
Characterizing Performance Guarantees for Multiagent, Real-Time
Systems Operating in Noisy and Uncertain Environments

Damian Lyons
Computer & Information Science

Fordham University
Bronx, NY 10458

dlyons@cis.fordham.edu

Shu Jiang
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332
sjiang@gatech.edu

Ronald Arkin
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332
arkin@cc.gatech.edu

Prem Nirmal
Computer & Information Science

Fordham University
Bronx, NY 10458

prem.nirmal88@gmail.com

Stephen Fox
Computer & Information Science

Fordham University
Bronx, NY 10458

stfox88@gmail.com

Munzir Zafar
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332
mzafar7@gatech.edu

ABSTRACT

Autonomous robots offer the potential to conduct Counter-

Weapons of Mass Destruction (C-WMD) missions in an efficient

and robust manner. However, to leverage this potential, a mission

designer needs to be able to determine how well a robot system

will operate in the noisy and uncertain environments that a C-

WMD mission may require. We are developing a software

framework for verification of performance guarantees for C-

WMD missions based on the MissionLab software system and a

novel process algebra approach to representing robot programs

and operating environments.

In this paper, we report on our initial research for the Defense

Threat Reduction Agency (DTRA) in understanding what is

required from a performance guarantee to give a mission designer

the information necessary to understand how well a robot program

will perform in a specific environment. We link this to prior work

on metrics for robot performance. Using a simple mission

scenario, we explore the implications of uncertainty in the four

components of the problem: the robot program, and the sensors,

actuators and environment with which the program is executed.

Categories and Subject Descriptors

I.2.9 Robotics; D.2.4 Software/Program Verification; D.2.6

Programming Environments

General Terms

Performance, Languages, Verification, Robotics.

Keywords

Performance guarantees, probabilistic and emergent robotic

systems.

1. INTRODUCTION
To effectively deploy an autonomous robot or robot team to

search and locate weapons of mass destruction, it is important to

have performance specifications and guarantees available for the

equipment. Because of the severe potential downside in these

mission-critical operations, the robot and its software must have

the best chance of succeeding given the environmental conditions

and other constraints in which it must operate. However, this

environment may be uncertain, and the software that operates the

robot or robot team may be probabilistic [20], emergent [1],

and/or multiagent [3]. Although tremendous strides have been

made in software verification (e.g., [9]), this high-impact problem

remains extremely challenging.

An important component of the solution is to understand what

performance guarantees are useful and possible for Counter-

Weapons of Mass Destruction (C-WMD) missions. In this paper

we present an overview of the system, which is based on the

MissionLab1 mission specification system [17], being developed

for integrating the generation and use of performance guarantees

as an iterative step in the design of robot software for C-WMD

missions. Using examples in this design framework, we analyze

what mission performance guarantees are of value to a mission

designer from the perspectives of understanding how well the

system will function and of understanding how to improve its

performance.

In the next section, we review related work in the area of

automatic verification of system performance, and in the

development of performance measurements and guarantees.

Section 3 reviews a selection of performance measurements. In

Section 4 we introduce a simplified example scenario to help

understand how uncertainty in sensor, actuator and environment

models influences the form of the performance guarantee, making

it quite different from the form of liveness and safety guarantees

typically seen in software verification. Section 5 then introduces

the architecture we have developed to integrate verification into

the MissionLab software system.

2. RELATED WORK

The field of formal specification and verification of software

systems (e.g., Hinchey et al. [7], Clark et al. [4]) has made

impressive progress. However, leveraging these results to validate

software for mobile robot systems has raised challenges.

Probabilistic [20] and behavior-based mobile robotics [1] employ

assumptions quite different from those used more generally in the

1 MissionLab is freely available for research and educational purposes at:

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/.

formal analysis of software. One key example is a reliance on

emergent behavior: even simple behavior-based systems exhibit

complex behavior when acting in a complex environment. This

means that formal analysis must include the control program and

models of the sensory and motor apparatus as well as environment

models.

Discrete-Event Control techniques (e.g., Ramadge [19], Kosecka

[10]) have been applied to this problem. Most use Finite State

Automata (FSA) as a modeling tool. However, FSA models can

suffer from state-space explosion when used to model the kind of

realistic search environments that occur in C-WMD. While prior

work addresses issues of noisy and uncertain applications, it does

so for problems at a relatively low sensorimotor level as compared

to for example, algorithms from data mining, artificial

intelligence, machine learning and complex adaptive systems

theory. Also, work in this area is focused on automatically

producing a control strategy or controller, whereas our focus is on

verifying software produced by some other means (in our case,

generated by a human operator using MissionLab). More recently

the discrete-event and hybrid approach has been extended to robot

path planning and motion control (e.g., Kress-Gazit [11]) with the

idea that a human provides a high-level, rich constraint

description in linear or interval temporal logic, and a controller is

automatically synthesized for these constraints. However, the

input constraint or constraints in these systems are quite complex

and themselves may now need verification.

