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Abstract: Knowledge is essential for an autonomous robot to act intelligently when tasked with a 

mission.  With recent leaps of progress, the paradigm of SLAM (Simultaneous Localization and 

Mapping) has emerged as an ideal source of spatial knowledge for autonomous robots. However, despite 

advancements in both paradigms of SLAM and robot control, research in the integration of these areas 

has been lacking and remained open to investigation. This paper presents an integration of SLAM into a 

behavior-based robotic system as a dynamically acquired spatial memory, which can be used to enable 

new behaviors and augment existing ones. The effectiveness of the integrated system is demonstrated 

with a biohazard search mission, where a robot is tasked to search and locate a biohazard within an 

unknown environment under a time constraint. 
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1. INTRODUCTION 

Knowledge is essential for any intelligent entity to not only 

survive, but thrive, in the natural environment. Reactive 

robotic systems have found tremendous success without 

explicit knowledge representation by tightly couple sensing 

to action to produce timely response in dynamic and 

unstructured environments. However, the source of reactive 

systems’ success is simultaneously their source of limitation; 

that is, applications of reactive robotic systems are limited by 

their lack of internal knowledge representation (Mataric, 

1992). While there is a common consensus on the importance 

of knowledge for robotic systems, how it should be 

represented and used within these systems remains open to 

investigation. Furthermore, care needs to be taken when 

adding knowledge representation to reactive robot systems, 

since knowledge, if misused, could interfere with the 

simplicity and efficiency of reactive control (Arkin, 1998).  

Arkin (1998) presented some examples of spatial knowledge 

integration for behavior-based robots, which resulted in more 

flexible and general navigation. These examples include 

behavioral memory (Balch & Arkin, 1993), where world 

knowledge was incorporated as spatial memory that is local 

to a specific behavior, and long-term memory maps (Mataric, 

1992), where world knowledge was integrated as long-term 

topological maps for navigational path planning. With recent 

advancements, the paradigm of SLAM has emerged as an 

excellent source of spatial knowledge for autonomous robots. 

However, while major progresses have been made in the 

respective areas of SLAM and robot control, surprisingly, 

their integration has not been fully investigated (Milford & 

Wyeth, 2010; Song et al., 2014).  

This paper presents the integration of SLAM with a behavior-

based robotic system as a dynamically acquired spatial 

memory to enable more general and intelligent behaviors 

than their pure reactive counterparts, while at the same time 

maintaining the reflexive nature of reactive systems. The 

motivation is to leverage current advancements in the SLAM 

paradigm to enable robot behaviors that can be used to 

achieve complex missions. The integration of SLAM into a 

behavior-based system occurs at two basic levels: 1) at the 

system level, where the output of the SLAM module (i.e., 

map and robot pose) is made accessible to all primitive 

behaviors and 2) at the behavioral level, where a perceptual 

schema turns the SLAM output into information that is 

required for the individual behavior to generate its response. 

This results in a robotic system where the integrated SLAM-

based spatial memory can not only be used to enable new 

behaviors but to augment existing ones as well. 

A biohazard search mission, where a robot is tasked to search 

for a biohazard in an unknown environment under a time 

constraint, is presented to illustrate the effectiveness of the 

integrated system. The mission is motivated by the 

unfortunate threat of terrorist attacks using WMD (Weapons 

of Mass Destruction) (Dickinson, 1999), which robotics has 

been identified to play a key role in defense against 

(Doesburg & General, 2004). Experimental trials of the 

biohazard search mission demonstrate the effectiveness of the 

SLAM-based behaviors in enabling a robot to take advantage 

of the integrated spatial knowledge to act intelligently in an 

unknown environment while being responsive to its 

surroundings. 

The remaining sections proceed with a review of knowledge 

integration for robotic systems with a focus on SLAM-based 

spatial knowledge in Section 2. We then follow, in Section 3, 

with a description of the integration of a SLAM system with 

a behavior-based robotic framework. The effectiveness of the 

integrated system is then demonstrated with experimental 

trials, where SLAM-based behaviors are used to accomplish a 

Counter-WMD mission, which is described in Section 4, 

along with experimental results in Section 5. Section 6 

concludes the paper and proposes future work. 



