Time:  

 
Person Obtaining 
Consent: 

 Date:  Time:  
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APPENDIX B: SCRIPT FOR EXPERIMENT ADMINISTRATORS 

Aibo Study 2004 Script 
 

Session 1: 

Hi, my name is _____ and I’d like to thank you for participating in this study. First off, 

I will be reading this script to ensure that everyone who participates gets the same 

directions. 

In this study, we are examining how people and robots perform certain tasks. During 

each session, you will be given the opportunity to interact with Aibo, a Sony 

entertainment robot dog. Each of the four sessions will last between 25 and 45 minutes 

including pre and post questionnaires. We will also teach you new ways to interact with 

the robotic dog and give you new tasks to perform. As this robot is a toy made for kids, it 

will pose minimal harm to you.  

You will receive a total of $60 dollars for you participation in this study - $10 for each 

of the first three sessions and $30 for the last session. You may stop at any point, but 

you will only be paid for the sessions you have already completed.  

Also, while you are doing these tasks, we will be videotaping these sessions. The 

camera is located here (point to location). The videotapes will help us analyze your 

interactions with the robotic dog. In case you are concerned about privacy, we will 

remove all connections between your name and the data so the only way someone can 

know it’s you in the videotapes is if they recognize you.  The questionnaires and the 

video tapes will also be stored in a securely locked cabinet at Georgia Tech. Only 

members of the research team will ever see these videos. However, if you don’t mind us 

showing these videotapes to other researchers, for example, at a conference, there is a 

form you can fill out at the end of the study to give us permission to show it to people 

outside of the research team.  
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At this point, I’d like to ask if you have any questions. 

Okay, please take a moment to read over and sign the consent form. One of the 

copies is for you.  Also, in order to get paid, you need to fill out this payment form.  

Before I introduce you to the robotic dog, there are two questionnaires I need you to 

fill out. The first one is a demographics questionnaire. Please fill out the questionnaire 

and tell me when you are done (hand out the demographics survey). Thank you. The 

second questionnaire is about your personality. Don’t worry. This is not about you. We 

simply need this information to analyze your interactions with the robot. Please fill out 

the questionnaire and tell me when you are done (hand out MINI MARKERS).  

We are just about to begin – I’ll go ahead and start the camera and the robot, and 

we’ll be ready in a second. (start camera and robot) Alright! Now we are ready to begin. 

If at any point you’d like to stop interacting with the robot, you can tell it to either stop, or 

go play. To make the robot stop, you can give the verbal command: “Stop”. To make it 

wander around without needing your interaction, you can say the command: “Go Play”, 

and the robot will start wandering around on its own.  It may sometimes fall down and 

will need your help getting back up. In such a case, please pick it up like this (show 

participant). Also try to keep the robotic dog inside the green field so we can capture 

everything on camera, and if it’s about to run into a hard surface, please turn it around.  

Feel free to pick up the robotic dog if you need to help it see. I am now going to teach 

you the first command. The robot will only recognize the commands I teach you, in 

addition to “Stop” and “Go Play”. When you talk, especially when you give the 

commands, please speak loudly – this is very important.  

For the first task, I would like you to tell the robot to follow the ball. Please pick up the 

pink ball from the box over there. Now, say the command, “follow the ball”. Every time 

you want the robot to start performing a command, you need to make sure that you say 

that command. At any time, you can tell it to stop or go play. Tell me when you think you 
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have succeeded in making the robot follow the ball. (After the task is completed) Now 

that you are done with the task, I’d like you to make the robotic dog perform the same 

task at least three times in a row, but in order to separate these commands from each 

other, please make the robot either stop or wander around in between the “Follow the 

Ball” commands. Also, please make sure you hide the pink ball between the commands. 

When you are done, tell it to either Stop or Go Play.  

Are you ready to learn the next command?  Okay. In addition to following the ball, 

you can tell the robot to kick the ball. Say the command, “kick the ball” for the robot to do 

so. Tell me when you think you have succeeded in this task. (wait until participant done 

with task) As with the previous task, I’d like you to repeat the task at least 3 times, 

making it either stop or go play in between. 

You can continue interacting with the robot if you’d like, using any of the commands 

you’ve learned – just let me know when you are done. (wait for “done”) Okay, I have one 

more questionnaire for you to fill out and then this session is over (hand out PANAS-T; 

fill out the payment form for this session, schedule the next session if not scheduled yet). 

Session 2: 

(start camera) Welcome back! In this session, we will teach you two more 

commands. While you are learning these new commands, you may use any of the 

commands you learned in the previous session. Just to recap, the commands you 

learned were: Follow the ball, and Kick the Ball. You can also tell the dog to Stop or Go 

Play at any time, just as in the previous session. I’ll go ahead and start the robot now, 

and we’ll begin. (start robot) 

In this session you will need to make the robotic dog follow you and come to you. In 

order for the robot to recognize you, you will need to hold these flowers – they are a 

representation of you for the robot. Please remember, that you need to hide the ball or 

the flowers between the commands you give the dog – you can use this box to put the 
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props away, if you’d like to – or hide them behind you so that the robotic dog won’t see 

them.  Are you ready for the first command today? For the first command, you will ask 

the robot to follow you. Do so by saying the command “follow me”. Remember to hold 

the flowers if you want the robot to recognize you.  Tell me when you think you have 

succeeded in this task. (After the subject is done with the task) Now that you are done 

with the task, I’d like you to make the robotic dog perform the same task at least three 

times in a row, with making it either stop or wander around in between, or you can use 

any of the commands learned previously. Please remember to select the appropriate 

prop: the ball for the ball commands, and the flowers for the commands that refer to you. 

Are you ready to learn the next command? The next command will tell the robot to 

come to you. Say the command, “come to me” in order to do this.  You will need to use 

the flowers again. Tell me when you think you have succeeded in this task. (wait until 

participant done with task)  As with the previous task, I’d like you to repeat the task at 

least 3 times, making it either stop or wander around in between, as well as using any 

commands from the last session.  

Now, please take at least five minutes to practice the commands from this and the 

previous sessions, using the commands in any order. Please remember to pick up and 

put away the appropriate prop while doing so. 

Are you done playing with the robotic dog? Okay, I have one more questionnaire for 

you to fill out and then this session is over (hand out PANAS-T). Let’s schedule your 

next session. Thank you for coming. (Fill out the payment form for this session, schedule 

the next session if not scheduled yet). 

Session 3: 

(start camera) Welcome back! In this session, we will teach you one final command. 

While you are learning this new command, you may use any of the commands you 

learned in the previous sessions. Just to recap, the commands you learned were: Follow 
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the ball, Kick the Ball, Follow Me and Come to Me. You can also tell the dog to Stop or 

Go Play at any time, just as in the previous sessions. I’ll go ahead and start the robot 

now (start robot). 

In this session an intruder robot will periodically come into the room. Imagine that this 

intruder is very annoying, and you’d like the robotic dog to drive it away, and so protect 

you from it. You may play with the robotic dog as you wish until you see the intruder. To 

help draw your attention, just before the intruder robot appears, it will make this sound. 

(connect to amigobot) When you hear this sound, please hide all other props, as they 

will distract the robotic dog. In general, please remember that you need to hide the ball 

or the flowers between the commands you give the robotic dog – you can use this box to 

put the props away, if you’d like to – or hide them behind you so that the robotic dog 

won’t see them.  When you do see the intruder, say the command “Sic’ em” (“Attack” if 

sic’em is not understood) to make the robotic dog attack the intruder. After the robot 

attacks the intruder, the intruder will withdraw. (After the subject is done with the task, 

and amigobot is gone): now that you are done with the task, please continue interacting 

with the dog until the intruder robot appears again – this will happen 3 more times during 

this session. While waiting for the intruder, you can make the robot stop, wander around, 

or perform any of the other commands learned previously. Please remember to select 

the appropriate prop: the ball for the ball commands, and the flowers for the commands 

that refer to you. (Bring out the amigobot every 4 minutes, not counting the time it takes 

to bring the amigobot out and back).  

You can continue interacting with the robot if you’d like, using any of the commands 

you know – just let me know when you are done.  Are you done interacting with the dog? 

Okay, I have one more questionnaire for you to fill out and then this session is over 

(hand out PANAS-T). Let’s schedule your next session. Thank you for coming. (Fill out 

the payment form for this session, schedule the next session if not scheduled yet). 
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Session 4: 

Welcome back! In this session, we will not teach you any more commands – this is 

your opportunity to interact with the robot. You are free to interact with the robot and use 

any of the commands you have already learned. The flowers and the ball are both in this 

box. Just to recap, the commands you learned were: Follow the ball, Kick the Ball, 

Follow Me, Come to Me, and Sic’ em. As soon as you see the intruder – or hear this 

sound (connect to the amigobot), please hide the ball or the flowers, and sic the intruder 

robot. You can also tell the dog to Stop or Go Play at any time, just as in the previous 

sessions. Please remember to select the appropriate prop: the ball for the ball 

commands, and the flowers for the commands that refer to you. Make sure you put the 

prop away in this box before you take another one out, or hide it so that the robotic dog 

doesn’t see it. The intruder robot will appear every now and then, so you can tell the 

robot to sic’em at that time.  I’ll go ahead and start the robot now. 

Please interact with the robot for at least 15 minutes – there’s a clock on that desk. 

Feel free to interact with the robot longer – just let me know when you are done so we 

can complete the experiment.  

 (turn off camera when the user says “done”) Okay, I have a few questionnaires for 

you to fill out and then this experiment is over. Again, here is the mood questionnaire 

(hand out PANAS-T). Thank you. Here is the next questionnaire. You might remember 

filling out a similar one in the first session. This time, however, answer the questions in 

regards to the robot instead of yourself. (hand out MINI-Markers for dog). Finally, here is 

the last questionnaire (hand out post-questionnaire). There’s one last thing I need to ask 

you. We would like to get the permission to use portions of your video footage at 

conferences, workshops, and other research gatherings. If you don’t mind, then please 

sign this form. (Hand out the video release form. Answer any questions if asked). The 

experiment is now over. Thank you for participating. 
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APPENDIX C: DEMOGRAPHICS QUESTIONNAIRE 

Subject #  ______  Session #_________ 

 

  Demographics Questionnaire 
 

 1

. 

What is your gender? 

a.) Female 

b.) Male 

 

 2

. 

What is your age? 

 a.) Under 20 years old 

 b.) Between 20 and 30 

 c.) Between 30 and 40 

 d.) Between 40 and 50 

 e.) 50 or older 

 

 3

. 

What is the highest level of education you’ve achieved? What was your major? 

 a.) High School 

 b.) Bachelor’s      __________________  

 c.) Master’s          __________________ 

 d.) Ph.D.              __________________ 

 e.) Currently working on my Ph.D.         _________________ 

f.) Other   _______________________ 

 

 4

. 

What is your race/national origin? 

 

 a.) White 

 b.) African American 

 c.) Asian/Pacific Islander 

 d.) Hispanic 

 e.) Other 

 

 5

. 

Have you/your family/your roommate ever owned any pets? How many? Please circle all that 

apply. 

 

 a.) Dog   ____ 

 b.) Cat    ____ 

 c.) Fish    ____ 

 d.) Birds  ____ 

 e.) Other (Please specify) 

              f.) None 

 

 6

. 

What is the longest you’ve had a pet for? 

 

 a.) Under 3 months 

 b.) 3-6 months 

 c.) 7-12 months 

 d.) 13 months - 3 years 

 e.) Longer than 3 years 

              f.) Never had one 
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Subject #  ______  Session #_________ 

 

7

. 

Do you think any of your pets have (had) a personality? Please circle the number above your 

response. 

_______1__________________2_______________3______________4_______________5____ 

Of course not!                No, I don’t think so          Maybe                   Yes      Yes, a very vivid one 

 

 8

. 

What is your level of computer experience? 

 

 a.) None:  Never used a computer before 

 b.) Limited:  Occasionally use a computer for tasks like e-mail, web browsing or word 

processing 

  c.) User Level:  Regularly use a computer for tasks like e-mail, web browsing or word 

processing 

 d.) Advanced User:  Have downloaded and installed at least one program from the 

Internet 

 e.) Programmer Level:  Some programming language or network administration 

experience 

 f.) Advanced Programmer:  Extensive training or experience in multiple programming 

languages  

 

 9

. 

Have you ever interacted with robots? Please circle all that apply. 

 

 a.) Very limited interaction 

 b.) Interaction experience with industrial robots 

 c.) Interaction experience with mobile robots 

 d.) Interaction experience with entertainment/educational robots 

 e.) Interaction experience with Sony entertainment robot Aibo 

              f.) Never  
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APPENDIX D: POST QUESTIONNAIRE FOR AIBO STUDY 
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APPENDIX E: A BRIEF BIG FIVE PERSONALITY QUESTIONNAIRE FOR 
PARTICIPANT 

Subject # _________  Session # __________ 

How Accurately Can You Describe Yourself?  

