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Abstract 

This paper explores how an autonomous agent can model 
dynamic environments and use that knowledge to improve 
its behavior. This capability is of particular importance for 
persistent agents, or long-term autonomy. Inspiration is 
drawn from circadian rhythms in nature, which drive peri-
odic behavior in many organisms. In our approach, the 
chemical oscillators from nature are replaced with methods 
from time series analysis designed for forecasting complex 
season patterns. This model is incorporated into a behavior-
based architecture as an advanced-percept, providing future 
estimates of the environment rather than current measure-
ments. A simulated application of a janitor robot working in 
an environment with heavy pedestrian traffic was created as 
a testbed. Experimental data used real world pedestrian traf-
fic counts and showed an agent using online forecasting of 
future traffic outperformed both a reactive, sensor-based, 
strategy and a strategy with a deterministic schedule. 

Introduction  

The field of robotics has seen great success in industrial 

environments, and new advancements are continuing to 

push the boundaries of the field. Despite this, temporally 

dynamic environments are still very challenging for auton-

omous systems. This paper explores explicitly modeling 

the state of a dynamic environment so an autonomous sys-

tem can predict future changes, and respond proactively. 

As with many robotic systems, the inspiration for the 

approach comes from biology. The natural world contains 

constant environmental changes, the most significant being 

solar and seasonal cycles. It is not surprising that animals 

have adapted to vary their behavior with these cycles (e.g. 

sleep and migration). As with many bioinspired systems, 

mimicry is not the goal. The implementation of this system 

uses time series analysis to provide a mathematically sound 
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foundation for modelling environmental changes. This 

allows the system to model more than just periodic cycles, 

including short-term trends and other statistical correla-

tions between measurements. The model is treated as an 

advanced-percept in a behavior-based architecture, trans-

forming current and past measurements to create an esti-

mate of the future. The resulting vector of future values 

can be passed to individual behaviors as parameters, or to 

coordination mechanisms for action-selection. 

This approach is a type of data-driven modelling. The 

physics that determines the state of the environment is, in 

many cases, far too complex to model directly. Most 

mammals know nothing about the orbital mechanics that 

drive the day/night and seasonal cycles. Human traffic fol-

lows clear patterns, but the processes that generate it are 

impossible to measure. Nature has already demonstrated 

that an organism can gain value from having simple mod-

els (chemical oscillators) of complex processes (tides, sea-

sons, etc.) in the environment.  

Related Work 

Circadian systems 

Many organisms in nature exhibit rhythmic behavior. 

Some of these cycles are not merely responses to periodi-

cally changing inputs from the environment, but come 

from internal processes of the organisms (Aschoff 1981). 

This allows these animals to take the right actions at the 

right times, before their needs (internal state) or senses 

(perceptual state) could inform their behavior. 

Circadian rhythmicity of behavior represents an ani-

mal’s information, or one is tempted to say, 

knowledge about a particular feature of its environ-

ment… and what to do about it. (Oatley 1974) 

A circadian clock has three primary components. An in-

ternal oscillator which tracks the passage of time and de-

fines the approximate period of a cycle. The sensory input 



channel which allows the oscillator to entrain to the envi-

ronment. Similar to a mechanical oscillator, entrainment 

drives the circadian oscillator at the relevant environmental 

frequency, and ensures it will resync even after extreme 

disturbances (Roenneberg, Daan, and Merrow 2003). Fi-

nally, an output channel influences the agent’s behavior 

based on the state of the oscillator. This simple structure is 

shown in Figure 1. 

 
Figure 1: Basic circadian system diagram (Gardner et al. 2006) 

Long-Term Autonomy 

Recent research in long-term autonomy has pointed atten-

tion towards several challenging problems, including rea-

soning about dynamic environments. Particular focus has 

been put into the areas of simultaneous localization and 

mapping (SLAM) and path planning. Explicitly modelling 

and predicting the changing environment, rather than mere-

ly compensating for it, has only recently begun being ex-

plored. 

