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Abstract— In this paper, we describe a reactive robot
architecture that uses fast re-planning methods to avoid
the shortcomings of reactive navigation, such as getting
stuck in box canyons or in front of small openings.
Our robot architecture differs from others in that it
gives planning progressively greater control of the robot
if reactive navigation continues to fail, until planning
controls the robot directly. Our first experiments on a
Nomad robot and in simulation demonstrate that our
robot architecture promises to simplify the programming
of reactive robot architectures greatly and results in
robust navigation, smooth trajectories, and reasonably
good navigation performance.

I. I NTRODUCTION

Reactive navigation approaches are often used for
robot navigation since they are fast and rely only on
the current sensor readings instead of an accurate map,
the use of which requires very accurate localization ca-
pabilities [Arkin98]. However, reactive navigation does
not plan ahead and is therefore susceptible to local
minima. For example, it can get stuck in box canyons
or in front of small openings. These shortcomings are
usually addressed by changing from one behavior to
another in the reactive controller. The decision when to
activate which behavior can be made either 1) before
or 2) during execution.

1) In the first case, a programmer creates several
behaviors, each of which is suited for a specific
navigation scenario that the robot might get
exposed to, for example one behavior for naviga-
tion in corridors and another one for navigation
in forest. Then, the programmer encodes when to
activate which behavior, for example, in form of
a finite state automaton whose states correspond
to behaviors and whose transitions correspond to
observations made during execution. This finite
state automaton corresponds to a conditional off-
line plan. An advantage of this scheme is that
it results in good navigation performance if the
programmer anticipated all navigation scenarios
correctly. A disadvantage is that the rough char-
acteristics of the terrain need to be known. Also,
the finite state automaton is terrain specific and
can contain a large number of behaviors, which

makes its programming time-consuming. The
resulting navigation performance can be poor if
the programmer did not anticipate all navigation
scenarios correctly. Some schemes replace the
programmer with an off-line learning method, re-
sulting in similar advantages and disadvantages.

2) In the second case, the reactive controller uses
only one behavior, but an on-line planner or
learning method modifies the parameter values
of the behavior during execution, for example,
when the robot does not appear to make progress
toward the goal. An advantage of this scheme is
that it can be used even in the presence of some
simple navigation scenarios that the programmer
did not anticipate. A disadvantage is that it can
result in poor navigation performance for some
navigation scenarios since the reactive controller
needs time to both detect when the parameters
should be changed and experiment with how to
change them.

In practice, one often uses a combination of both
schemes, namely the first scheme for high-level terrain
characteristics, that are often known in advance (for
example, navigating through a forest), and the second
scheme for low-level terrain characteristics, that are
often not known in advance (for example, getting out
of box canyons). The resulting navigation performance
is good but programming is difficult since one has
to choose behaviors, sequence them, and determine
a large number of parameters in the process. We
therefore explore an alternative scheme that utilizes
on-line planning but whose reactive controller uses
only one behavior without modifying the parameters of
the behavior during execution. Our robot architecture
requires only a small amount of programming (and
testing) since one does not have to choose behaviors
and sequence them. One only needs to determine a
small number of parameters.

Combining planning and reactive navigation is not
new. Many robot architectures use on-line planning
to determine a nominal robot trajectory that reactive
navigation has to follow. In this case, reactive nav-



igation enables the robot to move around obstacles
that planning did not know about or did not want to
model. We, on the other hand, use on-line planning
in a different way, namely to help reactive navigation
in navigation scenarios where it is unable to make
progress toward the goal. Our robot architecture differs
from other robot architectures that use on-line planning
in this way in that it gives the planner progressively
greater control of the robot if reactive navigation
continues to fail, until on-line planning controls the
robot directly. The amount of planning and how closely
the planner controls the robot depend therefore on the
difficulty that reactive navigation has with the terrain.

The primary difficulty with implementing our robot
architecture, and perhaps the reason why it is unusual
to let on-line planning control robots directly, is that
robot architectures need to plan on-line to be respon-
sive to the current navigation scenario. Although com-
puters are getting faster and faster, on-line planning
is still slower than reactive navigation since it needs
to repeatedly sense, update a map, and adapt its plans
to changes in the map. Our robot architecture address
this issue by determining the navigation mode in a
principled way so that the time during which planning
controls the robot directly is no larger than necessary
and by using fast replanning methods that do not plan
from scratch but rather adapt the previous plan to the
new situation.

II. OUR ROBOT ARCHITECTURE

Our robot architecture is a three-layered architecture
with a reactive layer (that implements reactive nav-
igation), sequencing layer (that determines the navi-
gation mode), and deliberative layer (that implements
the planner). The reactive and sequencing layers run
continuously but the deliberative layer runs only in
certain navigation modes.

