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ABSTRACT  

This paper describes a usability study designed to assess ease of 
use, user satisfaction, and performance of a mobile robot mission 
specification system. The software under consideration, 
MissionLab, allows users to specify a robot mission as well as 
compile it, execute it, and control the robot in real-time. In this 
work, a new automated mission repair mechanism that aids users 
in correcting faulty missions was added to the system. This 
mechanism was compared to an older version in order to better 
inform the development process, and set a direction for future 
improvements in usability. 

Categories and Subject Descriptors 

 H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – evaluation/methodology, graphical user 

interfaces.  

General Terms 
Human Factors. 

Keywords 
Human-robot interaction, usability study, mission specification. 

1. INTRODUCTION 
In military and other critical applications, it is vital for users with 
little or no robotic background to quickly and accurately create 
and execute mobile robot missions, and the importance of 
empirically evaluating the interfaces that support this task cannot 
be underestimated [1, 2]. For example, researchers have 
conducted usability studies in critical robotic applications such as 
in the area of Search and Rescue [3, 4] and on teleoperation in 
nuclear environments [5-7], dealing with run-time interaction 
with the robots.  

Throughout the development of MissionLab, which is a robot 
mission specification system designed to support planning and 
execution of robot missions using a graphical user interface 
(GUI), we have been also conducting a series of human-subject 
studies in order to both evaluate the current state of the software 
and to inform its further design and development [8-11]. 
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Over the past few years, the user interface of MissionLab has 
steadily progressed from the lower level manual mission 
specification system via Finite State Acceptor (FSA) [12] to 
higher-level case-based reasoning mission retrieval system. The 
previous usability study [10] compared the lower-level approach 
with the higher-level one, and it was found that the automated 
mission retrieval version of the user interface reduced the time 
required to plan a robot mission and increased the accuracy of the 
resulting mission plans for complex missions, as compared to the 
earlier, lower-level interface. Given the encouraging results, we 
continued abstracting low-level details, moving from the mission 
creation to repair of faulty missions.  

In our latest usability study we assessed the newest addition to 
MissionLab, a feature that assists users in repairing faulty 
missions by abstracting low-level details and making automated 
suggestions based on user input. The interface was evaluated 
according to its effectiveness, efficiency and user satisfaction – 
measures suggested for human-robot interaction research [4]. The 
effectiveness was measured in terms of the accuracy of competed 
missions and the number of missions completed successfully, 
efficiency in terms of the time taken to create and modify each 
mission, and user satisfaction was divided into user satisfaction 
proper and ease of use.   

An overview of MissionLab including its new Mission Repair 
feature is presented in the next section. The description of the 
latest usability study conducted on the Mission Repair feature is 
described in Section 2. Finally, conclusions and future work are 
presented in Section 3. 

2. MISSIONLAB 
MissionLab [13] is a software package that allows a user to create 
an autonomous mobile robot mission (sequence of tasks) as well 
as compile it, execute it, and control the robot during the run-
time. Previously [10], we introduced the high-level user 
assistance interface in the MissionLab that was developed to ease 
the mission specification process by retrieving previously saved 
successful missions. The Case-Based Reasoning (CBR) Wizard 
described here is an extension of the interface. The most 
prominent improvement over the previous version is the addition 
of a new feature that could help users repair faulty missions. In 
this section, we first review the basics of the CBR Wizard, and 
then describe the repair capability. 

2.1 CBR Wizard Basics 
The diagram in Figure 1 illustrates a CBR cycle that was adapted 
from [14] for robotic mission specification. In the pre-mission 
phase, the CBR Wizard first retrieves ballpark solutions (cases) 
from its memory that match the requirements and preferences 
(constraints) specified by the user. Here, the constraints may be a 
type of tasks to be performed (Hostage Monitoring, Explosive 

 



Ordnance Disposal, etc.) or whether the mission should be 
conducted indoor or outdoor. Once the ballpark solutions are 
retrieved, the CBR Wizard then adapts them to fit the current 
situation by, for example, matching the number of robots or 
adjusting the coordinates of target points. 