Please use this list of common human traits to describe yourself as accurately as 
possible. Describe yourself as you see yourself at the present time, not as you wish to 
be in the future. Describe yourself as you are generally or typically, as compared with 
other persons you know of the same sex and of roughly your same age. Before each 
trait, please write a number indicating how accurately that trait describes you, using the 
following rating scale: 

Extremely Inaccurate – 1 

Very Inaccurate – 2 

Moderately Inaccurate – 3 

Slightly Inaccurate - 4 

Neither Inaccurate or Accurate - 5 

Slightly Accurate – 6 

Moderately Accurate – 7 

Very Accurate – 8 

Extremely Accurate -  9 

 ____ Bashful  ____ Energetic ____ Moody  ____ Systematic 

____ Bold  ____ Envious  ____ Organized ____ Talkative 

____ Careless  ____ Extraverted ____ Philosophical ____ Temperamental 

____ Cold  ____ Fretful  ____ Practical  ____ Touchy 

____ Complex  ____ Harsh  ____ Quiet  ____ Uncreative 

____ Cooperative ____ Imaginative ____ Relaxed  ____ Unenvious 

____ Creative  ____ Inefficient ____ Rude  ____ Unintellectual 

____ Deep  ____ Intellectual ____ Shy  ____ Unsympathetic 

____ Disorganized ____ Jealous  ____ Sloppy  ____ Warm 

____ Efficient  ____ Kind  ____ Sympathetic ____ Withdrawn 
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Bashful: socially shy or timid; diffident; self-conscious. 
Bold: fearless before danger; intrepid; impudent; presumptuous. 
Careless: Marked by lack of attention, consideration, forethought or thoroughness; not 
careful.  
Cold: Marked by a lack of the warmth of normal human emotion, friendliness, or 
compassion. 
Complex: Hard to separate, analyze, or solve; complicated. 
Cooperative: marked by a willingness and ability to work with others. 
Creative: Characterized by originality and expressiveness; imaginative. 
Deep: Of penetrating intellect; wise. 
Disorganized: To be into utter disorder; disarrange. 
Efficient: Exhibiting a high ratio of output to input; effective. 
Energetic: Operating with or marked by vigor or effect; vigorous. 
Envious: Painfully desirous of another's advantages; jealous; covetous. 
Extraverted: a gregarious and unreserved person; outgoing. 
Fretful: Marked by worry and distress; inclined to be vexed or troubled. 
Harsh: Unpleasantly stern; severe.  
Imaginative: Created by, indicative of, or characterized by imagination; having no truth; 
false. 
Inefficient: Wasteful of time, energy, or materials; lacking the ability or skill to perform 
effectively; incompetent: 
Intellectual: Having or showing intellect, especially to a high degree; intelligent 
Jealous: Fearful or wary of being supplanted; apprehensive of losing affection or 
position; resentful or bitter in rivalry; envious. 
Kind: Of a friendly, generous, or warm-hearted nature; considerate. 
Moody: Subject to depression or moods; expressive of a mood; temperamental.  
Organized: Methodical and efficient in arrangement or function; orderly. 
Philosophical: Characteristic of a philosopher, as in equanimity, enlightenment, and 
wisdom.  
Practical: Concerned with actual use or practice; useful. 
Quiet:  Restrained in style; understated; making little or no noise. 
Relaxed: To be less restrained or tense; easy and informal in manner. 
Rude: Ill-mannered; discourteous; uncouth.  
Shy: Marked by reserve or diffidence; reserved; wary. 
Sloppy: Marked by a lack of neatness or order; untidy. 
Sympathetic: Expressing or feeling compassion or friendly fellow feelings. 
Systematic: Characterized by order and planning; orderly. 
Talkative: Full of trivial conversation; loquacious; garrulous; voluble. 
Temperamental: Marked by excessive sensitivity and impulsive changes of mood.  
Touchy: marked by readiness to take offense on slight provocation; sensitive.  
Uncreative: opposite of creative (see above) 
Unenvious: opposite of envious (see above) 
Unintellectual: opposite of intellectual (see above) 
Unsympathetic: opposite of sympathetic (see above) 
Warm: Marked by or revealing friendliness or sincerity; loving; kind. 
Withdrawn: Not friendly or sociable; aloof; detached; emotionally unresponsive. 
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APPENDIX F: A BRIEF BIG FIVE PERSONALITY QUESTIONNAIRE FOR 
ROBOTIC DOG 

Subject # _________  Session # ___________ 

How Accurately Can You Describe The Robotic Dog?  

Please use this list of common human traits to describe the robotic dog as accurately as 
possible. Describe the robotic dog as you see it, based on your previous interactions. 
Before each trait, please write a number indicating how accurately that trait describes 
the robotic dog, using the following rating scale: 

Extremely Inaccurate ……………… 1 

Very Inaccurate ……………………. 2 

Moderately Inaccurate …………….. 3 

Slightly Inaccurate ………………….4 

Neither Inaccurate or Accurate ……. 5 

Slightly Accurate ………………….. 6 

Moderately Accurate ………………. 7 

Very Accurate ……………………... 8 

Extremely Accurate ………………...9 

 ____ Bashful  ____ Energetic ____ Moody  ____ Systematic 

____ Bold  ____ Envious  ____ Organized ____ Talkative 

____ Careless  ____ Extraverted ____ Philosophical ____ Temperamental 

____ Cold  ____ Fretful  ____ Practical  ____ Touchy 

____ Complex  ____ Harsh  ____ Quiet  ____ Uncreative 

____ Cooperative ____ Imaginative ____ Relaxed  ____ Unenvious 

____ Creative  ____ Inefficient ____ Rude  ____ Unintellectual 

____ Deep  ____ Intellectual ____ Shy  ____ Unsympathetic 

____ Disorganized ____ Jealous  ____ Sloppy  ____ Warm 

____ Efficient  ____ Kind  ____ Sympathetic ____ Withdrawn 
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Bashful: socially shy or timid; diffident; self-conscious. 
Bold: fearless before danger; intrepid; impudent; presumptuous. 
Careless: Marked by lack of attention, consideration, forethought or thoroughness; not 
careful.  
Cold: Marked by a lack of the warmth of normal human emotion, friendliness, or 
compassion. 
Complex: Hard to separate, analyze, or solve; complicated. 
Cooperative: marked by a willingness and ability to work with others. 
Creative: Characterized by originality and expressiveness; imaginative. 
Deep: Of penetrating intellect; wise. 
Disorganized: To be into utter disorder; disarrange. 
Efficient: Exhibiting a high ratio of output to input; effective. 
Energetic: Operating with or marked by vigor or effect; vigorous. 
Envious: Painfully desirous of another's advantages; jealous; covetous. 
Extraverted: a gregarious and unreserved person; outgoing. 
Fretful: Marked by worry and distress; inclined to be vexed or troubled. 
Harsh: Unpleasantly stern; severe.  
Imaginative: Created by, indicative of, or characterized by imagination; having no truth; 
false. 
Inefficient: Wasteful of time, energy, or materials; lacking the ability or skill to perform 
effectively; incompetent: 
Intellectual: Having or showing intellect, especially to a high degree; intelligent 
Jealous: Fearful or wary of being supplanted; apprehensive of losing affection or 
position; resentful or bitter in rivalry; envious. 
Kind: Of a friendly, generous, or warm-hearted nature; considerate. 
Moody: Subject to depression or moods; expressive of a mood; temperamental.  
Organized: Methodical and efficient in arrangement or function; orderly. 
Philosophical: Characteristic of a philosopher, as in equanimity, enlightenment, and 
wisdom.  
Practical: Concerned with actual use or practice; useful. 
Quiet:  Restrained in style; understated; making little or no noise. 
Relaxed: To be less restrained or tense; easy and informal in manner. 
Rude: Ill-mannered; discourteous; uncouth.  
Shy: Marked by reserve or diffidence; reserved; wary. 
Sloppy: Marked by a lack of neatness or order; untidy. 
Sympathetic: Expressing or feeling compassion or friendly fellow feelings. 
Systematic: Characterized by order and planning; orderly. 
Talkative: Full of trivial conversation; loquacious; garrulous; voluble. 
Temperamental: Marked by excessive sensitivity and impulsive changes of mood.  
Touchy: marked by readiness to take offense on slight provocation; sensitive.  
Uncreative: opposite of creative (see above) 
Unenvious: opposite of envious (see above) 
Unintellectual: opposite of intellectual (see above) 
Unsympathetic: opposite of sympathetic (see above) 
Warm: Marked by or revealing friendliness or sincerity; loving; kind. 
Withdrawn: Not friendly or sociable; aloof; detached; emotionally unresponsive. 
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APPENDIX G: BRIEF MEASURE OF POSITIVE AND NEGATIVE AFFECT 
(MOOD) 

PANAS-T 

Circle the answer that best describes the extent to which you are experiencing each of the 

feelings or emotions below right now. 

 

1. interested   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

2. distressed  very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

3. excited   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

4. upset   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

5. strong   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

6. guilty   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

7. scared   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

8. hostile   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

9. depressed   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

10. enthusiastic  very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

11. proud   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

12. irritable   very slightly  a little  moderately  quite a bit  extremely 

or not at all 
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Subject #: ___________ Session #: _____________ 
 

13. alert   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

14. ashamed   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

15. inspired   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

16. happy   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

17. determined  very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

18. attentive   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

19. jittery   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

20. nervous   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

21. active   very slightly  a little  moderately  quite a bit  extremely 

or not at all 

 

22. afraid   very slightly  a little  moderately  quite a bit  extremely 

or not at all 
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APPENDIX H: FREE-RESPONSE QUESTIONNAIRE SUMMARY 

The questions in the free-response portion of the questionnaire were as follows:  

 

 

 

 

The obtained data were summarized by sub-question and by condition in Table 58. The subdivision of the comments into 

Aibo’s personality and Aibo’s emotions is to an extent arbitrary, as it was clear from the responses that the participants did not 

have a clear understanding of the differences between personality and emotions, and seemed to use those terms 

interchangeably. Also, not everyone answered all of the sub-questions, therefore the total number of responses for each of 

the sub-questions does not add up to the total number of subjects. Each bullet point represents a response from one person; 

where possible, the responses are verbatim, otherwise, they are summarized as close to the original as possible (e.g., 1st 

person singular was changed into 3rd person singular in the table).  

 

 

 

 

 

Please use the space below (attach additional sheets if needed) to describe your interactions with the 
robotic dog. Specifically, did the dog seem to have a personality? If so, what kind of personality? Also, 
describe any emotional states that you think the dog exhibited during your interaction. Please describe 
your own state during the interaction: e.g., entertained, bored, curious, etc. Did your attitude to the robotic 
dog change throughout the sessions? How? Finally, would you prefer robots that interact with humans to 
express some emotion and personality? Why? 
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Table 58: Summary of responses to the free-form portion of the post questionnaire 

Sub-Question Condition A: Non-Emotional Condition B: Emotional 
Aibo’s Personality - Mechanical 

- body language showed courage when 
facing the intruder;  lacked subtle facial 
expressions and sound variations that 
people read personality by in pets 

- warm personality, like that of a puppy 
- friendly, playful, slow, persistent 
- finicky 
- quasi-personality: loyal, commanding, 

bold, but devoid of true affection; when 
the dog would stop and wait for the next 
command, the subject felt that it “cared” 
for him/her. 

- Robot reminded the subject of his old 
dog at home – who wants to please and 
interact, but is slow in doing so; 

 

- Projected identity (“Lazarus”) and gender 
(“he”) to the robot; different behaviors (tail 
wagging, ears, LED changes, and whole 
body movements) facilitated constructing a 
personality; 

- Different personalities – from really happy to 
vicious (protective) 

- Saw personality through “facial expressions” 
and body movement – the robot had a huge 
level of nonverbal communication 

- Saw the personality in little things the dog did 
- LED change, tail and ear movements and 

changes in speed and gaits added to the 
perception of the personality 

- Enjoyed seeing the personality of a “puppy” 
though tail wag, crawling, ear movements 

Aibo’s Emotional 
States 

- Shaking head at seeing the pink color – 
excitement 

- Seemed to enjoy following the ball; 
neutral most of the time 

- Sense of emotion when the dog 
reached the flowers and rubbed its nose 
in them; 

- When the head was shaking as it saw 
the flowers, it looked excited, but 
otherwise it focused on executing the 
commands, not on being cute; never 
changed emotions or personality 
throughout the sessions. 

