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1 Introduction 

With every advance in robotics: visual perception working more precisely, communications 

becoming more reliable, mobility improving, we are getting ever closer to robots becoming a part 

of our everyday lives, moving from factories into our homes and workplace. As robots gain more 

autonomy and start interacting with people not specially trained in robotics, it becomes 

increasingly important for them to be able to communicate in a way easily understandable to 

nurses and patients in a hospital setting, or elderly in their homes, or visitors at museums and 

exhibitions. The development of humanoid robots is certainly a step in the right direction, as they, 

due to their embodiment, will be more likely to be accepted and used in everyday and long-term 

situations. However, human-like appearance alone would not guarantee smooth, natural and 

enjoyable interaction. In particular, humans employ one form of affect or another in almost every 

step of their lives, and are quite capable of deciphering others’ affective nonverbal behavior [4]. 

Given that people also tend to treat computers as social actors [5] and thus expect them, even if 

subconsciously, to behave in a socially appropriate manner, we believe that endowing humanoids 

with affective capabilities would be advantageous for the successful human-robot interaction.  

Our research group has had extensive prior experience implementing motivational and affective 

phenomena in robotic systems. Some of our earlier research included: adding motivational 

behaviors to a robotic Sowbug and a praying mantis; an implementation of an emotional 

attachment mechanism in simulation and on real robots; an ethologically-inspired architecture for 

a robotic dog Aibo with included a number of drives and emotions; and developing emotionally-

grounded symbols within EGO architecture on a humanoid robot Sony QRIO (see Arkin [6] for a 

more detailed summary). Based on our prior experience, we are developing an application of 

cognitive and psychological models of human Traits, Attitudes, Moods, and Emotions (TAME) for 

use in humanoid robots. These affective states are embedded into an integrated architecture and 

designed to influence the perception of a user regarding the robot’s internal state and the human-

robot relationship itself. Recent work by Arkin et al in non-verbal communication [7] and 

emotional state for the AIBO [8] addressed powerful yet less complex means for accomplishing 

these tasks. Introducing time-varying affective states that range over multiple time scales spanning 

from an agent’s lifetime to mere seconds with orientation towards specific objects or the world in 

general provides the power to generate heretofore unobtained richness of affective expression. 

This paper describes the cognitive and psychological underpinnings of this work in the context of 

humanoid robots and affective software architecture, and presents the directions being taken in this 

ongoing project to implement and test it on a small humanoid robot. 

2 Related Work 

Although most research on humanoids focuses on the physical aspects (e.g., perfecting walking 

gaits, sensors or appearance), there are some who also explore affective interaction. For example, 

humanoid Waseda Eye No. 4 Refined [9] combines emotions, moods, and personality. The overall 

goal of the system is to achieve smooth and effective communication for a humanoid robot. 

Although many elements of this system are not psychologically or biologically founded, it 

provides a few interesting mechanisms, such as modeling personality’s influence on emotion via a 

variety of coefficient matrices and using internal-clock activation component in moods. Another 

example of a robotic system that combines multiple affective aspects is the Roboceptionist [10]. In 

this system, emotions and moods are generated as a response to the robot’s interaction with passer-

bys and events in an imaginary story line; attitudes are treated as long-term moods associated with 

a certain person or thing. Although the Roboceptionist is not a humanoid, it is equipped with a 

flat-screen monitor displaying an animated character face through which affect is expressed. 

Fukuda et al. [11] also include the notions of emotions and moods in their Character Robot 

Face; emotions are represented as semantic networks, and the combination of currently active 

emotions is deemed as mood. Two other humanoid robotic head robots, Kismet [12] and MEXI 

[13] have emotion and drive systems. Kismet is modeled after an infant, and is capable of proto-

social responses, including emotional expressions, which are based on its affective state. In MEXI, 

the Emotion Engine is composed of a set of basic emotions (positive that it strives to achieve and 

negative it tries to avoid) and homeostatic drives. In ERWIN, yet another socially interactive robot 

head, five basic emotions are generated through modulation of hormonal-like parameters [14]. 
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Finally, LEGO robot Feelix [15] is capable of expressing a subset of basic emotions elicited 

through tactile stimulation. 

Other work into humanoid affect primarily focuses on producing recognizable emotional facial 

and bodily expressions, rather than affect generation. In particular, Nakagawa et al. [16] propose a 

method to control affective nuances by mapping dimensions of valence and arousal onto velocity 

and extensiveness of motion and body posture; this method was tested to produce subtle affective 

expressions on two humanoid robots, Robovie-mini R2 (an upper body humanoid) and Robovie-M 

(a biped). As another example, Hanson Robotics android head “Einstein” [17] is capable of 

learning and producing a large number of realistic facial expressions based on Ekman’s Facial 

Action Coding System, FACS [18].  

Finally, the research into robotic affect on non-humanoid platforms includes: producing 

emotional expressions based on the circumplex model of affect on a huggable robot Probo by 

Saldien et al. [19]; display of affect on expressive robotic head EDDIE [20], based on the 

circumplex model and Ekman’s FACS; expression of Extraversion and Introversion on robotic dog 

AIBO [21]; and a number of other related endeavors. 

3 Cognitive Basis of TAME 

In comparison with the aforementioned systems, the TAME framework encompasses a wider 

range of affective phenomena, and provides psychological grounding for each. It has been initially 

tested on the entertainment robot dog AIBO [3], and its application to humanoid robots is fairly 

straightforward in principle. Moreover, humanoid platforms provide certain beneficial affordances 

for the use of the framework. The first one is their expressive potential, exhibited not only in facial 

and bodily expressions (e.g., a smile, a shoulder shrug, a handshake), but also in a variety of tasks 

they could perform for which human-like personalities are readily applicable. Another affordance 

lies in the emphasis on long-term interaction, and the potential for humanoids to act as partners or 

companions, rather than bystanders; as some of the components of the framework are subtle in 

expression and would be noticed best over multiple interactions with the same person. 