The metrics for the performance measurement and guarantees of

behavior-based and probabilistic software systems have not been

standardized so far, although considerable work is proceeding in

the characterization of performance metrics for robot performance

[8]. This is the case not only with behavior-based systems but

with a broader category of systems that are required to carry out

specific tasks intelligently by interacting with real world

environments. Serious effort is underway towards standardization

of these metrics [16] but the challenges are many. Behavior-based

system requirements need to cover a wide spectrum of behaviors

ranging from simple tasks such as point-to-point locomotion to

relatively complex tasks such as human-robot interaction. The

expectations are growing regarding reliable and predictable

performance as new possibilities in design are being explored and

milestones are being achieved.

Urban search and rescue (USAR) is a domain that is being heavily

studied in this context. There are two groups of performance

metrics for the characterization of USAR systems that can be

broadly classified as system characterization and behavior

characterization. System characterization seeks accurate

specification of specific robot capabilities to facilitate direct

comparisons of different robotic platforms, and particular

configurations of similar robot models. The National Institute of

Standards and Technology (NIST) has taken a leadership role for

defining performance standards for USAR robots [8]. These

standards are categorized as human-robot interaction, system,

safety, mobility, etc., along with documentation for standard

reproducible test procedures. For our purposes, these system

metrics will primarily serve as specifications of particular

capabilities of the robot with the view of providing a guarantee to

the user regarding the ranges of behaviors the system provides,

before it is deployed in the real world in the context of a C-WMD

mission. Behavior characterization deals with the problem of

predicting performance guarantees for high-level tasks to be

carried out in uncertain, unstructured, and potentially hostile

environments such as navigation, localization and mapping, room

search, etc. Some related research exists in performance

characterization of higher-level algorithms, i.e., [18] [5], that is

intended for the comparison of different algorithmic performance.

This comparison would traditionally be done by demonstration

(empirical evaluation) instead of formal analysis. Such metrics,

however, may prove to be useful as they may improve the

expressiveness with which the operator can specify required

performance.

3. PERFORMANCE CRITERIA

An important requirement for any evaluation is the establishment

of the performance criteria which will serve as the basis for

specification and evaluation of the system in question. A method

is needed for defining performance goals which not only

accommodates various ranges of capabilities but in our case also

comfortably fits into the process algebra framework we use for

verification; this framework is based on that described in [12].

The absence of any published standards in this regard as well as

the growing needs for the capabilities of C-WMD/USAR systems

makes this an important area of investigation.

Due to the complexity associated with many formal methods, the

performance of control algorithms designed for robots has

traditionally been guaranteed only through empirical evaluation

and demonstration on real systems. Many performance criteria

have been devised to compare the performance of such algorithms

in this context [8]. Those criteria serve as a reference for defining

the mission performance criteria for our verification procedures.

Since we are targeting the USAR/C-WMD applications, a good

starting point is to identify the most common requirements in this

application area. These include navigation, exploration,

localization, mapping, search, and victim identification (among

other things). We can then refer to the large body of literature

available for the performance evaluation of the algorithms

designed for these high-level system goals. In navigation, for

example, [18] has proposed a set of useful performance metrics

along with their formulae and algorithms that could directly be

applicable to our framework. These include safety metrics (e.g.

mean obstacle distance), dimensional metrics (e.g. trajectory

length, time of completion) and smoothness metrics (e.g. bending

energy, smoothness of curvature). Similar propositions are made

in [5]. Related work is available for other areas of application as

well. Currently there is no universal agreement with regards to

these metrics, but it is hoped that the availability of common tools

and techniques to verify, validate, and formally prove

performance guarantees for high-level mission controllers will

lead to standardization of such performance characterization.