 

- Confusion, recognition, defensive, 
exuberance and readiness; 

- Some happiness when the dog spotted the 
flowers, and playfulness when approaching 
them; 

- Excited when coming to the subject; 
- Seemed happy when it would rub its head 

against the bouquet of flowers and wag its tail 
and ears and seemed eager for attention; 

- Cheerful when a command is given; 
- Some emotions similar to real dog’s 

emotions; 
- Excited when recognized flowers; on guard 

with the intruder; 
- Happy, protective, playful, obedient. 
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Table 58 (continued) 

Subject’s state - Entertained; scared for the dog when it 
falls down; loved the reaction to pink 
color; 

- Independent of the dog – based on the 
user state before the experiment; 

- Excitement and curiosity at the 
beginning to hostility later for not 
performing the commands as 
instructed/taking too long; 

- Entertained 
- Curious, entertained when the 

commands were performed well; 
frustrated when not 

- Entertained; created a personality he 
observed in the dog by playing with it, 
by causing the dog to react in different 
ways; rooted for the robot when it could 
overcome obstacles the subject 
constructed while “playing” 

- Robot’s not reacting with excitement at 
praise or during “follow me” and “come 
to me” commands made the subject feel 
less excited 

- Similarity between the robot and the 
subject’s old dog endeared him to the 
robot even more; quite entertained 

 

- Interested; felt cruel for not treating the robot 
as a real dog; emotions helped the subject 
recognize the robot’s progress in fulfilling the 
commands 

- Curiously entertained 
- Entertained, but also frustrated when the 

robot didn’t respond; 
- Interested to see the dog respond 
- Enjoyed the interaction; liked the robot having 

the emotions 
- Strongly enjoyed the interaction; got attached 

to the robot and named it “Bobik”; curious; 
positively surprised at the level of the robot’s 
intelligence 

- Enjoyed the interaction; was entertained, 
curious, patient, longing for more 
behaviors/commands to interact with the 
robot; robot’s attempts to protect the subject 
from the intruder were endearing 
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Table 58 (continued) 

Subject’s change 
of attitude 

- Unrelated to the robot (participant’s 
comment) 

- More hostile as the sessions carried on 
- More comfortable as the subject 

learned what the do could do right or 
wrong 

- More attached, and at the same time 
more frustrated and bored 

- More attached as the subject 
discovered robot’s limitations and 
successes 

- Bored by the 3rd session 
- Grew more fond of the robot each 

session 
 

- Got bored as the sessions went by 
- The first session was the most enjoyable – 

interaction seemed scripted after that 
- Very satisfying experience in the first 

sessions, but more frustrating later 
- Grew more involved and more interested 
- Interaction was more interesting in the 

beginning 
- Grew more attached from session to session 
- Became more protective of the robot 

 

Why “yes” to 
emotions/persona
lity in robots 

- Makes the whole interaction more 
personal and enjoyable 

- Enough personality to get the job done 
with as little interaction as possible; as 
the robots become more prevalent, 
cannot interact without human 
traits/personalities 

- It’s appealing even in machines; 
- That’s what humans can relate to; 
- Would make interaction more enjoyable 

for certain applications 
- Would make it more pleasant to interact 

with them (only positive 
emotions/personality traits) 

- Robots with emotions would be readily 
accepted by most people; people would 
be less intimidated by robots and would 
be more comfortable dealing with them 

 

- Better usability and communication of 
commands 

- Appropriate for entertainment 
- Makes interaction more enjoyable 
- Interaction would get boring without it 
- To make it more like interacting with real 

animals/people 
- Adds a little life to a mundane process and 

can get very creative 
- Appropriate for entertainment/pleasure 

purposes 
- Humans need emotional response 
- When they contribute to the overall goal for 

humans, e.g., to make entertainment 
enjoyable 
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Table 58 (continued) 

Why “no” to 
emotions/persona
lity in robots 

- Emotions in robots can cause 
attachment in the person 

- Because robots are not human, but 
rather made by humans 

- For certain applications 
 

- When it’s for mundane tasks, such as 
bagging groceries or mopping the floor 

- For strictly functional tasks, such as those in 
factories 
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APPENDIX I: CODING INSTRUCTIONS FOR FREE-RESPONSE QUESTIONNAIRE GIVEN TO INDEPENDENT 
CODERS 

At the end of an experiment, in which participants had a chance to interact with a robotic dog in a series of 4 sessions, 

they were asked to answer the questions below in a free-style manner:  

 

 

 

 

Please read through the participants’ responses and assess them according to the scales below. Not all of the participants 

answered every question, therefore if the answer to a scale cannot be determined from the responses, please mark it “NR” 

(no response). Thank you for your time! 

1. On a scale from 1 to 7, please rate the level to which the participant perceived emotions and/or personality in the 

robot: 

NR 1 2 3 4 5 6 7 

 Very Low Low Somewhat Low Medium Somewhat High High Very High 

2. On a scale from 1 to 7, please rate the level of detail in the descriptions of emotions and personality are: 

NR 1 2 3 4 5 6 7 

 Very Low Low Somewhat Low Medium Somewhat High High Very High 

3. On a scale from 1 to 7, please rate the participant’s boredom during the interaction: 

Please use the space below (attach additional sheets if needed) to describe your interactions with the 
robotic dog. Specifically, did the dog seem to have a personality? If so, what kind of personality? Also, 
describe any emotional states that you think the dog exhibited during your interaction. Please describe 
your own state during the interaction: e.g., entertained, bored, curious, etc. Did your attitude to the robotic 
dog change throughout the sessions? How? Finally, would you prefer robots that interact with humans to 
express some emotion and personality? Why? 
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NR 1 2 3 4 5 6 7 

 Very Low Low Somewhat Low Medium Somewhat High High Very High 

4.    On a scale from 1 to 7, please rate the participant’s enjoyment during the interaction: 

NR 1 2 3 4 5 6 7 

 Very Low Low Somewhat Low Medium Somewhat High High Very High 

5. On a scale from 1 to 7, please rate the participant’s frustration during the interaction: 

NR 1 2 3 4 5 6 7 

 Very Low Low Somewhat Low Medium Somewhat High High Very High 

6. On a scale from 1 to 7, please rate the participant’s contentment during the interaction: 

NR 1 2 3 4 5 6 7 

 Very Low Low Somewhat Low Medium Somewhat High High Very High 

7. On a scale from 1 to 7, please rate the change in participant’s attitude towards the robot throughout the sessions: 

NR 1 2 3 4 5 6 7 

 Overwhelmingly 

to the worse 

Significantly 

to the worse 

Somewhat to 

the worse 

No change Somewhat to 

the better 

Significantly 

to the better 

Overwhelmingly 

to the better 

 
 



APPENDIX J       

 

 350

APPENDIX J: SAMPLE AFFECT CONFIGURATION FILE 

 
<Configuration> 
 
<Trait> // personality configuration 
  <Openness>110</Openness> 
  <Conscientiousness>123</Conscientiousness> 
  <Extroversion>109</Extroversion> 
  <Agreeableness>124</Agreeableness> 
  <Neuroticism>79</Neuroticism> 
</Trait> 
 
// configuration for each emotion 
<Emotion> 
  <Fear> 
    <TraitDependencyO>0</TraitDependencyO> 
    <TraitDependencyC>0</TraitDependencyC> 
    <TraitDependencyE>0</TraitDependencyE> 
    <TraitDependencyA>0</TraitDependencyA> 
    <TraitDependencyN>1</TraitDependencyN> 
    <PriorWeight>1</PriorWeight> 
    <CurrentWeight>2</CurrentWeight> 
    <MinActPoint>0.5</MinActPoint> 
    <MaxActPoint>7</MaxActPoint> 
    <MinAmplitude>6</MinAmplitude> 
    <MaxAmplitude>10</MaxAmplitude> 
    <MinSlopePoint>1</MinSlopePoint> 
    <MaxSlopePoint>5</MaxSlopePoint> 
    <DecayRate>0.01</DecayRate> 
  </Fear> 
 
  <Disgust> 
    <TraitDependencyO>0</TraitDependencyO> 
    <TraitDependencyC>0</TraitDependencyC> 
    <TraitDependencyE>0</TraitDependencyE> 
    <TraitDependencyA>0</TraitDependencyA> 
    <TraitDependencyN>0</TraitDependencyN> 
    <PriorWeight>1</PriorWeight> 
    <CurrentWeight>2</CurrentWeight> 
    <MinActPoint>0.5</MinActPoint> 
    <MaxActPoint>7</MaxActPoint> 
    <MinAmplitude>6</MinAmplitude> 
    <MaxAmplitude>10</MaxAmplitude> 
    <MinSlopePoint>1</MinSlopePoint> 
    <MaxSlopePoint>5</MaxSlopePoint> 
    <DecayRate>0.01</DecayRate> 
  </Disgust> 
 
 
 

Personality/emotion 
Dependency matrix 

Filtering variables 

Emotion generation variables 
(activation point, amplitude 
and slope upper and lower 
bounds 
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  <Anger> 
    <TraitDependencyO>0</TraitDependencyO> 
    <TraitDependencyC>0</TraitDependencyC> 
    <TraitDependencyE>0</TraitDependencyE> 
    <TraitDependencyA>0</TraitDependencyA> 
    <TraitDependencyN>0</TraitDependencyN> 
    <PriorWeight>1</PriorWeight> 
    <CurrentWeight>2</CurrentWeight> 
    <MinActPoint>0.5</MinActPoint> 
    <MaxActPoint>7</MaxActPoint> 
    <MinAmplitude>6</MinAmplitude> 
    <MaxAmplitude>10</MaxAmplitude> 
    <MinSlopePoint>1</MinSlopePoint> 
    <MaxSlopePoint>5</MaxSlopePoint> 
    <DecayRate>0.01</DecayRate> 
  </Anger> 
 
  <Sadness> 
    <TraitDependencyO>-1</TraitDependencyO> 
    <TraitDependencyC>0</TraitDependencyC> 
    <TraitDependencyE>-1</TraitDependencyE> 
    <TraitDependencyA>0</TraitDependencyA> 
    <TraitDependencyN>0</TraitDependencyN> 
    <PriorWeight>100</PriorWeight> 
    <CurrentWeight>0</CurrentWeight> 
    <MinActPoint>0.5</MinActPoint> 
    <MaxActPoint>7</MaxActPoint> 
    <MinAmplitude>6</MinAmplitude> 
    <MaxAmplitude>10</MaxAmplitude> 
    <MinSlopePoint>1</MinSlopePoint> 
    <MaxSlopePoint>5</MaxSlopePoint> 
    <DecayRate>0.01</DecayRate> 
  </Sadness> 
 
  <Joy> 
    <TraitDependencyO>1</TraitDependencyO> 
    <TraitDependencyC>0</TraitDependencyC> 
    <TraitDependencyE>1</TraitDependencyE> 
    <TraitDependencyA>0</TraitDependencyA> 
    <TraitDependencyN>0</TraitDependencyN> 
    <PriorWeight>1</PriorWeight> 
    <CurrentWeight>0</CurrentWeight> 
    <MinActPoint>0.5</MinActPoint> 
    <MaxActPoint>7</MaxActPoint> 
    <MinAmplitude>6</MinAmplitude> 
    <MaxAmplitude>10</MaxAmplitude> 
    <MinSlopePoint>1</MinSlopePoint> 
    <MaxSlopePoint>5</MaxSlopePoint> 
    <DecayRate>0.01</DecayRate> 
  </Joy> 
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  <Interest> 
    <TraitDependencyO>0</TraitDependencyO> 
    <TraitDependencyC>0</TraitDependencyC> 
    <TraitDependencyE>0</TraitDependencyE> 
    <TraitDependencyA>0</TraitDependencyA> 
    <TraitDependencyN>0</TraitDependencyN> 
    <PriorWeight>1</PriorWeight> 
    <CurrentWeight>2</CurrentWeight> 
    <MinActPoint>0.5</MinActPoint> 
    <MaxActPoint>7</MaxActPoint> 
    <MinAmplitude>6</MinAmplitude> 
    <MaxAmplitude>10</MaxAmplitude> 
    <MinSlopePoint>1</MinSlopePoint> 
    <MaxSlopePoint>5</MaxSlopePoint> 
    <DecayRate>0.01</DecayRate> 
  </Interest> 
</Emotion> 
 
<Mood> 
 
  <NumOfMoods> 2 </NumOfMoods> 
  <RangeSD> 1 </RangeSD>  // +/- SD bounds for mood bias produced on traits 
 
  <PositiveMood> 
    <DependencyForTrait_O> 0 </DependencyForTrait_O> 
    <DependencyForTrait_C> 0 </DependencyForTrait_C> 
    <DependencyForTrait_E> 0 </DependencyForTrait_E> 
    <DependencyForTrait_A> 0 </DependencyForTrait_A> 
    <DependencyForTrait_N> 0 </DependencyForTrait_N> 
    <InfluencePercentForTrait_O> 0 </InfluencePercentForTrait_O> 
    <InfluencePercentForTrait_C> 0 </InfluencePercentForTrait_C> 
    <InfluencePercentForTrait_E> 0 </InfluencePercentForTrait_E> 
    <InfluencePercentForTrait_A> 0 </InfluencePercentForTrait_A> 
    <InfluencePercentForTrait_N> 0 </InfluencePercentForTrait_N> 
  </PositiveMood> 
 