In terms of MissionLab system, the CBR Wizard involves three 
UNIX processes during the pre-mission phase: namely, mlab, 
CBRServer, and CfgEdit (Figure 2). mlab is where constraints of a 
new mission are specified by the user using its map-based 
interface. CBRServer serves as database for mission templates 
(cases) as well as a planner that customizes a mission for the 
current specification. CfgEdit is a user interface that can display 
the mission graphically and allows the user to modify it manually 
if necessary. 
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Figure 1: CBR Cycle for Robotic Mission Specification 
(adapted from [14]) 

 

 
Figure 2 Three processes of the CBR Wizard in MissionLab: namely, 
mlab, CBRServer, and CfgEdit. 

The diagram in Figure 3 depicts three modules inside CBRServer 
involved in the pre-mission phase. (The shaded area is the process 
of CBRServer.) After the constraints/preferences are specified by 

the user, they are sent down to Memory Manager where a number 
of mission templates are stored. Here, the mission templates are 
abstract representations of missions that are saved previously, 
whether by experts or users. Mission Manager utilizes standard 
decision trees [15] to manage the storage of the mission templates 
(cases). The constraints specified by the user are thus used as 
indexes to retrieve the mission templates from the trees. Once 
relevant mission templates are retrieved, Planner assembles them 
and customizes their parameters to make them fit with the current 
specification of the mission. At this point, the missions are still 
coded with abstract representations; Domain Manager then 
translates those into the language (Configuration Description 
Language [13]) that CfgEdit operates with.  
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Figure 3: Pre-Mission Phase (Shaded area represents CBRServer) 

Note that depending on the constraints and the number of relevant 
cases stored in the memory, multiple missions may be suggested 
by CBRServer. To help users decide what missions to load into 
CfgEdit, the CBR Wizard provides a ranking associated with each 
loadable mission. As shown in Figure 4, the ranking is quantified 
with five stars. If the retrieved mission is ranked with five stars, it 
is considered to be best suited for the desired mission. The 
ranking may be degraded if: a) The mission does not exactly 
match the constraints specified by the user; and/or b) executing 
this mission produced an unsuccessful result, which was marked 
by the CBR Wizard based on the user’s feedback in the previous 
cycle. 

 
Figure 4: Suitability rating of a mission (3 out of 5 
stars) 



2.2 Repairing Faulty Missions 
The subject of this usability study is a newly integrated feature of 
the CBR Wizard that allows the user to repair faulty missions 
during the post-execution phase. Here, faulty mission means that 
execution of this mission did not end with successful results. The 
CBR Wizard attempts to repair faulty missions with two steps: 1) 
Identifying the offending part of the faulty mission; and 2) 
retrieving and applying a repair rule to fix the offending part of 
the mission. It should be noted, however, that different users may 
have different intentions upon specifying a mission. Determining 
whether a mission is successful or unsuccessful is largely up to 
the user, and fully automating this process can be formidable. 
Hence, the CBR Wizard attempts to accomplish the task by 
engaging in a dialogue with the user. 

First, identification of the offending part in a faulty mission is 
accomplished via the Playback Interface of mlab (Figure 5). After 
loading a log file that was recorded during the execution of the 
mission, the user can play back the mission by using the interface 
similar to that of a VCR or CD player; hence, the user can observe 
the trajectory of the robot during the mission. The user is then 
asked by the CBR Wizard to stop the robot at the place where the 
mission was considered to have failed. By parsing the logged 
information for that instance of the mission, the CBR Wizard 
identifies the state (i.e., offending part of the mission) that robot 
was in when the failure occurred. Once the CBR Wizard identifies 
the offending part of the mission, the mission is sent back to 
Planner of CBRServer for its repair. 

