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Abstract— Deliberate control of an entertainment robot
presents a special problem in balancing the requirement for in-
tentional behavior with the existing mechanisms for autonomous
action selection. We propose that the intentional biasing of
activation in lower-level reactive behaviors is the proper mech-
anism for realizing such deliberative action. In addition, we
suggest that directed intentional bias can result in goal-oriented
behavior without subsuming the underlying action selection used
to generate natural behavior. This objective is realized through
a structure called the intentional bus. The intentional bus serves
as the interface between deliberative and reactive control by
realizing high-level goals through the modulation of intentional
signals sent to the reactive layer. A deliberative architecture that
uses the intentional bus to realize planned behavior is described.
In addition, it is shown how the intentional bus framework can
be expanded to support the serialization of planned behavior
by shifting from direct intentional influence for plan execution
to attentional triggering of a learned action sequence. Finally,
an implementation of this architecture, developed and tested on
Sony’s humanoid robot QRIO, is described.

Index Terms— robotics, behavior-based robotics, deliberative
control, reactive-deliberative control

I. INTRODUCTION

AS robots’ interactions with humans become increasingly
prevalent both in a service capacity [1] and in personal

interaction roles [2], it becomes important to address the prob-
lem of incorporating intentional action into these systems in a
natural way. This is an exceptionally challenging proposition
for entertainment robots because the intentional control needs
to provide for goal directed action without subsuming the
existing action selection mechanisms used to provide the robot
with “personality” [3]. In the case of a humanoid, such as
Sony’s QRIO shown in figure 1, the problem is further com-
pounded by the expectations placed upon anthropomorphic
robots by the user. In order for a humanoid’s actions to be
perceived as natural, its deliberative capabilities need to extend
beyond that of simple plan execution and move closer to the
range of deliberative capabilities afforded to humans.

While deliberation can mean many things, both in humans
and in robots, it is common for psychologists [4] to place
tasks requiring deliberative control in humans into several
categories:

1) Tasks involving planning or decision making
2) Tasks involving troubleshooting
3) Tasks containing novel sequences of actions
4) Tasks that are dangerous or difficult
5) Tasks that require the overriding of habitual responses

While intelligent systems may be able to benefit from
handling all the deliberative tasks described above, the three
most important, at least from the viewpoint of an entertainment
robot, are tasks requiring planning, tasks requiring novel
sequences of actions, and tasks requiring the overriding of
habitual responses. For example, a task that may be asked of an
entertainment robot is the delivery of a newspaper to the user.
This can be formulated as a typical planning activity in which
a plan is generated to find, collect, and deliver a newspaper at
a particular time. In fact, many such systems have be created
to generate and execute such plans [5][6]. For an entertainment
robot, however, often additional actions beyond those merely
necessary to achieve this plan are required if its behavior is
to be perceived as natural. For example, if someone tries to
attract the robot’s attention for interaction while executing this
plan, it should interact with that person unless the task is of
very high priority.

Planning also serves the purpose of providing a novel source
of actions for the robot to perform. This is especially important
for a robot that is to provide long-term interaction with a
human, as this can result in the previously unseen behavior
that keeps the robot’s activities non-boring from the user’s
perspective. In addition, these novel action sequences can
occur without requiring additions to its behavioral repertoire.

Another important deliberative task is the suppression of
behavior. For humans, it is just as important to know when it
is appropriate to perform an action such as calling a friend,
as it is to know when not to (e.g., in a business meeting). For
an entertainment robot, suppression of a behavior may be the
result of a request to remain quiet when it knows the user
is watching a movie. In this case, dialog-oriented behaviors
should be suppressed even if the robot maintains a desire to
interact. Such a user request should result in the robot being
highly unlikely to interact, but not eliminate its ability to do
so entirely if an important piece of information is needed to
be communicated to the user. Therefore, in order to provide
for natural behavior, the deliberative system should be able
to not only activate appropriate actions but also to suppress
inappropriate actions.

This work proposes that intentional bias of the action selec-
tion mechanism used by entertainment robots such as QRIO is
the proper means by which to express such deliberate control
in a natural manner. Because of the delicate balance required
between a robot’s behavior serving in an entertainment and
service capacity, it is inappropriate for these functions to exist
in isolation. One does not want a robot meant to serve as
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Fig. 1. Sony’s entertainment robot QRIO

a companion to lose all semblance of personality or related
entertainment characteristics when it is pursuing high-level
goals. Similarly, it is not desirable for an entertainment robot
to exist solely in the context of satisfying the immediate needs
of the robot or user in a purely reactive manner. In order to
achieve the types of deliberate control described above, it is
forwarded that a fine-grained application of intention is needed
if the behavior is to be perceived as natural.

An example of where such fine-grained deliberate control
may result in more natural behavior might be found in an
instance where a user of an entertainment robot has lost an
object, for example a valuable ring. The user asks the robot
to help find this ring. In this scenario the robot may produce
a plan to explore a particular room looking for the object.
The user probably doesn’t want the robot talking about the
weather at this point but instead wants the robot to perform
this task without reverting to less important behaviors such
as interaction or play. In this case the robot should execute
the plan regardless of any extraneous motivations to perform
alternate actions.