A. Reactive Layer

The reactive layer uses motor schemata [Arkin89] to
move the robot to given coordinates and implements
a behavior that consists of two primitive behaviors,
namely moving to the goal and avoiding the obstacles.
Each of the primitive behaviors generates a vector. The
reactive layer then calculates the weighted sum of the
vectors for given weights that do not change during
execution. It then moves the robot in the direction of
the resulting vector with a speed that corresponds to
its length.

B. Deliberative Layer

The deliberative layer obtains sensor readings from
the on-board sensors, updates a short-term map (oc-
cupancy grid), and then uses D* Lite [Koen02], a

simplified and thus easy to understand version of D*
[Sten95a], to plan a path from the current location of
the robot to the goal under the assumption that terrain
is easily traversable unless the map says otherwise.

C. Sequencing Layer

The sequencing layer monitors the progress of the
robot and determines the navigation mode. Our robot
architecture uses reactive navigation as much as possi-
ble because of its speed. However, reactive navigation
can get stuck in box canyons or in front of small open-
ings. If the robot does not make progress toward the
goal, the robot architecture activates the planner, which
sets a way-point for reactive navigation to achieve,
as has been done before [Wett01][Urms03]. Reactive
navigation can still get stuck if the reactive layer is
unable to reach the way-point. For example, it can still
get stuck in front of small openings. If the robot does
not make progress toward the next way-point, our robot
architecture bypasses reactive navigation completely
and lets the planner control the robot directly, which
is rather unusual in robotics. Our robot architecture
thus operates in three different navigation modes. In
mode 1, reactive navigation controls the robot and
attempts to move it to the goal. In mode 2, reactive
navigation controls the robot and attempts to move it
to the way-point provided by the planner. In mode 3,
the planner directly controls the robot and attempts to
move it to the goal. Since planning is much slower than
reactive navigation, our robot architecture always uses
the smallest navigation mode that promises to allow
the robot to make progress towards the goal.

We now describe how the sequencing layer deter-
mines the navigation mode with only two parameters,
called PERSISTENCE and ANGLE DEVIATION.

• The mode switches from 1 to 2 when the robot
travels less than a given distance during the time
given by PERSISTENCE, and thus appears not
to make progress. In mode 2, the planner plans a
path and then returns as way-point the point on
the path farthest away from the current location
of the robot that is not occluded from it by known
obstacles. This way, reactive navigation will likely
be able to reach the way-point but still has control
of the robot for a long time. The mode switches
from 2 back to 1 when the difference in the
movement direction recommended by mode 1 and
the direction of the path generated by the planner
is less than ANGLE DEVIATION for the amount
of time given by PERSISTENCE. This condition
guarantees that the robot continues to move in the
same direction after the mode switch that it was
moving in before the mode switch.



Fig. 1. Nomad Robot During an Experiment

• The mode switches from 2 to 3 when the robot
travels less than a given distance during the
time where the planner has returned the same
way-point PERSISTENCE number of times or
the difference in the movement direction recom-
mended by mode 2 and the direction of the way-
point set by the planner is greater than ANGLE
DEVIATION for the amount of time given by
PERSISTENCE. (A switch from mode 2 to 3
takes precedence over a switch from mode 2 to
1 in case both conditions are satisfied.) In mode
3, the planner controls the robot directly. It plans
a path and then moves the robot along that path
for a distance of two grid cells before it re-plans
the path. This short distance ensures that the robot
does not run into unknown obstacles. The mode
switches from 3 back to 2 when the difference in
the movement direction recommended by mode 2
(with a way-point set two grid cells away from the
current cell of the robot on the planned path) and
the direction of the path generated by the planner
is less than ANGLE DEVIATION for the amount
of time given by PERSISTENCE. This condition
guarantees that the robot continues to move in the
same direction after the mode switch that it was
moving in before the mode switch.

III. C ASE STUDY: M ISSIONLAB

To demonstrate the advantages of our robot archi-
tecture, we performed a case study with MissionLab
[Mlab02], a robot programming environment that has
a user-friendly graphical user interface and implements
the AuRA architecture [Arkin97]. To this end, we
integrated our robot architecture into MissionLab. All
experiments were performed either in simulation or on
a Nomad 150 with two SICK lasers that provide a
360 degree field of view, as shown in Figure 1. There
was neither sensor nor dead-reckoning uncertainty in

Fig. 2. Simulation Experiment 1 - MissionLab

simulation but a large amount of both sensor and dead-
reckoning uncertainty on the Nomad. The Nomad used
no sensors other than the lasers and no localization
technique other than simple dead-reckoning (where
walls were used to correct the orientation of the
robot). We limited its speed to about 30 centimeters
per second to reduce dead-reckoning errors due to
slippage. MissionLab was run on a laptop that was
mounted on top of the Nomad and connected to the
lasers and the Nomad via serial ports.