The TAME framework itself takes inspiration from a large number of theories and findings from 

personality, emotion, mood and attitude areas of psychology [22-24, 26-28, 30-33], which are 

specifically adapted to the needs of enhancing human-robot interaction. As multiple definitions of 

affective phenomena exist, here we present those we use for our work:  

1. Affect is an embodied reaction of pleasure or displeasure signifying the goodness or 

badness of something; 

2. Personality traits identify the consistent, coherent patterns of behavior and affect that 

characterize individuals; although not affective per se, they provide a profound influence 

on generation and application of affective phenomena; 

3. Affective attitudes are general and enduring, positive or negative, feelings about an object, 

a person or a issue; 

4. Moods are a low-activation, slowly-varying diffuse affective state;  

5. Emotions are a high-activation short-term affective state and provide a fast, flexible 

response to environmental contingences in the form of relevant stimuli. 

3.1 Overview 

The Affective Module, the core of TAME, is subdivided into Dispositions and Affective State. 

Dispositions include personality traits and affective attitudes, and represent a propensity to behave 

in a certain way. They are more or less persistent, long-lasting, and either slowly changing 

(attitudes) or permanent (traits) throughout a robot’s “life”. Affective state consists of emotions 

and moods, that are more fleeting and transient affects, and manifest as either high-intensity, short- 

duration peaks (emotions) or slow smooth undulations (moods). Table 1 summarizes the 

differences in duration and temporal changes of these four components. 

Another direction along which these components differ is object specificity: emotions and 

attitudes appear and change in response to particular stimuli (such as fear in the presence of an 

attacker or dislike towards an unfriendly person), whereas traits and moods are diffuse and not 

object-specific – they manifest regardless of the presence or absence of objects. Each component 

can be positioned in the two-dimensional space defined by duration and specificity [22-24] (Figure 

1). Traits and emotions are at the opposite ends of this spectrum: traits are time-invariant and 

global, whereas emotions are short-term, dynamically changing and focused. Although all the 

components can be categorized differently and each can have a distinct function and purpose, these 
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phenomena cannot be regarded as independent, as they strongly influence each other and 

interweave to create a greater illusion of life.  

 Traits Attitudes Moods Emotions 

Duration Life-long A few days to a 

few years 

A few hours to a few 

weeks 

A few seconds to a few minutes 

Change 

in Time 

Time-

invariant 

Persistent across 

time; change 

slowly with the 

number of times 

an object of 

attitude is 

encountered. 

Change cyclically as a 

variable of underlying 

environmental and internal 

influences; any drastic 

changes are smoothed 

across previous mood 

states 

Intensity changes in short-term 

peaks as eliciting stimuli appear, 

disappear, and change distance; 

habituation effects describe 

decay of emotion even in the 

presence of stimuli.  

Table 1. Summary of Time-varying Aspects of TAME Components 

 

 

 

 

 

 

 

 

Figure 1: Relative Position of Types of Affect 

The Affective Module fits within the behavior-based robotic control paradigm [25] by first 

processing relevant perceptual input (be it color and distance to certain emotion-eliciting objects or 

level of light affecting moods) and then directly influencing behavioral parameters of affected low-

level behaviors and/or behavior coordination gains as they are composed into behavioral 

assemblages (Figure 2). 

 

Figure 2: Conceptual View of TAME 

3.2 Psychological and Mathematical Foundations 

3.2.1 Personality Traits 

Personality defines an organism’s recurrent patterns of behavior and emotionality. The Five 

Factor Model of personality traits [26] was chosen as the model for this component for its 

universality: it is consistent over time, cultures, ages, and even applicable to non-human animals. 

Focused/specific 
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To a large extent, traits are inherited or imprinted by early experience, therefore in TAME we treat 

them as invariable (the exception is that an operator can specify a different personality 

configuration depending on a task at hand, but it would remain the same during that task). The 

taxonomy has five broad dimensions, each of which is further subdivided into facets; therefore a 

robot’s personality can be as simple or as complex as desired. Traits provide a two-fold advantage 

for humanoid robots: first, they serve a predictive purpose, allowing humans to understand and 

infer the robot’s behavior better; second, they allow adaptation to different tasks and 

environments, where certain trait configurations are better suited for one or another task or 

environment.  

The five global dimensions are Openness, Conscientiousness, Extraversion, Agreeableness and 

Neuroticism. Openness refers to active imagination, preference for variety and curiosity; 

Conscientiousness describes socially desired impulse control that facilitates task- and goal-directed 

behavior; Extraversion refers to liking people and preferring large groups and gatherings, and also 

affect positive emotionality; Agreeableness is a dimension of interpersonal tendencies, and refers 

to being sympathetic to others, cooperative and eager to help; finally, Neuroticism  is the general 

tendency to experience negative affect, such as fear, sadness, anxiety, etc and be more sensitive to 

signs of danger. Each of them has its own effect on robot behavior: for example, in a humanoid, 

extraversion could be expressed by keeping a closer distance to the human, frequent smiles, more 

gestures, etc. This trait would be appropriate for tasks requiring engagement and entertainment 

from a robot, e.g., a museum guide or a play partner for kids. Another example of a useful trait is 

Neuroticism: a humanoid can, through correspondingly neurotic behavior, suggest to an 

accompanying human to pay more attention to potentially dangerous surroundings. 

The traits are modeled as vectors of intensity, where intensity refers to the extent to which a trait 

is represented. In the robot, these intensities: are defined a priori by a human; don’t change 

throughout the robot’s “life” (this could be a single run, an interaction with a person, or the robot’s 

entire physical life-span); and are not influenced by any other affective phenomena. We provide a 

functional mapping from the trait space onto behavioral parameter space as a 2
nd

 degree 

polynomial, where 3 pairs of corresponding data points are minimum trait/parameter, maximum, 

and default/average (the values are taken from the normally distributed human psychological data 

[27]). Traits can have a direct or an inverse influence on particular behaviors and this relationship 

is defined in a matrix beforehand.  Figure 3 presents a 2
nd

 degree polynomial mapping from the 

trait of Neuroticism onto two behavioral parameters: directly to obstacle avoidance gain (a degree 

to which an agent should avoid obstacles) and inversely to wander gain (related to exploration). 