 

 

     

 

2. RELATED WORK 

A reactive robotic system’s action is tightly coupled to its 

sensory inputs to produce timely reaction in dynamic and 

unstructured environments. Reactive systems generate fast 

responsive actions by avoiding the use of explicit 

representational knowledge (or world model). However, the 

lack of knowledge poses limitations on the ability of these 

systems to carry out complex missions. Several researchers 

have addressed this issue by integrating world knowledge 

into robotic systems for intelligent navigation behaviors that 

addresses various issues encountered in pure reactive 

navigation. Arkin (1998) presented a comprehensive survey 

of these systems, which demonstrated the usefulness of 

knowledge integration for reactive systems. 

Motivated by the observation that reactive systems have been 

limited to applications requiring no explicit internal 

representation, Mataric (1992) presented an integration of a 

topological map representation into a reactive, subsumption-

based mobile robot. The goal of the integration is to maintain 

a map of the environment and use it for path planning. Fox et 

al. (1998) integrated data derived from a previously acquired 

map of the environment as a “virtual sensor” with real 

sensors for collision avoidance. The objective is to ensure 

safe operation within an environment with large number of 

ill-shaped obstacles (e.g., humans) that could be problematic 

for purely sensor-based methods (Fox et al., 1998). To enable 

a robot to solve complex navigation problems such as the box 

canyon, Balch and Arkin (1993) integrated a local spatial 

memory into a reactive robotic system. The spatial memory, 

inspired by ants leaving chemical trails behind them as they 

travel, is a 2D array of integers where each element of the 

grid records the number of times the corresponding square 

patch in the world has been visited. This spatial memory 

enabled an “avoid the past” behavior for robot navigation that 

allows the robot to avoid areas that have already been visited. 

However, the spatial map becomes inaccurate as the robot 

moves about the world. 

Recent advancements in the paradigm of simultaneous 

localization and mapping (SLAM) (Durrant-Whyte & Bailey, 

2006; Thrun & Leonard, 2008) have made it an excellent 

source of spatial knowledge for mobile robots. However, as 

Milford and Wyeth (2010) argued, the fields of SLAM and 

robot control have made tremendous advancements “in 

parallel with little overlap”. This “little overlap” occurs in the 

paradigm of integrated exploration (Makarenko et al., 2002; 

Sim & Roy, 2005) and active SLAM (Kim & Eustice, 2013; 

Leung et al., 2006; Stachniss et al., 2004), or SPLAM 

(simultaneous planning, localization, and mapping) (Leung et 

al., 2008), which concerns itself with the integration of 

exploration, planning, localization, and mapping. The 

objective of integrated exploration and active SLAM is to get 

an accurate map efficiently. The basis of the methods to 

realize this objective comes from the insight that the quality 

of map is highly dependent on the sequence of motion/path 

executed by the robot. For instance, Kim and Eustice (2013) 

and Stachniss et al. (2004) presented active SLAM strategies 

that actively close loops during exploration and mapping, 

where utilities associated with the exploratory and 

revisitation actions are used to determine whether to keep 

exploring or to revisit past locations.  

Thus, the problem of integrated exploration and active SLAM 

can generally be viewed as a trajectory planning problem that 

tries to optimize, or balance the tradeoffs among, some utility 

measures (e.g., map coverage and accuracy) of the SLAM 

task. Makarenko et al. (2012) presented a strategy for 

integrated exploration that evaluates alternative actions based 

on information gain, localization quality, and navigation cost. 

Leung et al. (2006) formulated the active SLAM problem as 

an optimal trajectory planning problem that tries to maximize 

map coverage and minimize map uncertainty. Bourgault et al. 