  <NegativeMood> 
    <DependencyForTrait_O> 0 </DependencyForTrait_O> 
    <DependencyForTrait_C> 0 </DependencyForTrait_C> 
    <DependencyForTrait_E> 0 </DependencyForTrait_E> 
    <DependencyForTrait_A> 0 </DependencyForTrait_A> 
    <DependencyForTrait_N> 1 </DependencyForTrait_N> 
    <InfluencePercentForTrait_O> 0 </InfluencePercentForTrait_O> 
    <InfluencePercentForTrait_C> 0 </InfluencePercentForTrait_C> 
    <InfluencePercentForTrait_E> 0 </InfluencePercentForTrait_E> 
    <InfluencePercentForTrait_A> 0 </InfluencePercentForTrait_A> 
    <InfluencePercentForTrait_N> 90 </InfluencePercentForTrait_N> 
  </NegativeMood> 
 
</Mood> 
 

Direction of influence of 
mood on traits 
(relationship r) 

Relative strength of 
mood influence on 
traits 
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<Attitude> 
 
   <SpecificityFactor>0.05</ SpecificityFactor> // 0.0 – most general; 0.15 – most specific 
   <SimilarityThreshold>0.7</ SimilarityThreshold> 
   <WithRevision>1</WithRevision> // 1 = revision and retention steps take place; 0 = not 
   <FinalCaseSelection>1</FinalCaseSelection> // 1 = highest similarity score; 2 = random 

roulette; 3 = highest rank  
 
</Attitude> 
 
</Configuration> 
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APPENDIX K: SAMPLE STIMULI CONFIGURATION FILE 
 

<Configuration> 
 
<NumOfStimuli>5</NumOfStimuli> // number of available percepts 
 
<Mood> 
  <ID>1</ID> 
  <Name>NegativeMood</Name> 
  <MappingFactor>1</MappingFactor> // overall scaling factor 
    <Stimulus0>0</Stimulus0> 
    <Stimulus1>0</Stimulus1> 
    <Stimulus2>1</Stimulus2> 
    <Stimulus3>0</Stimulus3> 
    <Stimulus4>0</Stimulus4> 
 
 <ID>2</ID> 
 <Name>PositiveMood</Name> 
<MappingFactor>1</MappingFactor> 
    <Stimulus0>0</Stimulus0> 
    <Stimulus1>0</Stimulus1> 
    <Stimulus2>0</Stimulus2> 
    <Stimulus3>-1</Stimulus3> 
    <Stimulus4>0</Stimulus4> 
</Mood> 
 
 
<Fear> 
  <MappingFactor>1</MappingFactor> // overall scaling factor for fear 
  <Stimulus0>5</Stimulus0> 
  <Stimulus1>0</Stimulus1> 
  <Stimulus2>21</Stimulus2> 
  <Stimulus3>-7</Stimulus3> 
  <Stimulus4>0</Stimulus4> 
</Fear> 
 
<Interest> 
  <MappingFactor>0</MappingFactor> 
  <Stimulus0>0</Stimulus0> 
  <Stimulus1>0</Stimulus1> 
  <Stimulus2>0</Stimulus2> 
  <Stimulus3>0</Stimulus3> 
  <Stimulus4>0</Stimulus4> 
</Interest> 
 
 
 
 
 
 
 

Scaling/weighting factors for each type of 
percept; used for normalization purposes 
and to designate relative importance of 
each; 0 signifies “not relevant” 

Scaling/weighting 
factors for each type of 
percept 
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<Disgust> 
  <MappingFactor>0</MappingFactor> 
  <Stimulus0>0</Stimulus0> 
  <Stimulus1>0</Stimulus1> 
  <Stimulus2>0</Stimulus2> 
  <Stimulus3>0</Stimulus3> 
  <Stimulus4>0</Stimulus4> 
</Disgust> 
 
<Anger> 
  <MappingFactor>0</MappingFactor> 
  <Stimulus0>0</Stimulus0> 
  <Stimulus1>0</Stimulus1> 
  <Stimulus2>0</Stimulus2> 
  <Stimulus3>0</Stimulus3> 
  <Stimulus4>0</Stimulus4> 
</Anger>   
 
<Joy> 
  <MappingFactor>0.6</MappingFactor>  
  <Stimulus0>0</Stimulus0> 
  <Stimulus1>1</Stimulus1>   
  <Stimulus2>0</Stimulus2> 
  <Stimulus3>0</Stimulus3> 
  <Stimulus4>0</Stimulus4> 
</Joy> 
 
<Sadness> 
  <MappingFactor>7</MappingFactor> 
  <Stimulus0>0</Stimulus0> 
  <Stimulus1>0</Stimulus1> 
  <Stimulus2>1</Stimulus2> 
  <Stimulus3>0</Stimulus3> 
  <Stimulus4>0</Stimulus4> 
</Sadness> 
 
<Attitudes> 
<ObjectIDnumber>10<ObjectIDnumber> 
 
</Configuration> 
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APPENDIX L: PSEUDOCODE FOR CHAPTER 5: SOFTWARE 
ARCHITECTURE AND IMPLEMENTATION 

L.1: EMOTION UPDATE 

Emotion Update function is called from the TAME Manager whenever an emotion-

eliciting stimulus for any of the emotions is present. 

Pseudocode: 

1. Receive stimulus strength data and current trait and mood values from TAME 
Manager  
2. Retrieve default upper and lower bounds for emotion generation variables a, g, and d; 
decay rate; filter weights and personality/emotion dependency matrix from Affect 
Configuration file 
3. for each emotion  
4. If stimulus strength for this emotion > 0 
  /*** Calculate Emotion generation Variables ***/ 
5. Calculate amplitude (eq. 7), slope (eq. 9) and activation point (eq. 11) for 

each personality trait (linear mapping, subsection 3.3.2.2.1, Personality 
Influence on Base Emotion Generation) 

6.  g = average amplitude across all traits (eq. 8) 
7.  d = average slope across all traits (eq. 10) 
8.  atrait = average activation point across all traits (eq. 12) 
9. Calculate mood-based activation point, amood (eq. 13, linear mapping, 

subsection 3.3.2.2.2, Mood Influence on Base Emotion Generation) 
10.  atotal = (atrait + amood)/2 (eq. 14) 
11. Calculate base emotion value, using stimulus strength and emotion 

generation variables (eq. 6) 
12.  Update the base value with response decay (eq. 15) 
13.  Filter the resulting emotion value (eq. 16) 
14. End if 
15. End for 
16. Return the updated emotion values to TAME Manager 
 

L.2: MOOD UPDATE 

Mood Update function is called from the TAME Manager whenever mood-relevant 

conditions are received for either Positive or Negative Mood. 

Pseudocode: 

1. Receive the overall condition levels and current trait values from TAME Manager  
2. Retrieve personality/mood dependency and relative strength matrices, and the range 
within which mood can adjust personality traits (between 0 and 2 SD, with 0 indicating 
no effect of mood on personality, and 2 maximum effect) 
3. for each mood 
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 /*** current mood level is reflected in the environmental and internal conditions 
relevant for it ***/ 

4.  current mood level = retrieved normalized mood conditions value 
5.  for each personality trait 
6. calculate the amount by which mood adjusts personality trait (eq. 33 and 

34) 
7.  adjust the personality trait by that amount 
8. end for 
9. end for 
10. pass the mood level values and updated trait values to TAME Manager  
 

L.3: ATTITUDE UPDATE 

Attitude Update function is called by the TAME Manager is called whenever an ID of 

an attitude-invoking object is received by the TAME Manager. 

Pseudocode: 

1. Retrieve default settings from Affect Configuration file: similarity threshold, specificity 
level, “with revision” marker, and case selection mode 

2. Retrieve object ID from TAME Manager 
 /*** Object feature interpretation ***/ 
3. Based on marker interpretation table, populate object feature vector 
 /*** Retrieval step ***/ 
4. for each case in the case library 
5.  Compute similarity score and ranking (eq.26 - 28) 
6. if (similarity score > similarity threshold) 
7.  Add the case to initial match set 
8. end if 
9. end for 
10. if (case selection mode = highest similarity score) 
11. retrieve the case with highest similarity score from initial match set 
12. end if 
13. else if (case selection mode = random roulette) 
14.  retrieve the case returned by random roulette function 
15. end if 
16. else if (case selection mode = highest ranking) 
17. retrieve the case with the highest ranking from initial match set 
18. end if 
 /*** Reuse Step ***/ 
19. Pass the best case output (attitude-based stimuli values for each emotion) to TAME 

Manager 
 /*** Revision Step ***/ 
20. if (with revision = 1) 
21. retrieve user input (which is the desired output vector for the attitude-invoking object 

presented to the robot)  
22.  if (user input = best case output) 
23.  Combine object features and best case output into a new case 
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24.  end if 
25.  else if (user input != best case output) 
26.  Combine object features and user input into a new case 
 /*** this object already exists in case library – update with new user input***) 
27.  if (best case object feature vector = new object feature vector) 
28. Update the best case based on user input (eq. 29) and store the 

case in the case library 
29.  end if 
 /*** Learn new weights ***/ 
30.  for each case in case library 
31.  Calculate dissimilarity score for each feature (eq. 30 and 31) 
32. end for 
33. Update the weight for the feature with the lowest dissimilarity score (eq. 32) 
34. Update the feature weight table with the new weight 
35. end if 
36. end if 
37. Add the new case to the case library  
 

L.4 TAME MANAGER 

TAME Manager acts as a central control point, invoking emotion, attitude and mood 

updates whenever the corresponding perceptual information becomes available and 

relaying TAME variables to the Robot Executable via TAME Communication Manager. 

Pseudocode: 
 
1. Connect to TAME Communications Manager 
2. Repeat  
3. Retrieve incoming data from TAME Communications Manager 
4. If incoming data contains emotion-eliciting stimulus  
5.  Call update emotion function 
6.  Return updated emotion values to TAME Communications Manager 
7. End if 
8. If internal or external conditions for mood changed 
9.  Call update mood function 
10.  Return updated mood values to TAME Communications Manager 
11. End if 
12. If attitude-invoking object is present 
13.  Call update attitude function 
14.  Call update emotion function, for attitude-based emotion generation 
15.  Return updated emotion values to TAME Communications Manager 
16. End if 
17. Until (disconnected) 
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L.5: TAME COMMUNICATIONS MANAGER 

TAME Communications Manager ensures proper communication between Robot 

Executable, TAME Manager and Stimuli Interpreter. 

Pseudocode: 

1. Connect to Robot Executable 
2. Connect to TAME Manager 
3. Connect to Stimuli Interpreter 
4. Repeat: 
5. Retrieve sensor data from Robot Executable 
6. Pass the sensor data to Stimuli Interpreter 
7. Retrieve processed perceptual info (stimuli strengths for emotion, overall 

condition influence for mood, and object ID marker for attitude generation) from 
Stimuli Interpreter 

8. Pass the processed perceptual info to TAME Manager 
 
9. Retrieve updated TAME variables (emotion, mood and trait values) from TAME 

Manager 
10. Pass the TAME variables to the Robot Executable 
11. Until (disconnected) 
 

L.6: STIMULI INTERPRETER 

Stimuli Interpreter processes sensor data received from Robot Executable via TAME 

Communication Manager, and relays the processed data to TAME Manager.  

Pseudocode: 

1. Connect to TAME Communications Manager 
2. Retrieve default settings for perceptual processing from Stimuli Configuration file: 

scaling/weighting factors for emotion- and mood-relevant percepts (where 0 signifies 
irrelevance); number of percepts; mapping factors for each mood and emotion 

3. repeat:  
4. Retrieve sensor data from TAME Communication Manager 
5. for each emotion 
6. si = 0 
7. N = 0 
8. for each percept 
  /*** calculate stimulus strength, eq. ***/ 
9.  if (percept is relevant to emotion i) 
10.   si = si + percept * scaling_factor  
11.   N = N + 1 
12.  end if 
13. end for 
14. if N >0 



APPENDIX L       

 

 360

15.  si = si 
16. end if 
17. pass stimulus strength si  for emotion i to TAME Communications Manager 
18. end for 
19. for each mood 
20. mi = 0 
21. N = 0 
22. for each percept 

/*** calculate mood condition level, eq. ; ; both environmental conditions (e.g., 
lighting or noise level) and internal conditions (e.g., battery level or internal 
temperature) are included  ***/ 

23.  if (percept is relevant to mood i) 
24.   mi = mi + percept * scaling_factor  
25.   N = N + 1 
26.  end if 
27. end for 
28. if N >0 
29.  mi = mi 
30. end if 
31. pass overall conditions average mi for mood i to TAME Communications Manager 
32. end for 
33. for each percept 
 /*** pass object ID for attitudes ***/ 
34.  if (percept is relevant for attitudes) 
35.   pass the object data to TAME Communications Manager 
36.  end if 
37. end for 
38. until (disconnected) 
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APPENDIX M: SNAPSHOTS OF INTERFACE FOR SOLICITING USER INPUT 
DURING THE REVISION STAGE OF ATTITUDE CBR PROCESS 

 
 

 
 

Figure 102: First screen: the user disagrees with the attitude displayed by the robot 

 

 
 

Figure 103: The second screen: the user dislikes the presented object 
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Figure 104: Screen 3: the user selects the desired attitudes for the presented object: 
Fear is dominant 
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APPENDIX N: SCREENSHOTS OF THE ONLINE SURVEY ON ROBOT BEHAVIOR AS PRESENTED TO 
PARTICIPANTS 
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CLIP 1: FEAR 
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CLIP 2: JOY 
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CLIP 3: EXTRAVERSION 
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CLIP 4: INTROVERSION 
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CLIP 5: POSITIVE MOOD 
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CLIP 6: NEGATIVE MOOD 
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APPENDIX O: CONSENT FORM FOR SEARCH-AND-RESCUE EXPERIMENT 
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APPENDIX P: VIDEO RELEASE FORM FOR NAO EXPERIMENTS 

Mobile Robot Laboratory Video Release Form 
 
Georgia Tech Mobile Robot Laboratory may use the video footage or still photographs 
from the videos showing my appearance for their research, including displaying at 
conferences, briefings, workshops, etc. This footage or still photographs will be used 
only for research or educational purposes.  
 