 

Figure 3: Comparison of Direct and Inverse Influences of Traits on Behavior 

In cases where multiple traits affect the same behavior (e.g., Neuroticism may push the robot 

away from the obstacles while Conscientiousness could make it go closer for a faster route), first a 

trait/parameter mapping is calculated, according to the chosen function fij(pj), where trait i 

influences behavior j, a polynomial in this case. Then, the results are averaged across all 

influencing personality traits to produce the final parameter value used thereafter:  

Obstacle 

Avoidance Gain 

Highest parameter 
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highest trait value 
Wander Gain 

Highest parameter 

value at the 

lowest trait value 

Mean=79.1 

Default = 1 
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where Bj is a particular behavioral parameter, fij(pi) is the function that maps personality trait pi to 

Bj, N is the total number of traits, and pb   is personality/behavior dependency matrix; if there is 

no influence, the result of fij = 0. 

As the traits are relatively time-invariant, the obtained trait-based behavior parameters serve as 

default behaviors for the robot. 

3.2.2 Emotions 

From an evolutionary point of view, emotions provide a fast, flexible, adaptive response to 

environmental contingencies. They appear as short-term, high-intensity peaks in response to 

relevant stimuli (we don’t usually live in a constant flux of emotions), and serve a number of 

functions, of which most applicable for humanoids are communicative, expressive and affiliative, 

e.g., fear communicates danger and a request for help, while joy in response to a bright smile helps 

forge trust and camaraderie. The primary, reactive emotions of fear, anger, disgust, sadness, joy 

and interest were chosen, in part because these basic emotions have universal, well-defined facial 

expressions [28], are straightforwardly elicited, and would be expected, perhaps subconsciously, 

on a humanoid’s face, as appearance does affect expectations. Each emotion’s intensity is stored in 

the emotion intensity matrix ][ iEE


, where ii gE0 , the value Ei represents the intensity 

of a currently active emotion, 0 signifies the absence of emotion, and gi is the upper bound for 

emotion i.  

From an emotion generation point of view, Picard [29] suggests a number of properties are 

desirable in an affective system:  

1. Activation. Refers to certain stimulus strength below which the emotion is not activated. 

2. Saturation. Refers to the upper bound of an emotion, after which, regardless of the 

increasing stimulus strength, the emotion doesn’t rise any more.  

3. Response decay. States that emotions decay naturally over time unless they are re-

stimulated.  

4. Linearity. Emotions can be modeled as linear under certain conditions; due to the 

properties of activation and saturation, the emotions will approximate linearity only for 

certain stimulus strength range, and will approach a sigmoid at its edges.  

Taking these properties into consideration, the resulting function for emotion generation (based 

on stimulus strength) resembles a sigmoid, in which the left side corresponds to activation, the 

right side corresponds to saturation (amplitude), and the middle models the actual response. The 

eliciting stimulus strength for each emotion is calculated by taking into account a number of object 

properties, such as its physical properties (size, shape, etc.), its position (distance to the object, its 

velocity, etc.), and any existing attitude of the agent towards the eliciting stimulus.  Then, the base 

emotion level is calculated as follows: 

i

da

iii

iii

dbs

i

iiii

dadas

basei

aegdbwhere

basifeg

basaifee
E

ii

iii

iiii

2/)ln(2    

2/)(               ,

2/)(      ,

/)(

/)(

/)(/)(

,

  (2) 

where Ei,base is the base emotion value for emotion i, si  is the strength of stimulus eliciting emotion 

i, ai is the variable that controls the activation point for emotion i, di is the variable that controls the 

maximum slope for emotion i, g is the amplitude of emotion i, and bi  is the break-point, at which 

the emotion reverses its rate of growth. Figure 4 presents the resulting curve graphically. 
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Figure 4: Emotion Generation Based on Stimulus Strength 

Emotions are also highly dependent on traits and moods: personality may influence the 

threshold of eliciting stimulus (activation point), peak (amplitude) and rise time to peak (affecting 

the slope of the generation curve) [30]; and moods can vary the threshold of experiencing a 

specific emotion [31]. For example, Extraversion is correlated with positive emotions, therefore a 

humanoid robot high in this dimension would display more smiles, excited gestures and other 

expressions of joy. Attitude also has an effect on emotion – the object of like or dislike may serve 

as a stimulus for emotion generation. A linear mapping from traits to amplitude, activation point, 

and maximum slope is used to obtain personality influence on emotion generation. For example, 

the trait of Extraversion provides a direct influence on the amplitude, activation point, and slope of 

positive emotions (joy and interest), therefore a robot with a higher level of Extraversion will have 

a stronger positive emotion that will be activated at weaker stimulus strength and will rise faster 

than that of an introverted robot. Similarly, current mood will influence the activation point, where 

the negative mood will make it easier for an agent to experience negative emotions, and positive 

mood – positive emotions. Figure 5 presents combined influence of traits and mood on emotion 

generation. 

 

Figure 5: Combined Mood and Trait Influences on Emotion Generation 

To account for the short-term duration of emotions and habituation to prolonged stimulus, 

emotion decay is modeled as a slowly decreasing exponential: 

 dtt

basetdecayti eEE
)*(

,,,
0

 (3)
 

where Ei,t,decay is the intensity of emotion i at time t, to is the time at which emotion is activated 

(becomes greater than 0), and d is a variable that controls the rate of decay. This ensures that a 

high-activation emotional state is not maintained beyond the initial episode, and, provided the 

stimulus doesn’t change, the emotion it invoked will eventually dissipate.  

Finally, in order to smooth the emotion change in cases of sudden appearance and disappearance 

of eliciting stimuli, a weighted averaging filter can be used:  

 

Amplitude (g) 

Activation Point 

(controlled by a) 

Point of 

maximum slope 

(controlled by d) 

Lower Trait 
Value 

Higher 
Trait Value 

Higher Mood 
Value Lower Mood 

Value 

Neutral Mood 

Value 
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)/()**( ,1,,,,, priorcurrentfilteredtipriordecayticurrentfilteredti wwEwEwE   (4) 

where Ei,t,filtered  is the final intensity of emotion i at time t after filtering, wcurrent and wprior are 

weighting variables controlling the relative importance of current and previous emotional states. 