The metrics discussed above can be accommodated as part of our

framework, allowing the user to specify the mission goals and

expectations, i.e., specific mission criteria. In the case of multiple

metrics/criteria, the user may then choose to investigate whether a

mission is likely to experience a catastrophic failure or whether a

graceful degradation is more likely. This is a powerful feature of

our approach; we are not just interested in binary yes/no answers

regarding performance guarantees as might be typical for more

traditional software verification. The information that a mission

designer or operator needs to decide whether to deploy a robot

mechanism for a C-WMD mission includes not only the standard

concepts of mission completion („liveness‟) and safety, but also

information about how likely overall success might be, given the

noisy and uncertain environment for the mission.

4. ROBOT SCENARIOS

Performance criteria need to reflect the missions with which

robots will be tasked. In this section we look at several example

missions and consider how they impact what must go into a

performance criterion. In the first example the robot control

strategy is deterministic, where the sensor and actuators operate

with no noise and where there is no uncertainty in the

environment model.

4.1 Deterministic Scenario
A robot searching an area for a target executes actuator commands

to move through the search area, deploying its sensors to search

for the target.

 The robot program is deterministic.

 If the actuators always carry out the motion commands

exactly, then the robot program can always rely on

knowing where it is and hence where it has been.

 If the sensors always report the situation in the

environment with certainty, then obstacles, other agents

and the target can always be reliably detected.

 Finally, if the environment in which the robot operates

has no associated uncertainty, then the robot program

will always fulfill its mission requirements or it will

always fail.

This deterministic scenario does not reflect many actual operating

situations; however, it is necessary to include it as a base case. We

introduce a very straightforward example of a search task to drive

this and the succeeding scenarios. Consider a robot moving from

one location A to a second location B repeatedly as shown in

Figure 1.

Figure 1: Repeated Traverse Mission

The mission designer is interested in two kinds of guarantees

which we can broadly categorize using the traditional Liveness

and Safety terms:

1. Liveness: Will the robot achieve a mission objective?

Examples might include:

 Will the robot arrive at B? (Note that the

complexity of the control strategy or

environment model, or the accuracy of the

sensors or actuators, may still render this a

difficult verification problem.)

 Will the robot complete n traversals from A to

B?

 Will the robot complete n traversals from A to

B by time t?

2. Safety: Will the robot be free of error situations while

carrying out its mission object? Examples could

include:

 Will the robot avoid any and all obstacles

between A and B?

 Will the robot keep its power consumption

within safe levels at all times?

 Will the robot always read its radiation sensor

at a rate of 10Hz or higher.

Because there is no uncertainty in this example scenario, the

performance guarantees exhibit a binary nature; the robot program

will conform to the performance guarantee or it won‟t. This is

typical of the kind of verification constraints seen in general-

purpose software verification.

4.2 Nondeterministic Environment
Consider a modification of the previous example in which the

terrain between locations A and B has an element of uncertainty

with respect to its traversability. The actuators and sensors remain

deterministic in their performance and the search program itself is

deterministic.

 The environment in which the robot now has to operate is one

that can contain patches of terrain that are more difficult to

traverse and the robot will make less progress on these patches.

Any particular execution of the robot mission will encounter some

number of patches and be slowed as a result. Different executions

might encounter different numbers of patches, and hence exhibit a

range of performance.

This possible range of performance complicates the performance

guarantee beyond the binary case we have discussed before. Now

consider the liveness condition: Will the robot complete n

traversals from A to B in time t? In the deterministic scenario, the

robot would either always or never achieve this. However, in this

scenario, there will be some executions in which the robot does

achieve this performance and some in which it does not.

4.2.1 Expected performance
If we leverage the probabilistic concept of expected value, then

one approach is to ask:

 Is the number of expected traversals from location A to

location B in time t equal to n?

 Alternatively we can ask, is the expected time for the

robot to complete n traversals from location A to

location B equal to t?

Even though the environment is not deterministic, this form of the

performance guarantee maintains the easy binary structure of the

deterministic case. This increases the realism of the scenario

without complicating the way in which the mission designer has

to understand performance.

Nonetheless, this approach does hide the variation in performance

behind the concept of expected value. That variation may itself be

a useful and sometimes necessary tool for the mission designer.

4.2.2 Performance Confidence
In scenarios where the options are limited and the risks are high, a

mission designer may consider it reasonable to deploy a robot for

a mission even though the reasons to believe the robot will

succeed are somewhat slim. Therefore it is also important to make

the information about the variability in performance available to

the designer in a performance guarantee.

Returning to the traverse example, a designer can reasonably want

to know:

 how likely it is that the robot will complete n traversals

from location A to location B in time t given the

environment in which it has to carry out the mission.