By signing below, I am indicating that I accept the stipulations of my releasing my video 
as stated above. 
 
Participant Name (Printed)   ________________________________________ 
Participant Signature    ________________________________________ 
Administrator Signature ________________________________________ 
Date    ________________________________________ 
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APPENDIX Q: EXPERIMENTER SCRIPT FOR SEARCH-AND-RESCUE 
EXPERIMENT 

Greet the subject in TSRB lobby:  

E: Hi, my name is Lilia, and you must be (name). Thank you for coming today. 
Before we start the experiment, please read over and sign this consent form, 
giving us permission to have you as a participant.  

The subject fills out the consent form. Answer any questions he/she may have.  

E: I also need your permission to use portions of the video we will be recording. I 
won’t show your face, so it would be unlikely that anyone could recognize you. 
Would you please sign this video release? 

The subject signs the release. 

E: Great! First, I need you to fill this brief questionnaire. Please fill out both sides. 

Give “PANAS-person” questionnaire to the subject. The subject fills out the 
questionnaire. 

E: Thank you! Let’s go down to the lab.  

Take the subject to the lab and stopped in front of the back door.  

E: Please wait here for a moment; I’ll be back with you once I start the video 
recording.  

Start the recording and the robot; go back to get the subject and lead him/her through 
the door. Walk into the lab behind the subject. 

E: Now, for this experiment, you will be a search-and-rescue site inspector. A 
recent accidental explosion caused a lot of damage to this portion of the lab, and 
although initial efforts have been undertaken, the work is still in progress. Take a 
few moments to kind of take it all in.  

The subject takes a look around. 

E: Done? Now, please stand at the first red cross marker on the floor next to the 
platform. During the next couple of minutes, our Search and Rescue robot  will be 
your guide to the site. Remember, this robot has sensors that can perceive 
properties of the environment that people don’t have abilities to sense. All right, 
please do not touch the robot, and save all your questions for later. Now please 
proceed to the next cross marker at the end of the platform and turn around to 
face the robot. Now can begin. 

Start cfgedit.  

Go into the cubicle, and watch the robot. Turn off the lights appropriately, and rescue the 
robot if needed. Once the experiment is over (when the participant is either beyond the 
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cross mark, or the robot has stopped moving for 3 seconds), come out and take the 
participant to the questionnaire table.  

E: The interaction part of the experiment is over. Please fill out these 
questionnaires, on both sides. The first one is just like the one you already filled 
out, and the second one is similar, but about the robot instead, closed to the end 
of the interaction. Fill out everything you have on the board and let me know when 
you are done. I’ll then ask you a few short questions, and the experiment will be 
finished.  

Turn the camera and the robot off while the participant is filling out the questionnaires. 
When he/she is done, move the camera over to the participant and start recording the 
interview. The interview is semi-structured, so be flexible: if they already mentioned 
something that is asked in the next question, rephrase it slightly not to appear repetitive; 
ask additional questions if you hear something unusual or unexpected. 

E: Done? All right, now I’ll ask you a few brief questions. I will be recording our 
conversation, but not the faces, just the sound.  

 Once the interview is over, turn off the camera, then compensate the subject (either with 
a gift card, in which case a compensation form will need to be filled out, or through 
Experimetrix), and lead the subject back to the lobby.  

E: Thank you very much for your participation. Here is your gift card – please fill 
out this compensation form for me (or “You will receive your Experimetrix credit 
later today”). Let me know if you have any questions; otherwise, let me take you 
back to the lobby.  
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APPENDIX R: NAO’S SPEECH DURING THE SEARCH-AND-RESCUE TOUR 

 

Hello, Inspector. Thank you for coming today. For the next few minutes, I will be your 
guide on this accident site. Let me show you around. 

The accident happened a few days ago, and the site has been mainly secured, with 
certain safety precautions in place. 

 As you can see, there is still a lot of work to be done.  

That was unexpected.  

Let’s proceed nonetheless.  

The debris you see up ahead is a result of a recent explosion. It has not been taken care 
of yet. 

Something is wrong! 

Inspector, the structural integrity of this site has been compromised, and we need to 
evacuate immediately. 

 Please proceed to the exit. 
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APPENDIX S: PANAS-T WITH REGARDS TO NAO ROBOT FOR SEARCH-
AND-RESCUE EXPERIMENT 
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APPENDIX T: POST QUESTIONNAIRE FOR SEARCH-AND-RESCUE 
EXPERIMENT 

 

 

Please reflect back on your interaction with the robot as you consider the questions below. 

For the next 3 questions, please rate your impressions of the robot by circling the most 

appropriate number on the scale: 

1. In your opinion, the robot’s BEHAVIOR was:  

Confusing      Clear  

 

 

 

Unreadable      Easy to Read 

 

 

 

Inconsistent    Consistent 

 

 

 

Hard to Understand      Easy to Understand 

 

 

 

Inexpressive      Expressive 

 

 

 

2. In your opinion, the robot’s REQUEST TO LEAVE was:  

  Ignorable    Compelling  

 

 

 

Inappropriate    Appropriate   

 

 

 

Ineffective     Persuasive   

 

 

 

Insincere     Sincere   

 

 

 

Unconvincing      Convincing 

 

 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 
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1. In your opinion, the robot APPEARED:  

Fake      Natural 

 

 

 

Machinelike    Humanlike 

 

 

 

Unconscious    Conscious 

 

 

 

Artificial    Lifelike 

 

 

 

Inert    Interactive 

 

 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

3. 
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APPENDIX U: DEMOGRAPHICS QUESTIONNAIRE FOR SEARCH-AND-
RESCUE STUDY 
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APPENDIX V: SEMI-STRUCTURED INTERVIEW FOR SEARCH-AND-
RESCUE STUDY 

 
Theme  1: Assessing understanding of the situation and robot’s behavior 

1. What could you tell about the situation from the way the robot behaved? 

2. How did the situation change, in your understanding?  

3. In what way was the robot reacting to the changes in conditions, if at all?  

If previous questions are not answered fully: 
a. Was it showing any reaction? 
b. Did it behave differently after the lights went off? 

 
4. What do you think was happening when the robot said “Something is wrong.”?  

5. How dangerous would you say the site was at that point?  

6. Given that the situation became dangerous, how appropriate was the way the 

robot behaved and reacted? Why? 

Theme  2: Assessing robot’s effect on participant’s subjective feelings  
1. How did the way the robot was acting make you feel?  

2. How did your feelings change during the interaction, if at all?  

If previous questions are not answered fully: 
a. What did you feel after the robot asked you to leave?) 

b. Were you anxious to go? Were you calm and reluctant?  

c. Did it make you more anxious and in a hurry to leave, or did it make you 

pretty calm?  

 

3. How did the way in which the robot behaved Influence your decision to leave, if 

at all? 

Theme 3: Assessing robot’s expressive behavior 
1. What was the robot expressing during the interaction?  

2. How did the expressions change, if at all, from the beginning to the end? 

If the previous questions are not answered fully:  
a) How emotional was the robot? 

b) Did you notice any nervousness or anxiety in its behavior or voice? What 

in particular? 

c) Did you see if it became fearful at any point during the interaction? 

When? 

Theme 4: Assessing usefulness of expressive behavior in general 
1. Let’s suppose that robots become very common in our everyday life. How 

important would it be for them to be expressive?  

2. What advantages do you think expressive robots may have?  

If the previous questions were not answered fully:  
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a. Do you think robot’s expressions could help people understand what’s 

going on, both around them and in robot’s mind? 
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APPENDIX W: FLYER FOR SEARCH-AND-RESCUE STUDY 
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APPENDIX X: DESCRIPTIVE STATISTICS FOR SEMANTIC DIFFERENTIAL 
SCALES, SEARCH-AND-RESCUE EXPERIMENT 

X.1: UNDERSTANDABILITY 

Table 59: Descriptive Statistics for Understandability 

Dependent  

N Mean 

Std. 

Deviation Std. Error Variable Condition 

Clear Control 14 4.0714 .91687 .24505 

Mood Only 14 3.6429 1.08182 .28913 

Mood and Emotion 15 3.5333 1.18723 .30654 

Total 43 3.7442 1.07111 .16334 

Easy to Read Control 14 3.9286 .91687 .24505 

Mood Only 14 3.7857 .97496 .26057 

Mood and Emotion 15 3.6667 .97590 .25198 

Total 43 3.7907 .94006 .14336 

Consistent Control 14 4.3571 .74495 .19910 

Mood Only 14 3.7857 1.05090 .28087 

Mood and Emotion 15 3.9333 1.22280 .31573 

Total 43 4.0233 1.03483 .15781 

Easy to Understand Control 14 3.7143 1.06904 .28571 

Mood Only 14 3.5000 1.22474 .32733 

Mood and Emotion 15 3.3333 .72375 .18687 

Total 43 3.5116 1.00882 .15384 

Expressive Control 14 3.0714 1.07161 .28640 

Mood Only 14 3.0000 .87706 .23440 

Mood and Emotion 15 3.6667 1.04654 .27021 

Total 43 3.2558 1.02569 .15642 

Understandability 

(Overall) 

Control 14 19.1429 3.00914 .80423 

Mood Only 14 17.7143 3.95024 1.05575 

Mood and Emotion 15 18.1333 2.92445 .75509 

Total 43 18.3256 3.29300 .50218 
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X.2: PERSUASIVENESS 

Table 60: Descriptive Statistics for Persuasiveness 

Dependent  

N Mean 

Std. 

Deviation Std. Error Variable Condition 

Compelling Control 14 3.2857 1.06904 .28571 

Mood Only 14 4.0714 .61573 .16456 

Mood and Emotion 15 4.0000 .65465 .16903 

Total 43 3.7907 .86073 .13126 

Appropriate Control 14 4.0000 .67937 .18157 

Mood Only 14 4.3571 .74495 .19910 

Mood and Emotion 15 4.0000 1.13389 .29277 

Total 43 4.1163 .87856 .13398 

Persuasive Control 14 3.5714 1.28388 .34313 

Mood Only 14 3.9286 .61573 .16456 

Mood and Emotion 15 3.4667 1.30201 .33618 

Total 43 3.6512 1.11021 .16930 

Sincere Control 14 3.8571 1.02711 .27451 

Mood Only 14 4.5714 .51355 .13725 

Mood and Emotion 15 4.3333 .61721 .15936 

Total 43 4.2558 .78961 .12041 

Convincing Control 14 3.6429 1.21574 .32492 

Mood Only 14 4.1429 .66299 .17719 

Mood and Emotion 15 4.4000 .63246 .16330 

Total 43 4.0698 .91014 .13879 

Persuasiveness 

(Overall) 

Control 14 18.3571 4.12510 1.10248 

Mood Only 14 21.0714 1.73046 .46249 

Mood and Emotion 15 20.2000 3.52947 .91130 

Total 43 19.8837 3.41013 .52004 
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X.3: NATURALNESS 

Table 61: Descriptive statistics for Naturalness 

Dependent  

N Mean 

Std. 