This filtering function will help to account for short-term lingering emotions even after the 

eliciting stimulus has disappeared.  

Emotions can have a varied impact on behavior, from a subtle slowing to avoid a disgustful 

object to a drastic flight in response to extreme fear. This effect can be modeled by linear mapping 

from emotion strength to relevant behavioral parameters, and Figure 6 provides a comparative 

view across time of stimulus strength (an object appears, comes closer, and then is gone), 

corresponding emotion activation (after response decay and smoothing), and the Object Avoidance 

Gain (which causes an avoidance response to Fear); duration is plotted along the x axis, and 

normalized values for stimulus strength, fear and object avoidance gain along the y axis. If the 

object continued to be present and unchanged, then Fear would eventually be brought down to 0.  

 

Figure 6: Example of Fear to Object Avoidance Gain Mapping 

In a humanoid, display of fear may signal imminent danger to nearby people, and be more 

persuasive than words alone, in case an evacuation is required. Expressions of disgust, similarly, 

may alert a human to the presence of some noxious stimulus, which, though not necessarily 

hazardous, may still be best avoided.  

3.2.3 Moods 

Unlike emotions, moods represent a global, continuous affective state, cyclically changing and 

subtle in expression. Mood can be represented along two dimensions, Positive Affect and Negative 

Affect [24], where Negative Affect refers to the extent to which an individual is presently upset or 

distressed and describes level of stress and tension, and Positive Affect generally refers to one’s 

current level of energy, enthusiasm, and pleasure. The level of arousal for both categories can vary 

from low to high; a low positive mood value has a negative connotation (“sluggish”, 

“disinterested”) and refers to insufficient level of energy, pleasure and enthusiasm, rather than just 

low. One advantage of providing a humanoid with expression of mood would be to let nearby 

humans know when the system needs attention, be it a low battery resulting in low energy level, or 

insufficient amount of light resulting in poor sensor reliability.  

There are two broad types of mood change: environmental/external (light or noise level, external 

temperature, amount of recent interaction, etc.) and internal (e.g., battery level in case of a robot, 

internal temperature); and short-term situational variables, including emotional episodes. The 

current base level of mood of a robot is defined as a weighted summation of various external and 

internal variables. Assuming that the same variables affect both positive and negative moods, 

strengths of environmental and internal influences can be represented in a matrix ][ ill


, where 

ii bl0 , where bi is the hardware-dependent upper bound (e.g., light can only be detected up 

to a certain level, etc.). The relative weights for each variable are stored in the mood generation 

matrix ][ ijmgmg . The values in this matrix are unit conversion factors, to convert the various 

mood generation variables (which may correspond to raw sensor data) to the same unit, and are 
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found experimentally for each variable. In addition, negative mgi stands for inverse influence of 

the variable on the mood, and positive mgi stands for direct influence.  

According to Set Point theory [24], a certain base level of mood is maintained at all times, and, 

though events and changes in the environment cause it to fluctuate, it tends to return to the same 

level over time. As moods are continuous, always present streams of affect, the base mood is 

continuously generated based on the current environmental and internal influences as follows:  

N

i
neutralii

negativei

positivei

negative

positive

base ll
mg

mg

m

m
m

1
,

,

,
)(

 (5)

 

where mg  is the mood generation matrix, l


 is the mood generation variable strength matrix, 

neutralil , is the set point for mood i, and N is number of mood generation variables. Figure 7 

illustrates the effect of an environmental variable on mood. Figure 7 presents an example of the 

influence of light on mood generation. 

Additionally, similarly valenced emotions can affect the corresponding mood intensities 

additively, and change the existing base mood level in the following manner:  

},,,{   ,

},{    ,

,

,

SadnessDisgustAngerFearEifEmm

JoyInterestEifEmm

kkbasenegativenegative

kkbasepositivepositive

 (6)

 

where mpositive is the emotion-based intensity of positive mood, mpositive  is the emotion-based 

intensity of positive mood, and E


 is the emotion intensity matrix. 

 

Figure 7: Different Effect of Light on Positive and Negative Mood 

As mood is a low-activation, slow-varying affective state, sudden changes are smoothed out by 

taking into consideration prior mood states. Filtering over a longer period of time results in slower 

and smaller mood changes and helps tone down any drastic spikes due to emotions. 

Additionally, in humanoids that are designed for sharing living conditions with humans for a 

prolonged time, circadian variations in mood may be introduced to provide mood congruency with 

the human, where user-defined cyclical daily, weekly and seasonal high and low points would be 

superimposed onto the base mood values. 

Moods are mild by definition, and would only produce a small, incremental effect, or a slight 

bias, on the currently active behaviors. Moods can have a direct or inverse influence on a 

behavioral parameter. A behavior-mood dependency matrix ][ ijmbmb is defined, where 

}1,0,1{ijmb is defined, where –1 corresponds to inverse influence, +1 to direct influence, and 

0 to absence of mood influence on behavior. Positive and negative moods may influence the same 

behavioral parameters, and this influence is treated as additive. As moods are updated 

continuously, new mood-based values of behavioral gains/parameters replace the existing trait-

based values in the following manner:  
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jjiitraitimoodi mmbKBB
1
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where 
moodiB ,

 is the updated behavioral parameter i, mbij is the mood-behavior dependency 

matrix value for mood j, mj is the current value of mood j,  N is the total number of mood 

categories (2), and K is a scaling factor to ensure that the moods produce only incremental effect 

as opposed to overpowering any of the parameters.  