This additional information is purchased at the cost of

complicating the performance guarantee to include a probability

that needs to be interpreted by the mission designer. A reasonable

interpretation might be: For a very large number of executions in

this environment, in what percentage of executions does the robot

complete n traversals from location A to location B in time t or

less?

4.3 Noisy Sensors and Actuators
Moving another step towards making our initial, deterministic

scenario more realistic, let us now consider a situation where the

robot sensors and actuators operate with noise. That is, the motion

command communicated to the robot by the robot program may

not always produce the same effect on the robot, and a sensor

reading taken during the identical environmental conditions may

yield different measurements. The robot program remains

deterministic.

4.3.1 Expected Performance
The consequence of this uncertainty for the repeated traversal

mission is that the robot may not always reach the locations A and

B, irrespective of terrain traversability. After some number of

traversals, the robot may conceivably have drifted far from A and

B. A mission designer might ask:

 After n traversals from A to B, will the expected

location of the robot be within a distance r of location

B?

This is an application of the expected value concept again, but in

this scenario to a spatial objective rather than a temporal one.

4.3.2 Performance Confidence
 In the scenarios in which knowledge of the variation in

performance is important, a designer may want to ask:

 After n traversals from A to B, how likely is the robot to

be within a distance r of location B, given the

environment in which the program is carried out.

This more complex performance criterion can be interpreted as

follows: after a large number of different executions of the

program in this environment, in what percentage of them was the

robot within a distance r of the location B.

Even this more complex form of the performance criterion hides

information. If the likelihood of being within r of location B is a

value p, then for the remaining 1-p cases we can ask, how badly

do they each fail to meet this criterion?

4.3.3 Performance Distribution
A description of the performance of the system in the cases in

which the robot program does not meet its performance criteria

contains valuable information. Let us consider that the sensor and

actuator models are now extended to include the case of sensor

and actuator failure. For the repeated traversal mission, not only

may the robot position drift from the goal locations, it may go

catastrophically wrong as the robot becomes stuck at a location.

Consider the graphs shown in Figure 2. The horizontal axis is

position and the vertical is the likelihood of attaining that position

given the environment in which the program is executed. The

location of the point B is indicated as a vertical line intersecting

the horizontal axis.

Figure 2: Two examples of spatial distributions

The figure shows examples of two different models for the

distribution of the spatial likelihood. The first, shown as a dotted

line, is one in which the likelihood falls off smoothly on either

side of the location B. If a threshold range r around location B is

selected, and the performance criterion asks the likelihood of the

robot being within r of location B, then in both of the example

distributions shown here, the likelihood is fairly large. However,

in the case of the distribution shown as a dotted line, the failure

cases are also locations close to location B. This is a model of a

favorable kind of failure.

This is in contrast to the distribution indicated as a solid line in

Figure 2. In that case, few of the failure cases, those cases outside

of the spatial interval r around B, are close to B. The failures in

this case are mostly severe failures.

4.4 Probabilistic Robot Program
The final level of complexity that we add to the simple scenario

introduced in this section is the inclusion of probabilistic

algorithms for control of the robot mechanism. Probabilistic

algorithms have been developed for many applications including

mapping and for robot localization. Let us consider that we add a

probabilistic localization algorithm, such as Monte-Carlo

Localization, to the robot program that controls the robot to carry

out the repeated traverse mission and explore what this implies for

the performance criterion.

The effect of a good probabilistic algorithm should be to improve

the performance of the robot in a noisy and uncertain

environment, and that of a poor algorithm, to reduce the

performance. The mission designer is only interested in whether

the robot can achieve location B, with constraints perhaps on the

time, the number of traversals and so forth. We note therefore that

although the addition of this probabilistic algorithm complicates

the mechanics of verification, it does not change the form of the

performance guarantee for the program.

5. INTEGRATING VERIFICATION AND

DESIGN

This performance guarantee component is being embedded into

the Missionlab software package, a comprehensive robot mission

development, simulation and execution environment. The robot

software designer builds her program within MissionLab using the

visual software authoring tools provided. MissionLab allows the

high-level mission that is generated to be tested in simulation first,

for verification of the user‟s intent, and then deployed to one or

more robot platforms for execution.

The newest components of MissionLab, which are based on the

formal modeling described in Lyons and Arkin [12], allow the

designer to carry out an additional software verification step to

establish performance guarantees for the user-defined mission

software. This can be very useful in mission-critical or emergency

response situations (including C-WMD missions such as finding,

containing, and neutralizing Chemical-Biological-Nuclear (CBN)

weapons), where it is not uncommon for robot operators to

customize the robot software, and even hardware, for the specific

mission; and failure of the mission is not an option in these

emergency situations.