In another scenario, the user may ask the robot to retrieve
loose coins that may have been accidentally dropped. A similar
plan to search the room could be generated. In this case,
however, the request is not as important to the user. Thus
the robot may only search for change when there are no more
important goals to fulfill. Even when executing other actions or
other plans, however, the opportunistic sight of fallen change
should increase the likelihood that the robot starts executing
a coin retrieval plan. Conversely, if the robot is searching for
the coins, it should be able to be distracted from the task, if
more desirable or timely actions become possible.

Our research presents a mechanism for providing uniform
intentional control of the types described above. This mecha-
nism, called the intentional bus, serves as a gateway between

the reactive and deliberative layers in the architecture. The in-
tentional bus converts high-level goal-oriented tasks generated
by the deliberative system into intentional signals that serve
to bias behavioral activation in the reactive layer. These biases
serve as a means of directing the robot towards accomplishing
the goals of the deliberative system without overriding the
existing action level computations used to generate natural
behavior. In addition, we show that this interface is general
enough to provide interaction beyond that of intentional bias
by expanding it to handle attentional triggering of learned
sequences of behavior. Finally, we present an implementation
and results for this form of deliberative control on Sony’s
humanoid QRIO.

The remainder of the paper is composed as follows: Section
II provides an overview of related work on hybrid reactive-
deliberative architectures, psychological evidence for inten-
tional bias, and an overview of the action-selection architecture
for the entertainment robot QRIO used in this work. Section III
describes the intentional bus developed for this research and
its interactions with the deliberative and reactive architectural
layers. Section IV extends the intentional bus design to allow
for attentional triggering of learned serial actions. Section V
describes the deliberative architecture developed using inten-
tional bias to provide high-level control for the entertainment
robot QRIO. Section VI provides an evaluation of the use
of intentional bias for control of QRIO. Finally, section VII
concludes the paper and presents an agenda for future work.

II. RELATED WORK

A. Hybrid Reactive-Deliberative Architectures
Hybrid reactive-deliberative systems have been successfully

deployed for many years, serving as a mechanism for com-
batting the shortfalls of purely reactive and purely deliberative
architectures. Arkin and Gat provide excellent overviews of
a number of hybrid architectures in [7] and [8]. In these
architectures, the deliberative layer is usually coupled to the
reactive layer in one of three manners: as a mechanism for
generating actions at a differing time scale than the reactive
layer; as a means to guide reaction; and through the direct
coupling of reaction and deliberation, each guiding the other
[9]. In most cases, the role of the deliberative system is to plan
which actions should execute at a particular time to achieve a
goal. In many cases, the interaction between the deliberative
layer and the reactive layer is mediated by a sequencing layer
which selects the portions of the plan that should execute at a
given time. The sequencer then activates the behaviors required
to realize the next step in the plan.

In most architectures, this selection is a winner-take-all
process in which the behavior chosen is executed if the
environmental state matches that expected by the sequencer.
This activation is almost always a binary activation without
support for increased or decreased likelihood of behavioral
activation. Some work has investigated alternative means of
combining deliberative information into the reactive layer.
Payton [10], as well as Wagner and Arkin [11], have looked
at means of incorporating planned navigational information
directly into the behavioral controller. These plans provided
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Fig. 2. Norman and Shallice’s Model of the role of the SAS [4]

a navigational bias into a reactive controller, which served
as a means of influencing the expression of the currently
executing behavioral assemblage while still allowing other
reactive behaviors, such as obstacle avoidance, to be active.
The plans used in their work were not incorporated into the
behavioral selection process itself, however.

Numerous other means of incorporating deliberative in-
formation into the reactive layer have been investigated. A
thorough review of this area appears in [7]. A few represen-
tative examples are now discussed. The Motivated Behavioral
Architecture [12] was developed to decouple deliberate control
for various navigation tasks. Planning in this architecture,
when it is available, was used to select which subtasks
should be addressed by the behavioral modules present in
the system. Rosenblatt’s DAMN architecture [13] provides
a mechanism in which behaviors in the traditional sense, as
well as planners instantiated as behaviors, cast votes as to
the appropriate action the robot should take. The arbiter in
this architecture combines these votes to select the appropriate
action to take. Significant challenges exist in specifying voting
semantics making arbitration between different behaviors and
fine-grained deliberative control difficult, however. Carpenter
et. al. developed an architecture for robot soccer in which
deliberate advice from a coach is integrated via the addition
of suggested behaviors to the set of executable behaviors [14].
The effect of this advice, however, is highly dependent on
the scoring function used by the behavioral arbiter used and
appears unable to be influence behavioral selection in a non-
binary manner.

B. A Psychological Basis for Deliberate Control of Reactive
Behaviors

One particularly compelling model for the deliberative con-
trol of automatic actions in humans, developed by Norman
and Shallice, is the supervisory attentional system (SAS) [4].
Created to account for lapses of action in routine activity, they
propose the SAS acts as the controller over the expression

of automatic behaviors within humans. An overview of the
interaction of the SAS with the underlying behavioral layer
can be seen in figure 2. Their overall behavioral model can be
divided into two major interacting components, the portion
containing basic well-known actions called the contention
scheduling mechanism, and the portion which provides delib-
erate influence over action which is the supervisory attentional
system.

The contention scheduler involves multiple sets of simple,
well defined actions called schemas. Schemas can be atomic
or a well-defined series of schemas. A set of schemas is
activated when perceptual information in the environment
matches certain triggering conditions found in a perceptual
feature database. The strength of the activation is directly
related to the degree of match between those features and
features in the database. While it is beyond the scope of
this paper to discuss contention scheduling in detail, there
has been significant work in formalizing models of contention
scheduling [15] [16] as well as evaluating its feasibility as an
action-selection mechanism for robots [17] [18].

The contention scheduling system serves as a means of
providing reactive control for routine actions. In the case
of novel sequences of actions that are not known a pri-
ori, the contention scheduling system alone is insufficient
to express such behavior. Norman and Shallice [4] propose
that the SAS is the component that provides the additional
source of control needed to achieve such novel actions. They
suggest that the SAS in humans interacts with the reactive
contention scheduling layer through the use of motivational
and attentional threads. The attentional thread represents a bias
to the activation levels of the sets of schema found in the
contention scheduler resulting in an excitation or inhibition
of a given schema, but never activates the schema directly.
The motivational thread provides a similar mechanism to
operate over long term goals. These biases can allow for the
activation of novel sequences of behavior even if that sequence
did not already exist in the contention scheduler. How the
SAS actually does this is to date still ill-defined, although
Shallice and Burgess have examined possible mechanisms by
which the SAS may generate and evaluate plans [19]. They
do not, however, talk about the influence of the attentional
and motivational threads with the lower-level reactive layer in
much detail.

While it has been proposed [7] that Norman and Shallice’s
model of willed behavior may provide a suitable guide for
integration of reactive and deliberative control in robotic
systems, little has been done to investigate such mechanisms.
Garforth et. al. appear to have been alone in doing so thus far.
They looked at using neural mechanisms to mimic processes
of the supervisory attentional system for a simulated robot [20]
[21], investigating the suppression of a particular behavior in a
simple foraging task using a previously trained neural network.
The controller in this architecture appears to be limited to the
suppression of a particular behavior and cannot generate novel
behavioral sequences itself. In addition, their architecture
does not appear to support differing values of suppression
beyond binary suppression. They also discuss a mechanism
for learning new automatic actions through the use of an
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Fig. 3. Overview of the EGO architecture

episodic memory triggered by SAS activity. Unfortunately, the
mechanisms by which this is implemented and utilized are
unclear, nor do they come anywhere close to addressing the
level of deliberative task complexity required by a humanoid
entertainment robot such as QRIO.

C. Action Selection and Behavioral Representation in the
EGO Architecture

Action selection, the problem of determining which action
to perform among many possible conflicting actions, has
been studied extensively in both the agents and robotics
communities. Numerous models have been produced including
ethologically-guided [22] and spreading activation models[23].
Less effort, however, has been spent on considering the role of
intention in action selection. For example, Terzoupoulos et. al.
has looked at using intention to provide goal-oriented behavior
for simulated fish [24]. Intention in his work, however, is
not deliberative in the sense of the research described in this
article, and rather serves as a binary action selection mecha-
nism with which the system selects different behaviors such
as feeding or escaping based on various behavioral parameters
such as hunger or fear. An overview and comparison of a
number of alternate action selection mechanisms can be found
in [25].

For this work, however, we use the action selection mecha-
nism incorporated within the EGO architecture [26]. The EGO
architecture, or Emotionally GrOunded architecture, utilizes
the OPEN-R framework originally having its roots in the
design of the quadruped robot AIBO and later expanded to
the humanoid QRIO, the research platform for this work. An
overview of the components within the EGO architecture is
shown in figure 3. In the EGO architecture, behaviors are
organized in a tree structure according to their conceptual
relationship with each other [27]. For example, a high-level
soccer behavior may be decomposed into several low-level
behaviors such as finding and kicking a ball.

The EGO architecture currently uses two situated behavioral
layers (SBL), namely the normal situated behavior layer
(NSBL) and the reflexive situated behavioral layer (RSBL).
Each SBL provides mechanisms for the concurrent evaluation,
concurrent execution, and preemption of the various behaviors

Fig. 4. Example behavioral tree in the EGO architecture containing two
main behaviors: Soccer and Dialog

running on QRIO. An example of a very small NSBL tree
appears in figure 4. In the EGO architecture, behaviors main-
tain an activation level and set of resources associated with
them. Every cycle, most behaviors calculate their activation
levels after which a selection process occurs. In the action
selection process, the behavior with the greatest activation
level is selected for execution for which there are available
resources. If there are remaining resources, this process is
repeated until there are no more free resources. This allows
for the concurrent execution of non-conflicting behaviors to
occur.

In the EGO architecture, the activation level calculation is
a result of an ethologically-based homeostatic action selection
mechanism [27]. The homeostatic control module in QRIO
attempts to keep a number of internal state variables, such as
desires for interaction, rest, and activity, within certain bounds.
By evaluating the levels of these particular variables, as well
as external stimuli, actions can be selected by increasing the
activation of behaviors that will satisfy the robot’s internal
drives. The further a particular internal state variables is out
of the specified range, the greater its influence on action
selection. For example, a behavior that causes QRIO to sit
on the floor quietly for a period of time may satisfy QRIO’s
internal variable for rest. The higher QRIO’s desire for rest
is, the higher the activation value is for the sit behavior.
The effects of the internal state variables on action selection
are coupled with the additional influence of various external
releasing mechanisms found in the world. For example, even
if QRIO’s internal state variable corresponding to interaction
is within the proper bounds, if QRIO sees a face, the activation
level of interaction oriented behaviors will be increased.