Figure 8 shows an example of incremental effects of moods on behavior. Suppose that mood can 

bias robot’s obstacle avoidance behavior. For example, if visibility is poor, it may be advantageous 

to stay farther away from obstacles to accommodate sensor error, and vice versa, in good visibility 

it may be better to concentrate on task performance. Thus, negative mood can bias the obstacle 

avoidance gain by raising it, and positive mood by lowering it. Neuroticism also affects it by 

setting the default parameters to be used throughout the life-cycle, and the incremental effect of 

moods is shown against the space of trait-based defaults (plotted in solid blue center line).   

 

Figure 8: Direct/Inverse Mood Effects on Behavior at Different Neuroticism Values 

For human-robot interaction, expressive manifestation of mood can alert a person to favorable 

or unfavorable changes in the environment or in the robot itself, especially if perception of these 

changes is based on sensor input not available through human senses. Consider the following 

scenario. A humanoid is guiding a human inspector through a partially secured search-and-rescue 

site, when the lights become dim. Although no immediate danger is visible, the robot’s negative 

mood rises, and it displays the signs of anxiety and nervousness; no action per se is warranted yet, 

but the inspector, picking up the cues from the robot, becomes more alert and ready for action. We 

are currently using this scenario to formally evaluate, through human subject experiments, the 

effect of robotic mood display on compliance with and persuasiveness of a robot’s request.  

3.2.4 Affective Attitudes 

From a multitude of definitions of attitudes, the following was adopted as the working definition 

for TAME: “a general and enduring positive or negative feeling about some person, object or 

issue” [32]. It stresses relative time-invariance (“enduring”), object/situation specificity, and the 

role of affect/affective evaluation in the attitude concept. We propose two methods for attitude 

formation: one is more general and does not require any input from an interacting human, and the 

other is more experiential, and requires initial human input.  

In the general method, attitudes are described by valence and intensity, and are represented as a 

single value A, ranging from  to , where 0 signifies a neutral (or absence of) attitude, 

negative values represent increasingly strong negatively-valenced attitude (ranging from a mild 

dislike to hatred), and positive values refer to increasingly strong positively-valenced attitude (e.g., 

from a subtle like to adoration). Attitudes are object-specific, and an initial attitude for a particular 

object (y) would consist of a combination of positive or negative attributes of this object (as a 

facetious example, a robot may develop a dislike to a man with a mustache), represented as a 

matrix ][ iyy oo


, where 
iyo . Such attributes are not limited to properties of the 

object only; for example, an emotion invoked by the object and any actions taken by the object 
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may be considered “attributes”. The initial value of the attitude for object y (Ay,init) is calculated as 

follows:  

N

i

iyinity oA
1

,
  (8) 

where Ay,init is the newly-formed attitude for object y, oiy is an attribute i of object y that is involved 

in the attitude formation, and N is the number of attributes for object y.  

Assuming that an initial impression is the strongest, substantial changes in attitude are fairly 

hard to achieve, therefore any subsequent exposure to the same object would result only in 

incremental change. This is done by discounting any additional positive or negative object 

attributes to a certain extent. The updated attitude value for object y for n-th encounter (Ay,n) would 

then be calculated as follows:  

)(
1

1,,

N

i

iynnyny oAA

 (9)

 

where Ay,n-1 is the attitude towards object y at encounter n-1, n is the total number of encounters up 

to date, 
yo


is the matrix of attributes for object y, and  is the discount factor.  

Finally, consistent with the finding on mood-congruent judgment, positive mood increases the 

value of the attitude ( ya ) towards an object y, and negative mood – decreases it as follows:  

)(, negativepositiveymoody mmKAA
 (10)

 

where Ay,mood is mood-enhanced value of agent’s attitude towards object y, Ay is the original value 

of agent’s attitude towards object y, mpositive is the current positive mood value, mnegative is the 

current negative mood value, and K is a scaling factor to bring moods and attitudes to the same 

units.  

In the experience-based method, robotic attitudes are based on those held by people 

commonly interacting with robot. In this method, a Case-Based Reasoning approach [33] is used, 

where an initial set of cases is provided by each interacting human, and the resulting attitudes are 

expressed through corresponding emotions by the robot. Each case contains a set of object 

properties (indexed by these properties and a user ID, to differentiate between different people) 

and corresponding attitudes for a variety of objects. When a robot encounters a new object, the 

most similar case is retrieved from the case library and applied.  

As affective attitudes are closely related to emotions (in fact, some psychologists even describe 

love and hate as emotions, albeit long-term and persistent), the output of both methods produces 

stimulus strengths to generate corresponding emotions. Thus, attitudes are not expressed in 

behavioral changes per se, but rather through the emotions they invoke. In the course of long-term 

interactions with people, it may be easier for humanoids that share attitudes with their human 

companions to establish rapport and understanding. For example, a child playing with a robot 

nanny or tutor may feel greater affinity towards the robot that acknowledges the child’s likes and 

dislikes in toys and games. 

3.3 Exploratory Experimental Study 

In order to explore the issues of feasibility and potential usefulness of the TAME framework, a 

preliminary exploratory study was conducted (please refer to Moshkina et al [3] for a detailed 

report). For this between-subject longitudinal human-robot interaction study a partial 

implementation of Emotion and Trait modules was performed on a robotic dog AIBO. The 

emotions of Interest, Joy, Anger and Fear were expressed via head, ears and tail positions and 

movement, a variety of gaits, and LED display; and Extraverted and Agreeable personality was 

achieved by modifying the percentage of time the robot spent walking around and wagging its tail. 