Figure 3: MissionLab System with integrated

 verification module.

Figure 3 depicts the verification extension to the existing

MissionLab system. The extension provides an operator feedback

loop in the robot software design process. The process starts with

the designer creating a robot program in the usability-tested

MissionLab programming environment for a specific mission [6]

[14]. Once the high-level mission is specified, the designer may

simulate the robot behavior within MissionLab to verify correct

behavior according to the operator‟s intent. However, this

simulation cannot ever fully capture the interaction between the

robotic hardware and the real environment. To further guarantee

mission success in the real environment, the robot controller can

be validated using the verification module. The verification

module provides an output to the user indicating whether the

controller will meet the performance criteria specified by the

operator. If the controller cannot meet the specified criteria, the

designer may modify the robot program and the design loop

continues. Once it does satisfy the requisite criteria, the designer

may proceed to generate an executable for the robot and then

deploy it to undertake the mission.

5.1 Verification Module Inputs
The inputs to the verification module are the robot software

controller (specified in an intermediate language referred to as

CNL [17]), sensor, robot, and environment models, and the user-

specified performance criteria. In MissionLab, the robot controller

is specified visually by the designer at a very high level of

abstraction. An example of using cfgedit in MissionLab to design

a mission is shown in Figure 4. The models of sensors, robots and

the environment in which the robot program will execute can

simply be selected from existing libraries. These libraries are part

of the verification system and are constructed using the modeling

approach described in this paper. Figures 5-7 show examples of

the model libraries. Due to the limited space here, only a subset of

exemplar components of the libraries are shown.

Figure 4: Example of Mission Design in MissionLab

Figure 5: Example of sensor model library

Once the mission has been built, the designer selects from the

libraries of sensor and robot models that include a range of noise

and uncertainty characteristics (Figures 5 and 6). In a similar

fashion the designer composes an environment model by selecting

from a library of environments (Figure 7).

Figure 6: Example of robot model library

Figure 7: Example of environment model library

Figure 8: Overall architectural design showing user interaction

Based on the sensor, motor and environment choices made, the

designer is offered a selection of customizable verification

conditions and constraints. Verification includes the testing of the

combination of robot program with the environment model for

specific properties of safeness, liveness, and/or efficiency. The

result of this testing is the establishment of performance

guarantees for the software in the environment represented by that

environment model. If the result is unsatisfactory, in terms of

design objectives, the designer can use the feedback from the

verification to iteratively refine the robot program. In other words,

besides telling the designer “yes/no” that the robot program is

satisfactory vis-à-vis the mission, the verification module also

identifies potential causes of failure in the program and provides

the designer with this useful information. This process is

illustrated in Figure 8.

Figure 9: Verification Module Input and Output

5.2 Verification Module
The verification module is based on an approach introduced by

Lyons and Arkin [12] to present robot programs and the

environment in which they operate as networks of processes. The

programs and environments are specified and analyzed using

process algebra [13], which is a mathematical framework that

takes a compositional approach to describing process networks.

The semantics of a process in this framework is a port automaton:

an automaton augmented with the ability to send and receive

communication messages.

This approach has a number of important advantages:

 The robot program, sensor and actuator models, and

environment model can all be specified in one notation.

 The concurrent and communicating composition of

program, sensor and actuator models and environment is

the object of verification

 Noisy and incomplete information is represented as the

interaction of stochastic processes.

 The algebraic foundation supports verification by

automated algebraic reasoning rather than by „simulated

execution‟ or enumerative model checking, both of

which have significant computational complexity.

The verification module does not need to carry out a general

software verification step, e.g., [9]. In general purpose software

verification, the verification criterion can include a constraint on

any of the variables within the program and their value.

The performance guarantee in our application concerns the robot

and its operating environment, not the robot program directly.

Variables from the environment, such as the position of the robot,

time, and so forth, can be included in the performance guarantee.

However, variable values within the robot program are only of

interest in so far as they may affect these variables from the

environment.

Furthermore, the models for the robot and its environment,

selected by the mission designer to validate the program, come

from the robot, sensor and environment libraries mentioned

earlier. This means significant preprocessing can be carried out on

these models to simplify their composition with other models, and

their verification with a robot program.