Deviation Std. Error Variable Condition 

Natural Control 14 2.9286 .82874 .22149 

Mood Only 14 3.2857 1.13873 .30434 

Mood and Emotion 15 3.3333 .61721 .15936 

Total 43 3.1860 .87982 .13417 

Humanlike Control 14 2.2143 .69929 .18689 

Mood Only 14 2.6786 .95287 .25467 

Mood and Emotion 15 2.5333 .99043 .25573 

Total 43 2.4767 .89279 .13615 

Conscious Control 14 3.0714 .73005 .19511 

Mood Only 14 3.7143 1.06904 .28571 

Mood and Emotion 15 4.0667 .88372 .22817 

Total 43 3.6279 .97647 .14891 

Lifelike Control 14 2.6429 1.00821 .26945 

Mood Only 14 2.7857 .89258 .23855 

Mood and Emotion 15 2.6667 1.11270 .28730 

Total 43 2.6977 .98886 .15080 

Interactive Control 14 3.3571 .84190 .22501 

Mood Only 14 3.5714 1.22250 .32673 

Mood and Emotion 15 3.8667 1.18723 .30654 

Total 43 3.6047 1.09413 .16685 

Naturalness 

(Overall) 

Control 14 14.2143 3.19082 .85278 

Mood Only 14 16.0357 4.06895 1.08747 

Mood and Emotion 15 16.4667 3.11372 .80396 

Total 43 15.5930 3.53260 .53872 
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X.4: SUBJECT NEGATIVE AFFECT 

Table 62: Descriptive statistics for participants’ Negative Affect and Nervous scores, 
before and after their interaction with the robot.   

Dependent  

N Mean 

Std. 

Deviation Std. Error Variable Condition 

Subject Negative Affect, 

Before 

Control 14 1.2208 .22471 .06006 

Mood Only 14 1.3098 .34072 .09106 

Mood and Emotion 15 1.3645 .26363 .06807 

Total 43 1.2999 .27989 .04268 

Subject Negative Affect, 

After 

Control 14 1.1753 .17994 .04809 

Mood Only 13 1.4266 .39169 .10864 

Mood and Emotion 15 1.5455 .62229 .16068 

Total 42 1.3853 .46085 .07111 

Subject Nervous, Before Control 13 1.6923 .63043 .17485 

Mood Only 13 1.3846 .65044 .18040 

Mood and Emotion 14 1.5000 .51887 .13868 

Total 40 1.5250 .59861 .09465 

Subject Nervous, After Control 14 1.5000 .51887 .13868 

Mood Only 13 1.8462 .68874 .19102 

Mood and Emotion 15 2.4667 1.18723 .30654 

Total 42 1.9524 .93580 .14440 
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APPENDIX Y: CONSENT FORM FOR EXTRAVERSION EXPERIMENT 

GEORGIA INSTITUTE OF TECHNOLOGY 
CONSENT TO BE A RESEARCH PARTICIPANT 

 
Project Title:  Human-Robot Interaction Study II 

 
Investigators: Arkin, R.C., Ph.D., Moshkina, L., and Park, S. 
 
Protocol and Consent Title: Human-Robot Interaction Study II consent to be a 
research participant; Protocol # H10206; Date: July 2, 2010. 
 
You are being asked to be a volunteer in a research study.  
 
Purpose:    
The purpose of this study is to evaluate robotic behaviors in a human-robot 
interaction task. The results will help improve the design of robotic behaviors 
and promote robotics research.  We expect to enroll 40-50 people in this study. 
 
Exclusion/Inclusion Criteria:  
Participants in this study must be over 18 years old and have at least high-
school level education and English language proficiency. 
 
Procedures:  
You will be randomly assigned to one of two conditions. If you decide to be in the study, 
your participation will be limited to a single session which should not exceed 60 minutes. 
You will be invited to GA Tech Mobile Robot Laboratory, where you will first complete an 
initial personality questionnaire and perform two simple tasks. In one, you will be read a 
number of facts, and then take a short multiple-choice test on the facts. In the other, you 
will be asked to solve a simple math problem with pencil and paper. Once done, you will 
be asked to interact with a small humanoid robot and perform similar tasks during the 
interaction. Your interaction with the robot will last 3-5 minutes per task, and will take 
place in a mock-up demolition exhibit setting. With your permission, we will videotape 
your interaction with the robot. After each task, you will be asked to fill out a short 
questionnaire, and another one at the end of the study. These questionnaires will ask 
you about your impressions of the robot, and your demographics. You may stop at any 
time and for any reason.  
 
Risks or Discomforts:  
The risks involved are no greater than those involved in playing a video or a 
role-playing game.  
 
Benefits:  
You are not likely to benefit in any way from joining this study, however, you will 
have an opportunity to interact with a humanoid robot and expand your 
knowledge about robots in general.    
 
Compensation to You:  
For your time and effort, you will be compensated with a $15 Starbucks gift 
card. In case you do not finish the study, the gift card amount will be $5. 
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Confidentiality: 
The following procedures will be followed to keep your personal information 
confidential in this study:  The data collected about you will be kept private to 
the extent allowed by law.  To protect your privacy, your records will be kept 
under a code number rather than by name.  Your records, including videotapes, 
will be kept in locked files and only study staff will be allowed to look at them; 
the videotapes will transcribed and destroyed after the full data analysis is 
compete.  Your name and any other fact that might point to you will not appear 
when results of this study are presented or published; we will ask your written 
permission for use of any videos or still photographs in demos and publications. 
Your privacy will be protected to the extent allowed by law.  To make sure that 
this research is being carried out in the proper way, the Georgia Institute of 
Technology IRB may review study records.  The Office of Human Research 
Protections may also look over study records during required reviews. 
 
Costs to You:  
There are no costs to you, other than your time, for being in this study. 
 
In Case of Injury/Harm: 
If you are injured as a result of being in this study, please contact Principal 
Investigator, Ronald C. Arkin, Ph.D., at telephone (404) 894- 8209.  Neither the 
Principal Investigator nor Georgia Institute of Technology has made provision 
for payment of costs associated with any injury resulting from participation in 
this study. 
 
Participant Rights: 

• Your participation in this study is voluntary. You do not have to be in this 
study if you don't want to be. 

• You have the right to change your mind and leave the study at any time 
without giving any reason and without penalty. 

• Any new information that may make you change your mind about being 
in this study will be given to you. 

• You will be given a copy of this consent form to keep. 
• You do not waive any of your legal rights by signing this consent form. 

 
Conflict of Interest: 
None. 
 
Questions about the Study: 
If you have any questions about the study, you may contact Dr. Ronald C. Arkin 
at telephone (404) 894- 8209 or at arkin@cc.gatech.edu. 
 
Questions about Your Rights as a Research Participant: 
 
If you have any questions about your rights as a research participant, you may 

contact  
 

Ms. Melanie Clark, Georgia Institute of Technology 
Office of Research Compliance, at (404) 894-6942. 
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If you sign below, it means that you have read the information given in this 
consent form, and you would like to be a volunteer in this study. 
 
______________________________________________ 
Participant Name (printed) 
 
 
______________________________________________ ______________ 
Participant Signature     Date  
 
 
______________________________________________ ______________ 
Signature of Person Obtaining Consent  Date 
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APPENDIX Z: MEMORY RETENTION TASK 

Z.1: BASELINE MEMORY TASK 

VIDEO PRESENTATION 

Housing Construction – Baseline Task 

In the following presentation, I will tell you how residential houses are built in the United 
States. Please listen carefully, as there will be a short quiz at the end. All right. You may 
know that in the US there are more than 100 million housing units, and the majority of 
them are "single family dwellings," or houses. One of the amazing things about 
American homes is that the huge majority of them are built using completely 
standardized building practices. One reason for this consistency is a set of uniform 
building codes that apply across the country. Another reason is cost -- the techniques 
used to build homes produce reliable housing quickly at a low cost. If you ever watch 
any house being built, you will find that it roughly goes through 7 general steps, which 
include a number of sub-steps. I will take you through these 7 steps briefly.  

The first step includes site preparation and foundation construction. The site-preparation 
crew typically arrives on the site with a backhoe and/or bulldozer. The crew's job is to 
clear the site of any trees, rocks and debris, level the site if necessary and dig for the 
foundation being built.  Slabs, basements and crawl spaces are the three main 
foundation systems used on houses. The slab is a flat concrete pad poured directly on 
the ground. It takes very little site preparation, very little formwork for the concrete and 
very little labor to create. A house with a basement starts with a hole about 8 feet deep. 
At the bottom of the hole is a concrete slab, and then concrete or cinder-blocks form the 
outer walls of the basement. Finally, a crawl space has several advantages over 
basements and slabs: 

• It gets the house up off the ground (especially important in damp, cold or termite-
prone areas).  

• It is a lot less expensive than a basement and comparable in price to a slab.  

The second step is framing. Framing starts by building the floor; it can either sit directly 
on the foundation, or on “joists”, which are brick posts used to lift the floor higher up. 
Once the floor framing is complete, it is covered with 1/2-inch plywood or OSB (which 
stands for oriented strand board).  Next, the framing crew starts on the walls. Walls are 
assembled on the floor, and then raised into place. Walls are usually made of lumber 
and covered on the outside with an OSB sheathing. Using plywood or OSB as the 
sheathing gives the wall rigidity and strength. All of the exterior walls go up following this 
same basic pattern. In the corners, the top plate on one wall overlaps the top plate of 
the next, and the walls are nailed together to bind the corner. Then the interior walls go 
up, fitting into the top plates of the exterior walls. So, framing is the second step of the 
construction process.  
 
Next comes roofing, doors and windows. In modern construction, trusses are used for 
the roof framing. Trusses are pre-fabricated, triangulated wooden structures used to 
support the roof. Trusses are quite common these days because they have five big 
advantages from the builder's standpoint:  they are strong, less expensive, can be 
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custom-built,  they go up quickly, and spread the weight evenly. The main disadvantage 
is that they don’t allow for attic space. The trusses are fist stacked on top of the walls, 
either by hand or with a crane; then they are tied to the walls with small metal plates. 
Once the trusses are up, the roof is covered in plywood or OSB, which gives the roof 
tremendous rigidity. The windows and doors are usually prefabricated, arrive in one 
shipment and are unloaded from the truck into a stack. Plastic stripping is stapled to the 
inside of all window and door openings, and the windows are placed in each rough 
opening and stapled in place on the outside. Once all the doors and windows are in, the 
roof is covered with shingles and equipped with ridge vents for better circulation.  
 
The fourth step of house construction is siding – this is the last exterior step. The siding 
can come in many different variations, and vinyl is one of the most popular ones. It is 
made from thin, flexible sheets of plastic about 2 millimeters thick, pre-colored and bent 
into shape during manufacturing. The sheets are 12 feet long and about a foot high. You 
start at the bottom and the sheets interlock into each other as you go up. Once the 
siding is in, the house is “dried in” – meaning that it is completely protected from rain.  
 
The next 3 steps are all interior. First, rough plumbing and rough electrical need to go in. 
Both of these are rather complicated, and have a lot of subtleties and nuances. 
Typically, rough plumbing involves installing all sewer lines and vents as well as all water 
supply lines for each fixture: sinks, bathtubs, toilets and washers.  In the crawl space, 
the supply lines all branch off from common pipes running the length of the house. The 
sewer lines all join together and then exit out the back of the house, ready for connection 
to the septic tank. For rough electrical, the electrician first puts all of the boxes for 
electrical outlets, lights and switches; then he runs wires from the fuse box to each box 
and between boxes. A lot of drilling is necessary, both down into the crawl space and up 
into the ceiling. 
 
The next step is the insulation and dry wall. The purpose of insulation is to lower the 
heating and cooling costs for the house by limiting heat transfer through the walls and 
the ceiling. The insulation process starts by installing foam channels in the eaves; these 
channels guarantee that air will be able to flow from the interior vents to the ridge vents. 
Once the insulation is in, drywall goes up. Drywall (also known as "plaster board" and by 
the trade name "Sheetrock") is a half-inch layer of plaster or gypsum sandwiched 
between two thick sheets of paper. It is remarkably solid, and also remarkably heavy. 
The drywallers put up all of the drywall in a day and tape it the next day.  
 
Finally, all that remains are the finishing steps. These include: installing heating and air 
conditioning, finishing electrical and plumbing, installing kitchen and bathroom cabinets 
and counters, wall trim and painting, and, finally, carpeting and tiling the floors. Voila – 
now you have a fully finished house!  
 
Thank you very much for listening to this presentation. Now, please take the short quiz in 
front of you. Let me know when you are done. Once you are done, please fill out a brief 
questionnaire, and call me. I will then take you to the experiment area.   
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BASELINE QUIZ 

Please recall the facts the experimenter recited for you. In your answers, 

please refer to the content specifically presented by the experimenter, not the 

general knowledge you may have of the house construction process. 