 
Figure 5: Playback Interface 

The next step is to retrieve a repair plan that is a set of rules to fix 
the offending part of the faulty mission. As shown in Figure 6, the 
exact infrastructure used in the mission retrieval can be also 
utilized for this process. Before retrieving the repair plan, the 
CBR Wizard first asks the user a few predefined questions that 
can categorize the nature of the failure. The answers to the 
questions are then itemized as a set of constraints to retrieve the 
repair plan that is stored within the decision trees (different from 
the ones for the mission templates) in Memory Manager. 
Currently, the CBR Wizard supports three types of repair plans: 
1) parametric adjustment; 2) structural modification; and 3) 
functional modification. More specifically, the parametric 
adjustment is designed to repair a faulty waypoint-following 
mission (e.g., reconnaissance mission) when at least one waypoint 
was placed incorrectly. The repair plan attempts to fix the mission 
by adjusting the coordinates of the waypoint. The structural 
modification is for the case when a robot failed to take some 
necessary action during the execution. It attempts to resolve the 
problem by inserting a new state that commands the robot to take 
the necessary action. The functional modification is designed to 
help the case when a robot performed a wrong action at some 
point during the execution. The repair plan for this case is to 
replace the offending state of the mission with a correct one. 
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Figure 6: Repairing of a faulty mission 

Once an appropriate repair rule was found, Planner applies it to 
the offending part of the mission, and Domain Manager translates 
it into CDL, so that CfgEdit can load the newly fixed mission. 

3. USABILITY STUDY 
 This usability study was designed to assess the feasibility of 
the new Mission Repair feature of the CBR Wizard described 
above. In this section, both preparation of the usability study, and 
the results of the study are presented. 

3.1 Experiment Design 
The study followed a mixed 2x3 design: the factor in the between-
subject condition is the presence of the Mission Repair 
mechanism, and the factor in the within-subject condition is the 
nature of the modification task. The between-subject factor will 
be referred to as “Repair Method” in the remainder of the paper, 
and the within-subject factor will be referred to as “Task”. The 
participants were divided into two groups (15 subjects each), 
according to the Repair Method. For the first group (No-Repair 
Condition, Group A), the experiments were carried out using the 
CBR Wizard without the Mission Repair feature (control 
condition). The second group (Repair Condition, Group B) used 
the Mission Repair feature.  

The following three modification task types were tested in the 
within-subject design: 1) parametric adjustment; 2) structural 
modification; 3) functional modification. In the parametric 
adjustment test (referred to as “Waypoint Navigation”, or WP, 
mission further), the users were presented with a task requiring 
them to reroute a waypoint (a.k.a., adjust waypoint task 
parameters) in order to direct the robot on an appropriate path. In 
particular, enemy robots were introduced during run-time which 
prevented the robot from following the initially specified path. 
The user had to modify the existing path so that the robot would 
reach its final destination without being exposed to enemy robots.  
In the structural modification test (referred to as “Biohazard”, or 
BH, mission further) the users were presented with a task that 
would require them to find and add a missing state to the mission 
plan (a.k.a., modify the structure of the FSA). For this test, the 
users were instructed to guide a single robot into a potentially 
contaminated building and perform a biohazard survey task. 
Finally, in the functional modification test (referred to as 
“Hostage Monitoring”, or HM, mission further) the users were 
presented with a task that required them to find an incorrectly 
used task and replace it with the correct one (a.k.a., modify the 
function of one of the tasks). For this test, the users were 
instructed to guide a single robot into a hostage monitoring site 



and perform a hostage monitoring task. In all the tests in the 
Repair condition the users were instructed to employ the Mission 
Repair feature of the software to modify the faulty missions; 
however, the functionality of modifying the FSA manually was 
available to them as well. 

The within-subject tests were designed in order to generalize the 
results of the study across a number of tasks, as well as to identify 
any differences between them. The within-subject runs were 
counter-balanced to minimize practice effects. One-way ANOVA 
was performed on all of the measures by the order the tests were 
presented to participants, and did not yield any significant results, 
suggesting that the test order was counterbalanced successfully. 

3.2 Hypotheses 
The following form the hypotheses of expected usability 
improvements, and were used to guide the experiment to measure 
quantitatively just how much, if at all, the Mission Repair feature 
improves the usability of MissionLab. 