The two conditions used in the study were Emotional (with the aforementioned affective 

expressions) and Control (without affect).  The study was set as “robot as a personal pet and 

protector scenario”, in which 20 people interacted with the robot for a total of four sessions, 

ranging from 20 to 60 minutes each. For each session, the participants were given one or two new 

commands to introduce to the robot (7 total: “Stop”, “Go Play”, “Follow the Ball”, “Kick the 
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Ball”, “Follow Me”, “Come to Me”, and “Sic’ em”), and the last session was cumulative. The 

measures used for this study were: PANAS (mood) questionnaire [35] to assess participants’ 

Negative and Positive mood at the end of each session; Mini-Markers Big-Five personality 

questionnaire [34] to assess the subjects’ personality in the beginning and the robot’s personality at 

the end of the study; and a post questionnaire, to evaluate ease of use and pleasantness of 

interaction. The post questionnaire consisted of six 5-point Likert scale questions with three 

subquestions, with “Strongly Agree” anchored at 5, and “Strongly Disagree” anchored at 1. The 

questions were as follows:  

1) It was easy to get the robotic dog perform the commands;  

2) It was easy to understand whether the robotic dog was performing the command or not;  

3) The robotic dog showed emotional expressions;  

4) The robotic dog had a personality of its own;  

5) With every session, I was getting more attached to the dog;  

6) Overall, I enjoyed the interaction with the robotic dog.  

If the participants answered “Agree” or “Strongly Agree” to questions 3 or 4, they were also 

asked to answer questions 3a,b and 4a, respectively. The subquestions were as follows:  

3a) Emotional expressions exhibited by the dog made the interaction more enjoyable;  

3b) Emotional expressions exhibited by the dog made the interaction easier;  

4a) I enjoyed interacting with the robot, partly because it possessed some personality. 

A total of 20 people participated in the study, 10 males and 10 females, distributed equally 

between the two conditions. The subjects were recruited via flyers posted on and around the 

Georgia Institute of Technology campus, and they varied widely in the demographics according to 

age (from between 20 and 30 to over 50 years old), their educational level and backgrounds (from 

High School diploma to working on a Ph.D., with majority having either a Bachelor’s or Master’s 

degrees), and computer experience. Most of the participants had owned pets at some point in their 

lives (18 out of 20), and had either no or very limited robot interaction experience (only 2 out of 

20 had interacted with mobile or entertainment robots prior to the study). A number of interesting 

and encouraging observations were made in this study, as reflected in the results of 1-tailed 

Independent Samples T-tests and Pearson Correlations (unless specified otherwise).  

First, those participants who believed that the robot displayed emotions (5 out of 10 in the 

Control condition, and 8 out of 10 in the Emotional condition) and/or personality (6 out of 10 in 

both conditions) also believed that these features made their interaction more pleasant: the average 

answer for question 3a was 4.46, and for question 4a was 4.25. There was also a number of 

significant correlations between questionnaire responses regarding the pleasantness of the 

interaction: 1) the response to question 4 (robotic dog had a personality) had a significant positive 

correlation (r = .66, p=0.02) with the response to question 5 (participant got more attached to the 

dog); 2) the response to question 3a (emotional expressions made the interaction more enjoyable) 

had a significant positive correlation with response to questions 5 (r=617, p=.025) and 6 (r=.749, 

p=.003, “enjoyed interaction with the robotic dog”). Although there was no significant statistical 

difference between the two conditions in emotion display recognition (question 3), possibly due to 

small sample size (Mnon-emotional=2.7, Memotional=3.6, F=.693, p<0.088, eta2 =.1), the 

perceptions of the robot’s emotionality and personality seem to make the interaction more 

enjoyable and result in greater attachment. This was encouraging, as it suggested that people value 

expression of emotion and personality in their interaction with an autonomous entertainment robot.  

Second, we observed a reduced level of Negative Mood in the subjects in the Emotional 

condition (Mnon-emotional=13.9, Memotional=12.125, F=6.462, p<0.048, eta2 =.146), which 

suggests that affective behavior contributes to the quality of interaction. Additionally, a significant 

positive correlation (r=.598, p=.007) between average Positive Mood and the response to question 

4 (robot displayed personality) was observed, thus providing a link between perceived robotic 

personality and users’ improved mood.  

Finally, women were found to be more attuned to emotional expressions and more ready to 

attribute emotions to the robot than men: 2-factor ANOVA on Gender and Emotionality resulted in 

a significant main effect of Gender on the answer to question 3: display of emotions 

(Mfemale=3.8, Mmale=2.5,F =4.829, p<0.043, partial eta2 =.232). This should be taken into 

consideration for systems adapted to groups with gender-biased compositions. Other lessons 

learned from this study included the following: 1) the physical platform affects the perception of 

emotionality; 2) for between-subject experiments, affective expressions may need to be 

exaggerated to be consciously acknowledged; 3) there is a great need for suitable repeatable 

metrics to evaluate usefulness of robotic affect via human-robot interaction studies.   
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4 Software Architecture 

In this section, we introduce the overall software architecture for our affective system, also 

referred to as TAME Module henceforth (Figure 9). The system is designed to be a stand-alone 

process to achieve maximum platform-independence. With an interface to connect to the system’s 

TAME Communication Manager (to supply sensory data), and appropriate configuration files, this 

software can potentially be integrated into any robotic platform with ease and flexibility. The 

architecture itself is fairly straightforward, and consists of: TAME Manager (the main module of 

the system), TAME Communication Manager (receives sensor data and passes the updated 

affective values to the robot), a module for each of the affective components, and Stimuli 

Interpreter.  

 
 

Figure 9:  High-level architectural view of the TAME system. 

4.1 Affective Modules 

These are comprised of four different affective components of TAME (namely Trait, Attitude, 

Mood, and Emotion), and each module processes sensory and internal information (current values 

of other affective components) and calculates the updated affective variables, passing them along 

to TAME Manager. In order to provide flexibility and adaptation to individual users and situations, 

each component is loaded with some initial default values from a configuration file. 

For the Trait component, a default value can be specified for each of the five personality 

dimensions: Openness, Agreeableness, Conscientiousness, Extraversion, and Neuroticism. Once 

the values are specified, they remain unchanged throughout the lifetime of the system execution 

since personality is generally regarded to be time-invariant.  

For the Emotion component, configuration settings include specifications prescribing how each 

personality dimension may influence each emotion (e.g., directly or indirectly), as well as 

minimum and maximum values for a number of variables used for emotion generation. Although it 

would be possible for an advanced user to select these values to suit a particular task, in general, 

setting these defaults would be best left to the designer or administrator, as they would influence 

complex interactions within the module.   

