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Abstract

We present a means in which individual members of a multi-robot team may allocate themselves into
specialist and generalist niches in a multi-foraging task where there may exist a cost for generalist
strategies. Through the use of reinforcement learning, we show that the members can allocate them-
selves into effective distributions consistent with those distributions predicted by optimal foraging
theory. These distributions are established without prior knowledge of the environment, without
direct communication between team members, and with minimal state.
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1 Introduction and Motivation

Foraging tasks are a standard testbed for multi-robot research partly due to their strong biological
analogs as well as their applicability in a large number of tasks ranging from sample collection to
mine disposal. In multi-robot foraging tasks, the robots composing the team search for objects to
collect (attractors) in an area and return the attractors found to a goal location. Multi-foraging is a
variant of the typical foraging task in that instead of a single type of attractor, there exist multiple
differing types. A significant amount of research has been conducted in the area of multi-robot
foraging. This research includes but is not limited to the effects of communication on multi-robot
foraging (Balch & Arkin, 1994), interference patterns in multi-robot foraging tasks (Goldberg &
Matarié, 1997), as well as the dynamics of collective sorting in a foraging task (Denebourg et al.,
1990). Of particular interest is Balch’s work concerning the diversity of multi-robot teams that learn
to perform a multi-foraging task (Balch, 1998). In this work, Balch found that the team of robots
did not learn to specialize in the foraging task even though multiple types of attractors existed.
In fact, using the social entropy metric developed within his thesis, he found that team diversity
and performance were negatively correlated. This paper focuses upon this result and attempts to
answer why the robots that learned the foraging task did not specialize, and what could cause a
multi-foraging team to specialize. To address these questions we look towards the optimal foraging
theory literature to provide insight into models of natural organisms’ foraging behavior and the
parameters that may result in specialized foraging behavior as well as generalist foraging behavior.

1.1 Optimal Foraging Theory

Optimal foraging theory, which is used by behavioral ecologists to model the foraging behavior of
organisms ranging from birds (Krebs et al., 1997) and mantes (Charnov, 1976) to bees (Real, 1991),
has looked extensively at the problem of finding the most efficient means in which an organism
may forage. Optimal foraging theory operates under the assumption that evolution has adapted the



foraging behavior of organisms to maximize certain factors while minimizing others as a means of
increasing its reproductive fitness. The usual interpertation of these optimization factors include
the maximization of caloric intake and the minimization of other factors such as predatory risk or
energy expenditure.

Research in this area has produced numerous models to describe this behavior. Most of these
models utilize some combination of four factors: a fitness set for the foraging activities, activity
selection, negative density dependence, and variable environments (Wilson & Yoshimura, 1994).
The fitness set captures the intuitive notion that specialized foragers are usually more effective
than generalized foragers. Activity selection allows for the organism to change its foraging behavior
between differing prey types or differing environments. Negative density dependence factors capture
the notion that foraging decisions are made in the context of the number of other organisms already
performing a particular foraging action. Lastly, temporally varying environments are used as a
means of modeling seasonal variations or other changing factors in the environment that may cause
different distributions of foragers.

MacArther and Pianka, in their seminal paper on optimal foraging theory (MacArthur & Pianka,
1966), developed a model to determine the most efficient means in which an organism can forage in
a patchy environment. Of particular interest to this work, is the portion of the model that describe
the conditions in which competing foraging species, one a specialist and one a generalist, will be
overrun by the generalist forager. They describe the net intake of food for a specialist forager as
kDH where k represents the foraging rate, D the density of food items, and H is the time spent
foraging. For the generalist forager the net intake is equal to ¥ DH where ¥ < k to represent the
trade off between generalist and specialist strategies and H < H' to represent the reduced search
time incurred by the generalist. This defines the parameter ranges in which specialist foragers can
be expected to intermingle with generalist foragers, namely while

H ¥
7 > . (1)
Another model of interest is that proposed by Wilson and Yoshimura concerning the coexistence
of specialist and generalist foragers (Wilson & Yoshimura, 1994). In their model they define fitness
levels for organisms across different environments though the use of a carrying capacity K. This
carrying capacity is defined on a per species and per environment basis such that K, i,j represents the
carrying capacity of species i in habitat j. This carrying capacity is utilized to represent specialist
and generalists though the use of constants a and b. Thus the carrying capacities of the different
species in a particular environment can be expressed as

K1 =Ki,Ky1 = aK1,K31 = bK;. (2)

These relationships between the carrying capacities of the different species are used to determine
the individual fitness of a species as

WZ — er(l_(N1‘j+N2,j+N3>j)/Ki;j), (3)
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where r is a constant rate of increase for all species and Ni;j is the number of species ¢ in habitat j.
By iterating this fitness value along with the current population of a species in that habitat using a
standard discrete-time population model,

=N

Nijtr = NijjtWijp (4)

they are able to predict the number of the three species that will be present in each habitat upon
stabilization of the system.

1.2 Reinforcement Learning

This insight of treating foraging as an optimization process leads to the utilization in our investiga-
tion of a common optimization technique in robotics, namely reinforcement learning. Reinforcement
learning is a machine learning technique in which an agent learns through trial and error to maximize
rewards received for taking particular actions in particular states over an extended period of time.
More precisely, given a set of environmental states S, and a set of agent actions A, the agent learns
a policy, m, which maps the current state of the world s € S, to an action a € A, such that the sum
of the reinforcement signals r are maximized over a period of time.

There are a number of techniques for maximizing this reinforcement signal including but not
limited to such techniques as Q-learning and the adaptive heuristic critic algorithm (Kaelbling et
al., 1996). For our experiments, however, we chose a relatively simple method to calculate the value
of taking a given action in a given state, namely by calculating the average reward over state, action
pairs. This average can be calculated using

N(s,a)Q(s,a) + r + max, Q*(s,a’) (5)
N(s,a) +2 ’

where r is the reward received for taking the action, max, Q*(s,a’) is the reward that would be
received by taking the optimal action after that, and N (s,a) is the number of times the robot has
taken action a in state s. By choosing the action with the highest Q-value, and allowing for the
robot to choose a random action with a given probability, the robot can explore the state space
and converge upon the action with the greatest average reward. For a more detailed discussion of
reinforcement learning refer to (Sutton & Barto, 1998) and (Kaelbling et al., 1996).

Q(s,a) =

2 Related Work

A large body of research has looked at using reinforcement learning as a means of guiding multi-
robot teams in foraging tasks. Matari¢ has analyzed the performance of such foraging robots using
reinforcement learning (Matari¢, 1997). Balch has measured the behavioral diversity of teams that
have learned foraging tasks (Balch, 1998). A significant amount of research has also addressed the
division of labor in foraging tasks, both in the context of multi-robot teams, as well as social insects.
Jones and Matari¢ have looked at means of using limited sensory history to estimate the proper
division of labor in a foraging task (Jones & Matari¢, 2003). Martinson and Arkin investigated
the utility of reinforcement learning as a means of guiding role switching in a military scenario
involving foraging robots, soldier robots, and mechanics (Martinson & Arkin, 2003). Additional



division of labour models have been proposed in the context of social insects. Bonabeau et al.
developed a division of labor model for social insects utilizing response thresholds (Bonabeau et al.,
1996). Theraulaz et al. extended this model to allow for threshold adjustment via the use of a
reinforcement process (Theraulaz et al., 1998).

3 Method

Using the Teambots robot simulation environment, five different worlds were created with 5 per-
cent random obstacle coverage and 40 randomly distributed attractors colored blue and red. Eleven
variations of these worlds were generated by varying the proportion of red attractors present such
that the number of red attractors ranged from 0 to 20. Four simulated Nomad 150 robots were
placed into the world. Each robot can execute one of three foraging strategies: a specialist red
attractor foraging behavior, a specialist blue attractor foraging behavior, and a generalist foraging
behavior in which the robot would collect either type of attractors. Each robot’s controller is de-
signed using the Clay architecture (Balch, 1998) of Teambots which allows for the creation of motor
schema based control systems. We use the reinforcement learning algorithm described previously to
enable each robot to learn which of the three different foraging strategies to use. Each robot has
only one state and in that state can choose from three actions corresponding to the three foraging
behaviors described above.

In order to capture the notion of the fitness set in optimal foraging theory we utilize a scalar
cg for the reward function of the general forager. This scalar can vary from 1, indicating there is
no cost to being a general forager to, 0 which indicates that general foraging is ineffectual. This
reward model is is further expanded to include the notion of search cost as MacArther and Pianka’s
model indicate that this may play an important role in specialization of natural organisms foraging
behaviors. Thus for each timestep spent searching for attractors the robot receives a penalty of -1,
indicating a significant search cost, or 0 indicating there is no significant cost to searching. Thus
the reward function can be depicted as:

1 if the attractor is returned using a specialist behavior at time t - 1;
R(t) = ¢ leg if the attractor is returned using the generalist behavior at time t - 1;
—1,0 if the robot does not return an attractor at time t-1.

The cost scalar was varied from 0 to 1 in increments of 0.2 and search cost was varied between 0
and -1. Three hundred trials were run in each configuration.

4 Results

The resulting behavior selection of the individual robots was measured. Figure ?? depicts the
results of the experiments when the foraging robot does not take the cost of the actual foraging into
account. Figures ?7a, 7?b, and ??c show the number of robots that perform the red foraging, blue
foraging, and general foraging strategies respectively for a given configuration of general foraging
reinforcement, levels and attractor distribution. Figure ?? shows the same trials run with the addition
of a penalty for each time step spent searching for attractors. Figures ?7a, ??b, and ?7c depict
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Figure 1: Distributions of four robots with no search cost as defined by the cost of generalization,
cg, and the number of red attractors out of 40
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Figure 2: Distributions of four robots with significant search cost as defined by the cost of general-
ization, ¢4, and the number of red attractors out of 40

the resulting behavioral distribution for each of the three strategies with this additional negative
reinforcement in place.

5 Discussion

A baseline case occurs when there is no tradeoff between general and specialized foraging strategies.
In the trials run, this parameterization occurs when the reward level for attractors returned using
any strategy is 1. In the trials where there is a cost associated with searching as well as when there
is no cost, a homogeneous team of general purpose foragers results as predicted by Balch’s work on
the diversity of multi-foraging teams. For the lower red attractor distribution, the general purpose
foragers intermingle with blue foraging specialists as there are too few red attractors to mandate a
fully homogeneous generalist team.

Further analysis is possible by looking at some of the model’s predictions concerning the proper
distribution of specialists and generalists. In particular, we can look MacArthur and Pianka’s predic-
tions concerning the the critical points in which generalist foragers will overrun specialist foragers.
The parameters in our simulation can be mapped to the parameters in MacArthur and Pianka’s
model readily. The reinforcement levels for the generalist and specialist strategies times the reward
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Figure 3: Critical points for the transition to homogeneous generalist teams via MacArther and
Pianka’s model.

r can be mapped to k¥ and k respectively. The parameters for the time spent foraging, H and H,
can be mapped to the simulation by noting that the foraging time for the two strategies will be
be proportional to the number of attractors available to be collected via a given strategy. Hence,

maz(Ared, Aptue) .
B Wy, P and the time spent

foraging for the generalist will be proportional to W where A,.q and Ay, represent the
number of red and blue attractors respectively.

the time spent foraging for the specialist will be proportional to

By placing these values in equation 1, the critical points in which the specialists are overrun with
generalists can be calculated as:

h maz(Ared,Ablue)

Aredt+Ablue _ TG
ApregtApiue ~ p
h AreatAprue

max(Ared; Ablue )
Ared + Ablue

= Cg, (6)

where r is is the reward for returning an attractor under the specialist strategies and h represents
some constant handling time for attractor collection.

Figure 7?7 shows a plot o and three different reward multiples for the generalist
foraging strategies where the reward level was multiplied by 0.4, 0.6, and 0.8. The intersections
between the reinforcement factor functions and the maximum proportion of the attractors available
to the specialist depict the critical points at which the team should converge upon a homogeneous
generalist strategy. The data presented in figure ??c shows that the team did in fact converge on the
homogeneous strategy, but slightly later then predicted by the optimal foraging model. The trials
in which ¢, = 0.6 converged to a homogeneous team when at A,.q = 18 as opposed to the predicted
Areq = 16. At ¢, = 0.8 the convergence did not occur until A,.q = 12. In both the our simulation
runs and in the MacArther and Pianka’s model, a homogeneous team of foragers does not emerge
for ¢, <0.4.
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Figure 4: Allocations for four robots using Wilson and Yoshimura’s model

We can do a similar comparison to Wilson and Yoshimura’s model described previously. We assign
the carrying capacities of each species as

Kred,red = Nyegds Kblue,red = aNpeqg, ngn,red =b0Nyeq
Kblue,blue = Npyes Kred,blue = aNppe; ngn,blue = bNpiyer (7)

with @ = 0, and b = 1-¢, utilize equations 3 and 4 to determine the stable configuration, and
then normalize the results for four agents. The resulting configuration space is shown in figure
?7?. As can be readily seen, the results are strikingly similar to results of the simulations foraging
runs made in which search cost was not considered as a significant portion of the reward function.
The results from our reinforcement learning allocation produced slightly sharper curves at the data
points with low values of ¢, and low proportion of red attractors when compared to Wilson and
Yoshimura’s predictions. Also, the bifurcation that occurs at when ¢, = 0.6 with the appearance
of generalist foragers and the disappearance of red foragers is not as pronounced in our simulation
results. The generalist foragers do begin to emerge and specialist red foragers begin to dissapear
but not as drastically as their optimal foraging model would predict.

6 Conclusions and Future Work

Reinforcement learning appears to be an effective means for individual robots to learn foraging
strategies in environments where multiple types of attractors exist and the effectiveness between gen-
eralized foraging strategies and specialized strategies may be variable. Using the method described
in this paper, the robots were able to achieve effective distributions in unknown environmens with-
out the use of direct communication and with the use of minimal state. By modeling the trade-off
between the effectiveness of general and specialized foraging strategies via a reward function, the in-
dividual robots were able to learn strategies resulting in team composition that is consistent with the
foraging distributions predicted by Wilson and Yoshimura’s model. When search cost became the
defining factor in the foraging behavior the distributions closely converged to homogeneous general-
ist teams at the points predicted by MacArther and Pianka. Balch’s work concerning the diversity
in multi-robot teams that learn the foraging task have been shown to be consitant with both the
optimal foraging models as well as the simulation trials described in this paper in which there existed



no cost to performing generalist foraging. While we have looked at the extreme parameterizations
of search cost in our simulations, it may prove fruitful to investigate the effect of more moderate
search cost on niche selection for a foraging task. Additional investigation into the scalability of the
method described in this paper over additional foraging behaviors as well as attractor types may
also prove interesting.
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