(2002) maximized the accuracy of the map building process 

during exploration by adaptively selecting control actions that 

maximize the localization accuracy.  Specific metrics for 

quantifying the uncertainty of the robot pose and the 

generated map, such as a-optimality (Sim & Roy, 2005) and 

d-optimality (Carrillo et al., 2012), have been used by motion 

planning algorithms to plan a multi-step trajectory for active 

SLAM. However, the paradigms of integrated exploration 

and active SLAM focus on the task of exploration for the 

purpose of generating accurate map rather than using the 

spatial knowledge that SLAM provides to accomplish tasks 

beyond mapping. 

Besides calling to attention the lack of overlap between the 

paradigms of SLAM and robot control, Milford and Wyeth 

(2010) presented the integration of SLAM with a hybrid 

robot control architecture, which was then used to perform a 

delivery task within an office environment. The SLAM 

algorithm (i.e., RatSLAM) generates an experience map, 

which is a semi-metric topological graph map that consists of 

nodes called experiences and links between these 

experiences. Similar to active SLAM approaches, the 

experience map is better suited for planning robot motion 

than for reactive behaviors. Furthermore, similar to some 

active SLAM approaches (Bourgault et al., 2002; Leung et 

al., 2006; Makarenko et al., 2002), Milford and Wyeth (2010) 

maintains a local obstacle map, for local path planning, in 

addition to the experience map generated by the SLAM 

module. 

In conclusion, while various representations of world 

knowledge have been integrated into reactive robotic systems 

for intelligent navigation behaviors, SLAM has emerged in 

recent years as an important alternative source of spatial 

knowledge for autonomous robots. While the information 

provided by SLAM has been used for trajectory/path 

planning to solve active SLAM problems (Carrillo et al., 

2012; Leung et al., 2006) and an office delivery task (Milford 

& Wyeth, 2010), the SLAM-based spatial knowledge has not 

been fully exploited by robotic systems to enable more 

comprehensive intelligent reactive behaviors. Thus, this 

paper investigates the question of how SLAM algorithms can 

be integrated into a behavior-based robotic system to enable 

intelligent reactive robot behaviors while at the same time 

maintaining the responsiveness of reactive systems. 

 



 

 

     

 

3. SPATIAL MEMORY AND ROBOT BEHAVIORS 

Acquisition and representation of spatial knowledge is one of 

the foundations of intelligent mobile robots. Recent 

advancements in the SLAM problem have made it an 

important tool for acquiring and representing spatial 

knowledge within robotic systems. This section presents the 

integration of SLAM with a behavior-based system as a 

dynamically acquired world model that enables more general 

and intelligent robot navigation techniques than using 

immediate sensory information alone, while at the same time 

maintains the responsiveness of reactive systems. The goal is 

to leverage current advancements in SLAM algorithms to 

achieve more intelligent and general reactive robot behaviors 

for critical missions such as those encountered in C-WMD 

scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Integration of SLAM and MissionLab 

The integration of SLAM with MissionLab, a behavior-based 

robot programming environment (MacKenzie et al., 1997), is 

illustrated in Fig. 1. MissionLab provides a usability-tested 

graphical configuration editor (Endo et al., 2004), CfgEdit, 

where a mission operator can design the robot behavior for a 

given mission in the form of a finite state automaton (FSA). 

Through a graphical editor, the operator has access to a 

library of pre-existing behaviors (e.g., GoToGoal) that can be 

used to construct the robot behavioral FSA. The SLAM 

algorithm used for the integration is GMapping, a Rao-

Blackwellized particle filter-based approach for learning grid 

maps (Grisetti et al., 2007). The output of the SLAM 

algorithm is an occupancy grid map of the environment along 

with the robot’s pose within it. An occupancy grid is a metric 

map where each grid cell has a value corresponding to the 

probability that the cell is occupied (Elfes, 1989).  Other 

similar SLAM algorithms could also be integrated. 