For the Mood component, configuration settings include settings for high and low points for 

circadian changes, as well as mapping between sensor data types and influence on mood 

generation. Again, some of these settings are best left for designer/administrator, except for 
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specifying circadian changes to match user’s mood. Reinforcement learning is being investigated 

as the basis for determining these parameters. 

Finally, for the Attitude component, the configuration file can specify the types and properties of 

objects towards which the robot can have positive or negative attitudes. Case-based learning is 

being developed for this component as a means to both set the parameters and generalize over 

broad classes of objects. 

4.2 TAME Manager and TAME Communication Manager 

TAME Manager is the main module in the system that runs as a threaded process to manage all 

the affective components. It supplies each of them with relevant sensor data (processed as stimuli) 

or necessary values of certain variables from other affective components. The affective variables 

of all the affective modules such as the Joy variable in the Emotion component or the Extraversion 

variable in the Trait component are comprehensively called the TAME variables in the system. 

Then, TAME Manager receives the updated values of the TAME variables for each affective 

component after appropriate calculations.  

TAME Communication Manager is a separate thread that is responsible for receiving sensor data 

from the robot and relaying them to Stimuli Interpreter, and then passing appropriately processed 

stimuli into TAME Manager. It also receives the most up-to-date values of the TAME variables 

from TAME Manager and communicates the information to the robot controller.  

Behavioral arbitration or the changes to behavioral parameters according to different affective 

states can then be achieved on the robot controller side. By avoiding direct manipulation of 

behavioral parameters, the design of our affective system allows for high portability and 

scalability. On the robot side, depending on the capabilities of a particular platform, corresponding 

affect can be implemented in either continuous or discrete manner. For example, in the continuous 

case, an emotion can be expressed in accordance with Ekman’s FACS on an animated robot face, 

or mapped onto velocity and expensiveness of gestures and posture, in a manner similar to that 

proposed by the designers of Robovie [16] or through behavioral overlay method proposed by 

Brooks et al. [7]. In the discrete case, a number of affective expressions (facial and/or bodily), 

perhaps differing in intensity, can be designed on the robot a priory, and then an appropriate 

expression can be selected based on the actual value of a TAME parameter. We have implemented 

the latter case on a humanoid robot Nao.  

4.3 Stimuli Interpreter 

The raw sensor data from the robot themselves are useless unless some context is provided for 

them. A configuration file for Stimuli Interpreter gives such contextual information. For each 

TAME variable that is directly affected by environmental conditions or stimuli (all but traits), the 

file specifies whether each type of incoming sensor data is relevant to the calculation of that 

TAME variable. As emotions are invoked in response to specific stimuli, certain object properties 

would be used for stimulus strength calculation. These properties may correspond to preprocessed 

incoming sensor data, such as distance, size, approach angle and acceleration, or color of an 

object; they can also include more abstract properties, such as friendliness or disapproval of a 

person. A configuration file would specify which of these are relevant for generating a particular 

emotion, as well as weights describing a relative importance of each. For example, for fear, object 

size and speed of approach may play a larger role, whereas an interacting person’s personal 

attributes may be more important in case of joy. For moods, incoming external and internal sensor 

data would include battery level, internal and external temperature, brightness and noise level, and 

other potential influences. For example, positive mood is more susceptible to energy consumption, 

and negative to lighting conditions, and these differences are reflected through assigning 

appropriate weight for each in the configuration file. Finally, for attitudes, an object identifier is 

used (such as an AR marker), which encode specific object properties: color, size, shape, category 

and material.  

If a type of sensor data is relevant, a scaling factor is provided for normalization purposes, to 

translate it to an appropriate strength since each type can have a value in different ranges. The 

configuration file also allows flexibility in specifying whether multiple sensor types should have a 

combined effect as an average (smoothing) or the stimulus with the maximum strength should 

have a dominating effect in generating the value of each TAME variable (winner-take-all).  
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5 Implementation 

The TAME Module was incorporated into MissionLab, a robotic software toolset that allows an 

operator to easily create and configure a multi-robot mission using a graphical user interface [36, 

37]
1
. In order to demonstrate the effectiveness of our affective system, it has been initially tested 

using Aldebaran Robotics’ Nao humanoid platform (Figure 10).  

 

Figure 10: Aldebaran Robotics’ Nao humanoid robot (source Aldebaran Robotics) 

5.1 MissionLab Overview 

In MissionLab, an operator uses the Configuration Editor (cfgEdit) to specify a mission using a 

graphical representation called an FSA, or finite state acceptor [25]. In FSA representation, a 

mission is composed of a combination of various actions (behaviors) to perform, and perceptual 

triggers act as conditions for moving from one action to the next. The resulting mission is 

translated into C++ code and compiled to make Robot Executable. Then, it can be deployed on a 

wide variety of simulated and real robot platforms, and the operator can monitor the execution of 

the mission in real-time using mlab GUI display. HServer [37] is a control interface to a variety of 

robotic hardware, and it is separate from Robot Executable to enable more flexible coordination 

with different robotic platforms. 

5.2 Integration with MissionLab and Nao Robot 

Figure 11 presents a graphical view of the integration. Here, HServer acts as a bridge to the Nao 

robot to communicate between Robot Executable (which contains the actual control code for the 

robot’s current mission) and the TAME Module. In HServer, an interface for the Nao robot has 

been created using Nao’s API for hardware control. When Robot Executable is in a certain 

behavioral state within a given mission, the generated motor commands are transmitted to 

HServer, which controls the Nao robot at the hardware level. 

HServer also continuously receives perceptual data from the robot. Upon receiving the data, 

HServer sends them to both Robot Executable and the TAME Module. Robot Executable needs the 

sensor data for performing certain behaviors and for determining when to transition from one state 

to the next in the mission. When sending the sensor data to the TAME Module, HServer organizes 

relevant data for the TAME module in accordance with the configuration file for Stimuli 

Interpreter, and sends each type of sensor data with a unique ID.  

