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1 Introduction 

Sociologists and social psychologists have long recognized the importance of the situation 

as a determining factor of interpersonal interaction (Kelley et al., 2003; Kelley & Thibaut, 

1978; Rusbult & Lange, 2003). Solomon Asch, a renowned psychologist, stated that, “most 

social acts have to be understood in their setting and lose meaning if isolated.” (as cited in 

Kelley & Thibaut, 1978 pg. 4). If a goal of artificial intelligence is to understand, imitate, 

and interact with humans then researchers must develop theoretical frameworks that will 

allow an artificial system to, (1) understand the situation-specific reasons for a human’s 

social behavior, and (2) consider the situation’s influence on the robot’s social behavior. 

Understanding human interactive behavior is critical as it implies that the robot will then be 

capable of predicting and planning for future interactions and their consequences. 

Recognition of the situational impacts on a robot’s own interactive behavior is similarly 

necessary if robots will be expected to operate in the presence of humans in social settings 

such as the home or the workplace.  

 This paper contributes an algorithm for extracting situation-specific information and 

uses this information to guide interactive behavior. For our purposes, a social situation 

describes the environmental factors, outside of the individuals themselves, which influence 

interactive behavior. The objectives of this paper are to 1) introduce the human-robot 

interaction community to the ideas of interdependence theory; 2) present a novel algorithm 

for situation analysis developed by the authors from interdependence theory that provides a 

robot with information about its social environment; and 3) demonstrate that the algorithm 
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provides information that can be profitably used to guide a robot’s interactive behavior. 

Simulation experiments accomplish the final objective. These simulations first demonstrate 

that the algorithm is applicable to robotics problems involving collaborations among 

humans and robots and then examine the algorithm’s effectiveness across a wide expanse 

of social situations.  

 Consider, as a running example, an industrial accident involving a toxic spill and 

injured victims. A teleoperated robot is assigned to rescue victims and an autonomous 

robot operates simultaneously to cleanup the spill. During the cleanup, both the human and 

the robot will select behaviors directed towards the effort. Perhaps due to the properties of 

the spilled material, the victims need to be cleaned before being rescued. In this case, the 

success of the cleanup depends entirely on both robots working together. Alternative 

chemical spills will allow the robot and the human to operate in an independent manner, 

with victims being rescued separately from the cleanup. In either case, the situation should 

influence the autonomous robot’s decision to coordinate its cleanup behavior with the 

human or to operate independently. Moreover, the effectiveness of the cleanup will depend 

on the robot’s ability to characterize the situation and to use this characterization to select 

the appropriate behaviors.  

 The remainder of this paper begins by first summarizing related research. Next, our 

algorithm is described, followed by a set of experiments used to examine the algorithm. 

This article concludes with a discussion of these results and directions for future research.  
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2 Related work 

Many researchers have explored human-robot interaction within a single social situation. 

Breazeal examines situations involving emotive dialogue between a human and a robot 

(Breazeal, 2002). Pineau et al. explore an assistive situation concerning elderly residents of 

a retirement home and a robot (Pineau, Montemerlo, Pollack, Roy, & Thrun, 2003). 

Several researchers have explored interactive situations involving museum tour guides (see 

Fong, Nourbakhsh, & Dautenhahn, 2003 for a review). We, however, currently know of no 

direct consideration of the theoretical aspects of social situations as applied to interactive 

robots.   

 Social psychologists, on the other hand, have long considered the situation-specific 

aspects of interpersonal interaction (Kelley & Thibaut, 1978). The use of social situations 

for examining social interaction is widespread within both neuroscience (Sanfey, Rilling, 

Aronson, Nystrom, & Cohen, 2003) and experimental economics (Berg, Dickhaut, & 

McCabe, 1995). Interdependence theory is a social psychological theory developed by 

Kelley and Thibaut as a means for understanding and analyzing interpersonal situations and 

interaction (Kelley & Thibaut, 1978). Interdependence theory began as a method for 

investigating group interaction processes and evolved over the authors’ lifetimes into a 

taxonomy of social situations categorizing interpersonal interactions (Kelley et al., 2003; 

Kelley & Thibaut, 1978). It is often described as one of the most influential theories for 

exploring interpersonal relationships and has been characterized by some as a type of social 

exchange theory (Sears, Peplau, & Taylor, 1991). The term interdependence specifies the 

extent to which one individual of a dyad influences the other. Using interdependence 
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theory as a basis of analysis, psychologists have recently developed an atlas of 

interpersonal situations that maps social situations to a multi-dimensional interdependence 

space (Kelley et al., 2003). The social situations that occupy this space are not ad hoc 

constructions. Rather, they represent real situations experienced by real people in the world 

(Kelley, 1979). Some situations, such as the prisoner’s dilemma, have been the focus of 

intense research involving human subjects spanning decades (Axelrod, 1984). Thus, if we 

expect robots to interact with untrained people in real world environments, it is important 

for robots master these situations.  

3 Situation-based human-robot social interaction 

Interdependence theory underlies our framework for situation-based human-robot 

interaction. The following section briefly summarizes the aspects of interdependence 

theory that are used in this work. Next, an algorithm, which uses aspects of 

interdependence theory to produce information about social situations is detailed. 

Afterwards, we develop a complete computational process by which a robot can use 

perceptual information to guide interactive behavior. 

3.1 Interdependence theory 

Interdependence theory is based on the claim that people adjust their interactive behavior in 

response to their perception of a social situation’s pattern of rewards and costs. Thus, each 

choice of interactive behavior by an individual offers the possibility of specific rewards and 

costs—also known as outcomes—after the interaction. Interdependence theory represents 
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social situations computationally as an outcome matrix (figure 1). Outcome matrices are 

the social psychological equivalent to game theory’s normal form game. An outcome 

matrix represents a social situation by expressing the outcomes afforded to each interacting 

individual with respect to the pairs of behavior choices selected by the dyad. Figure 1 

shows the outcome matrix for our toxic spill cleanup example. In the dependent situation in 

figure 1, the robot receives outcome equal to the number of hazards if both the robot and 

the human cooperate and choose to cleanup hazards, but receive a zero outcome if they do 

not cooperate. Critics of interdependence theory often state that (1) it ignores the non-

economic aspects of interpersonal interaction such as altruism and (2) that it assumes 

people are rational, outcome maximizers. Kelley responds to these criticisms directly, 

stating that the non-economic aspects of interaction can also be included in a description of 

a person’s outcomes and that the theory does not presume either rationality or outcome 

maximization (Kelley, 1979). Rather, as will be explained shortly, individuals often 

transform social situations to include the irrational aspects of socialization such as emotion 

or social bias. 

[Figure 1 about here] 

[Figure 2 about here] 

 Kelley and Thibaut conducted a vast analysis of both theoretical and experimental 

social situations and were able to generate a space that mapped particular social situations 

to the dimensional characteristics of the situation (Kelley & Thibaut, 1978). This 

interdependence space (figure 2 depicts three of the four dimensions) is a four dimensional 
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space consisting of: (1) an interdependence dimension, (2) a correspondence dimension, (3) 

a control dimension, and (4) a symmetry dimension. The interdependence dimension 

measures the extent to which each individual’s outcomes are influenced by the other 

individual’s actions in a situation. In a low interdependence situation, for example, each 

individual’s outcomes are relatively independent of the other individual’s choice of 

interactive behavior. A high interdependence situation, on the other hand, is a situation in 

which each individual’s outcomes largely depend on the action of the other individual. 

Correspondence describes the extent to which the outcomes of one individual in a situation 

are consistent with the outcomes of the other individual. If outcomes correspond then 

individuals tend to select interactive behaviors resulting in mutually rewarding outcomes, 

such as teammates in a game. If outcomes conflict then individuals tend to select 

interactive behaviors resulting in mutually costly outcomes, such as opponents in a game. 

Control describes the way in which each individual affects the other’s outcomes in a 

situation. In some situations individuals must exchange action for reaction, such as 

situations involving buying and selling. Alternatively, some situations demand that 

individuals coordinate their actions to produce a result, as in the rescue of a victim that is 

too heavy to be saved by one individual alone. Symmetry describes the balance of a 

situation’s outcomes in favor of one individual over another. In a symmetric situation, both 

individuals have equal influence over their partner’s outcomes. Asymmetric situations, on 

the other hand, place more influence over the situation’s outcomes in one individual than in 

the other.  



 8 

 A matrix’s location in interdependence space provides important information relating 

to the situation. For example, in a situation of low interdependence the robot should 

generally select the behavior that maximizes its own outcome, because its choice of action 

will not have a large impact on the outcome of its partner. We term the process of 

deconstructing a matrix into its interdependence space dimensions situation analysis. As 

will be demonstrated, the information provided by situation analysis can be used to 

profitably guide interactive behavior selection by a robot.  

3.2 The situation analysis algorithm  

Situation analysis is a general technique we developed from interdependence theory to 

provide a robot with information about its social situation. As an algorithm, it can be used 

in an on-line or an off-line manner to provide information about any social situation 

represented by an outcome matrix. Thus, in theory, a robot could use situation analysis as a 

tool to investigate potential social situations it might encounter or situations that have 

occurred in the past among others. The input to the algorithm is an outcome matrix 

representing the social situation. The algorithm outputs a tuple, δγβα ,,, , indicating the 

situation’s location in the four dimensional interdependence space. Situation analysis 

involves 1) deconstructing the outcome matrix into values representing the variances in 

outcome and 2) the generation of the dimensional values for the interdependence space. 

Box 1 describes situation analysis algorithmically.  

[Box 1 about here] 
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[Figure 3 about here] 

 The first step is matrix deconstruction. This procedure iteratively separates the values 

in the input or raw outcome matrix into three separate matrices (figure 3) (Kelley & 

Thibaut, 1978). The Bilateral Actor Control (BAC) matrix represents the variance in 

outcome resulting from the robot’s own interactive decisions. This matrix thus quantifies 

the robot’s control over its own outcomes. The Mutual Partner Control (MPC) matrix, on 

the other hand, represents the variance in outcome resulting from a partner’s interactive 

decisions and thus quantifies a partner’s control over the robot’s outcomes. Finally, the 

Mutual Joint Control (MJC) matrix represents the variance in outcome resulting from both 

the robot’s and its partner’s joint interactive decisions. In other words, the MJC matrix 

describes how each individual is affected by his, her, or its joint actions. As depicted in 

figure 3, all outcome variance occurs in the BAC matrix when deconstructing an 

independent situation. This procedure results in values for variables BC, PC, JC 

individually representing the variance of both the robot’s and the human’s outcomes in the 

situation. The subscripts in this figure denote the variance of the outcome for the robot (R) 

and the human (H) respectively.  

[Table 1 about here] 

 Once the variances for the situation have been computed these values can be used to 

calculate the situation’s location in interdependence space. This is accomplished using 

equations (1-4) from table 1. Equations (1) and (2) are from (Kelley & Thibaut, 1978). 

Equations (3) and (4) are contributions of this work. Equation (3) subtracts the outcome 
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resulting from joint action by the individual’s from the outcome resulting from partner and 

individual control. This value is then normalized. Equation (4) subtracts one individual’s 

control over their own outcomes from the other individual’s control. This value is 

normalized with respect to both individual’s outcomes. These values constitute the tuple 

δγβα ,,, , the situation’s location in interdependence space. 

 

3.3 Using situation analysis to select interactive behaviors 

The situation analysis algorithm presented above begs several questions. Notably, 1) how 

are the outcome matrices created? 2) How is the location in interdependence space used to 

control a robot’s behavior? 3) Does knowing a situation’s location in interdependence 

afford valuable information for determining which behavior to select? This section 

addresses each of these questions in turn.  

 The creation of outcome matrices that accurately reflect a robot or agent’s social 

environment is a current topic of investigation for several research groups. Vorobeychik, 

Wellman, and Singh, for instance, have explored the use of machine learning techniques to 

determine the outcome values in an outcome matrix (Vorobeychik, Wellman, & Singh, 

2005). Nevertheless, the absence of a general approach for creating outcome matrices has 

not impeded their use in numerous fields. Neuroscience researchers, for example, use the 

value of money to directly populate the outcome matrix (see Sanfey, Rilling, Aronson, 

Nystrom, & Cohen, 2003 as an example). Moreover, a great deal of work has considered 

the challenge of representing uncertainty within an outcome matrix (Osborne & Rubinstein, 
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1994). Results range from probabilistic expectations over the utility values to cumulative 

probability functions that model normative human responses capturing several types of 

psychological phenomena (Kahneman & Tversky, 1992). Moreover, often the actual values 

within the cells of a matrix are less important than the relation of one cell to another cell. 

For example, it is typically more valuable to know which action in an outcome matrix 

provides maximal reward than it is to know the actual value of the reward provided. We 

therefore assume that a method for creating the outcome matrix from a social situation 

exists and that the outcome matrix created accurately reflects the social situation including 

its uncertainty. For the experiments conducted as part of this research, the number of 

hazards and victims perceived is used to construct the outcome matrix (figure 1). These 

matrices expand upon the human-robot cleanup situation described previously. In these 

examples, both the human and the robot select either an action to rescue a victim or to 

cleanup a hazard. The outcome for each pair of selected actions, in this case, is a function 

of the number of victims and hazards in the environment. The functions in figure 1 were 

selected to give the autonomous robot a preference for cleanups and the teleoperated robot 

a preference for victims. Preferences such as these might result from the configuration of 

each robot. In the independent situation, for example, if the robot chooses to cleanup a 

hazard and the human chooses to rescue a victim, then the human obtains an outcome equal 

to the number of victims and the robot obtains an outcome equal to the number of hazards. 

In the dependent condition, on the other hand, positive outcome is only obtained if both the 

robot and the human select the same action. A situation such as this could occur if victims 

must be cleaned prior to be being rescued.   
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[Table 2 about here] 

 Before discussing how this information is used to control a robot’s behavior, we 

consider strategies by which the outcome matrix can be directly used to select actions. The 

most obvious method for selecting an action from an outcome matrix is to simply choose 

the action that maximises the robot’s outcome. We term this strategy max_own. 

Alternatively, the outcome matrix can be transformed to create a new, different matrix that 

the robot uses to select a behavior. Table 2 lists several different methods for transforming 

an outcome matrix. In the case of max_other the partner’s outcome values are swapped 

with the robot’s outcome values. The max_joint transformation, on the other hand, replaces 

the robot’s outcomes with the sum of the robot and its partner’s outcome. Once an outcome 

matrix has been transformed, the max_own strategy is used to select an action. This simple 

technique of transforming the outcome matrix and then using the max_own strategy to 

select a behavior serves as a control strategy and has the benefit of changing the character 

of the robot’s response without consideration of the actual actions involved.   

 Because the situation analysis algorithm simply provides information, this information 

could theoretically be used in many different ways to aid action selection. For instance, 

rules could directly map a situation’s location to a particular action. Alternatively, the 

information could be used to select transformations (table 2). One advantage of the latter 

method is that it does not require knowledge of the actions available to the robot. Rather, 

the situation’s interdependence space location is used to alter the character of the robot’s 

response independent of interactive actions available. Another advantage of this approach 
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is that, one can test a specified set of transformations at a given location to determine 

which transformation is best at that location. In this manner, a mapping of interdependence 

space location to transformation can be developed which is independent of the individuals 

interacting and the actions available. As will be discussed in the next section, our initial 

step for this research was creating this mapping of situation location to transformation.    

 Finally, does knowing a situation’s location in interdependence space afford valuable 

information? We approached this question empirically by performing two experiments in 

simulation. The first experiment investigates the value of this information in a practical 

scenario. The second experiment considers the value of knowing the situation’s location 

over the entire interdependence space. 

3.4   Mapping a situation’s location to a transformation 

A mapping from a situation’s location to a transformation can be described formally as the 

function TLf →:  where L is the interdependence space location and T is the space of 

possible transformations. We subdivide the interdependence space into three areas of 

interest to robotics researchers, namely high interdependence ( 75.0≥Rα ) and low 

correspondence ( 0≤β ), high interdependence ( 75.0≥Rα ) and high correspondence 

( 0>β ) and low interdependence if 75.0<Rα . These areas are abbreviated as  lhhhl lll ,,  

respectively. The area hll  represents situations in which the robot’s outcomes greatly 

depend on its partner but the robot and the human do not select actions towards the same 

goal, potentially resulting in poor outcomes for the robot. The area hhl , on the other hand, 
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describes situations in which the robot’s outcomes also greatly depend on its partner and 

both the robot and the human select actions towards the same goal. Finally, the area ll  

represents the location of situations in which the robot’s outcomes do not greatly depend 

on its partner. Thus { }lhhhl lllL ,,=  describes the domain of f. The codomain of f is 

=T { max_own, min_own, max_other, min_other, max_joint, min_joint, max_diff, 

min_diff, min_risk }(see table 2 for descriptions), the set of transformations considered as 

part of this work.  

 Given the preceding description, the challenge then is to determine for each location in 

L which transformation from T results in the greatest overall net outcome. To do this we 

created a random matrix and then used the situation analysis algorithm to determine the 

matrix’s location in interdependence space until we had 1000 matrices in each area 

lhhhl lll ,, . Random matrices consisted of an empty matrix populated with random numbers 

between 0 and 24. Next, for every matrix in each area lhhhl lll ,, , we iterated through the set 

T altering the matrix according to the transformation’s specification (table 2). Afterward, a 

simulated robot selects the action from the transformed matrix that maximizes its outcome. 

The robot’s simulated partner also selects an action from the original matrix that 

maximizes its outcome. Finally, the robot’s outcome resulting from the action pair (as 

dictated by the original matrix) is recorded. Figure 7 in section 4.1 graphically depicts this 

procedure and the other experimental procedures used.   

[Table 3 about here] 
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 Table 3 presents the mean outcome resulting from each transformation at each location. 

The transformation that results in the greatest mean outcome for each location in shaded. 

Note that the difference in mean outcome for several of the transformations is not great. 

This lack of difference reflects the similarity of the transform in the particular area of 

interdependence space. More importantly, it foreshadows the need of a robot to interact 

with its partner in a variety of situations located at different positions in interdependence 

space in order to determine the partner’s transformation preference or type. The table 

indicates that max_own, max_joint, and min_risk are the best transformations of the group 

of possible transformations in low interdependence, high interdependence/high 

correspondence, and high interdependence/low correspondence situations respectively. 

From this data the function f mapping interdependence space location to transformation 

takes the following form, ( )








=*lf      for 

hl

hh

l

ll

ll

ll

=
=
=

*

*

*

 where *l  is the interdependence 

space location generated by the situation analysis algorithm. This function can also be 

visualized as the decision tree in figure 4.   

[Figure 4 about here] 

3.5   A computational process for situation analysis 

Assuming that outcome matrices can be generated and given the mapping from 

interdependence location to transformation developed in the preceding section, a 

computational process can be developed that selects a robot’s behavior from its perception 

 max_own 
max_joint 
min_risk 
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of the situation. This computational process is depicted in figure 5. The right side of this 

figure depicts a stepwise procedure for generating interactive action from perception. The 

first step is the creation of an outcome matrix. In our experiments, these either were 

derived perceptually using matrices in figure 1, or generated by populating an empty matrix 

with random values. The next two steps consist of the situation analysis algorithm 

described in section 3.2, which results in an interdependence space tuple. This tuple is then 

mapped to a transformation using the function f (also depicted in figure 4). The 

transformation is used to transform the original matrix in the next step. The transformation 

process results in the construction of an outcome matrix on which the robot can act—the 

effective situation (Kelley & Thibaut, 1978). In the final step, the robot selects the action in 

the effective situation that maximizes its own outcome. The left side of figure 5 depicts an 

example run through the procedure. The next section discusses our empirical examination 

of this process.  