The integration of SLAM into MissionLab occurs at two 

basic levels: 1) the system level, where the output of the 

SLAM module is made accessible to all behaviors and 2) the 

behavioral level, where perceptual schemas turn the SLAM 

output into information that are required for the behaviors to 

generate their responses. At the system level, the output of 

the SLAM module (i.e., map and robot pose) acts as a spatial 

memory of the environment that is dynamically acquired as 

the robot experiences the world. At the behavioral level, a 

perceptual schema is embedded within each behaviour that 

turns the spatial memory into the information that is required 

for the behavior to generate a response to the world (Arkin, 

1990). Each perceptual schema, follows the principle of 

action-oriented perception, produces only the information 

that is necessary for the particular behavior (Arkin, 1990). 

When the resulted system is tasked with a mission, SLAM 

executes concurrently with active robot behaviors. The 

mapping is proactive in the sense that the map is built as the 

robot moves within the environment; and the process of 

mapping and localization is synchronized with robot 

behaviors through sensory update it receives from the robot. 

While the spatial memory is global in the sense that it is 

accessible to all behaviors within MissionLab, how the 

knowledge is used depends upon each specific behavior. First 

of all, the spatial memory can be used to augment pre-

existing behaviors that reside in a library within MissionLab. 

This usage is illustrated with AvoidObstacles, a pre-existing 

reactive behavior in MissionLab that moves the robot away 

from obstacles detected through sensors. The most 

straightforward way to augment the behavior with spatial 

memory is to replace the stimulus input (e.g., laser sensory 

data) with the spatial memory (i.e., the occupancy grid map) 

and modify the perceptual schema for the behavior to turn the 

dynamically acquired world model into necessary percept for 

the motor schema to generate the output vector for the motor 

response.  

The modified perceptual schema for the AvoidObstacles 

behavior, pseudo-laser, is implemented through beam tracing 

within the map to generate pseudo laser scans of the 

environment. Each occupancy grid cell within a sphere of 

influence would generate a repulsion vector for the robot. 

This sphere of influence (illustrated as red circle in Fig. 2) 

can be used to constrain the generation of repulsion vectors to 

occupancy grids that are in the proximity of the robot. Motor 

schema of the behavior remains the same as the pre-existing 

obstacle avoidance behavior (Balch & Arkin, 1993), which 

computes a repulsion vector from each obstacle reading. The 

repulsion vectors are then summed and normalized to 

generate a resultant repulsion vector to drive the robot away 

from obstacles. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustration of SLAM-based Behaviors 
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Other behaviors can be augmented by the spatial memory in a 

similar fashion. For instance, with spatial memory, the 

MoveToFreeSpace behavior can take into account free spaces 

that are beyond the robot’s immediate sensory range. 

Furthermore, the localization of a robotic system is generally 

improved by the pose estimate provided by the SLAM-based 

spatial memory. The MoveToGoal behavior is especially 

sensitive to the localization accuracy of the robot when 

moving to a goal location. By using the pose estimate 

provided by SLAM, the performance of MoveToGoal 

behavior can be improved over dead-reckoning with 

odometry. 

Secondly, the integrated spatial memory can enable the 

creation of new navigational behaviors that are more 

intelligent and efficient than using immediate sensory data 

alone. To illustrate, we implemented a MoveToFrontier 

behavior based on Yamauchi’s frontier-based approach for 

autonomous exploration, which explores an unknown 

environment by moving toward the frontiers of a dynamically 

generated map (Yamauchi, 1997). Yamauchi defined frontier 

as the boundary between the open and unknown spaces 

within an occupancy-grid map. This resulted in a behavior 

that drives the robot to the areas that the robot will gain the 

most new information about the unknown environment by 

moving toward a frontier. Given an occupancy grid map, a 

perceptual schema for the behavior identifies the frontier 

cells through a process similar to edge detection in image 

processing. The motor schema for this behavior then selects a 

frontier to move toward among the candidate frontiers. Two 

simple methods for selecting the frontier to move to are: 1) 

closest-frontier – the robot moves to the closest frontier and 

2) largest-frontier – the robot moves to the largest frontier. 