An approach for scene recognition over seasons created 

a visual dictionary that linked corresponding superpixels 

from summer and winter images, treating seasons as a bi-

nary variable (Neubert, Sünderhauf, and Protzel 2015). 

Path planning through a dynamic environment has been 

demonstrated by modelling the dynamic state of an edge in 

a graph as a stochastic process, and solving for a path with 

minimum expected travel time using dynamic program-

ming (Lobli, Meyer-Delius, and Pfaff 2013). 

 (Krajnik et al. 2016) covers an approach to model bina-

ry environmental states as a probability, varying according 

to a Fourier based periodic series. This exploits the period-

ic nature of many environmental changes explicitly. The 

concept has been applied to path planning (modelling tra-

versabilitiy of edges), localization (presence of specific 

features) and information driven exploration (entropy of 

state). 

Approach 

The Model  

In this work the relevant environment state variables are 

stored as a time series. A fundamental approach to model-

ing time series is the classical decomposition, which sepa-

rates a time series into three relevant components. 

 
Yt is the original time series. Tt is the trend component, a 

slowly changing average level. St is the seasonal compo-

nent, a repeating pattern with known period. Finally, Et is 

the residual, error, or values left over after the trend and 

seasonal components have been removed from the time 

series. This decomposition provides a structured approach 

for modelling and allows for focus on components of inter-

est. For example, seasonal effects are sometimes removed 

from data in a process called deseasonalization. In this 

work, the seasonal effects are of key importance. 

This paper employs the TBATS (Trigonometric, Box-

Cox transform, ARMA errors, Trend, and Season Compo-

nenets) forecasting model framework (De Livera et al. 

2011); the basic model is shown below. The time series, yt, 

is first transformed using the inverse hyperbolic sine (2a). 

This allows some non-linearities to be modelled by this 

linear approach. The series yt
T is decomposed into the 

summation of four components (2b). The first two compo-

nents, lt (2c) and bt (2d), are the level (or current value) and 

trend (or current rate of change) of the series after the sea-

sonal terms st are removed. These components implement a 

dampened version of Holt’s linear trend method. This 

technique comes from a family of approaches known as 

exponential smoothing, which apply an exponentially 

weighted moving average over past data to predict future 

values. For a thorough description of exponential smooth-

ing see (Hyndman et al. 2008). 

 
The component st

i is the ith seasonal component (2e). 

Each seasonal component represents the average values of 

a series over a certain period. It is efficiently described as a 

sum of sin and cosine terms, also known as a Fourier se-

ries, with k harmonics described in equations (3a) and (3b). 

All seasonal components are treated independently, with 

their effects summed together in equation (2b). For the 

experiment described later in this paper, only one seasonal 

component was ever used. 

 
The final component, dt, is an ARMA(p,q) process to 

model any residual error (2f). ARMA (autoregressive mov-

ing average) models are able to accurately approximate a 



large class of stationary time series. Extensions to non-

stationary time series can be done by through a decomposi-

tion and removal of the trend and seasonal (time-varying) 

components leaving the stationary residual (as done here). 

Another option is to difference the time series with itself. 

Many types of non-stationary time series reduce to ARMA 

processes after a finite number of differences. These are 

referred to as ARIMA models (autoregressive integrated 

moving-average). For a thorough introduction to using 

ARMA models for modelling and forecasting, see 

(Brockwell and Davis 2006). 

The Akaike information criterion (AIC) is used for mod-

el selection (e.g. the order of the ARMA(p,q) process). 

While the parameters themselves are estimated with a 

combination of maximum likelihood estimation and nu-

merical optimization (the details are out-of-scope for this 

paper, see the original paper for more information). These 

methods allow both model selection and parameter estima-

tion to be automated. This is a useful property for robotic 

systems. If a robot is moved to a new environment, or the 

environment changes drastically, the model can be updated 

without the need for expert intervention. 

The forecast package for R1 contains an implementation 

of the TBATS model used in this work. 

Testbed – Janitor Robot 

To explore and test the ideas discussed, an example scenar-

io was created for an autonomous janitorial robot. This 

robot attempts to keep a public and high traffic area clean. 