Hypothesis 1: The CBR Wizard with Mission Repair feature 
reduces the time required to create a suitable mission plan, 
including the necessary modifications to failed plans. 

Hypothesis 2: The CBR Wizard with Mission Repair feature 

increases the accuracy of mission plans created by users. 

Hypothesis 3: Users find it easier to create and modify a mission 
plan using the CBR Wizard with Mission Repair feature than 

without such a feature. 

Hypothesis 4: The level of user satisfaction with the Mission 
Repair feature is higher than without it. 

We were also hypothesizing that these statements will hold true 
for each type of modification task, and that there will be no 
differences in the within-subject factor. 

3.3 Study Setup and Procedure 
The experimental equipment was set up in a quiet small office. A 
Dell Precision 610 desktop computer with a separate monitor, 
keyboard, and three-button mouse was used by the subjects. A 
version of MissionLab, capable of both enabling and disabling the 
Mission Repair feature, was installed on the computer. In order to 
ease the data analysis, all the subject logs were stored 
systematically in separate directories, indexed by the date, subject 
number, and type of tests; and the computer screen output during 
the tests was captured on videotape. 

Each subject participated in a single session lasting up to five 
hours. They were first given four computer-based tutorials 
explaining how to create and repair simulated robot missions 
using the MissionLab software on the Dell desktop; the last of the 
tutorials was hands-off, where they were given an opportunity to 
create a mission without the administrators’ help, and then were 
explained the correct solution. After a mandatory 10-minute break 
the subjects were given three tests in which they were asked to 
create and modify (if needed) simulated robot missions (the order 
was counterbalanced). There were 5-10 minute breaks after the 
2nd and 4th tutorials, as well as mandatory 10-minute breaks 
between each of the tests. Each test was over either when a 
successful mission was produced (the users were presented with 
the success criteria for each test) or at the end of 45 minutes. The 
45-minute period was based on the average time required by the 
subjects creating similar missions in the previous TMR usability 
study [8]. 

In addition to the tutorials and the tests, the subjects were also 
asked to fill out two questionnaires: demographics and post. 
Demographics questionnaire was designed to acquire the 
background information of the subject, to include gender, and 
technical, military, and computer experience; it was filled out at 
the beginning of the session. Post questionnaire was designed to 
obtain opinions on how easy it was to create and modify mission 
plans using MissionLab as well as to elicit the level of user 
satisfaction. This questionnaire was given after all the tests were 
completed.  

3.4 Measures 
Total actual duration of each test was used as a measure to 
evaluate Hypothesis 1. To more accurately approximate the time 
the users were engaged in the actual mission creation and 
modification activity, the total actual duration was calculated by 
subtracting compilation and simulation time based on the time 
stamps of various keyboard and mouse events recorded during the 
tests.  

The accuracy of successful mission plans created by the subjects 
(after modification) served as a measure to evaluate Hypothesis 2. 
The criteria of “success” were based on various mission-specific 
aspects (e.g., “the robot reached the designated area”, “the robot 
found the biohazard”, etc.), clearly described in the instructions 
for each test. The accuracy was measured as a percentage of the 
specific aspects completed per mission; both Hostage Monitoring 
and Biohazard mission included 7 such aspects, and Waypoint 
Navigation mission had 3 aspects. As a significant portion of 
missions was competed successfully (a.k.a., the accuracy equalled 
100%), we also computed the percentage of missions completed 
successfully per test per between-subject condition, referred to 
later as “Performance”.  

In order to analyse Hypotheses 3 and 4, the subjects were asked to 
fill out the post-questionnaire. There were 10 questions total, 
equally divided between those assessing ease of use and 
satisfaction. Five out of 10 questions assessed the Ease of Use, 
and were as follows:  

1. It was easy to create a robot mission using 
MissionLab;  

2. If I wasn’t pleased with the outcome, it was easy to 
modify the mission;  

3. Learning to use MissionLab was easy;  

4. The MissionLab interface was easy to follow;  

5. Overall, I found it easy to use MissionLab  

The questions designed to assess user Satisfaction were as 
follows:  

6. Missionlab is a satisfactory tool for creating robot 
missions;  

7. Missionlab is a satisfactory tool to repair faulty 
missions;  

8. I was satisfied with the level of assistance that 
MissionLab provided;  

9. The final mission was completed to my satisfaction;  

10. Overall, I was pleased with my MissionLab 
experience.  

All of the questions, with the exception of questions 5 and 10 
(used to assess the overall ease of use and satisfaction), were 



subdivided into four subparts: one per each of the tests, and 
overall. Each of the subquestions was presented as a 5-point 
likert-type scale, with “Strongly Agree” anchored at 1, and 
“Strongly Disagree” anchored at 5. Figure 7 shows an example of 
such a question with subquestions: 

It was easy to create a robot mission using MissionLab.  
  
a) Waypoints Navigation scenario: 

__________________________________________________________  
Strongly Agree      Agree       Neutral          Disagree      Strongly Disagree 

 
b) Biohazard scenario: 

___________________________________________________________  
Strongly Agree     Agree        Neutral           Disagree       Strongly Disagree 
 
c) Hostage Monitoring scenario: 

____________________________________________________________  
Strongly Agree     Agree        Neutral           Disagree        Strongly Disagree 
 

d) Overall: 

____________________________________________________________  
Strongly Agree     Agree        Neutral           Disagree       Strongly Disagree 

 

Figure 7: Example Question of the Post-Questionnaire 

3.5 Study Participants 
A total of 30 subjects participated in the study. The subjects 
varied widely according to their demographics:  

• age: from 19 to over 50 years old;  

• gender: 14 females and 16 males, distributed equally 
among the two between-subject conditions;  

• background: a variety of educational backgrounds, 
including both technical (31%) and non-technical fields 
(69%);   

• military experience: 21% of the participants had limited 
military experience; 

• occupation: less than half of the participants were 
undergraduate or graduate students, out of those only three 
were Computer Science or Computer and Electrical 
Engineering majors; none of the subjects was a member of 
our or any other robotics laboratory; 

• computer experience: two of the subjects had advanced 
programming experience, and 10 others – some 
programming or network administration experience; all 
others described themselves as users. 

Each participant was compensated for his/her participation in the 
study. The data of one participant from the Repair condition were 
excluded from the analysis due to the subject’s disregarding the 
administrator’s instructions and exhibiting a very low 
(insufficient) level of computer experience.  

3.6 Analysis and Results 
The measure of duration, accuracy and the test-specific answers to 
the Ease-of-Use and User-Satisfaction questions were analyzed by 
means of Repeated Measures ANOVA; and the overall answers 
were analyzed by means of One-Way ANOVA tests. 3 out of 90 
tests conducted were not completed due to the lack of certain 
functionality required by the users, and the measures of accuracy 
and duration for these were treated as missing data. 

3.6.1 Hypothesis 1 
No significant effects were found for the measure of Duration: the 
interaction effect of Repair Method and Task yielded F=.641, 
p<.531; the main effect of Repair Method and Task yielded 
F=1.144, p<.295, and F=1.56, p<.221, respectively. Although our 
hypothesis that the presence of the Mission Repair feature will 
reduce the time required to produce a successful mission was not 
proven, the presence of this feature did not produce a negative 
effect on the duration. 

3.6.2 Hypothesis 2 
For accuracy, there was no significant interaction effect of Task 
and Repair Method (F= .727, p<.489), nor there was a main effect 
of Task (F=.961, p<.390). However, a main effect of Repair 
Method was observed (MgroupA = .820, MgroupB = .968, 

F=4.936, p<.036), suggesting that Group B (with the Repair 
feature) produced more accurate missions than Group A. The 
standard error/means plot of accuracy by Repair Method and Task 
is presented in Figure 8.  