 

 

 

 

Fig. 3. Behavioral Assemblage for the Explore Behavior 

MoveToFrontier alone is not sufficient for a robot to 

effectively explore an unknown environment since it drives 

the robot toward a frontier without any regard for potential 

obstacles that might be in the path. However, by combining 

the AvoidObstacles and the MoveToFrontier behaviors via a 

coordination mechanism (e.g., cooperative coordination) 

within MissionLab (Fig. 3), we obtain a higher level 

exploration behavior that enables the robot to explore an 

unknown environment using the frontier-based exploration 

strategy while avoiding obstacles simultaneously. Fig. 3 

shows the behavioral assemblage of the Explore behavior 

whose output is a normalized weighted sum of the constituent 

behaviors. 

4. C-WMD MISSIONS 

Terrorist attacks using weapons of mass destruction (WMD) 

is not a question of “if” but “when” (Dickinson, 1999). Thus, 

the development of countermeasures to these attacks is 

essential for safeguarding the security and safety of societies 

under the threat of terrorism. Attacks using biological 

weapons should be of most concern since they are 

characterized by “maximum destructiveness and easy 

availability” (Betts, 1998; Henderson, 1999). With these 

scenarios in mind, we present a biohazard search mission to 

illustrate the effectiveness of integrated SLAM-based spatial 

memory in enabling a robot to carry out Counter-WMD type 

missions. The biohazard search mission entails a robot being 

tasked to search for and locate a biohazard with undisclosed 

location within an unknown environment.  

 

Fig. 4. Behavioral FSA for the Biohazard Search Mission 

The strategy for biohazard search in an unknown 

environment consists of two basic steps: 1) explore the 

environment and 2) move toward the biohazard once it is 

detected. This strategy is instantiated in MissionLab as a 

finite state automaton (FSA) (Fig. 4), with the behaviors we 

introduced based on the integrated SLAM-based spatial 

knowledge in the previous section. The robot FSA for the 

biohazard search mission consists of a set of behaviors (i.e., 

Explore and MoveToBiohazard) and triggers (i.e., Detect and 

NotDetected, and Near). With this FSA, the robot starts with 

exploring the unknown environment with the frontier-based 

exploration behavior, Explore. If a biohazard is detected 

during exploration, the robot would transition to the behavior 

of moving toward the biohazard. However, while moving 

toward the biohazard, if the biohazard is not detected 

anymore, the robot’s behavior would transition back to 

exploration of environment; this could be caused by initial 

false positive of the presence of the biohazard. Thus, the 

robot needs to move within a certain radius (e.g., 1.5m) of the 

biohazard to ensure accurate detection of the biohazard, at 

which point the search mission is considered completed. 

 

Fig. 5. Robot and Biohazard 

The robot used for this mission is a Pioneer 3-AT as shown in 

Fig. 5. The robot is equipped with a laser scanner for sensing 
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of the environment and acts as an input to the SLAM module. 

A forward-facing camera on the robot is for biohazard 

detection. The biohazard is represented by a red bucket with 

the biohazard symbol and strapped to a toy explosive device 

with a countdown counter (Fig. 6). Color and shape features 

of the biohazard bucket are used for biohazard detection. 

Color and shape features of the biohazard bucket are used for 

biohazard detection. The MoveToBiohazard behavior utilizes 

the centroid of the detected blob to navigate toward the 

biohazard and uses the size of the shape feature to determine 

its relative distance. 

 

a) A relatively “open” environment 

 

b) A relatively “cluttered” environment 

Fig. 6. Operating environments  

To illustrate the effectiveness of the SLAM-based behaviors, 

we conducted experiments where the biohazard search 

mission is carried out in two environments with different 

degrees of complexity. The operational environments of the 

biohazard search mission are shown in Fig. 6. We start with a 

rather benign environment where the biohazard is located in a 

relatively “open” area without any obstruction (Fig. 6a). The 

second environment (Fig. 6b), is a relatively “cluttered” 

environment where the biohazard is in an area partially 

cornered off by makeshift walls.  

The goal of the robot is to find the biohazard within each 

environment using the behavioral controller specified in Fig. 