The issue is that heavy volumes of pedestrian traffic both 

inhibit the ability of the robot to move, and the presence of 

the robot interferes with the pedestrian traffic. Ideally the 

robot can return to a charging station when traffic is high, 

and clean whenever traffic is low. 

 

Figure 2: Gazebo simulation environment. The cylinders repre-

sent pedestrians, and the box represent the robot. 

The simulated environment was a 60m by 26m rectangu-

lar area, walled off, with two entrances/exits in the center 

of the short sides (see Figure 2). Pedestrians used simple 

state machines to enter the park at one entrance, wander 

around for a brief amount of time, and exit at the other 

side. Pedestrians used potential-fields based obstacle 
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avoidance to keep from colliding with other pedestrians or 

the robot. The robots charging station was located in one 

corner of this area. 

Real pedestrian traffic data was used for both modeling 

and simulation. Arlington, VA has setup a system of pe-

destrian and bike counters and provides access to the data 

online2. This provided traffic counts with resolution up to 

15 minute intervals. Some example days are shown below 

in Figure 3. To simulate real-time traffic from these counts, 

start times for each pedestrian were randomly distributed 

within each 15-minute time interval using a uniform distri-

bution. 

 
Figure 3: Four days of traffic counts (black) followed by one day 

of forecasted traffic values from TBATS (blue). 

No actual cleaning or charging actions were simulated. 

For cleaning, the robot performed a random walk. The time 

spent in the cleaning state was taken as the measure of 

cleaning done. For charging, the robot moved to the desig-

nated area and waited. There were no power constraints, 

the robot could clean indefinitely. Despite this simplifica-

tion, it’s still desirable for the robot to return to the base 

charger during periods of high traffic in order to avoid in-

terfering with pedestrians. As this was exploratory work, 

these real-world issues were simplified to focus on the in-

teraction between the robotic agent and traffic. 

Input Pathway 

The first step required is to initialize the system with a set 

of data sufficient to generate an accurate model. Multiple 

periods of any relevant seasonal cycles must be provided. 

Two work weeks (September 7-11 and 14-18, 2015) were 

used to create a traffic model for a work day. 

Once the robotic system is running, it measures the traf-

fic count itself by tallying every unique pedestrian viewed 

in simulation (see section ‘Sensor Model’ below for de-

tails). Every fifteen minutes (one forecast interval) the ro-

bot includes the new data point and produces a new set of 

forecasts. At this time, the robot can either generate new 

forecasts using the new data and the same model, or it can 
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re-calculate the model and parameters first. When and how 

often to update the model is an open question. In this work 

the model and parameters were not recalculated. 

Output Pathway 

The model shown in equations (2a-e) takes in recent meas-

urements of a time series and produces future predictions 

of that time series. In this application, the forecast returns 

expected counts for 15-minute time periods, T. The length 

of T is determined by the input data. What the robot needs 

is the expected number of people at any instant in time. To 

achieve this, view the forecast at time t as the count over a 

range of time from t-T/2 to t+T/2. There is only one esti-

mate every fifteen minutes. Between these times, a simple 

first-order approximation can be used. Figure 4 below 

demonstrates this process. Detection of pedestrians (red 

dashes) are recorded and used to generate counts for the 

past (red circles). Together with the predicted counts for 

the future (blue circles), a predicted count during a 15-

minute interval around any time t can be calculated. 

 

 
Figure 4: Predicting traffic counts at any time based on past 

values (red) and forecasted future values (blue). Red dashes are 

individual detections; red circles are the final count per period 

To convert this forecasted count into a density (i.e. the 

number of pedestrians in the area at some instant in time) 

the average time spent by each pedestrian in the relevant 

area, Tped, is needed. Given F(t) returns the forecast at time 

t as calculated above, then the density at time t is…  

 
If there is significant variation in the average time spent, 

the real density could vary significantly from the estimated 

density, even with perfect forecasting of the counts. An-

other option is to simply forecast the density directly with 

measurements of the number of pedestrians at given points 

in time. For this experiment density data was not available, 

only counts, so this was not possible. 