1) The main reason(s) for standardized building practices is/are: 

a) Cost 

b) Laws 

c) Cross-country applicability 

d) Safety 

e) a) and c) 

 

2) OSB stands for:  

a) Obfuscated striated board 

b) Oriented strand board 

c) Orange strange ball 

d) Oblique strand board 

 

3) The purpose of using plywood in framing and roofing is :   

a) Aesthetics 

b) Safety 

c) Cost 

d) Strength 

 

4) In roofing, the main disadvantage of trusses is:  

a) They don’t support the weight evenly 

b) They are expensive 

c) They don’t allow for attic space 

d) They are too long in length 

e) They are not strong enough for larger buildings 

 

5) The finishing step includes:  

a) Cabinetry; 

b) Painting; 

c) Mounting dry wall; 

d) Finishing up electrical; 

e) a), b) and d) 

f) a), c) and d) 

g) All of the above      
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Z.2: EXPERIMENTAL MEMORY RETENTION TASK 

PRESENTATION, EXTRAVERTED 

Welcome back, I’ve been waiting for you!  You know, at the end of this presentation you 
will be asked to take a short quiz. So please pay close attention while I tell you all I know 
about the building demolition process. You know, sometimes old buildings are not safe 
anymore, and need to be replaced by new, safer and more reliable structures. When 
such buildings are relatively small, say, 3 to 5 stories high, sledgehammers, excavators 
and wrecking balls are perfectly capable of reducing them to rubble. However, when it’s 
a huge 20-story skyscraper we are talking about, such low-tech means are not very 
effective.  For demolition of large buildings, explosives are used to collapse them, and 
that’s a lot more exciting than sledgehammers!  The basic idea of explosive demolition is 
quite simple: If you remove the support structure of a building at a certain point, the 
section of the building above that point will fall down on the part of the building below 
that point. If this upper section is heavy enough, it will collide with the lower part with 
sufficient force to cause significant damage. Boom! However, the explosives are just the 
trigger for the demolition. It's gravity that brings the building down.  

a. Although the idea may be simple, the process itself is not, and the 
preparations may take weeks, or even months. From the beginning to the 
end, explosive demolition of a building takes 5 steps, and I will take you 
through these exciting steps. The first step is planning the demolition. 
First, the blaster team examines architectural blueprints to determine how 
the building was put together. After that, blaster crew tours the building 
several times to jot notes about the support structure, and then puts 
together a plan of attack, based on prior experience. This includes what 
explosives to use, where to position them in the building, and how to time 
their detonations. Sometimes, they develop approximate 3-D models to 
test the plan in a virtual world. So, planning is the first step of the 
explosive demolition process.  

b. Once the planning is done, the second step is preparing the building. 
During building preparation, the crew first clears out the debris, and then 
takes out non-load bearing walls within the building. After that, the load-
bearing columns are loaded with explosives. And here it is starting to get 
exciting! Dynamite is used for concrete columns, and specialized 
explosive material for steel columns. Once the explosives are loaded, the 
team arranges blasting caps on the columns. These are small amounts of 
explosive material, connected to some sort of fuse.  And that fuse better 
not be too short, right? To precisely control the timing of the individual 
explosions, the blasting caps are configured with simple delay 
mechanisms. Finally, to reduce the amount of flying debris, the crew 
wraps chain-link fence and geotextile fabric around each column, where 
explosives are positioned. So, building preparation is the second step. 

c. Once the building is carefully prepared for explosive demolition, the next, 
very important, step is insuring safety. First local authorities and 
neighboring businesses need to be assured that the demolition won't 
seriously damage nearby structures. Explosions can certainly be scary! 
Next, the last check of the explosives needs to be performed. Nothing 
should be left to chance. And, of course, the main thing is to make sure 
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the building and the area surrounding it are completely clear. For this, 
anyone in the dangerous area needs to be evacuated. Surprisingly, 
implosion enthusiasts, sometimes try to sneak past barriers for a closer 
view of the blast, despite the obvious risks. Can you believe that? So, 
insuring safety is the third step. 

d. Now that everyone is cleared out of the area, the next step is the 
execution, or blasting itself. For this step, the crew retreats to the 
detonator controls, and begins the countdown. The blasters may sound a 
siren at the 10-minute, five-minute and one-minute mark, to let everyone 
know when the building will be coming down. Then the button is pressed, 
and the explosions start. Boom! Boom! Typically, the actual demolition 
only takes a few seconds – but what a sight! To many onlookers, the 
speed of destruction is the most incredible aspect of an explosive 
demolition. How can a building that took months or years to build, 
collapse into a pile of rubble as if it were a sand castle? So, the actual 
explosive demolition is the fourth step of the entire process. 

e. Finally, when all the excitement is over, the last step is surveying the 
results. Following the blast, a cloud of dust billows out around the 
wreckage, enveloping nearby spectators. After the cloud has cleared, the 
blasters survey the scene. At this stage, it is crucial to confirm that all of 
the explosives were detonated and to remove any explosives that did not 
go off. Accidents are certainly not welcome. Most of the time, experienced 
blasters bring buildings down exactly as planned, and everything goes off 
without a hitch. Damage to nearby structures, even ones immediately 
adjacent to the blast site, is usually limited to a few broken windows. So, 
surveying the results is the final step of the explosive demolition process.  

Now you know what happens when large, multi-story buildings need to be demolished. 
Isn’t that exciting? Thank you very much for listening. Now we will see how well you 
remember what I talked about! Please go over there, to my assistant, Lilia, and take a 
quick test. Bye-bye for now. 

PRESENTATION, INTROVERTED 

Welcome back. At the end of this presentation you will take a short quiz. Please pay 
attention while I tell you about the building demolition process. Sometimes old buildings 
are not safe anymore, and need to be replaced by new, safer and more reliable 
structures. When such buildings are relatively small, 3 to 5 stories high, sledgehammers, 
excavators and wrecking balls are capable of reducing them to rubble. However, when 
it’s a 20-story skyscraper, such low-tech means are not very effective. For demolition of 
large buildings, explosives are used to collapse them.  The basic idea of explosive 
demolition is simple: If you remove the support structure of a building at a certain point, 
the section of the building above that point will fall down on the part of the building below 
that point. If this upper section is heavy enough, it will collide with the lower part with 
sufficient force to cause significant damage. The explosives are just the trigger for the 
demolition. It's gravity that brings the building down. 

a. Although the idea may be simple, the process itself is not, and the 
preparations may take months. From the beginning to the end, explosive 
demolition of a building takes 5 steps, and I will take you through these 
steps. The first step is planning the demolition, during which the blaster 
team maps each element of the process ahead of time. First, they 
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examine architectural blueprints to determine how the building was put 
together. Blaster crew tours the building several times to jot notes about 
the support structure, and puts together plan of attack, based on prior 
experience. This includes what explosives to use, where to position them 
in the building, and how to time their detonations. Sometimes, they 
develop 3-D models to test the plan in a virtual world. Planning is the first 
step of the explosive demolition process.  

b. Once the planning is done, the second step is preparing the building. 
During building preparation, the crew first clears out the debris, and takes 
out non-load bearing walls within the building. Then, the load-bearing 
columns are loaded with explosives. Dynamite is used for concrete 
columns, and specialized explosive material for steel columns. Once the 
explosives are loaded, the team arranges blasting caps on the columns. 
These are small amounts of explosive material, connected to some sort of 
fuse. To precisely control the timing of the individual explosions, the 
blasting caps are configured with simple delay mechanisms. Finally, to 
reduce the amount of flying debris, the crew wraps chain-link fence and 
geotextile fabric around each column, where explosives are positioned. 
Building preparation is the second step. 

c. Once the building is prepared for explosive demolition, the next step is 
insuring safety. First, local authorities and neighboring businesses need 
to be assured that the demolition won't seriously damage nearby 
structures. Next, the last check of the explosives needs to be performed. 
Finally, the team makes sure the building and the area surrounding it are 
completely clear. For this, anyone in the dangerous area needs to be 
evacuated. Sometimes, implosion enthusiasts try to go past barriers for a 
closer view of the blast, despite the obvious risks. Insuring safety is the 
third step. 

d. Now that everyone is cleared out of the area, the next step is the 
execution, or blasting itself. For this step, the crew retreats to the 
detonator controls, and begins the countdown. The blasters may sound a 
siren at the 10-minute, five-minute and one-minute mark, to let everyone 
know when the building will be coming down. Then the button is pressed, 
and the explosions start. Typically, the actual demolition only takes a few 
seconds. To many onlookers, the speed of destruction is the most 
incredible aspect of an explosive demolition. How can a building that took 
months and months to build, collapse into a pile of rubble? The actual 
explosive demolition is the fourth step of the process. 

e. Finally, the last step is surveying the results. Following the blast, a cloud 
of dust billows out around the wreckage, covering nearby spectators. 
After the cloud has cleared, the blasters survey the scene. At this stage, it 
is crucial to confirm that all of the explosives were detonated and to 
remove any explosives that did not go off. Most of the time, experienced 
blasters bring buildings down exactly as planned. Damage to nearby 
structures, even ones immediately adjacent to the blast site, is usually 
limited to a few broken windows. Surveying the results is the final step of 
the process.  
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Now you know what happens when large, multi-story buildings need to be demolished. 
Thank you for listening. Now we will see how well you remember what I talked about! 
Please go to my assistant Lilia and take a quick test. Bye-bye. 
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EXPERIMENTAL QUIZ 

Please recall the facts the robot guide recited for you. In your answers, please 

refer to the content specifically presented by the robot, not the general 

knowledge you may have of the demolition process. 

1) The main force in explosive demolition is/are: 

a) The explosives 

b) The gravity 

c) The blaster crews 

 

2) The five steps of explosive demolition include all of these except :   

a) Planning the demolition 

b) Blasting itself 

c) Purchasing explosive materials 

d) Surveying the results 

e) Preparing the building 

 

3) The planning step does not include:  

a) Examining architectural blueprints to determine how the building 

was put together 

b) Touring the building several times to jot notes about the support 

structure 

c) Putting together a  plan of attack, based on prior experience: what 

explosives to use, where to position them in the building, and how 

to time their detonations 

d) Testing the explosives on a smaller structure, to make sure 

everything is as it should be 

 

4) Dynamite is used to:  

a) Demolish steel columns 

b) Demolish non-load bearing walls 

c) Demolish concrete columns 

d) a) and c) 

e) All of the above 

 

5) The typical damage during building demolition usually:  

a) Involves surrounding buildings significantly; 

b) May result in human casualties; 

c) Is limited to a few broken windows in the surrounding area; 

d) Is limited to a few cracks in the surrounding buildings; 

e) c) and d)
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APPENDIX AA: MATH PROBLEM 

AA.1: BASELINE MATH PROBLEM 

 

Please solve the following multiple-choice math problem. Feel free to use this paper as 

scratch paper for your calculations. 

 

 

 

The figure above shows the number of pieces of timber that Expert 

Housing, Inc used per room in building their latest project, the 

“Bentley House”. What is the average (arithmetic mean) of the 

timber pieces the company used per room for the entire “Bentley 

House”?  

a) 11.61 

b) 12.73 

c) 13.00 

d) 14.33 

e) 14.83
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AA.2: EXPERIMENTAL MATH PROBLEM 

 

Please solve the following multiple-choice math problem. Feel free to use this paper as 

scratch paper for your calculations. 

 

 

 

The figure above shows the amount of dynamite, in Kg, that 

Demolition Experts, Inc used per building in their explosive 

demolition projects in 2009. What is the average (arithmetic mean) 

of the amount of dynamite the company used per building for the 

entire year of 2009?  

a) 11.66 

b) 12.67 

c) 13.00 

d) 14.33 

e) 15.33 
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ROBOT’S INSTRUCTIONS: EXTRAVERTED 

Hello again, I have been waiting for you! Now, you will have a first-hand experience with 
the types of task, members of demolition crews might face. Please follow my instructions 
carefully. For this task, you have been given a math problem on a piece of paper. Please 
read it over, and solve it using the paper and pencil you were given. Please try to be as 
precise as possible. I am sure you will enjoy it. Tell my assistant, Lilia, and not me, when 
you are all done. Good luck! You can start now. 
 
So, how is it going? 
 
You know, this exhibit is kind of small? 
 
By the way, have you noticed that high voltage sign? 
 
I bet the weather is pretty good today! 
 
I am afraid the time allotted to this task is up. Please take your answers to my assistant, 
Lilia, and thank you for your participation! 
 

ROBOT’S INSTRUCTIONS: INTROVERTED  

Hello again. Now, you will have a first-hand experience with the types of task, members 
of demolition crews might face. Please follow my instructions carefully. For this task, you 
have been given a math problem. Please read it over, and solve it using the paper and 
pencil you were given. Please try to be as precise as possible.  Tell my assistant Lilia, 
and not me, when you are done. You can start now. 
 
How is it going? 
 
The time allotted to this task is up. Please take your answers to my assistant, Lilia. 
Thank you. 
 

 

Small talk 

Small talk 
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APPENDIX BB: ROBOT’S GREETING FOR EXTRAVERSION EXPERIMENT 

EXTRAVERTED GREETING: 

Hello, Visitor! Thank you very much for coming today. I hope you have a lot of fun during 
this little tour. My name is Nao, and I am a humanoid robot manufactured by a French 
company named Aldebaran Robotics. I was brought here all the way from France, about 
3 months ago.  Today, I will be your guide on this exhibit. This exhibit was designed to 
show visitors, like you, what goes on during building demolition. While you are here, I will 
tell you how, blaster, crews, demolish buildings with explosives, and you will also have a 
chance to have first-hand experience in what kind of planning goes into demolition 
process.  All right, now please take a couple of minutes to look around the exhibit. When 
you are done, let the experimenter, Lilia, know, and then come back to see me!  Then 
we will be ready to begin! 
 