The TAME Module interprets each datum in context using its Stimuli Interpreter and then the 

updated values of its TAME variables are calculated accordingly. Robot Executable possesses a 

simple database of the TAME variables, and their values are updated at 3 hertz (to ease 

computational burden) by the TAME Module. These variables influence the robot’s behaviors by 

changing appropriate behavioral parameters or selecting from a predefined set of expressive 

affective behaviors. 

                                                 
1 MissionLab is freely available for research and development and can be found at http://www.cc.gatech.edu/ai/robot-

lab/research/MissionLab/ 
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Figure 11:  Architectural view of the TAME Module integrated with MissionLab and Nao 

humanoid robot. 

5.3 Nonverbal Affective Behavior Recognition Survey 

All components have been implemented on an Aldebaran Nao robot. Based on an extensive 

literature review [38-46], we designed expressions of Extraversion and Introversion, Positive and 

Negative Mood, and Emotions of Fear and Joy. Figure 12 (Left) and (Right) provides examples of 

static poses of Joy and Fear, respectively. To test the recognition of these affective behaviors, we 

conducted an online survey, in which 26 participants were asked to watch a number of short videos 

of Nao producing the aforementioned affective expressions [47]. The following measures were 

used in this survey: a shortened version of PANAS (mood) questionnaire [35] to assess Negative 

and Positive Mood of the robot (1 clip with the robot displaying Negative Mood and 1 - Positive 

Mood); Extraversion subset of Mini-Markers Big-Five personality questionnaire [34] to assess to 

what extent the robot in the corresponding two clips was perceived as extraverted or introverted; 

and a multiple-choice question asking the participants to select one of six emotions (Anger, Joy, 

Interest, Fear, Disgust and Sadness) or suggest another one if not present in the choice, for the 

clips with the robot exhibiting Joy and Fear. To the best of our knowledge, there has been no 

explicit research that addresses nonverbal behavior for humanoids across multiple affective 

constructs.  

 

Figure 12: (Left) Static pose for Joy. (Right) Static pose for Fear. 

On the Extraversion scale from 1 to 9, the Introverted Nao scored 3.6, and Extraverted – 7.1 

(almost twice as Extraverted); this result was statistically significant (p<0.001), see Table 2 for 

Mean and Standard Deviation. In terms of mood expressions, the robot displaying positive mood 

was rated low on Negative and high on Positive Affect; the robot displaying negative mood was 

rated medium on Negative and low-medium on Positive Affect. For the positive robot mood, 

Positive Affect score was significantly higher than that for the negative robot mood (21 vs. 12.3 

out of 30, p<0.001), and vice versa, its Negative Affect score was significantly lower than that of 

negative robot mood (8.6 vs. 12.3 out of 30, p<0.001); see Table 2 for Mean and STD. Finally, the 

recognition rates for emotions of joy and fear were high – 85% and 81%, respectively; these rates 

are comparable to those obtained in judgments of joy and fear portrayals by human actors in movie 

clips (facial features obscured), which were 87% and 91%, respectively [48]. Given this successful 

encoding of a number of affective behaviors, we are currently designing and conducting a set of 

human-robot interaction studies to test the effect of the system on physically present users. In the 

interim, a number of videos demonstrating the results to date (including the videos used for the 

survey) are available at: http://www.cc.gatech.edu/ai/robot-lab/tame/index.html#multi.  

 

http://www.cc.gatech.edu/ai/robot-lab/tame/index.html#multi
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 Extraverted 

Robot 

Introverted 

Robot 

Negative Affect/ 

Negative Mood 

Clip 

Positive Affect/ 

Negative Mood 

Clip 

Negative Affect/ 

Positive Mood 

Clip 

Positive Affect/ 

Positive Mood 

Clip 

Mean  7.1 3.6 15.6 12.3 8.6 21 

SD 1.1 1.2 4.5 4.1 4.1 4.8 

Table 2. Mean Scores and Standard Deviations for Personality and Mood 

6 Conclusion 

In this paper, design and theoretical foundations have been presented for a comprehensive 

affective robotic architecture, spanning four different affective phenomena (namely, personality 

Traits, Attitudes, Moods and Emotions) that vary greatly in time, function and object specificity. 

As humans are highly susceptible to affective cues, and use this information, consciously or 

subconsciously, in everyday decisions, we believe that providing an extensive affective framework 

capable of generating a wealth of expressive affective behaviors would facilitate human-robot 

interaction, especially on a continuous and long-term basis. Some of the expected advantages of a 

comprehensive affective robotic system would include: increased compliance with the robot’s 

requests, due to a better understanding and more natural interaction; greater satisfaction and 

bonding with the robot due to affective affinity; greater robot acceptance and reduced learning 

effort by making the interactions more intuitive. Our initial results with the framework on AIBO 

suggest that people may prefer robots with emotional capabilities, and the survey on recognition of 

affective robotic behavior demonstrates the plausibility of successful manifestation of affect in 

humanoids using TAME. As with any complex system, extensive, multi-tier studies with real 

people are required to thoroughly assess its potential. 

Towards that end, we are currently designing and performing a series of human-robot studies to 

examine how each of the adaptive affective components affects everyday human-robot interaction. 

The first study in the series evaluates the effect of display of Negative Mood and Emotions (Fear) 

on subjects’ compliance with a robot’s request to evacuate a “dangerous” zone within a context of 

a mock-up search-and-rescue scenario. This study also measures the perceptions of the robot’s 

persuasiveness and naturalness, and correlates them with an objective measure of compliance (if, 

and how fast the subject leaves a danger zone). The second study is designed to examine the value 

of robotic personality traits (Extraversion vs. Introversion) for different types of tasks in the 

context of a building demolition exhibit. Additionally, a longitudinal study is being composed to 

assess the effectiveness of more subtle phenomena, such as attitudes and moods on long-term 

human-robot interaction in an office setting. As part of these studies, we are also planning to 

develop a wider repertoire of affective displays for humanoid robots, and conduct an extended 

online or real-robot survey to determine the recognition rates. Finally, we intend to use the 

framework as a test-bed for new objective and subjective performance measures of affective 

robotic systems.  
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