4. Performance of the biohazard search mission depends on 

the exploration strategy that is employed. The frontier-based 

exploration behavior is compared to a naïve pure reactive 

exploration behavior, Wander, which generates a random 

movement vector for the robot to explore an environment and 

uses the immediate sensory data (i.e., laser and odometry) for 

obstacle avoidance and localization. Furthermore, as we 

pointed out in the previous section, the perceptual schema for 

the frontier-based exploration behavior generates a number of 

frontiers. Thus, two simple methods for selecting which 

frontier the robot should move to are compared as well: 

closest-frontier versus largest-frontier.  

In short, we conducted a 2x3 experiment with two 

environmental conditions (i.e., “open”, “cluttered”) and three 

exploration strategies (i.e., random, closest-frontier, largest-

frontier) for the biohazard search mission. The biohazard 

search mission is executed 10 times with the robot operating 

at 0.1m/s for each combination of environment and 

exploration strategy. The start location of the robot and 

biohazard location stay the same across trials. For each trial, 

the mission completion time is recorded as the performance 

measure of the mission since time performance is of major 

concern for C-WMD missions. 

5.  RESULTS 

Figure 7 shows snapshots of an experimental run of the 

biohazard search mission with the robot being guided by the 

largest-frontier-based exploration strategy. The robot starts 

the mission with no a-priori knowledge of the environment 

(Fig.7a). The map of the environment is built incrementally 

by the integrated SLAM system as the robot moves around in 

the environment (Fig.7b) Frontier regions of the map are 

extracted continuously as the map evolves; and the 

MoveToFrontier behavior generates a movement vector that 

drives the robot toward the largest frontier. The map 

information is also used by the AvoidObstacles behavior to 

prevent the robot from running into obstacles by generating 

repulsion vectors. When a biohazard is detected by the 

robot’s onboard sensor, it moves toward the biohazard to 

ensure reliable detection (Fig.7c). 

   

   

a) Robot starting 

the search mission 

b) Robot navigating 

among obstacles 

c) Robot moving 

toward biohazard 

Fig. 7. Snapshots of a robot conducting the biohazard search 

mission 

During the experimental trials, we observed that frontier-

based behavior has a tendency to move the robot toward the 

center of an open space and away from obstacles during 

exploration, except when a frontier lies near or behind 

obstacles. An instance of this tendency is shown in Fig. 8, 

where a frontier caused the robot to immediately start moving 

toward the space between obstacles, at the initial stage of the 

mission. While the obstacles in the vicinity of the robot, as 

seen in Fig. 8, had an effect in forming the frontier regions, 

they did not influence the trajectory of the robot (just yet) 

since they were still outside the sphere of influence of the 

AvoidObstacles behavior. Thus, the robot’s trajectory toward 

the center of the open space between obstacles was only 

influenced by the frontier. This general tendency of the robot 

to move toward the center of an open space can be attributed 

to the fact that the MoveToFrontier behavior drives a robot 

toward the center of a frontier region, which always lies 

between obstacles (i.e., occupied grid cells). This 
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demonstrates that, with the integrated spatial memory, the 

reactive MoveToFrontier behavior is able to act intelligently 

without deliberative path planning, which has previously 

been a common approach for implementing frontier-based 

exploration (Holz et al., 2010; Yamauchi, 1997).   

  

Fig. 8. Robot moving toward a frontier through open space 

between obstacles 

Even when the robot is moving toward a frontier that lies 

near or behind obstacles, the robot is able to safely negotiate 

the environment with the spatial memory alone (i.e., without 

immediate sensory data from the laser). In Fig. 9, we 

observed that the robot is able to safely move away from the 

makeshift wall based on the information provided by the 

integrated SLAM-based spatial memory. However, using the 

spatial memory alone for safety-critical behaviors such as 

AvoidObstacles is not recommended. We only do so here to 

demonstrate that the behavior-based robotic system is able to 

maintain its responsiveness with the integration and usage of 

the SLAM-based spatial knowledge. As Arkin (1998) has 

cautioned, knowledge needs to be used with care. Relying too 

heavily on the spatial knowledge alone can be dangerous 

when there are errors in the knowledge. Furthermore, the 

integrated spatial memory is not able to handle dynamic 

environments since the underlying SLAM algorithm (similar 

to other conventional SLAM algorithms) has the assumption 

that the environment is static (Bailey & Durrant-Whyte, 

2006). Thus, in practice, spatial memory should be used in 

conjunction with immediate sensory data for safety-critical 

behaviors. 