6. CONCLUSION

In this paper, we described a software framework for validating

performance guarantees for C-WMD missions based on

extensions to the MissionLab mission specification system and on

a novel process algebra approach to represent robot programs and

operating environments. The key focus in the paper is on the

problem of what the performance guarantee should look like from

an operator‟s perspective. We reviewed the state of the art in

performance measurements for robots and presented candidate

measurements for the performance guarantee. Using a simple

example scenario, we looked at the implications of uncertainty in

sensor and actuators, as well as uncertainty in the environment, on

the form of the performance guarantee.

To be useful to a mission designer, the performance guarantee

must allow intuitive expression of the variance in performance of

the program due to uncertainty, including the use of the expected

value of environment variables, the likelihood of an

environmental variable being within a specified range, and, to

understand the severity of failure, the distribution of values for an

environment variable.

The study described in this paper serves as the basis for our on-

going work for the Defense Threat Reduction Agency in process

algebra verification of robot missions and in the construction of

the verification module for MissionLab.

7. ACKNOWLEDGMENTS

This work was supported by the Defense Threat Reduction

Agency, Basic Research Award # HDTRA1-11-1-0038.

8. REFERENCES
[1] Arkin, R.C., Behavior-based Robotics, MIT Press, 1998.

[2] Arkin, R.C., Diaz, J. Line of Sight Constrained Exploration

for Reactive Multiagent Robotic teams, AMC02, July 2002,

pp. 455-461.

[3] Balch, T. and Parker, L., Robot Teams: From Diversity to

Polymorphism, AK Peters, 2002.

[4] Clark, E., Grumberg, O., Peled, D., Model Checking. MIT

Press 1999.

[5] Daniele Calisi, Daniele Nardi Performance evaluation of

pure-motion tasks for mobile robots with respect to world

models, Autonomous Robots 27(4):465-481,2009.

[6] Endo, Y., MacKenzie, D., and Arkin, R.C., Usability

Evaluation of High-level User Assistance for Robot Mission

Specification, IEEE Transactions on Systems, Man, and

Cybernetics, Vol. 34, No. 2, pp. 168-180, May 2004.

[7] Hinchey M.G., and J.P. Bowen, High-Integrity System

Specification and Design, FACIT series, Springer-Verlag,

London, 1999.

[8] Jacoff, A., Messina, E., Standard Test Methods For Response

Robots, ASTM E54.08.01 Intelligent Systems Division,

NIST 2011

[9] Jhala, R., Majumdar, R., Software Model Checking, ACM

Computing Surveys V41 N4 Oct 2009.

[10] Kosecka, J. (1996). A Framework for Modeling and

Verifying Visually Guided Agents, Analysis and Experiments,

Ph. D. dissertation, Dept of Computer and Information

Science, University of Pennsylvania.

[11] Kress-Gazit, H., and G. J. Pappas, Automatic Synthesis of

Robot Controllers for Tasks with Locative Prepositions,

IEEE International Conference on Robotics and Automation,

Anchorage, Alaska, May 2010.

[12] Lyons, D., and Arkin, R., Towards Performance Guarantees

for Emergent Behavior, Proc. 2004 IEEE International

Conference on Robotics and Automation, New Orleans, LA,

May. 2004.

[13] Lyons, D.M., Representing and analyzing action plans as

networks of concurrent processes. IEEE Transactions on

Robotics and Automation, V9 N3 June 1993 pp.241-256.

[14] MacKenzie, D., and Arkin, R., Evaluating the Usability of

Robot Programming Toolsets, International Journal of

Robotics Research, Vol. 4, No. 7, April 1998, pp. 381-401.

[15] MacKenzie, D., Arkin, R.C., and Cameron, R., Multiagent

Mission Specification and Execution, Autonomous Robots,

Vol. 4, No. 1, Jan. 1997, pp. 29-52.

[16] Madhavan, Raj; Tunstel, Edward; Messina, Elena (Eds.),

Performance Evaluation and Benchmarking of Intelligent

Systems, ISBN 978-1-4419-0491-1, 2009.

[17] MissionLab v7.0 User Manual, available at

http://www.cc.gatech.edu/aimosaic/robot-

lab/research/MissionLab/mlab_manual-7.0.pdf

[18] Muñoz,N.D., and J. A. Valencia, N. Londoño, Evaluation of

Navigation of an Autonomous Mobile Robot, 2007.

[19] Ramadge R.J., and W. M. Wonham, 1987. Supervisory

control of a class of discrete event processes. SIAM J.

Control and Optimization, 25(1), pp. 206-230.

[20] Thrun, S., Burgard, W., and Fox, D., Probabilistic Robotics,

MIT Press 2005.

http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf
http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf

