
Tactical Mobile Robot Mission Speci�cation and Execution

Ronald C. Arkin

Thomas R. Collins

Yoichiro Endo

Mobile Robot Laboratory, College of Computing

Georgia Institute of Technology, Atlanta, Georgia, 30332

farkin,tc3,endog@cc.gatech.edu

Abstract

Georgia Tech, as part of DARPA's Tactical Mobile Robotics (TMR) Program, is developing a wide
range of mission speci�cation capabilities for the urban war�ghter. These include the development of a
range of easily con�gurable mission-speci�c robot behaviors suitable for various battle�eld and special
forces scenarios; communications planning and con�guration capabilities for small teams of robots
acting in a coordinated manner; interactive graphical visual programming environments for mission
speci�cation; and real-time analysis tools and methods for mission execution veri�cation. This paper
provides an overview of the approach being taken by the Georgia Tech/Honeywell team and presents
a range of preliminary results for a variety of missions in both simulation and on actual robots.

1. Introduction and Overview

As part of DARPA's Tactical Mobile Robotics Program, Georgia Tech is providing certain basic

capabilities suitable for robotic missions in urban settings: 
exible reactive behaviors suitable for speci�c

urban warfare and information gathering missions; a usability-tested mission speci�cation system for

rapid development of mission scenarios; and real-time analysis capability (in conjunction with Honeywell

Technology Center).

This paper focuses on the behavioral and mission speci�cation aspects of our program. Schema-

based behavioral control1 in the context of a usability-tested mission speci�cation system7, 8 provides the

framework for this research.

Mission development in the �eld proceeds as depicted in Figure 1. An operator develops a mission

using the MissionLabmission speci�cation system. It is compiled through a series of languages that bind

it to a particular robot and software architecture (for this work a Pioneer AT robot or Urbie) (Fig. 2). It

is then tested in a faster than real-time simulation before downloading to the actual robots for execution.

After deployment the console serves as a monitor and control interface for the robot during the mission,

permitting rapid intervention if needed by the operator.

This paper �rst describes the software architecture for this project. Hardware speci�cations are then

provided, followed by preliminary results for both simulation and laboratory experiments. A summary

concludes the paper.

2. Software Architecture

Figure 3 depicts the overall system architecture being developed for this e�ort. It contains 3 major

subsystems: Executive, Premission, and Runtime. The executive subsystem is the major focus for oper-

ator interaction. It provides an interface to both the runtime simulators and actual robot controllers, as

well as the premission speci�cation facilities and the physical operator groundstation itself. The premis-

sion subsystem's role is to provide an easy-to-use interface for designing robot missions and a means for



User Interface Console (mlab)

Code Generator (cdl)
Configuration Description Language

Configuration Network Language
Compiler (cnl)

Execution

Compilation

Configuration Editor (CfgEdit)

GNU C Compiler (gcc)

Robot Executable

Robot Hardware

Mission Developer / Operator

Figure 1: Deployment Concept

Figure 2: (Left) Pioneer AT (Right) Urbie Robot

evaluating overall usability. The runtime control system, which is located on each active robot, provides

the execution framework for enacting reactive behaviors, acquiring sensor data and reporting back to the

executive subsystem to provide situational awareness to the team commander. Additionally, a separate

support system is provided for interprocess communications.

In Figure 3, typical communication paths between components are shown. Wherever separate threads

of execution exist, this communication is implemented with IPT5. In other cases, communication may

take the form of dedicated point-to-point links or conventional parameter-passing during the invocation



Figure 3: System Architecture

of processes. The �gure shows a \robot" as the combination of reactive behaviors, appropriate hardware

drivers, both actuator-speci�c and sensor-speci�c low-level software, and the robot hardware itself. This

assemblage of components provides a uniform, hardware-independent interface to the executive subsystem

which is equally suitable for simulated robots. The runtime system consists of one or more instances of

these assemblages, with four shown in this particular case, corresponding to the robots available for the

project.

The remainder of this section provides functional speci�cations for each of the major system com-

ponents.

2.1 Executive Subsystem

The executive subsystem consists of the MissionLab console, faster-than-real-time simulator, and

runtime data logging components.

2.1.1 MissionLab Console

The MissionLab console (mlab) (Figure 4) serves as the central interface for the execution of a

mission. The mlab program presents results of either simulations or actual robotic missions directly to

the operator. It requires the use of the interprocess communications subsystem (IPT) to maintain contact

with the robots and other active processes. The MissionLab console provides the following capabilities:

� Loads precompiled robot control programs and overlay description �les
� Con�gures the display

{ generating obstacles for simulations

{ altering the scale of the display

{ changing the virtual time for simulations



{ scaling the size of the display (zooming)

� Provides a command interface that permits interactive step-by-step command issuance by the op-

erator using CMDL, a structured English language that

{ has the ability to execute, stop, pause, restart, rewind, single step, and abort missions during

execution

{ has the ability to use team teleautonomy by directing robots to particular regions of interest

or by altering their societal personality (Figure 5).

� Provides display options

{ leave trails where the robots have been

{ highlight obstacles that a�ect the robot

{ show instantaneous directional reaction of robot to its environment

Figure 4: MissionLab Console (mlab)

.

Figure 5: Teleautonomous operation in MissionLab. Dialog boxes allow operator to specify direction and

\personality".

The MissionLab console also provides a display (Figure 6) that shows either: (1) the output of a

simulated robotic mission that is run faster than real-time and can serve to determine whether or not a



premission speci�cation has been successfully completed; or (2) An operator mission display screen where

robots in the �eld report back their position and relevant mission data that is shown on the mlab display

to provide situational awareness and context for higher level decisions regarding aborting, continuing, or

biasing the mission in various ways.

Figure 6: Display during execution of simulated mission (display of actual robot mission is similar).

2.1.2 Runtime Data Logging

The executive subsystem also includes a runtime data logging capability that is used to provide a

means to evaluate the performance and e�ectiveness of a mission. This may include measures regarding

the risks that the robots undertook during the mission, other related safety factors, time and distance to

completion, etc.

2.2 Premission Subsystem

The premission subsystem involves the speci�cation, creation, and construction of behavior-based

robots suitable for speci�c missions. It provides a user-friendly graphical programming environment and

a series of language compilers used to transform the high-level iconic description into executable code

suitable for the executive subsystem. In addition, it provides data logging tools that are geared for

usability studies leading to the enhancement of the user interface.

2.2.1 Con�guration Editor

The con�guration editor (cfgedit) provides a visual programming entry point into the system (Figure

7). It is geared to average end-users and requires limited training to use. The interactive iconic interface

generates con�guration description language (CDL) code which, when compiled and bound to a particular

architecture and robots, generates a meta-language. In this project this is CNL, the con�guration network

language, that serves as a precursor to the C++ code that is ultimately generated when the CNL code is

compiled. This resulting C++ code forms the executable code for the robot controller itself. Within the

executive subsystem, this code is then directed either to the simulation or the actual robots for execution.

2.2.2 Usability Data Logging

Additional software is used to record user actions during premission planning. This includes data

such as the number and type of keystrokes and mouse clicks, time to create certain objects, and other

relevant data. These data are then used to interpret the skill by which a user is capable of achieving

within the system, and after subsequent usability analysis, is used to re�ne the design interface itself. It

is a support tool geared for formal usability studies.



Figure 7: Graphical con�guration using cfgedit.

2.3 Runtime Subsystems (1 per robot)

The runtime control code created by the premission subsystem and then tested in simulation within

the executive subsystem is then sent to the actual robotic systems for execution. Thus there is one run-

time subsystem located on each robot required for the mission. IPT provides interprocess communication

between the robots and the mlab console. The runtime system consists of a set of reactive behaviors and

sensor strategies to interpret and react to the world; hardware drivers customized to interface desig-

nated robots to the MissionLab system; low-level robot control code generally provided by the robot

manufacturer; and the actual robotic and sensor hardware.

2.3.1 Reactive Behaviors

A collection of reactive behaviors is compiled and downloaded to each robot for execution of the mis-

sion. These reactive behaviors embody the mission speci�cation designed within cfgedit. They process

sensor data as rapidly as possible and issue commands to the lower level software for timely execution

on the robot. These behaviors include activities such as obstacle avoidance, waypoint following, moving

towards goals, avoiding enemies, and seeking hiding places, all cast into mission-speci�c reusable assem-

blages. Action-oriented perceptual code already supports both Newton Labs Cognachrome real-time color

vision systems and ultrasonic data. Team behaviors, such as team teleautonomy, formation maintenance,

and bounding overwatch are also bundled for execution as necessary. The output of these behaviors is

sent to the groundstation for monitoring purposes as well as to the robot for execution.

2.3.2 Hardware Drivers

In order forMissionLab to be able to build an executable program to run on a given robot, it requires

an ensemble of routines to set up, control, and receive feedback from the actual (or simulated) robot.

Some variation in capabilities appears among the various robots that are supported, but the expected set

of routines for the TMR platforms (Pioneer AT and Urbie) include:

� Movement commands: move (direct to robot to go to another position); drive (direct the robot

to maintain a velocity); turn (rotational equivalent of move i.e., go to another orientation); steer



(rotational equivalent of drive , i.e., change angle at constant rate); stop (stop all motion); stopdrive

(stop translational motors); stopsteer (stop rotational motors).
� Range measurement commands: range start (turn on ranging sensors); range stop (turn o� ranging

sensors); range read (take range readings).
� Position feedback commands: getxy (get current position in de�ned coordinate system); setxy (set

the de�ned coordinate system, i.e., establish origin); initxy (initialize position sensors).
� System monitoring commands: wait for drive to stop (block further activity while translational

motors are active); wait for steer to stop (block further activity while rotational motors are active);

drivestat (provide translational motor status); steerstat (provide rotational motor status);
� Initialization and termination: open robot (initialize robot and establish connection as required);

close robot (terminate robot and relinquish connection as required).

Additional drivers are required for sensors which are not tightly integrated into the onboard robot

control system. These includes such vision-related capabilities as specifying the characteristics of a target

and requesting target tracking status (and position, if available).

2.3.3 Low-level Software

Low-level software includes embedded software and �rmware that is typically provided by the vendors

of robots and sensors in order to access the basic capabilities of those devices. For this project, this

classi�cation includes PSOS, running on the robot controller, and ARC, running on the vision system.

The onboard microcontroller of the Pioneer robot is equipped with the Pioneer Server Operating System

(PSOS) software. PSOS serves the serial communication port provided for the receipt of commands

and the return of status information. As such, most of the functions listed in the previous section for

the robot driver result in the transmission of a message to PSOS, which in turn handles the request.

The Cognachrome vision system behaves similarly, with its serial port served by an embedded operating

system called ARC. This multitasking system allows the vision tracking parameters to be changed and

issues tracking results at speci�ed intervals. ARC provides a C development environment and runtime

system for the generation and support of vision programs that exceed the basic capabilities provided with

the Cognachrome system.

3. Hardware Architecture

Like other reactive or hybrid software architectures, the Autonomous Robot Architecture2 (AuRA)

used for this research runs most seamlessly on a hardware architecture which supports the abstraction

of the hardware at a layer corresponding to logical sensors and logical e�ectors4, 6. In such a hardware

context, there are well-de�ned processes occurring on either side of equally well-de�ned interfaces. In

the case of e�ectors, these processes generally conform to most common notions of servo control, either

open-loop or closed-loop. The corresponding sensor processes can be highly complex, including real-time

image processing at frame rates. A less obvious characteristic of these logical sensors and e�ectors is that

under ideal conditions, their processing loops are su�ciently fast so that they can be treated as a small,

perhaps negligible, latencies. Although this may seem to be a severe requirement, it allows the reactive

behaviors to be formulated with minimal consideration of feedback control issues that cross boundaries

between the low-level embedded processors and the reactive hardware architecture itself. One way of

summarizing this design philosophy is to spare no expense in the design or acquisition of embedded

processor subsystems that implement sensor or actuator functionality, because it pays large dividends in

the integration process.



3.1 Robot platform and interface

Whenever it is possible to use existing commercial o�-the-shelf (COTS) mobile robotic platforms, the

interface to that platform becomes the layer boundary described above. Typical COTS platforms include

servo control of locomotion with fully-integrated odometry, as well as some basic mobility sensors. In

contrast to mission sensors, which perform mission-speci�c functions, mobility sensors provide the basic

perceptual capability needed to perform the simplest locomotion tasks in the presence of an unstructured

environment. Mobility sensors are sometimes considered to be a subset of organic sensors, which include

all platform-speci�c sensors such as those required to maintain knowledge of platform status and health

(power, temperature, etc.).

For the TMR systems, the Pioneer-AT mobile robot platform manufactured by ActivMedia (Peter-

borough, New Hampshire) was selected because of its compliance with stated locomotion requirements.

The Pioneer-AT has 4 driven wheels with wide, compliant tires suitable for traversal of mixed terrain

with small obstacles (two- to three-inch obstacles and slightly larger \negative" obstacles). The platform

includes wheel encoders and a front-facing semi-circle of ultrasonic sensors. All of this functionality is ac-

cessed via the platform's embedded processor, a 68HC11 running PSOS, a proprietary operating system.

The external interface to PSOS is implemented on an RS-232 serial channel.

Just as in previous instances of interfacing new robot hardware platforms to AuRA, it was necessary

to develop a library of interface routines that implement standard AuRA primitives on the new platform.

In this case, this amounts to sending the de�ned serial commands and parsing the PSOS responses.

Whereas on some platforms there is nearly a one-to-one mapping of AuRA primitives with platform-

supplied commands or responses, for the Pioneer it is necessary to implement a server process to maintain

certain derived variables. This arises for two reasons: 1) several di�erent and unrelated sensor values are

returned at the same time in a single data \packet" and must be saved for possible requests from AuRA,

and 2) the odometry calculations performed within PSOS are truncated at small distances and must be

augmented at sensor data rates. In e�ect, although this server process runs within AuRA (not on the

embedded processor), it essentially performs an embedded function and allows the assumption described

above to remain valid: no complex, high data-rate computations are performed within the true reactive

layer of the architecture. From both a hardware and software architectural standpoint, this represents

a departure from previous ports of AuRA and MissionLab, since there is a high-rate processing loop

running on the same processor that implements the robot \executable," which in prior implementations

only responded at \reactive" rates.

The complete hardware architecture is shown in Figure 8. The robot executable program can either

run on a remote host (normally the same machine that implements the operator console) or on a platform

carried onboard the robot. The latter option provides the greatest 
exibility, including a truly autonomous

capability even in the the absence of a datalink with the console.

3.2 Sensor subsystems

The Pioneer-AT platforms were precon�gured with the Newton Research Labs Cognachrome vision

system (Renton, Washington), which e�ectively acts as a logical vision sensor capable of colored blob

detection. For our TMR purposes, blob detection is a placeholder for more-sophisticated image processing

functions, such as stereoscopic or omnidirectional vision that are being developed concurrently by other

contractors and COTS vendors. Like the platform itself, the vision system provides a serial interface with

a de�ned command/response protocol.

The front-facing semi-circle of ultrasonic sensors was not optimal for the application. Although the

robot is capable of turning very nearly in place and can thus act as a near-holonomic platform, it is not

equipped with a 360-degree arrangement of any obstacle detection sensor that can provide a uniform



Figure 8: Hardware Architecture

representation of obstacles in all directions. In our reactive architecture, such a sensor arrangement

produces a composite steering vector which, in conjunction with a holonomic platform, generally allows

for agile locomotion in an obstacle-strewn environment. In order to achieve this with the Pioneer-AT,

most of the eight ultrasonic sensors were physically relocated, producing a sparse, yet equally-spaced,

circular arrangement. This hardware-oriented approach to the problem was pursued in parallel with

a alternative software approach that would work with the original sensor con�guration. This software

approach implemented, in e�ect, virtual ultrasonic sensors by allowing recent readings to persist in spite

of platform rotation and minor amounts of translation.

The only other hardware customization of the robotic platform was the addition of a di�erential GPS

(DGPS) receiver to facilitate precision outdoor navigation between speci�c waypoints. DGPS receivers

represent a mature technology with established standard interfaces, so the addition of this capability was

largely an integration process. Of course, knowing one's position accurately is of limited usefulness if

orientation is not accurately known as well. Without accurate orientation knowledge, the robot would

generally head in a random direction and not make immediate progress toward its current waypoint until

a course correction is made. This is signi�cant, because the Pioneer-AT has only two built-in orientation

sensors, and neither is very accurate. The �rst sensor is odometry, which is highly dependent on the

ground surface and quickly generates cumulative errors. The second sensor is an optional magnetic

compass, which is only suitable in ideal environments free from variations in the local geomagnetic

�eld. While it is possible to use relatively low-cost rate gyros to recover orientation accurately over the

duration of short missions3, we desired a solution that required no additional weight, volume, power, or

integration e�ort. This brings us back to the rather awkward prospect of selecting a heading based on

a \best guess" and correcting it as soon as possible based on DGPS position updates. If this were done

at the reactive level, the \false starts" would be somewhat lengthy and noticeable. But by adhering to

the basic principle of allowing maximal processing within the logical sensor, a better solution is achieved:



the DGPS receiver can in fact compute highly accurate velocities even after short translations, so the

velocity heading (as returned by the receiver itself in standard message protocols) is actually a satisfactory

orientation representation. Even with no reasonable guess of the current heading, false starts are typically

only about one foot long before an accurate course correction is made. Then, if odometry is only used

between DGPS updates, subsequent course directions are seldom large enough to be noticed.

3.3 Wireless communication

Although a robot with an onboard laptop computer is capable of fully autonomous operation without

communication with the console, there are many uses for a wireless datalink. These include the display

of robot status, teleoperation or teleautonomous control, communication between robots, and behavioral

recon�guration during a mission. The TMR con�guration includes a FreeWave wireless serial modem

(Boulder, Colorado) that can either be used as a peripheral of the onboard computer or as a replacement

for the onboard computer (when the robot executable runs on the console itself). We have achieved

consistently reliable communication between several 
oors of research buildings and also between buildings

on campus. Under ideal line-of-sight conditions outdoors, it is possible to maintain a link of over 20 miles,

but we have rarely tested anything more than a few tenths of a mile.

In order to implement the IPT communication protocol over the wireless serial links, it is necessary

to run PPP (Point-to-Point Protocol) to produce a TCP/IP network layer. This adds an additional level

of complexity to the system that would not be required with wireless Ethernet hardware, but at this

time the range and reliability of the FreeWave modems appears to justify this choice. With increasing

improvements in the bandwidth and robustness of wireless Ethernet, we expect to utilize these devices

in the future.

3.4 Future platform

Work has already begun on developing an interface to the Urban Robot, or \Urbie," built by the RWI

division of IS Robotics (Ja�rey, New Hampshire). This platform will be able to traverse rougher terrain

and even climb steps, using its articulated treads. It includes an onboard computer running Linux, so

there will be no need to use an onboard laptop, but vision sensing is limited due to the lack of a system

like the Cognachrome. Ultrasonic sensor placement is somewhat improved over the default Pioneer-AT

con�guration, but still sparse. The interface to the Urbie is architecturally similar to the approach taken

with the Pioneer AT, but it ties into the onboard controller at a higher level of abstraction, taking

advantage of the API provided by RWI's Mobility software architecture. This approach utilizes CORBA

to provide a uniform interface across di�erent robot platforms. If it is su�ciently 
exible and robust,

it may minimize future e�orts in porting MissionLab to other platforms that comply with the Mobility

architecture.

4. Preliminary Results

Typical tasks for the TMR program involve crisis assessments of remote areas that are occupied

by enemy forces and that cannot be approached directly by US personnel or intelligence assets. For

example, inspecting biological/chemical contamination levels of rooms in a target building that is under

insurgent control or monitoring hostile activities at denied areas in an air�eld seized by enemy forces

are among those scenarios. In order to prepare for such large scale missions, simulations for the urban

warfare scenarios have been developed, and an in-lab experiment using the Pioneer-AT robot has been

conducted.

4.1 Simulations

In order to simulate the TMR missions withMissionLab, four cases of typical urban warfare scenarios

were determined. The followings are descriptions of those cases:



� Case-1 [Urban Maneuver]: Two teams of robots maneuver across an urban area, approaching a

target building by overwatching each other. Each team takes paths close to the nearest walls to

cover from cross�re while maintaining their formation. Downtown Atlanta was chosen as this site,

and the state capitol was selected as the target building.
� Case-2 [Room Clearing]: A pair of robots clears rooms in a building. When one robot is inspecting

the interior of a room, the other robot provides cover at the entrance of the room. The third 
oor

of Manufacturing Research Center (MaRC) at Georgia Tech was chosen as this demo site.
� Case-3 [Stealth Maneuver]: A robot attempts to approach a target building while it avoids being

detected by enemy forces. After being deployed from the woods, the robot maneuvers across a

parking lot by using parked cars for cover, then crosses a street when it is determined to be clear

from enemy forces.
� Case-4 [Double-phase Approach]: Multiple robots, deployed from di�erent locations, approach

and inspect denied areas in an air�eld, such as the control tower, TV station, and hangar. Two

phases are involved in the approach of an aircraft hangar, which is located in an area that can

be approached only by a tiny robot. First, a larger robot, carrying the very small robot, traverses

overland to get close to the hangar; then in the second phase, the tiny robot, is launched and probes

inside the hangar.

Each of the four cases was successfully simulated with MissionLab. The outputs of the missions

displayed on the MissionLab console are shown in Figure 9 for all four cases. The portions that contain

simulated robots in are enlarged in the �gure.

Figure 9: Simulation outputs with partially enlarged images - Case-1 [Urban Maneuver] (top left),

Case-2 [Room Clearing] (top right), Case-3 [Stealth Maneuver] (bottom left), and Case-4 [Double-

phase Approach] (bottom right).

4.2 Robot Experiments

In order to test the capability of MissionLab executing real robots, an in-lab experiment was con-

ducted at Manufacturing Research Center (MaRC). The objective of this mission was to deploy a Pioneer-



AT robot from a room, maneuver the robot through a corridor, and inspect a room located two doors

down the hall to check for the existence of a speci�ed object (an enemy). Information known prior to the

experiment included a 
oor plan of the building (Figure 10) and the color of the target object: red. In

this experiment, the robot was con�gured for interior use: no DGPS was on-board.

Corridor
Target RoomStart Point

Figure 10: MaRC Floor Plan

During the premission phase, the remote-room-inspection mission was constructed with the con�g-

uration editor. As shown in Figure 11, it was assembled with seven �nite states and and six perceptual

triggers. The behavioral states and triggers utilized by the mission are:

� Start [state]: The robot is initialized.
� GoTo [state]: The robot moves to a location speci�ed in global coordinates.
� CorridorFollowing [state]: The robot moves to a goal while attempting to stay on a path within

a corridor which is speci�ed as two points: \start" and \end".
� Stop [state]: The robot stops moving.
� FirstTime [trigger]: The transition occurs immediately unconditionally.
� MovedDistance [trigger]: The transition occurs when the robot has moved a desired distance.
� AtDoorwayUltrasound [trigger]: The transition occurs when the robot detects a doorway or

hallway.
� Detect [trigger]:The transition occurs when the robot detects the speci�ed object.

After being initialized by the Start state, the GoTo state brings the robot out of the room, until

it moves 1.25 meters. The CorridorFollowing state then maneuvers the robot through the corridor.

After the robot follows the corridor for about 7 meters, it starts seeking an opening in the righthand side

of the wall using sonar, which is the entry door for the target room. When it is at the door, the robot

moves into the room in another GoTo state, unless it detects the red object. If the red object is seen,

the robot stops entering the room.