  

Fig. 9. Robot avoiding the makeshift wall 

Table I shows the time performance of the robot in carrying 

out the biohazard search mission in two different 

environments with three different exploration strategies. The 

result is also visualized in Fig. 10. As expected, the time it 

takes the robot to finish the mission is longer for more 

complex environments, and the random exploration strategy 

performed the worst in both environments. In the “open” 

environment, while the performance of largest-frontier is 

significantly better than random strategy (with a t-test p-value 

= 0.02 < 0.05), the improvement of closest-frontier strategy 

over the random strategy is not statistically significant (p-

value = 0.11 > 0.05). Thus, in the context of a biohazard 

search mission, the largest-frontier-based exploration strategy 

should be used if we have some a-priori knowledge that the 

operating environment has relatively large free spaces (e.g., 

warehouses). Furthermore, the performance of largest-

frontier strategy in the “open” environment is also the most 

consistent with the smallest standard deviation of only 4.9 

seconds. This consistency is useful when a mission needs to 

be executed multiple times where there is a tight tolerance in 

performance variation; and it also provides the mission 

operator a certain amount of confidence in predicting the 

performance when the mission need to be conducted in a 

different but similar environment.  

Table 1. Biohazard Search Mission Completion Time 

Exploration 

Strategy 

“Open” 

Environment 

“Cluttered” 

Environment 
Mean (sec) SD (sec) Mean (sec) SD (sec) 

Random 398.0 264.1 > 900 N/A 

Closest-Frontier 258.7 22.7 405.0 58.5 
Largest-Frontier 185.9 4.9 371.9 68.7 

 

 

Fig. 10. Boxplots of Mission Completion Time Datasets for 

Different Exploration Strategies in “Open” and 

“Cluttered” Environments: 1) random strategy in “open” 

environment has the largest spread in its dataset, 2) 

largest-frontier strategy in “open” environment has the 

smallest spread in data, reflecting its consistent time 

performance, 3) both frontier-based strategies took 

longer to complete the mission in “cluttered” 

environment, 4) the ranges of mission completion times 

for closest-frontier and largest-frontier strategies overlap 

significantly in the “cluttered” environment, reflecting 

their insignificant difference, and 5) the largest-frontier 

strategy performs significantly better than the closest-

frontier strategy in the “open” environment 

Moreover, while the SLAM-based search behavior was able 

to find the biohazard successfully in both environments, the 

search behavior based on the pure reactive behavior was not 

able to successfully find the biohazard in the “cluttered” 

environment under the mission terminal time of 15 minutes 

(900 seconds). Therefore, the pure reactive random search 

behavior is not suitable for missions, particularly time-critical 
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missions, operating in cluttered environments (e.g., an office 

floor). The results also show that while the frontier-based 

exploration behavior using the largest-frontier mechanism to 

select the next frontier for the robot to move to performs 

significantly better than other strategies in the “open” 

environment the advantage of largest-frontier over closest-

frontier selection method is not significant in the more 

complex “cluttered” environment. The improvement of 

largest-frontier over closest-frontier selection method is only 

8.2% (p-value = 0.26 > 0.05) in the “cluttered” environment. 

Whereas the largest-frontier-based search behavior is 28.1% 

more efficient than closest-frontier-based search in the 

simpler “open” environment (p-value = 1.07x10
-8

 << 0.05). 