A. Simulation Experiments

We first evaluated our robot architecture in simula-
tion against MissionLab, that fits the first scheme men-
tioned in the introduction, where the decision when
to activate which behavior is made before execution.
Thus, we assume that a map of the terrain is available.
The robot starts in a field sparsely populated with
obstacles, has to traverse the field, enter a building
through a door, travel down a corridor, enter a room
and move to a location in the room, as shown in
Figure 2.

A programmer of MissionLab first creates several
behaviors with and then a finite state automaton that
sequences them. Figure 3 shows a way of solving
the navigation problem with MissionLab that needs
eight different behaviors with a total of 32 parameters
in the finite state automaton to accomplish this task.
For example, the behavior for moving in corridors
uses a wall-following method with six parameters.
We optimized the behaviors, their sequence, and the
parameter values to yield a small travel time. Figure 2



Fig. 3. Finite State Automaton for MissionLab

Fig. 4. Simulation Experiment 1 - Our Robot Architecture

shows the resulting trajectory of the robot. The total
travel time is 16.1 seconds. (All times include the start-
up times of MissionLab).

Our robot architecture uses only one behavior with
four parameters plus two parameters to switch navi-
gation modes. Consequently, it requires only a small
amount of programming (and testing) since one does
not have to choose behaviors and sequence them
but only needs to set six parameter values. Figure 5
shows the time that the robot spent in mode 3 and
the travel time of the robot for different values of

PERSISTENCE ANGLE Time in Travel
DEVIATION Mode 3 Time

(cycles) (degrees) (seconds) (seconds)
1 5 13 35

15 6 28
25 5 31
35 5 31
45 10 71
≥ 55 ∞ ∞

2 5 3 17
15 1 20
25 1 20
35 1 20
75 1 32
85 1 41

3 5 5 20
15 2 19
25 1 25
35 1 25
45 1 29
75 1 51
85 1 71

4 5 1 20
15 1 19
25 1 20
35 1 20
45 1 21
75 1 44
85 1 50

5 5 3 24
15 1 21
25 1 22
35 1 23
45 1 41
≥ 55 ∞ ∞

6 5 1 22
15 3 28
25 1 23
35 1 27
45 1 75
≥ 55 ∞ ∞

Fig. 5. Effect of Variation of Parameter Values

PERSISTENCE and ANGLE DEVIATION. If AN-
GLE DEVIATION is too large, then the robot does
not complete its mission and these times are infinity.
Notice that the travel time first decreases and then
increases again, as ANGLE DEVIATION increases for
a given PERSISTENCE. This systematic variation can
be exploited to find good values for the two parameters
with a small number of experiments. The travel time is
minimized if PERSISTENCE is 2 and ANGLE DEVI-
ATION is 5. Figure 4 shows the trajectory of the robot
for these parameter values. The robot started in mode
1, entered mode 2 at point A, mode 3 at point B, mode
2 at Point C, mode 3 at Point D, and mode 2 at point
E. The total travel time of the robot was 25.5 seconds,
which is larger than then total travel time of the robot
under MissionLab, as expected since we spent a long
time tuning MissionLab, but still reasonable. Note that
the parameter values of the controller prevent it from
entering the room that contains the goal. Therefore,



(a) Learning Momentum (b) Avoiding the Past (c) Our Robot Architecture

Fig. 6. Simulation Experiment 2

(a) Learning Momentum (b) Avoiding the Past (c) Our Robot Architecture

Fig. 7. Simulation Experiment 3

our robot architecture eventually switches into mode
3 and lets the planner control the robot. Thus, it is
able to correct poor navigation performance caused by
parameter values that are suboptimal for the current
navigation situation.

We now evaluate our robot architecture in simulation
against other techniques that can be used to overcome
poor navigation performance but do not use on-line
planning, biasing the robot away from recently visited
locations (called “avoiding the past”) [Balch93] and
adjusting the parameter values of behaviors during ex-
ecution (called “learning momentum”) [Lee01]. These
techniques fit the second scheme mentioned in the in-
troduction, namely where the decision when to activate
which behavior is made during execution. Thus, we
assume that a map of the terrain is not available. Differ-
ent from our robot architecture, these schemes are only
designed to be used for simple navigation scenarios,
such as box canyons and small openings. and not to
relieve one from choosing behaviors, sequencing them,
and determining their parameter values for complex
navigation tasks such as the one discussed above. For
each experiment, we chose the same parameter values
for the reactive controller (taken from the MissionLab
demo files) and optimized the remaining parameter
values of each technique to yield a small travel time. In
fact, learning momentum required the parameter values
to be tuned very carefully to be successful.

• In the first experiment, the robot operated ten
times in a terrain with a box canyon, as shown
in Figure 6. Our robot architecture succeeded in
all ten runs, invoked the planner only twice per
run, and needed an average travel time of 13.9
seconds. Avoiding the past and the ballooning

version of learning momentum also succeeded,
with average travel times of 9.8 and 26.1 seconds,
respectively.

• In the second experiment, the robot operated ten
times in a terrain with a small opening, as shown
in Figure 7. Our robot architecture succeeded in
all ten runs and needed an average travel time of
4.7 seconds. Avoiding the past and the squeezing
version of learning momentum also succeeded,
with average travel times of 4.3 and 2.8 seconds,
respectively.

Note the smoothness of the trajectory in both exper-
iments when using our robot architecture compared to
avoiding the past and learning momentum.

B. Robot Experiments

We now evaluate our robot architecture on the
Nomad robot. We used the same parameter values for
both experiments.

• In the first experiment, the robot operated in
a corridor environment, as shown in Figure 8
together with resulting trajectory of the robot.
(This map was not generated by the robot but was
constructed from data obtained during the trial.
Since the robot used only simple dead-reckoning,
its short-term map deteriorated over time and was
discarded whenever the goal became unreachable
due to dead-reckoning errors.) The robot had to
navigate about 20 meters from our lab via the
corridor to the mail room. The robot started in
mode 1, entered mode 2 at point A, mode 3 at
point C, mode 2 at point D, mode 1 at point F,
mode 2 at point G, and finally mode 1 at point
H. The other points mark additional locations at



Fig. 8. Robot Experiment 1 (Grid Cell Size 10x10 cm)

Fig. 9. Robot Experiment 2 (Grid Cell Size 15x15 cm)

which the planner was invoked in mode 2 to set
a way-point.

• In the second experiment, the robot operated in
an open space that was sparse populated with
obstacles, as shown in Figure 9 together with the
trajectory of the robot. The robot had to navigate
about 28 meters in the foyer of our building,
through a sparse field of obstacles past a box
canyon to the goal, as shown in Figure 1. The
robot started in mode 1, and entered mode 2 at
point A. Point B and C mark additional locations
at which the planner was invoked in mode 2 to
set a way-point.

These experiments demonstrate that the amount of
planning performed by our robot architecture and how
closely the planner controls the robot depend on the
difficulty that reactive navigation has with the terrain.
The planner is invoked only if necessary. For example,
mode 1 is used throughout the easy-to-traverse corridor
in the first experiment. Mode 3 is invoked only close to
the narrow doorway but not the wider one in the first
experiment and not at all in the second experiment.

IV. RELATED WORK

Our robot architecture is a three-layered architecture
with a powerful deliberative layer and a degenerated
sequencing layer, whereas many three-tiered archi-
tectures fit the first case described in the introduc-
tion and have a degenerated deliberative layer but a
powerful sequencing layer, for example, one based
on RAPS [Firby87]. The planners of some of these
robot architectures run asynchronously with the control
loop [Gat91], whereas the planners of others run syn-
chronously with the control loop [Bon97]. Similarly,

the planners of some of these robot architectures run
continuously [Sten95] [Lyons95], whereas the planners
of others run only from time to time [Bon97]. The
planner of our robot architecture runs synchronously
with the control loop and, depending on the navigation
mode, either continuously (to control the robot in mode
3) or only from time to time (to plan the next way-point
in mode 2). It differs from the planners of other robot
architectures in that it can control the robot directly,
when needed. This is a radical departure from the
current thinking that this should be avoided [Gat98]
and the suggestion to use plans only as advice but
not commands [Agre90] which is based on experience
with classical planning technology that was too slow
for researchers to integrate it successfully into the
control loop of robots [Fikes71]. Our robot architecture
demonstrates that using plans sometimes as advice
(mode 2) and sometimes as commands (mode 3),
depending on the difficulty that reactive navigation has
with the terrain, can result in robust navigation without
the need for encoding world knowledge in the robot
architecture.

V. CONCLUSIONS

We described a reactive robot architecture that uses
fast re-planning methods to avoid the shortcomings
of reactive navigation, such as getting stuck in box
canyons or in front of small openings. Our robot ar-
chitecture differs from other robot architectures in that
it gives planning progressively greater control of the
robot if reactive navigation continues to fail to make
progress toward the goal, until planning controls the
robot directly. To the best of our knowledge, our robot
architecture is the first one with this property. It also
requires only a small amount of programming (and
testing) since one does not have to choose behaviors
and sequence them. One only needs to determine a
small number of parameters. Our first experiments on
a Nomad robot and in simulation demonstrated that it
results in robust navigation, relatively smooth trajecto-
ries, and reasonably good navigation performance. It is
therefore a first step towards integrating planning more
tightly into the control-loop of mobile robots. In future
work, we intend to increase the navigation performance
of our robot architecture even further. We also intend to
explore how to use on-line learning and, if available, an
a-priori map to automatically determine the parameter
values of our robot architecture to enable it to operate
in any kind of terrain without a programmer having to
modify them.
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