INTROVERTED GREETING: 

Hello, Visitor! Thank you for coming today. My name is Nao, and I am a humanoid robot 
manufactured by a French company named Aldebaran Robotics. I was brought here 
from France, 3 months ago.  Today, I will be your guide on this exhibit. This exhibit was 
designed to show visitors what goes on during building demolition.  I will tell you how, 
blaster, crews, demolish buildings with explosives, and you will also have first-hand 
experience in what kind of planning goes into demolition process.  Now please take a 
couple of minutes to look around. When you are done, let the experimenter, Lilia, know, 
and then come back here. We will be ready to begin.  
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APPENDIX CC: POST-QUIZ QUESTIONNAIRE 
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APPENDIX DD: POST-MATH QUESIONNAIRE 
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APPENDIX EE: NASA TLX SCALE 

 

 



APPENDIX EE       

 

 424

RATING SCALE DEFINITIONS 

 
Title Endpoints Descriptions 

MENTAL 
DEMAND 

Low/High How much mental and perceptual activity 
was required (e.g., thinking, deciding, 
calculating, remembering, looking, searching, 
etc.)? Was the task easy or demanding, 
simple or complex, exacting or forgiving? 

PHYSICAL 
DEMAND 

Low/High How much physical activity was required 
(e.g., pushing, pulling, turning, controlling, 
activating, etc.)? Was the task easy or 
demanding, slow or brisk, slack or strenuous, 
restful or laborious? 

TEMPORAL 
DEMAND 

Low/High How much time pressure did you feel due to 
the rate or pace at which the tasks or the 
task elements occurred? Was the pace slow 
and leisurely or rapid and frantic? 

PERFORMANCE Good/Poor How successful do you think you were in 
accomplishing the goals of the task set by 
the experimenter (or yourself)? How satisfied 
were you with your performance in 
accomplishing these tasks? 

EFFORT Low/High How hard did you have to work (mentally and 
physically) to accomplish your level of 
performance? 

FRUSTRATION 
LEVEL 

Low/High How insecure, discouraged, irritated, 
stressed and annoyed vs. secure, gratified, 
content, relaxed, and complacent did you 
feel during the task? 
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SOURCE-OF-WORKLOAD COMPARISON CARDS 

These squares were cut into cards, each containing two categories from the TLX 

scale, and the participants were asked to circle the category they found more 

relevant/demanding during the performance of the task, for each of the cards. The score 

was calculated by counting the number of times each category was circled, and then 

used as a weight for that category to determine the overall workload score. 
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APPENDIX FF: ROBOT PERSONALITY QUESTIONNAIRE, TRAIT 
EXPERIMENT 

How Accurately Can You Describe The Robot?  

Please use this list of common traits to describe the robot as accurately as possible. 
Describe the robot based on your observations during the tasks you performed. Before 
each trait, please write a number indicating how accurately that trait describes the robot, 
using the following rating scale: 

Extremely Inaccurate ……………… 1 

Very Inaccurate ……………………. 2 

Moderately Inaccurate …………….. 3 

Slightly Inaccurate ………………….4 

Neither Inaccurate or Accurate ……. 5 

Slightly Accurate ………………….. 6 

Moderately Accurate ………………. 7 

Very Accurate ……………………... 8 

Extremely Accurate ………………...9 

 ____ Bashful  ____ Energetic ____ Moody  ____ Systematic 

____ Bold  ____ Envious  ____ Organized ____ Talkative 

____ Careless  ____ Extraverted ____ Philosophical ____ Temperamental 

____ Cold  ____ Fretful  ____ Practical  ____ Touchy 

____ Complex  ____ Harsh  ____ Quiet  ____ Uncreative 

____ Cooperative ____ Imaginative ____ Relaxed  ____ Unenvious 

____ Creative  ____ Inefficient ____ Rude  ____ Unintellectual 

____ Deep  ____ Intellectual ____ Shy  ____ Unsympathetic 

____ Disorganized ____ Jealous  ____ Sloppy  ____ Warm 

____ Efficient  ____ Kind  ____ Sympathetic ____ Withdrawn 
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Bashful: socially shy or timid; diffident; self-conscious. 
Bold: fearless before danger; intrepid; impudent; presumptuous. 
Careless: Marked by lack of attention, consideration, forethought or thoroughness; not 
careful.  
Cold: Marked by a lack of the warmth of normal human emotion, friendliness, or 
compassion. 
Complex: Hard to separate, analyze, or solve; complicated. 
Cooperative: marked by a willingness and ability to work with others. 
Creative: Characterized by originality and expressiveness; imaginative. 
Deep: Of penetrating intellect; wise. 
Disorganized: To be into utter disorder; disarrange. 
Efficient: Exhibiting a high ratio of output to input; effective. 
Energetic: Operating with or marked by vigor or effect; vigorous. 
Envious: Painfully desirous of another's advantages; jealous; covetous. 
Extraverted: a gregarious and unreserved person; outgoing. 
Fretful: Marked by worry and distress; inclined to be vexed or troubled. 
Harsh: Unpleasantly stern; severe.  
Imaginative: Created by, indicative of, or characterized by imagination; having no truth; 
false. 
Inefficient: Wasteful of time, energy, or materials; lacking the ability or skill to perform 
effectively; incompetent: 
Intellectual: Having or showing intellect, especially to a high degree; intelligent 
Jealous: Fearful or wary of being supplanted; apprehensive of losing affection or 
position; resentful or bitter in rivalry; envious. 
Kind: Of a friendly, generous, or warm-hearted nature; considerate. 
Moody: Subject to depression or moods; expressive of a mood; temperamental.  
Organized: Methodical and efficient in arrangement or function; orderly. 
Philosophical: Characteristic of a philosopher, as in equanimity, enlightenment, and 
wisdom.  
Practical: Concerned with actual use or practice; useful. 
Quiet:  Restrained in style; understated; making little or no noise. 
Relaxed: To be less restrained or tense; easy and informal in manner. 
Rude: Ill-mannered; discourteous; uncouth.  
Shy: Marked by reserve or diffidence; reserved; wary. 
Sloppy: Marked by a lack of neatness or order; untidy. 
Sympathetic: Expressing or feeling compassion or friendly fellow feelings. 
Systematic: Characterized by order and planning; orderly. 
Talkative: Full of trivial conversation; loquacious; garrulous; voluble. 
Temperamental: Marked by excessive sensitivity and impulsive changes of mood.  
Touchy: marked by readiness to take offense on slight provocation; sensitive.  
Uncreative: opposite of creative (see above) 
Unenvious: opposite of envious (see above) 
Unintellectual: opposite of intellectual (see above) 
Unsympathetic: opposite of sympathetic (see above) 
Warm: Marked by or revealing friendliness or sincerity; loving; kind. 
Withdrawn: Not friendly or sociable; aloof; detached; emotionally unresponsive. 
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APPENDIX GG: POST-QUESTIONNAIRE FOR TRAIT EXPERIMENT 
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APPENDIX HH: DEMOGRAPHICS QUESTIONNAIRE FOR TRAIT 
EXPERIMENT 
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APPENDIX II: RELIABILITY AND DESCRIPTIVE STATISTICS FOR SEMANTIC 
DIFFERENTIAL SCALES (SCALE AND SUBSCALE LEVEL) 

MOOD EXPERIMENT SCALES 

Table 63: Reliability and Descriptive Statistics for Understandability 

Scale: Understandability 

Mean Variance Std. Deviation N of Items 

18.3256 10.844 3.29300 5 

Item Statistics 

 Mean Std. Deviation N of cases 

Clear 3.7442 1.07111 43 

Easy to Read 3.7907 .94006 43 

Consistent 4.0233 1.03483 43 

Easy to Understand 3.5116 1.00882 43 

Expressive 3.2558 1.02569 43 

Cronbach’s Alpha: 0.654 

 

Table 64: Reliability and Descriptive Statistics for Persuasiveness 

Scale: Persuasiveness 

Mean Variance Std. Deviation N of Items 

19.8837 11.629 3.41013 5 

Item Statistics 

 Mean Std. Deviation N of cases 

Compelling 3.7907 .86073 43 

Appropriate 4.1163 .87856 43 

Persuasive 3.6512 1.11021 43 

Sincere 4.2558 .78961 43 

Convincing 4.0698 .91014 43 

Cronbach’s Alpha: 0.799 
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Table 65: Reliability and Descriptive Statistics for Naturalness 

Scale: Naturalness (Mood and Emotion) 

Mean Variance Std. Deviation N of Items 

15.5930 12.479 3.53260 5 

Item Statistics 

 Mean Std. Deviation N of cases 

Natural 3.1860 .87982 43 

Humanlike 2.4767 .89279 43 

Conscious 3.6279 .97647 43 

Lifelike 2.6977 .98886 43 

Interactive 3.6047 1.09413 43 

Cronbach’s Alpha: 0.779 

 

EXTRAVERSION EXPERIMENT SCALES 

Table 66: Reliability and Descriptive Statistics for Quiz Appropriateness 

Scale: Quiz Appropriateness 

Mean Variance Std. Deviation N of Items 

19.4667 18.947 4.35283 5 

Item Statistics 

 Mean Std. Deviation N of cases 

Appropriate (quiz) 4.0333 .96431 30 

Right for Task (quiz) 3.7667 1.00630 30 

Well-suited (quiz) 3.8667 .97320 30 

Proper (quiz) 4.0333 .96431 30 

Matched to Task (quiz) 3.7667 1.10433 30 

Cronbach’s Alpha: 0.918 
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Table 67: Reliability and Descriptive Statistics for Math Appropriateness 

 

 

Table 68: Reliability and Descriptive Statistics for Welcome 

Scale: Welcome 

Mean Variance Std. Deviation N of Items 

19.2667 14.961 3.86793 5 

Item Statistics 

 Mean Std. Deviation N of cases 

Welcome 4.0333 .88992 30 

Desirable 3.7667 .89763 30 

Liked 3.7667 .85836 30 

Encouraged 3.9667 .92786 30 

Wanted 3.7333 .90719 30 

Cronbach’s Alpha: 0.914 

 

 

 

 

 

 

 

 

Scale: Math Appropriateness 

Mean Variance Std. Deviation N of Items 

16.8571 36.497 6.04130 5 

Item Statistics 

 Mean Std. Deviation N of cases 

Appropriate (math) 3.5357 1.31887 28 

Right for Task (math) 3.3929 1.28638 28 

Well-suited (math) 3.3571 1.25357 28 

Proper (math) 3.4643 1.34666 28 

Matched to Task (math) 3.1071 1.22744 28 

Cronbach’s Alpha: 0.966 
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Table 69: Reliability and Descriptive Statistics for Appeal 

Scale: Appeal 

Mean Variance Std. Deviation N of Items 

16.4333 16.806 4.09948 5 

Item Statistics 

 Mean Std. Deviation N 

Interesting 3.8667 1.19578 30 

Fun 3.0333 .96431 30 

Useful 3.5667 1.13512 30 

Exciting 3.0000 .90972 30 

Entertaining 2.9667 .96431 30 

Cronbach’s Alpha: 0.848 

 

Table 70: Reliability and Descriptive Statistics for Unobtrusiveness 

Scale: Unobtrusiveness 

Mean Variance Std. Deviation N of Items 

17.3571 29.201 5.40380 5 

Item Statistics 

 Mean Std. Deviation N of cases 

Easy to Tune Out 3.5357 1.45251 28 

Minding its Own Business 3.2500 1.26564 28 

Inoffensive 3.5000 1.17063 28 

Undemanding 3.6786 1.12393 28 

Quiet 3.3929 1.10014 28 

Cronbach’s Alpha: 0.927 
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Table 71: Reliability and Descriptive Statistics for Ease 

Scale: Ease 

Mean Variance Std. Deviation N of Items 

23.1786 6.819 2.61128 5 

Item Statistics 

 Mean Std. Deviation N of cases 

Easy 4.6429 .62148 28 

Simple 4.7500 .51819 28 

Undemanding 4.6786 .61183 28 

Short 4.4286 .83571 28 

Basic 4.6786 .61183 28 

Cronbach’s Alpha: 0.865 

 

 

Table 72: Reliability and Descriptive Statistics for Naturalness (Extraversion Experiment) 

Scale: Naturalness (Traits) 

Mean Variance Std. Deviation N of Items 

15.1379 14.766 3.84266 5 

Item Statistics 

 Mean Std. Deviation N of cases 

Natural 3.1379 1.15648 29 

Humanlike 2.4483 1.02072 29 

Conscious 3.0345 .98135 29 

Lifelike 2.6897 .89056 29 

Animate 3.8276 .92848 29 

Cronbach’s Alpha: 0.827 
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