Behavior 

With an estimate of the traffic density for any point in time 

in the future, we can look at how it can be incorporated 

into behavior and decision-making. For this experiment, a 

behavior-based architecture utilizing motor schema was 

applied (Arkin 1998). A basic finite state automata (FSA) 

transitioned the robot between three behaviors: cleaning, 

returning, and waiting. The cleaning state was a random 

search, the returning state drove the robot to its home-base, 

and both behaviors included obstacle avoidance to evade 

pedestrians. 

 
Figure 5: FSA for janitor robot 

A purely reactive agent may transition from cleaning to 

returning (Transition A) when it sees the traffic density has 

crossed some threshold. The forecasting agent can instead 

transition when it forecasts that at some time limit in the 

future, Tlim, this threshold will be crossed. Tlim is chosen to 

ensure that the robot has enough time to return to its sta-

tion. In this way, the time series model can be treated as an 

advanced-percept. It returns the same type of information 

about the environmental state as real-time sensors do, but 

future values instead of current measurements. 

 

 

Figure 6: In a traditional behavior-based architecture, sensor 
measurements feed directly into the relevant behaviors. Here, the 
TBATS model is treated as another percept in parallel with other 

sensor measurements. 

This implementation transitioned from cleaning to return-

ing (Transition A) when two conditions were met: 

Density( Tlim ) > Threshold 

Density( 2Tlim ) > Threshold 

The second check for the time Tlim in the future is simply to 

ensure the increase in traffic is long enough to be meaning-

ful. The conditions for transitioning from waiting to clean-

ing (Transition B) were: 

Density( Tlim ) < Threshold 

CurrentTraffic() < Threshold 

This ensures the robot returns to cleaning when the traffic 

is expected to be dropping below the threshold, but also 

waits to ensure the traffic is actually clear. 

Experiment 

Competing Strategies 

In addition to the forecasting procedure discussed above, 

two other strategies for the janitorial robot were tested for 

comparison. A reactive strategy only utilized real-time 



sensing. Transitions A and B happened when the current 

number of pedestrians was above or below the specified 

traffic density threshold. 

A schedule-based strategy utilized the seasonal compo-

nent of the TBATS model to find an average traffic predic-

tion, and hard-coded start and stop times based on this av-

erage. All strategies used the same threshold for traffic 

density, which was an arbitrarily chosen value near the 

median value for an average day. 

Sensor Models 

Two sensor models were tested to examine the perfor-

mance of the above approaches with varying amounts of 

information. A global sensor model provided the robot 

with the count of all pedestrians in the park. Real scenarios 

could utilize environmental sensing to track the presence of 

pedestrians, and communicate that to a robot. Consider a 

subway station which counts individuals using a turnstile, 

and relays that count to an autonomous cleaning robot. 

A local sensor model provided the position of all pedes-

trians within 20 meters. This simulates the limits of on-

board sensing. These were applied to the reactive and fore-

casting agents. The schedule-based agent did not utilize 

sensing beyond short-range obstacle-avoidance, so there 

would be no difference with either sensor model. 

Dependent Variables 

The goal of the janitorial robot is to maximize cleaning 

while minimizing traffic interference. The time the robot 

spent in each state (cleaning, returning, waiting) was rec-

orded for every 15-minute interval. The time spent in the 

cleaning state is treated as a stand-in for the cleaning per-

formance. Traffic interference was measured by recording 

the number of unique “traffic-disruptions”. Anytime a pe-

destrian came within two meters of a robot, it was counted 

as a single traffic-disruption. Two meters is also the dis-

tance that the robot’s obstacle avoidance behaviors began 

functioning. 

Strategies that clean less will typically have less disrup-

tions, and vice versa. This makes quantitatively comparing 

strategies difficult without assigning utility values and 

costs to cleaning and disruptions. This issue can be side-

stepped by comparing performance to the intended perfor-

mance defined by the traffic threshold. T-Disrupting is 

defined as the time the robot spent cleaning or returning 

during 15-minute intervals where the traffic count was 

above the limit. In contrast, T-Wasted is the time spent in 

the waiting state during intervals where the traffic count 

was below the limit. Finally, Total-T-Off is the sum of T-

Wasted and T-Disrupting, which measures the total devia-

tion from ideal behavior. 