The pictures in Figure 12 and Figure 13 show the remote-room-inspection room as executed by the

robot. The trial in Figure 12 was con�gured so there is no target object in the room. For the second

trial, a red object was present (Figure 13). Both results are shown in Figure 14.

As seen in the Figures 12-14, the robot successfully accomplished this simple remote-room-inspection

mission for both with-colored-object and without-colored-object cases. In this experiment, it was found

that there were some discrepancies between the traces of the robots displayed in the MissionLab console



Figure 11: The Finite State Acceptor diagram of the mission

Figure 12: The Remote-Room-Inspection Mission (Trial-1): the robot entered the room since the red

object was not present in the room.

Red-Color Object

Figure 13: The Remote-Room-Inspection Mission (Trial-2): the robot stopped entering the room because

the red object was detected.

(Figures 14) and the actual paths the robots took. For example, even though for the without-colored-

object case the robot entered the target room through the door, the output in the MissionLab console

shows that as if the robots entered the room about 1 meter before it reached to the door. These

display errors were assumed to be a result of both the map not being drawn to exact scale and dead-

reckoning error. The robot, however, easily overcame these errors by detecting the door opening of the

target room directly with a perceptual sensor (sonar) rather than using dead-reckoning with the shaft-

encoders. Cfgedit allows such changeover of states and/or triggers very easily, permitting operators to

create missions to �t environmental requirements rapidly.

5. Summary

A 
exible software architecture embodied within theMissionLab software system has been described.

It features behavioral control, rapid recon�guration, and a visual programming environment. Its current

hardware implementation in the context of the Tactical Mobile Robotics Program Testbed as �elded

on Pioneer AT robots was also presented. Simulation results for a range of potential military missions



Figure 14: Outputs of the Remote-Room-Inspection Mission: without (left) and with (right) the red

object in the target room. (Images partially enlarged.)

were described as well as a simple laboratory experiment on an actual robot. These results are being

further validated at the TMR testsite at Fort Sam Houston in San Antonio, Texas for a range of relevant

operational scenarios.

Acknowledgments

This research is funded by DARPA under contract #DAAE07-98-C-L038. The authors would like

to thank Michael Cramer, Jonathan Diaz, Sunuondo Ghosh, Karen Haigh, William Halliburton, David

Johnson, David Musliner, Kristy Robeson, and Donghua Xu for their participation on this project.

References

1. Arkin, R.C., \Motor Schema-Based Mobile Robot Navigation", International Journal of Robotics

Research, Vol. 8, No. 4, August 1989, pp. 92-112.
2. Arkin, R.C. and Balch, T., \AuRA: Principles and Practice in Review", Journal of Experimental

and Theoretical Arti�cial Intelligence, Vol. 9, No. 2-3, April-Sept. 1997, pp. 175-189.
3. Borenstein, J.; Feng, L., \Gyrodometry: a new method for combining data from gyros and odometry

in mobile robots", Proceedings 1996 IEEE International Conference on Robotics and Automation ,

Vol. 1, pp 423-428.
4. Collins, T. R., Arkin, R. C., and Henshaw, A. M. \Integration of Reactive Navigation with a Flexible

Parallel Hardware Architecture", Proceedings 1993 IEEE International Conference on Robotics and

Automation , Vol. 1, pp. 271-276.
5. Gowdy, J., \IPT: AN Object Oriented Toolkip for Interprocess Communication", Tech Report CMU-

RI-96-07, Robotics Institute, Carnegie Mellon University, March, 1996.
6. Henderson, T. C., Shilcrat, E. \Logical Sensor Systems", Journal of Robotic Systems, Vol. 1, No. 2,

March 1984, pp. 169-193.
7. MacKenzie, D. and Arkin, R., \Evaluating the Usability of Robot Programming Toolsets", Interna-

tional Journal of Robotics Research, Vol. 4, No. 7, April 1998, pp. 381-401.
8. MacKenzie, D., Arkin, R.C., and Cameron, R., \Multiagent Mission Speci�cation and Execution",

Autonomous Robots, Vol. 4, No. 1, Jan. 1997, pp. 29-52.