However, the percentage of missions completed successfully 
(100% accuracy) was high, and the normality assumption was 
somewhat violated. To provide additional information, we also 
calculated the percentage of successfully completed missions for 
each factor; the results of this Performance measure are presented 
in Figure 9 graphically. Thus, the percentage of missions 
completed successfully was consistently higher for Group B than 
for Group A, suggesting a positive effect of the Mission Repair 
feature. 
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Figure 8: Standard Error/Means Plot of Accuracy for Repair 

Method and Task. Main Effect of Repair Method was observed, 
suggesting that Group B produced more accurate missions. 
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Figure 9: Percentage of missions completed successfully 
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3.6.3 Hypothesis 3 
As mentioned earlier, the Ease of Use measure was assessed by 
means of five questions. The analysis of two of the questions 
produced statistically significant results. There was a significant 
interaction effect for the question regarding Ease of Mission 
Modification (F=4.507, p<.015), suggesting that for some test(s) 
the effect of the Repair Method was reversed. We analysed the 
simple main effects of the Repair Method, and found that for 
Hostage Monitoring scenario the Ease of Mission Modification 
was higher in Group B than in Group A (MgroupA = 2.2, 

MgroupB = 1.4, F=4.505, p<.043; the lower number for the mean 

indicates greater perceived ease, as “Strongly Agree” was 
anchored at 1). Figure 10 presents this result visually. 

The participants also found that the MissionLab with the Mission 
Repair feature was easier to learn – One-Way ANOVA on the 
Overall Ease of Learning yielded a statistically significant result 
(MgroupA = 1.67, MgroupB = 1.21, F=5.203, p<.031). Figure 11 

depicts this result. 

Our hypothesis that the Mission Repair Feature will make 
MissionLab easier to use was partially confirmed: in particular, 
the Mission Repair Feature made the software easier to learn, and, 
for one of the modification tasks (functional modification task in 
Hostage Monitoring Mission), easier to modify the mission. 
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Figure 10: Standard Error/Means Plot of Ease of Mission 
Modification for Repair Method and Task. Simple Main Effect of 

Repair Method was observed for Hostage Monitoring Task – it 
was easier to modify the mission for Group B. 
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Figure 11: Standard Error/Means Plot of Overall Ease of 

Learning for Repair Method. The participants in Group B found 
it easier to learn to use the MissionLab. 

3.6.4 Hypothesis 4 
Our hypothesis that the presence of the Evaluation feature will 
increase User Satisfaction with the software did not receive 

confirmation: no statistically significant effects were observed for 
any of the questions regarding User Satisfaction.  

3.7 Discussion 
Overall, the addition of the Mission Repair feature produced a 
number of positive effects, compared to the base CBR Wizard: it 
increased the percentage of successfully completed missions, as 
well as the perceived ease of learning of the software and, for 
certain modification tasks, the perceived ease of mission 
modification. In addition, we have not observed any harmful 
effects of this feature, suggesting that further exploring an 
automatic mission repair mechanism may prove advantageous.  

4. CONCLUSION AND FUTURE WORK 
 In this paper, we presented the latest empirical usability study 
conducted to assess the usefulness of the newest addition, Mission 
Repair Feature, to MissionLab, robot mission specification 
system. As MissionLab is in constant state of development and 
improvement, the results of this study give a direction for further 
improvement of the current system. In particular, some benefits of 
an automated mission repair mechanism were found: the Mission 
Repair feature increased the percentage of successfully completed 
missions thus improving the effectiveness of the overall system, 
as well as increased the perceived ease of use of the software in 
certain cases, thus contributing to greater user satisfaction. 
Unfortunately, these finding were not as strong as we had hoped. 
One reason for this may be due to the fact that the Mission Repair 
feature is a prototype, and is designed to handle a limited number 
of failure types. Therefore, during the experiments, a few 
participants made errors that the mechanism could not repair 
efficiently. Given the findings and our observations, it seems 
reasonable to investigate the mechanism for automated mission 
repair further by: 1) Increasing the number of the failure types it 
can handle; and 2) identifying other potentially weak parts in the 
user interface design by evaluating its individual components. 
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