Experiment Details 

Three days were tested, using pedestrian count data from 

September 21, 22, and October 19. Two immediately fol-

lowing the days used to initialize the model, and one day 

four weeks later to see if potential variation over longer 

time effected the model. In the middle of night, with little 

to no traffic, all strategies selected to always clean. The 

time period from 11pm to 5am was excluded for this rea-

son. 

Results 

The daily results of each strategy, averaged for all three 

days, are shown below in Table 1. In general, the schedule 

strategy was conservative, with few disruptions and almost 

no time cleaning during periods of high traffic, despite 

varying traffic for each day. This also meant the total time 

spent cleaning was the lowest of any strategy, and both T-

Wasted and Total-T-Off were the highest of any strategy. 

The reactive strategy performance varied significantly 

between sensor models. With a global sensor, it was com-

petitive with the forecast strategy for the best total perfor-

mance. When reduced to using local sensing, however, the 

performance of the reactive system dropped significantly. 

While it had almost no T-Wasted, it spent a significant 

amount of time cleaning during periods of high traffic, 

causing the most traffic disruptions. This approach was 

greedy and would set out to clean during random short 

gaps in traffic. 

The forecast strategy with global sensing had essentially 

equal performance to the reactive strategy with global 

sensing. With local sensing, however, the forecast strate-

gy’s performance only dropped slightly. The forecasting 

agent needed only to see a pedestrian once to include them 

in its count, and maintain an accurate model to base its 

actions on. Few pedestrians were missed entirely using the 

local sensor model, even if the robotic agent couldn’t sense 

most pedestrians at the same time. 

Figure 7 presents the time spent cleaning over the course 

of a day, when using local sensing, and compares it to the 

traffic level and number of disruptions created. One day for 

each strategy is shown. It is clear that the schedule strategy 

missed cleaning during periods of low-traffic, and the reac-

tive strategy continued to clean some amount during high 

traffic. The forecast strategy was better able to avoid both 

of these situations. 



 
Figure 7: Example days for each strategy using local sensing. 

Each point is the total traffic count, number of disruptions, or 

minutes spent cleaning over a 15 minute interval.  

Discussion 

The reactive and schedule based strategies represent ex-

tremes. If the environment is purely random, there is no 

way to predict future values, and a reactive approach is the 

best that can be done. Likewise, if the environment is per-

fectly deterministic, then a hard schedule can provide the 

exact future states. Many interesting cases, like the traffic 

patterns used in this work, lie in-between these extremes. 

There are both clear patterns and significant random varia-

tion. It is these in-between cases where forecasting envi-

ronmental states should provide improved performance. 

This approach is far from perfected. In particular, the 

time series model applied in this paper is fundamentally 

discrete, designed for use off-line on sets of data. This 

leaves the forecasting system operating at a delay. Observe 

the forecast strategy graph in Figure 7 at 1pm. A temporary 

spike in traffic caused the predictions to be adjusted, and 

cleaning was stopped temporarily. The short spike in traf-

fic, however, was gone before the agent updated its behav-

ior. This response could be improved either with more low-

level reactive behaviors to deal with immediate concerns, 

or more sophisticated time series models that can update 

continuously. 

There is also substantial opportunity to explore how to 

utilize these predictions to drive behavior. In this initial 

work the task and environment were simple, leading to an 

intuitive implementation. When the robot’s actions also 

impact the state (such as draining power or removing dirt) 

the problem becomes far more complicated. Approaches 

using reinforcement learning to solve this complete prob-

lem are currently being explored. Regardless, the work 

here indicates that even simply approaches can improve the 

performance of an autonomous agent. Many robotic appli-

cations that deal with dynamic environments could see 

benefits from maintaining explicit models of how the envi-

ronment changes, and taking actions based on the future 

state. 
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