[Figure 5 about here] 

4 Experiments and Results 

The preceding discussion has described how an outcome matrix can be mapped to a 

location in interdependence space and how information about the matrix’s location can be 

used to select a robot’s interactive action. We have not yet shown, however, that the 

information afforded by the situation analysis algorithm results in better interactive 

behavior on the part of the robot. The experiments presented in this section, therefore, 

examine the value of the information generated by the situation analysis algorithm. Value 
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here is operationalized as increase in net outcome. Both experiments test the hypothesis 

that the use of the situation analysis algorithm will result in an increase in net outcome 

when compared to alternative control strategies.  The first experiment uses the 

computational process from figure 5 to guide a simulated robot’s action selection in the 

cleanup and rescue example described in section 1. The second experiment generalizes the 

results from the first experiment to the entire interdependence space and compares the 

algorithm to a larger number of control strategies.  

4.1 Situation analysis in practice 

To revisit the scenario described in the first section, a teleoperated robot attempts to rescue 

victims of an industrial accident while an autonomous robot works to cleanup a spill. We 

considered two scenarios in simulation: one involving greater dependence (high 

interdependence condition) and another involving little dependence (low interdependence 

condition). Notionally, because of the properties of the chemical the high interdependence 

condition requires that the victims be cleaned before being rescued. Thus, in this condition, 

the robots must both cooperate in order to complete the rescue task successfully. In the low 

interdependence condition, both robots can operate independently of one another. This 

scenario is based on the well-studied foraging problem in robotics (Arkin, 1998). Figure 6 

depicts the layout. Potential victims and hazards for cleanup are located within a disaster 

area. A disposal area for hazardous items is located towards the bottom and a triage area 

for victims is located to the right.  

[Figure 6 about here] 
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 This experiment compares the net outcome obtained by both robots as well as the 

number of victims rescued and hazards cleaned in four separate conditions. In the 

experimental conditions, the autonomous robot used the computational process depicted in 

figure 5 to select its action. In the control conditions, the autonomous robot consistently 

selected the behavior that maximized its own outcome without consideration of its partner 

(max_own). The experimental and control condition were explored in both high 

interdependence situations and low interdependence situations. A high interdependence 

situation was created by populating the dependent outcome matrix from figure 1. Similarly, 

a low interdependence situation was created by populating the independent outcome matrix 

from the figure 1. Thus, the experiment consisted of the following four conditions: high 

interdependence-situation analysis, high interdependence-control strategy, low 

interdependence-situation analysis, low interdependence-control strategy. In all conditions, 

the teleoperated robot selected the behavior that maximized its own outcome without 

consideration of its partner (max_own). The primary author controlled the teleoperated 

robot. Because the teleoperated robot employs a static strategy, experimenter bias is 

eliminated.      

 Figure 7 describes the experimental procedure used (middle procedure). First, a random 

number of victims and hazards were generated. Next, the victims and hazards were 

randomly placed in the environment. In the low interdependence condition, the 

autonomous robot perceives the number of victims and hazards and uses the independent 

matrix from figure 1 to create its outcome matrix. In the high interdependence condition, 

the autonomous robot uses the dependent matrix to create its outcome matrix. The outcome 
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matrix is then tested using the situation analysis algorithm and the control strategy. The 

behaviors that the robot selects are actually collections of actions that direct the robot to 

locate the closest attractor, pickup the attractor, transport the attractor to a disposal area 

where it is dropped off and finally return to a staging area. The MissionLab mission 

specification system was used. MissionLab is a graphical software toolset that allows users 

to generate mobile robot behavior, test behaviors in simulation, and execute collections of 

behaviors on real, embodied robots (MacKenzie, Arkin, & Cameroon, 1997).  

[Figure 7 about here] 

 We conducted thirty trials in each of the four conditions. In these experiments, 

interaction occurs when both individuals (autonomous robot and teleoperated robot, or both 

simulated robots) are presented with an outcome matrix and simultaneously select actions 

from the matrix receiving the outcome that results from the action pair. We recorded the 

number of victims rescued and the hazards collected after each trial. We predicted that the 

situation analysis algorithm would outperform the control strategy in the dependent 

condition but not in the independent condition. Independent situations, by definition, 

demand little consideration of the partner’s actions. Thus, in these situations, the 

autonomous robot’s performance is not affected by the actions of the partner. Dependent 

situations, on the other hand, demand consideration of the partner, and we believed that our 

algorithm would aid performance in these conditions.     

 Figure 8 illustrates the results from the cleanup and rescue experiment. The left two 

bars portray the results for the independent situation. In these conditions, the autonomous 

robot forages for hazards to cleanup and the human-operated robot forages for victims. 
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Thus, in all of the 30 trials each robot retrieves either a victim or a hazard. As predicted, 

both robots faired equally well in this condition.  

[Figure 8 about here] 

 In the dependent condition, the best possible score was thirty. The autonomous robot’s 

use of situation information results in ten additional victims being rescued. Thus, as 

predicted, in the dependent condition the autonomous robot’s use of situation information 

affords better performance than the robot that does not consider the situation. In this case, 

the information provided by our algorithm indicates to the autonomous robot that its 

outcomes for this situation rely on collaboration with its human-operated partner. The 

control strategy, on the other hand, fails to consider the partner’s role even though the 

situation demands collaboration, hence resulting in poorer performance.  

 Overall, this experiment demonstrates that the information resulting from an analysis of 

the social situation can improve a robot’s ability to perform interactive tasks similar to 

collaborative foraging. The algorithm we have proposed successfully uses perceptual 

stimuli in the environment to produce information about the social situation. Minimally, 

we have shown the feasibility of our approach and the potential importance of situational 

considerations in human-robot interaction, ideas which have not been investigated as a part 

of HRI in the past. Nevertheless, the results of this experiment are limited in several ways. 

First, the situations encountered as part of the experiment are derived from a limited 

portion of the interdependence space. Second, only a single control strategy was 

considered. The next experiment generalizes these results to the entire interdependence 

space and considers additional controls.    
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4.2 Situation analysis over the entire interdependence space 

Whereas the previous experiment only explored high interdependence or low 

interdependence outcome matrices, this experiment considers outcome matrices from every 

corner of the interdependence space. We examine the algorithm’s performance over 

thousands of different matrices representing a broad spectrum of the interdependence 

space. Because of time-constraints, it was not possible to test each of these matrices using 

interaction between a human and a robot. Rather, the human was replaced with an agent 

that selected the behavior that maximized its own outcome without consideration of its 

partner (max_own). The strategy employed by the human in the first experiment and the 

agent in this experiment were identical.  

 For this experiment, we also compare the algorithm’s performance to four different 

control strategies. For the first control strategy, the autonomous robot consistently selected 

the behavior that maximized its own outcome without consideration of its partner 

(max_own). For the second control strategy, the autonomous robot consistently selected the 

behavior that minimized the difference of its and its partner’s outcome (min_diff). For the 

third control strategy, the autonomous robot consistently selected the behavior that 

maximizes the sum of its and its partner’s outcome (max_joint). For the final control 

strategy, the autonomous robot consistently selected the behavior that resulted in the 

greatest guaranteed outcome (min_risk).   

 Figure 7 describes the experimental procedure used (right procedure). First, a random 

matrix is created from an empty matrix populated with random numbers between 0 and 24. 
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The random matrix in this case does not have actions assigned. Hence, these matrices are 

abstract in the sense that the rewards and costs are associated with selecting one of two 

non-specified actions. Once a matrix is created, it is presented to both the simulated robot 

and the agent. Both simultaneously select actions from the matrix receiving the outcome 

that results from the action pair. The simulated robot uses either situation analysis or a 

control strategy to determine which action to select from the matrix. This experiment was 

conducted as a numerical simulation and hence did not occur in a robot simulation 

environment. In other words, the simulated robot in this case was an agent that selects an 

action in accordance with the strategy dictated by the experimental condition, but did not 

actually have to perform the action in an environment. Consequentially, this experiment 

did not require perceptual generation of the outcome matrix and the actions selected by the 

agents did not affect the environment.       

 In order to ensure coverage over the entire space, we examined one hundred trials each 

consisting of 1000 randomly generated outcome matrices. We recorded the outcome 

obtained by each individual for the pair of actions selected. We predicted that the net 

outcome received by the simulated autonomous robot would be significantly greater when 

the robot used the computational process from figure 5 when compared to the controls. We 

reasoned that, on average, the information provided by situation analysis would be valuable 

to the robot for its selection of its behavior. We thus hypothesized that the use of this 

information would result in a greater net outcome than the control strategies. 

 Figure 8 presents results for this experiment. The second bar from the left depicts the 

net outcome using our algorithm. The next four bars to the right indicate the net outcome 
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for the control conditions. Our algorithm significantly outperforms the controls in all four 

conditions (p < 0.01 two-tailed, for all). The maximum possible outcome for a robot with 

complete a priori knowledge of all of its partner’s actions is also depicted to the left for 

reference.  

[Figure 9 about here] 

 The results confirm our prediction that use of the situation analysis algorithm results in 

greater net outcome than does the use of the control strategies. The graph also indicates that 

our procedure outperforms several different control strategies. Furthermore, the results 

show that our procedure is beneficial on average to an agent or robot that will face many 

different social situations from unique locations in the interdependence space. Still, the 

algorithm performs far below the maximum possible. Better performance could likely be 

achieved by increasing the size of the domain and codomain of f, the mapping from 

interdependence space location to transform (from section 3.4). In this work, we 

subdivided the interdependence space into three areas, denoted lhhhl lll ,, . Greater 

subdivision of the space would make better use of the information provided by the situation 

analysis algorithm. We also limited the number of transformations considered to nine. 

Additional transformations would increase the algorithm’s performance if a novel 

transformation outperformed all other transformations at some location in the space.    

 The value of the situation analysis algorithm, as presented in this paper, stems from the 

very fact that it knows nothing of its interactive partner. The computational process does 

not assume anything about the partner. Rather it operates only on the information available 

within the outcome matrix. This is in contrast to game theory, which operates on the 
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presumption of the partner’s rationality (Osborne & Rubinstein, 1994). We expect that the 

performance of this approach would increase drastically as additional, partner specific, 

information is provided.      

5 Conclusions   

This paper has introduced a method for capturing information about social situations and 

for using this information to guide a simulated robot’s interactive behavior. We have 

presented an algorithm for situation analysis and a computational process for using the 

algorithm. Our approach is derived from the social psychological theory of interdependence 

and has close ties to the psychology of human-human interaction (Kelley & Thibaut, 1978). 

The value of knowing a situation’s location in interdependence space has been highlighted 

with experiments indicating that, on average, this information can aid in selecting 

interactive actions and that in some situations this information is critical for successful 

interaction and task performance.  

 One limitation of our approach is that it requires that the robot’s and its partner’s 

utilities as well as the actions available to both individuals be represented in an outcome 

matrix. Nevertheless, researchers are developing methods to create these outcome matrices 

automatically (Vorobeychik, Wellman, & Singh, 2005). We also do not address the 

challenge of managing uncertainty in this article. Much work has already addressed this 

topic with respect to the outcome matrix (Osborne & Rubinstein, 1994). The uncertainty 

present in the outcome matrix will result in similar uncertainty in the situation’s location in 

interdependence space.  
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 We have presented one method for using information about a situation’s location to 

guide behavior selection. Our method relates the matrix’s location to a transformation of 

the matrix. For the most part, we have not used all of the information available. We did 

not, for example, explore the effect of a situation’s symmetry on the behavior of the robot. 

Symmetry describes the balance of control that the robot or its partner has over the other. 

The value of this dimension could play an important role in determining behavior. We 

intend to explore this possibility as part of future work. Moreover, we have assumed 

throughout that the partner consistently selects the max_own transformation. The 

exploration of different partner types will also be the fruits of future work. Additional 

avenues for future work will also focus on extending these results to real robots. We 

believe that the embodiment afforded by a real robot will present both new challenges and 

new opportunities. 

 In summary, it is our contention that this approach offers a general, principled means 

for both analyzing and reasoning about the social situations faced by a robot. The 

development of theoretical frameworks that include situation-specific information is an 

important area of study if robots are expected to move out of the laboratory and into one’s 

home. Moreover, because this work is based on research which has already been validated 

for interpersonal interaction, we believe that it may eventually allow an artificial system to 

reason about the situation-specific sources of a human’s social behavior.   
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Figure 1. This figure depicts two example outcome matrices for the cleanup of a toxic spill and the rescue 
of victims by a human and a robot. During any one interaction, both individuals choose to either rescue a 
victim or clean up a hazard. The outcomes resulting from each pair of choices are depicted in the cells of the 
matrix. The human’s outcomes are listed below the robot’s outcomes. In the leftmost matrix, the outcomes for 
the human and the robot are independent of the other’s action selection. In the rightmost matrix, the outcomes 
of the human and the robot largely depend on the other’s action selection.  
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Figure 2. Three dimensions of interdependence space are depicted above (Kelley et al., 2003). 
Interdependence theory represents social situations computationally as an outcome matrix within this 
interdependence space.  The dimensions depicted above are interdependence, correspondence, and basis of 
control. Planes within this space denote the location of some well-known social situations, including the 
prisoner’s dilemma game, the trust game, and the hero game. A matrix’s location allows one to predict 
possible results of interaction within the situation. 

 
The Situation Analysis Algorithm 

 
Input : Outcome matrix O. 

Output : Interdependence space tuple δχβα ,,,  . 

 
1. Use procedure from figure 3 to deconstruct the outcome 
matrix. 

2. Use the equations in table 1 to calculate the dimensional 
values for the interdependence space tuple. 

3. Return the tuple  

  
Box 1. An algorithm for the analysis of a social situation. 
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Figure 3. The procedure (from Kelley & Thibaut, 1978) for deconstructing a social situation is presented 
above. This procedure is an analysis of variance of the outcome matrix that deconstructs the raw outcome 
matrix into three new matrices (the BAC, MPC, and MJC) representing different forms of control over the 
situation’s outcomes. The outcome values for each of these three matrices are produced from the raw outcome 
matrix by iteratively 1) adding the noted cells, 2) dividing by the number of actions, and 3) subtracting the 
individual’s mean outcome value. The variances of each matrix type are generated by calculating the outcome 
range for each choice of behavior and each individual. Because this example is of an independent situation, 
the MPC and MJC matrices do not vary. 

Table 1.  Calculation of the interdependence space dimensions given the variances from figure 3.  

Dimension Computation 
((1) and (2) are from (Kelley & Thibaut, 1978), (3) and (4) were developed by the 

authors) 
Interdependence  
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Calculate once for both individuals. Range is from -1 for a situation controlled by 
exchange and to +1 for a situation controlled by coordination. Sum( sit ) is a cell by 
cell sum of the matrix. 

Symmetry  

( )δ  
( ) ( )
( )222222

222222

HHHRRR

HRHRHR

JCPCBCJCPCBC

JCPCBCJCPCBC

+++++
++−++

=δ  

Calculate once for both individuals. Range is from -1 for an asymmetric situation in 
which individual R depends on H to +1 for an asymmetric situation in which 
individual H depends on R. The value of 0 denotes a symmetric situation (i.e. 
mutual dependence).  

(4) 

 

Table 2.  A list of several simple matrix transformations. The list is not exhaustive. 

Transformation 
name 

Transformation mechanism Social character 

max_own No change Egoism—the individual selects the action 
that most favors their own outcomes 

max_other Swap partner’s outcomes with 
one’s own 

Altruism —the individual selects the action 
that most favors their partner 

max_joint Replace outcomes with the sum of 
the individual and the partner’s 

outcome 

Cooperation—the individual selects the 
action that most favors both their own and 

their partner’s outcome 

max_diff Replace outcomes with the 
difference of the individual’s 
outcome to that of the partner 

Competition—the individual selects the 
action that results in the most relative gain 

to that of its partner 

min_diff Maximize the value of the action 
that has the minimal difference to 

that of the partner. 

Fairness—the individual selects the action 
that results in the least disparity 

min_risk Maximize the value of the action 
that has the greatest minimal 

outcome 

Risk-aversion—the individual selects 
actions that result in the maximal 

guaranteed outcomes 
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Table 3. The cells denote the mean outcome obtained by the transformation at each location. The 
shaded cells indicate the mean of the best transformation. The confidence interval is included for all values.  

Low interdependence 
 

High interdependence/high 
correspondence  

High interdependence/low 
correspondence 

Transformation  Mean 
outcome 

Transformation  Mean 
outcome 

Transformation  Mean 
outcome 

max_own 13.47 ± 0.46 max_own 15.01 ± 0.39 max_own 14.27 ± 0.41 
min_own 10.36 ± 0.46 min_own 8.75 ± 0.40 min_own 7.712 ± 0.38 

max_other 11.67 ± 0.43 max_other 15.10 ± 0.36 max_other 7.80 ± 0.37 
min_other 11.86 ± 0.43 min_other 10.52 ± 0.42 min_other 12.94 ± 0.42 
max_joint 12.90 ± 0.43 max_joint 16.03 ± 0.34 max_joint 13.40 ± 0.42 
min_joint 11.16 ± 0.44 min_joint 9.55 ± 0.41 min_joint 10.52 ± 0.43 
max_diff 11.41 ± 0.46 max_diff 10.41 ± 0.43 max_diff 9.93 ± 0.47 
min_diff 12.08 ± 0.42 min_diff 12.48 ± 0.43 min_diff 12.10 ± 0.41 
min_risk 13.08 ± 0.41 min_risk 14.82 ± 0.38 min_risk 14.79 ± 0.37 
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Figure 4. A mapping of interdependence space location to outcome matrix transformation.       
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 A Computational Process for Situation Analysis 
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Figure 5. This figure depicts the algorithmic process contributed by this work. The process consists of six 
steps. The first step generates an outcome matrix. The second step analyzes the matrix’s variances. The third 
step computes the situation’s interdependence space dimensions. These two steps constitute the process of 
situation analysis. The fourth step selects a transformation and in the fifth step, the transformation is applied 
to the outcome matrix resulting in the effective situation. Steps 4 and 5 constitute the transformation process. 
Finally, an action is selected.  
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Figure 6. The simulation environment used for the cleanup and rescue experiment is depicted above. The 
experiment required that a teleoperated robot rescue victims while an autonomous robot performs a cleanup. 
Experimental conditions included independent versus dependent situations and the use of our situation 
analysis algorithm versus a control strategy. The teleoperation interface used by the human is depicted the 
right. 
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Figure 7. The procedures used to create and use outcome matrices are depicted above. The left side details 
the procedure used to generate table 3. This procedure first iterates through all matrices in each areas 

lhhhl lll ,,  and then iterates through the set of transformations to produce the matrix the robot will use to 

select actions. The middle procedure first creates a random number of victims and hazards. Next, an 
independent and dependent matrix is created from the number of victims and hazards. Finally, in the control 
conditions, max_own is used to select an action. In the test procedure, situation analysis is used to select an 
action. The right most procedure, first generates a random matrix and then transforms the matrix with respect 
to a control matrix or uses situation analysis. The robot selects an action from the transformed matrix. The 
interaction example at the bottom denotes the method used to determine how much outcome each individual 
receives from the presentation of an outcome matrix.      
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Cleanp and Rescue Experiment Results
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Figure 8. Results for the cleanup and rescue experiment are presented above. The line graph portrays the 
net outcome for each condition. The bars depict the number of hazards and victims retrieved. Hazards cleaned 
are shown above the number of victims rescued. The left two bars and line points depict the independent 
conditions for both the test and the control robot. In these conditions both the control and test robot perform 
equally well. The right two bars and line points examine the dependent situation. In this situation the test 
robot outperforms the control robot. 
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Figure 9. Results of this second experiment are presented above. The second bar from the left indicates the 
net outcome when our procedure is used. The next four bars are the controls for the experiment. Error bars 
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indicate 95% confidence interval. Analyzing the situation resulted in the greatest net outcome of when 
compared to the control strategies. The leftmost bar portrays the maximum possible net outcome. 

 