More precisely, the activation level for the behaviors in the
EGO architecture are calculated as:

Bv = βMv + (1 − β)Rv , (1)

where Bv is the activation level, Mv is the motivational value
based on the robots internal state, and Rv is the releasing
value. The releasing value is be specified as:

Rv = α∆S + (1 − α)(S + ∆S), (2)

where S is the current satisfaction as measured by the internal
state variables and ∆S is the expected change is satisfaction
if the particular behavior were to become active. A detailed
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Fig. 5. Overview of the interaction between the deliberative system,
intentional bus, and lower level reactive behavior

discussion on the activation level computation and action
selection within the EGO architecture can be found in [28].

The action selection mechanism in the EGO architecture
bears some resemblance to the contention scheduling model
of Norman and Shallice ,where the situated behaviors in the
EGO architecture correspond to the reactive schema within the
contention scheduling model. In both the EGO architecture and
the contention scheduling model, top-down activation of situ-
ated behaviors occur. In addition, both the EGO architecture
and the contention scheduling model provide environmental
triggering of low level behaviors through the use of releasing
mechanisms. The major difference between the two action
selection mechanisms is the lack of lateral inhibition within
the EGO architecture.

To reiterate, our hypothesis is that through the intentional
bias of activation levels such as described here, goal-oriented
behavior can be added to the system without compromising
the strength of the existing action selection mechanism.

III. THE INTENTIONAL BUS AS A MECHANISM FOR
DELIBERATIVE BEHAVIORAL BIASING

In order to combine the execution of reactive behavior with
goal-oriented behavior in a natural manner, a mechanism for
providing, monitoring, and maintaining intentional control is
necessary. The intentional bus is the component that provides
these services and allows the deliberative system to interact
with the reactive behaviors in a coherent manner. An overview
of the interaction between the deliberative layer and the lower
level behavioral layer appears in Figure 5. The intentional bus
provides three major functions:

1) Monitoring and reporting the status of the underlying
schema.

Fig. 6. The state information contained within the intentional bus with sample
values

2) Biasing the activation levels in the reactive layer via
intentional threads.

3) Maintenance of the intentional bias in response to chang-
ing activation levels.

The intentional bus serves as a repository of information
about the underlying behavioral level for use by a deliberative
system. In addition, this state information is used by the
intentional bus itself for calculating the appropriate intentional
bias to send to schemas. The bus stores information pertaining
to the state of all schemas (running, stopped, etc.), information
pertaining to the recent completion of all schemas, activation
levels of all schemas, intentional levels of all schemas, and
the process IDs of all schemas. This information is derived
from two different locations: Intentional data comes from the
deliberative layer while all other information is received from
the reactive layer. An example of the state information stored
and utilized by the intentional bus is depicted in figure 6. In
addition, figure 7 shows the origins and destinations for all
data in the bus as well as the computations performed on that
data by the bus.

The second function of the intentional bus, the biasing of
activation levels for a schema, is initiated when a request from
the deliberative system is received. This request is composed
of three parts:

1) s: the schema to bias
2) m: the magnitude of the bias
3) a: an attentional flag, set to indicate if the bias should

be an attentional trigger (described in detail in the next
section)

The magnitude of the bias is calculated by treating m as a
percent of the total activation of all schema, such that,

b =
m

∑
ai

100
, (3)

where ai represents activation level for schema i. Other means
of calculating the bias can be substituted without loss of
generality, however. The resulting bias value is placed on the
bus and is sent to the appropriate schema, s, via the intentional
threads. This bias is added to the current activation level by
the schema resulting in the level increasing or decreasing by
the specified amount. The magnitude of the bias is stored
along with the other additional state information about the
schema for intention level maintenance. It is through this
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Fig. 7. Dataflow in the intentional bus. Arrows show origin and destination of the data. Trapezoids show computations internal to the intentional bus.

intentional bias of behavior that goal-directed behavior can
occur. The bias on the activation level of the behavior can have
a large number of effects ranging from certain execution for
values of m > 100, slight influence towards activation when
0 ≤ m ≤ 100, to inhibition of the behavior when m ≤ 0.

The final function of the intentional bus is the active
maintenance of the intentional signals. As activation levels
change in the system due to the termination and activation
of schema as well as the detection of releasing mechanisms
in the environment, the intentional bias currently applied to a
schema may no longer remain at the appropriate level. In the
event there is a change in the activation levels of the underlying
schema, the intentional bus uses the stored values of m and
recalculates the intentional bias for each schema. The new bias
is sent to the schema and in this way ensures the desired level
of bias remains applied to a schema.

Figure 8 shows an example of intentional bias and modu-
lation with two behaviors. Behavior one remains active until
the intentional bus sends an intentional signal to behavior two,
raising its activation level higher than behavior one. While ex-
ecuting behavior two, the releasing mechanism corresponding
to behavior one is detected in the environment, resulting in
its activation level increasing. In this case, the intentional bus
detects this change and actively maintains the intentional bias
to behavior two.

A second example of intentional bias that does not override
the existing action selection can be seen in Figure 9. In this
example, four different behaviors are present with behavior
one currently running. The intentional bus receives a request
that behavior two be biased with a moderate magnitude.
Behavior two’s activation level increases, but does not exceed
that of the currently executing behavior. When behavior one

completes, however, the bias is great enough for behavior two
to become active.

IV. THE INTENTIONAL TO ATTENTIONAL SHIFT FOR
ROUTINE ACTIVITY

One important capability for a robot that is designed for
long-term interaction is the ability to learn routine activities
from repeated intentional execution of plans. Routine activ-
ities in the context of this work are plans generated by the
deliberative layer that are repeated many times. For instance,
if the robot were to retrieve a newspaper on a daily basis for
the user, the plan generated for newspaper retrieval would be
a candidate for a routine activity. When a previously planned
activity becomes a routine activity the explicit plan execution
and monitoring that occurs in the deliberative system can
migrate to the lower-level action selection mechanism, freeing
the resources that formerly had been dedicated to generating
and executing such plans. We propose that this transition
can occur via the use of an attentional signal to activate
a learned behavioral sequence. Instead of the deliberative
system executing an activity through the intentional bias of
the underlying behaviors, an attentional signal is instead sent
to the first behavior in the sequence in order to start a chain-
activation of the requisite schemas. This notion of initiating
sequences of actions at a low-level via a high-level process
has been touched upon by Bonasso and Kortenkamp [29] but
never investigated fully.

Describing the specific learning mechanism used within the
reactive layer for learning serial actions is beyond the scope of
this paper, but details can be found in [30]. Other alternative
designs are also possible. For the purposes of this article, it is
assumed that such a mechanism exists and that the reactive
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Fig. 8. An idealized graph of activation values for two behav-
iors showing how intention can bias the activation level of a
behavior and how the intentional bus modulates the intention
in response to outside influences. In this example, behavior
two is biased via intention enough to cause it to run. While
behavior two is executing, however, the releasing mechanism
for behavior one is found which causes its activation level
to increase. The intentional bus observes this and adjusts
behavior two’s bias appropriately.

Fig. 9. An idealized graph of activation values for four
behaviors demonstrating how intentional bias does not nec-
essarily override existing behavioral expression. In this case
the bias is not great enough to make behavior 4 run. The bias
remains, however, and when behavior 1 completes, the bias
provided to behavior 4 now allows it to run.

Fig. 10. An idealized graph of activation levels for a series
of two behaviors before learned serialization. Behavior 2 is
biased causing it to become active, followed by behavior 3.

Fig. 11. An idealized graph of deliberately applied inten-
tional values for a series of two behaviors before learned
serialization.

Fig. 12. An idealized graph of activation values for a learned
routine behavior. In this example, after behavior 2 becomes
active, behavior 3’s activation increases via self-excitation in
anticipation of being active next.

Fig. 13. An idealized graph of intentional activity showing an
attentional trigger for a learned routine behavior. The trigger
causes behavior 2 to become active and allows the complete
learned routine to express itself automatically.
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layer can relay a message to the deliberative system indicating
that a task has become routine. Upon receipt of this message,
the deliberative system shifts from providing a continuous
intentional influence to instead providing a short attentional
signal to start the sequence of actions corresponding to that
plan. This occurs through the intentional bus using the same
mechanism that handles intentional signals. Once this signal
from the low-level schema has been received, the current se-
quence of actions can be marked as routine at the deliberative
level. If the series of behaviors has in fact been learned, in
the future the deliberative system can send a request to the
intentional bus that an attentional message be sent to the first
behavior in the sequence whenever that sequence is required to
be re-activated. This attentional trigger is sent using the same
mechanism that intentional bias is delivered to the targeted
schema, with the only difference being the duration of the
bias. For an attentional trigger, the intentional bus only sends
the bias once. After that, the behavior is triggered and the
bias is set back to zero instead of being actively maintained
at a specific level. The first several times the attentional signal
is sent, however, it is desirable for the deliberative system to
monitor the execution of the sequence to ensure the sequence
has indeed been learned properly. In the case that it has, the
deliberative system no longer interacts with the subsequent
schema in the sequence but instead allows the sequence to
execute automatically at the reactive level. An illustration of
the intentional and attentional activity before and after a serial
action is learned can be seen in figures 10 to 13. Figure
10 shows the activation levels of four behaviors during the
execution of a 2-step serial action. In this case, behavior 2 is
biased through the intentional bus followed by behavior 3. The
intentional activity during this process appears in figure 11.
Figures 12 and 13 show the interplay between the attentional
triggering and the execution of the learned serial behavior.
Here, the attentional trigger replaces the constant intentional
bias and the behavior is executed automatically at the reactive
layer.

V. DESIGN AND IMPLEMENTATION OF AN ARCHITECTURE
FOR DELIBERATIVE CONTROL VIA INTENTIONAL BIAS

On overview of the deliberative/reactive architecture utiliz-
ing intentional bias can be seen in figure 14. The deliberative
system can be viewed as a collection of interacting subsystems.
These subsystems provide mechanisms for planning, plan
execution, state tracking, as well as the intentional bus for
interfacing the deliberative layer with the reactive layer.