Despite the fact that we did not find a significant advantage 

of largest-frontier strategy over the closest-frontier strategy, 

in practice, the largest-frontier strategy should still be used 

for search type missions since the unknown operating 

environment could either be relatively “open” or “cluttered”. 

6. CONCLUSIONS 

This paper presented an integration of SLAM into a behavior-

based robotic system as a spatial memory with the goal of 

enabling intelligent robot behaviors while maintaining the 

responsiveness of reactive systems. The effectiveness of 

integrated system is illustrated with a biohazard search 

mission, where a robot successfully completed the mission 

using the behaviors that are enabled and augmented by the 

SLAM-based spatial memory. The experimental results 

demonstrated the potential of the spatial memory in enabling 

intelligent reactive robot behaviors for C-WMD type 

missions. Specifically, we have shown that with SLAM-

based behaviors: 1) the robot was able to search an unknown 

environment intelligently without deliberative planning, 2) 

the robot was able to carry out a biohazard search mission 

more efficiently than using pure reactive behaviors, 3) the 

responsiveness of reactive systems was maintained with the 

integration and usage of the spatial knowledge, and 4) the 

largest-frontier-based exploration strategy outperformed the 

closest-frontier-based strategy in a relatively “open” 

environment, but has no significant advantage in a relatively 

“cluttered” environment. 

The behaviors for exploration of the unknown environment 

used only the spatial memory, without immediate sensory 

data, for generating motor responses. However, this is for 

experimental purposes, and in practice immediate sensory 

data (e.g., laser range sensors) should be used in conjunction 

with the spatial memory for safety-critical behaviors to 

prevent catastrophic failure in case of error in the spatial 

memory. Furthermore, while the robot was able to conduct an 

informed search of the biohazard with the MoveToFrontier 

behavior, we have not yet taken full advantage of the 

integrated spatial memory. For instance, current SLAM-

based behaviours do not reason over the uncertainty of the 

SLAM state vector. Thus, future work needs to expand the 

space of SLAM-based behaviors to realize the full potential 

of the integrated system. 

While this paper focused on reactive behaviors and integrated 

a SLAM algorithm that generates a metric map (i.e., 

occupancy grid), SLAM algorithms (Grisetti et al., 2010; 

Kaess et al., 2008) that generate a topological map can be 

integrated in a similar fashion for more deliberative behaviors 

(e.g., planning). Furthermore, the SLAM-based behaviors are 

limited to environments with static obstacles since the SLAM 

algorithm incorporated is not able to deal with dynamic 

environments due to the underlying assumption that the 

environment is static. This is also a limitation of current 

SLAM approaches. However, solutions to the problem of 

SLAM in dynamic environments are being actively pursued. 

Thus, the integrations of SLAM algorithms for deliberative 

behaviors and dynamic environments are a natural extension 

to our present work.  

Moreover, the experimental demonstration of the integrated 

systems is limited to simple environments. The scalability of 

the system depends on two factors: 1) the scalability of the 

SLAM algorithm, which has been demonstrated in (Grisetti 

et al., 2007), and 2) the scalability of the behavior. For 

reactive behaviors that only use local information (e.g., 

AvoidObstacles) the computation time stays constant 

independent of the map size; while for behaviors that require 

reasoning over the global spatial memory, the scalability 

would depend on the scalability of the underlying perceptual 

and motor schemas. 

As we have indicated earlier, robotics has been identified as 

an important tool for safeguarding societies from attacks with 

WMD. However, failures of C-WMD missions can have 

disastrous consequences. Thus, a C-WMD mission, such as 

the biohazard mission, needs to be verified to have a certain 

level of performance guarantee before execution. While our 

research group has presented methods (Lyons et al., 2014; 

Lyons et al., 2012; Lyons et al., 2013) for verification of 

robot behaviors, the integrated SLAM-based behaviors 

presented in this paper presents a new challenge of verifying 

robot behaviors that are based on probabilistic algorithms 

such as SLAM. Thus, additional future work is to verify a C-

WMD mission (e.g., biohazard search) where SLAM-based 

behaviors are used. 
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