A. Planner, Knowledge base, and APR Converter
Generation of plans is one of the primary functions of

a deliberative system. To accomplish this task a suite of
three components is utilized: the planner, the knowledge base,
and the abstract plan representation (APR) converter. The
knowledge base contains facts and assertions about the world,
the state of the robot, the tasks that must be accomplished, as
well as knowledge concerning the different behaviors the robot
can execute and their effect upon the world. The knowledge
base also contains the information required for the generation

of the bias values in a plan. This knowledge takes the form
of scalar values representing user and robot preferences for
tasks. Future work will look into means of acquiring these
values over the lifetime of the robot using on-line learning
algorithms. The planner uses the information contained in the
knowledge base to generate plans based on the goals of the
robot at a given time.

To generate plans for execution in this architecture, a
hierarchical task network planner was used for the initial
implementation, which outputs plans consisting of ordered
sequences of actions that need to be accomplished in order
to achieve the goals maintained in the knowledge base. This
Abstract Plan Representation (APR) can vary based on the
specific type of planner being used. We do not use the
planner’s output directly so as not to tie the deliberative system
to any one particular planner implementation for flexibility.
As a result, other planners may be integrated without loss
of generality. The APR converter serves as the glue between
the planner and rest of the deliberative system by taking the
planner’s APR output and converting it into the internal plan
representation (IPR). The resulting IPR is utilized by the IPR
executor module on-board the robot to realize the generated
plans.

B. Internal Plan Representation

As the APR output of the planner can vary based on the
type of planner used, a formal language was developed as an
internal plan representation (IPR) for the deliberative system.
It serves as a concrete target for the plan format that the robot
will execute. The IPR is composed of a series of statements
detailing the steps generated by the planner. Each step is
composed of a number of components, the first being a state
requirement, detailing the conditions that must be true in the
world for that particular part of the plan to be applicable.
The current possible state qualifiers include the presence of a
stimulus in short-term memory, the posture of the robot, time
constraints, energy constraints, and plan progress. Additional
qualifiers can be added readily as the requirements for state
description expand along with the types of tasks needed.

The second major component is the schema that is to be
biased during that step in the plan. This is followed by any
binding parameters they may be applicable for the schema. For
example, a reaching schema may be bound to the particular
object that the robot may reach for, such as a ball. The binding
parameter is followed by a priority value indicating the relative
importance of the schema. This is used both to resolve resource
conflicts in the execution of concurrent plans as well as serving
as the magnitude of the intentional bias sent to that schema.

The final component is a flag to determine if the schema in
that plan item is part of a learned action sequence and hence
requires an attentional trigger rather then intentional bias.

More formally an IPR statement takes the form of:

s a(b) m i; (4)

where
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Fig. 14. Overview of the end-to-end deliberative/reactive architecture

TABLE I
SAMPLE IPR FOR A PLAN GENERATED FOR ATTENDING SOCCER CLASS

NOT Completed(1) SEARCH(LANDMARK3(#1) 75 false;
// If the first plan step has not been finished then bind instance 1 of landmark 3 to the search
// behavior search and bias the search behavior with magnitude 75.

Completed(1) AND Present(LANDMARK3) APPROACH(LANDMARK3#1) 75 false;
// If the first plan step has finished and landmark 3 is present & then bind instance 1 of landmark
// 3 to the approach behavior and bias the approach behavior with magnitude 75.

Completed(2) SEARCH(PINKBALL#1) 75 (1,2,3) true;
// if the second plan item has been completed bind the search behavior to instance 1 of the pink
// ball and send an attentional trigger of magnitude 75 (this will cause the routine behavior for
// soccer to begin).

• s is the state over which the IPR item is valid where s
takes the form of a statement of conjuncts and disjuncts
of state variables s1 to sn.

• a is the schema that will be intentioned.
• b is the binding parameter for the schema where b

is a couple, < object, identifier >, representing the
instance of a particular object to bind to this schema

• m is an integer parameter indicating the magnitude of the
desired bias

• i is a boolean flag indicating whether the schema should
be maintained by the intentional bus or be serviced by
an attentional trigger.

Table I shows a small sample of a plan in the IPR format. A
single IPR statement is called a plan item as it corresponds to
the smallest unit of a particular plan. Once the abstract plan
has been converted into the IPR, it is loaded into the plan
working memory of the IPR executor.

C. Symbol Conversion Module

The symbol conversion module is largely responsible for
translating stimuli, both from the outside world and internally,
into a form that is usable by the deliberative system. Internal
stimuli include internal state variables such as energy levels
while external stimuli can include things such as visual or
audio input. Using updates from the internal state module in
the EGO architecture, the symbol conversion module copies
the relevant data into the current world state representation
used by the IPR executor. In addition, the symbol conversion
module examines the contents of short-term memory for
various external stimuli. If it finds any stimuli in short term
memory, it determines what they are (faces, landmarks, etc)
as well as their associated target ID. It translates any stimuli it
finds into a name representing the stimuli and places it into the
symbol buffer held in the IPR executor for potential binding
as well as for state qualification evaluation for the plan items.
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D. IPR Executor

The IPR executor is the core module for the execution
of plans generated by the deliberative system. Its functions
include: plan item selection, plan progress tracking, symbol
binding, and schema conflict resolution. The primary task for
the IPR executor is the determination of applicable plan items
based upon their state requirements and the current state of
the world. This process occurs in several stages. The first
phase selects the set of plan items which are not executing and
whose state requirements currently match those of the world
state. This set is then tested for potential schema conflicts
(described below). The plan items without conflicts are then
sent to the symbol binding mechanism. After binding they are
then set to running, and a message is sent to the intentional
bus indicating which schema to bias and the associated bias
magnitude as specified in the IPR statement. In addition,
the message contains the appropriate flag designated by the
plan item indicating if it is an intentional request requiring
maintenance by the bus of the behavioral bias or if it is instead
an intermittent attentional trigger used for a routine activity.

The second major task the IPR executor performs is the
binding of symbols to the schema in plan items. This produces
a result similar to a mechanism currently found in the EGO
architecture that allows children schema of the same parent to
share target information. This rebinding allows different plan
items to share the same target information despite belonging
to different subtrees in the underlying behavioral tree. The IPR
executor binds the objects in the symbol buffer to those needed
by the running schemas based on the binding parameter in their
plan item. All schemas that have the same binding parameter
are informed of the target ID.

Schema conflict resolution, the third function of the IPR
executor, refers to the fact that multiple plan items may be
in competition for a single schema. For example, there may
be two potentially active plan items which both require the
use of an approach schema for two different objects. Only
one of these plan items can be active at a particular time.
The IPR executor uses a priority-based arbitration mechanism
to resolve these conflicts where the priority for a particular
plan item is represented by the magnitude of the intentional
bias as specified in the IPR representation. Whenever a plan
item is applicable, the IPR executor will first check that the
appropriate schema is not already in use by another plan item.
If it is, it compares their bias magnitudes and selects the plan
item with the highest magnitude. In the case of a tie, the
plan item that currently has control of the schema remains
the executing schema.

Related to schema conflict resolution is the notion of parallel
IPR plan item execution. Barring symbol conflicts such as de-
scribed above, schema conflicts due hardware resource conflict
(i.e. two competing schema that each cause the right arm to
move to serve its own ends) are handled by the underlying
action selection mechanism. Within the EGO architecture,
multiple behaviors can be active as long as they do not
result in hardware resource conflicts. As the intentional system
described herein only biases behavior activation levels and
does not activate the behaviors directly, IPR plans inherit

the parallelizability of the existing underlying action selection
mechanism. This allows multiple IPR plan statements to safely
execute as long as there are no underlying hardware resource
conflicts.

The final task of the IPR executor is tracking plan pro-
gression, notably, which plan items are running and which
plan items have been completed. To do this, the IPR executor
queries the intentional bus to determine if a particular schema
belonging to a plan item has completed. If it has, the IPR
executor sends a request to the intentional bus to set the
intention value to zero. It then unbinds the symbols for
that plan item and updates the requisite deliberative state
information to indicate that the plan item has been completed.

E. Intentional Bus
As described previously, the intentional bus serves as the

interface between the deliberative system and the underlying
reactive layer. In this implementation, it serves as the interface
between the IPR executor and the SBL. The intentional bus
stores a large amount of information about the underlying
schemas such as their state (ready, active, sleeping, etc.), their
current activation levels, their process ids, and their current
intentional levels. Messages sent from the SBL concerning
schema status and activation levels are routed to the intentional
bus for determining schema completion. The primary function
of the intentional bus is to influence the underlying SBL layer
via intentional threads which serve as biases, both excitatory
and inhibitory, in the activation of schema.

Upon receipt of a message from the IPR executor indi-
cating a specific schema to bias, the intentional bus stores
the requested bias magnitude for later bias calculation as
well as the flag indicating if it corresponds to an attentional
trigger or intentional bias. In the case that the magnitude
is zero, the intentional bias is immediately stopped for that
schema. At every timestep, the intentional bus examines the
bias magnitude values for each schema, and uses this value
to calculate the appropriate intentional bias to send to the
associated schema. The function used for bias calculation in
this implementation is

m
∑

ai

100
, (5)

once again, where ai is the activation value for schema i. Thus
for priorities less then 100, bias can be introduced without
preventing other schema from running. For values greater than
100, the plan item is certain to execute. Values less than
0 result in an inhibitory effect. For any bias value that is
non-zero, the intentional bus sends a message to the SBL
indicating the bias value that should be exerted on the behavior.
If the intentional bus has been requested to send an attentional
trigger to a particular schema, the next timestep the intentional
level is set to zero.

VI. EVALUATION

To demonstrate the ability of the implemented system
to provide both goal-oriented behavior concurrent with pre-
existing action selection mechanisms, two experiments were
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Fig. 15. Behavioral tree used in intentional experiments. The bold-italic labels indicate the behaviors associated with that node and any of the nodes children
in applicable.

conducted. In the first experiment we look purely at the plan
execution capabilities of the system by the addition of large
amounts of intentional bias (m > 100). A behavioral tree
was used consisting of several behaviors including dancing,
singing, approaching, searching, kicking, a reflex action to
turn towards loud noise, and a greeting action (figure 15).
These behaviors were a combination of pre-existing behaviors
developed by Sony staff as well as custom designed behaviors.

In the first experiment, a plan is generated to play soccer
consisting of the three steps shown in Table II, namely
searching for, approaching, and then kicking a pink ball. While
this plan is being executed by QRIO, the operator calls out to
QRIO to try to get its attention to interact. The operator then
shows QRIO a green ball, the releasing mechanism for the
greet behavior. The greet behavior, if activated, causes QRIO
to stop, wave, and then sit down for a few moments.

The activation level traces for each behavior appear in
figure 16 while the intentional levels are shown in figure 17.
Figure 18 depicts the experiment while it is being executed.
As seen from the activation levels, each item of the plan
is executed in sequential order mimicking the effect of a
traditional deliberative controller directing the behavior of the
robot. Note the large spike in activation level for the approach
behavior D (figure 16) while QRIO is executing the plan. This
occurs when the operator shouted and tried to gain QRIO’s
attention and showed QRIO the green ball. The greeting
behavior’s activation level increased greatly but the active
maintenance of the intentional levels by the deliberative sys-
tem prevents the high priority plan from being interrupted
as shown by C in figure 17. In the second experiment, we
used a slightly modified IPR for the soccer plan, this time
reducing the priority of each behavior in the plan sequence

as shown in Table III. The plan is then executed as before,
with the operator attempting to distract QRIO. Graphs of the
activation and intentional levels can be seen in figures 19
and 20 respectively while figure 18 shows the experiment.
This time, when the operator tries to get QRIO’s attention
and shows him the green ball, the activation level exceeds
that of the particular plan item, even with active maintenance
(Figure 19, D). QRIO interrupts the plan’s execution to interact
with the user before continuing on later with the original plan.
This example demonstrates how the deliberative system allows
for the augmentation of the robot’s normal behavior without
interfering with its underlying action selection mechanism.

VII. CONCLUSIONS AND FUTURE WORK

This work presents the concept of intentional bias for
deliberative control. Through behavioral biasing we show that
goal-oriented behavior can be exhibited without overriding
the present underlying action selection mechanisms. In addi-
tion, through the active modulation of bias afforded by the
intentional bus, the deliberative system is provided with a
simple and uniform mechanism for interfacing with a reactive
controller. In our implementation, we have investigated an
additive mechanism for incorporating intentional bias into the
reactive layer and demonstrated this experimentally. Further
research is necessary to determine if non-additive methods
may be more effective in modifying the activation levels of
the behaviors. In addition, it may be of value to investigate
alternative means of calculating the magnitude of the bias for
systems that do not have uniform activation level calculations
over all behaviors.
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Fig. 16. Activation levels trace during the execution of a high
intentional magnitude plan: A) Search behavior is active. B)
Approach behavior becomes active. C) Releasing mechanism
for greet behavior is found and its activation is increased. D)
Intentional bus maintains appropriate intention levels keeping
approach active. E) Kick behavior becomes active.
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Fig. 17. Intention levels trace during the execution of a
high intentional magnitude plan: A) Intentional bias is sent to
search behavior. B) Intentional bias is stopped for search and
started for approach behavior. C) Intentional bias is increased
by intentional bus due to changes in schema activation levels.
D) Intentional bias to approach is stopped and bias to kick
behavior begins.

(a) (b) (c)

Fig. 18. Depiction of high intention soccer plan. a) QRIO approaches the ball b) The operator tries to distract QRIO with the green ball (the releasing
mechanism for the greet behavior) c) QRIO kicks the ball and completes the plan.
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Fig. 19. Activation levels trace during the execution of
a low intentional magnitude plan: A) Search behavior is
active. B) Approach behavior becomes active. C) Releasing
mechanism for greet behavior is found and its activation is
increased. D) Intentional bus maintains appropriate intention
levels but intentional magnitude is low enough to allow
other behaviors to execute. E) Greeting behavior finishes and
approach behavior becomes active again. F) Kick behavior
becomes active.
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Fig. 20. Intention levels trace during the execution of a
low intentional magnitude plan: A) Intentional bias is sent to
search behavior. B) Intentional bias is stopped for search and
started for approach behavior. C) Intentional bias is increased
by intentional bus due to changes in schema activation levels.
D) Intentional bias to approach is stopped and bias to kick
behavior begins.
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TABLE II
IPR REPRESENTATION FOR THE HIGH INTENTIONAL SOCCER PLAN

// High intentional bias plan
NOT Present(PinkBall) SEARCH(PINKBALL#1) 101;
Completed(1) AND Present(PINKBALL) APPROACH(PINKBALL#1) 101;
Completed(2) KICK(PINKBALL#1) 101;

TABLE III
IPR REPRESENTATION FOR THE LOW INTENTIONAL SOCCER PLAN

// Low intentional bias plan
NOT Present(PinkBall) SEARCH(PINKBALL#1) 75;
Completed(1) AND Present(PINKBALL) APPROACH(PINKBALL#1) 75;
Completed(2) KICK(PINKBALL#1) 75;

(a) (b) (c)

Fig. 21. Depiction of low intention soccer plan. a) QRIO approaches the ball b) The operator tries to distract QRIO with the green ball, the lower intentional
bias of this plan allows the greeting behavior to run and QRIO greets the user and sits down. c) QRIO gets back up, continues executing the plan, and kicks
the ball.
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