
Multi-Robot Communication-Sensitive
Reconnaissance

Alan Wagner
College of Computing

Georgia Institute of Technology
Atlanta, USA

alan.wagner@cc.gatech.edu

Ronald Arkin
College of Computing

Georgia Institute of Technology
Atlanta, USA

arkin@cc.gatech.edu

This paper presents a method for multi-robot communication-
sensitive reconnaissance. This approach utilizes collections of
precompiled vector fields in parallel to coordinate a team of
robots in a manner that is responsive to communication failures.
Collections of vector fields are organized at the task level for
reusability and generality. Different team sizes, scenarios, and
task management strategies are investigated. Results indicate an
acceptable reduction in communication attenuation when
compared to other related methods of navigation. Online
management of tasks and potential scalability are discussed.

Keywords:behavior-based robotics, internalized plan, multi-
robot, reconnaisance

I. INTRODUCTION
This paper contributes a novel multi-robot method for

performing communication-sensitive reconnaissance, which
involves exploring an urban area in a manner that prevents a
team member from becoming a lone disconnected network.
This type of reconnaissance is one goal of DARPA’s MARS
Vision 2020 program and has implications for much of the
multi-robot community. Communication sensitivity is an
important consideration for teams of robots operating in
dynamic and potentially hazardous environments. In particular,
communicating robots may be more capable of self-rescue,
better equipped to relay information back to a human operator,
and have advantages in terms of localization. [3]. These types
of environments require agents capable of coordinated sensing,
processing, and communication [6].

Multiple architectures have been created for the purpose of
autonomous navigation. Implemented systems range from
purely reactive [4] to sense-plan-act [9]. Hybrid
deliberative/reactive architectures attempt to address the short-
comings of these two extremes [1, 5]. Other approaches include
continuous calculation of a local gradient field [8] or planning
only when reactive behaviors fail [12].

Payton also delineates a method for combining planning
with reactive navigation [11]. In this method, a priori map
knowledge becomes an enabling resource for decision-making.
From his perspective, traditional plans are artificially abstracted
from knowledge that often results in over- or under-
specification of a mission’s objectives. By minimizing
symbolic abstraction, a plan for action is developed that can be
used directly by a reactive agent. Payton brands this type of
plan an internalized plan. These internalized plans differ from

traditional plans by their lack of abstract symbol use and their
tight representational coupling to the needs of a reactive robot.
Moreover, the plans are used only as advice, where injecting
world map or other types of knowledge is performed only at
the discretion of the robot.

Combining plans with reactive navigation is not new.
Rather than simply implementing a planning algorithm on top
of a reactive architecture, the method outlined in this paper
both extends and generalizes an earlier hybrid approach. In
previous research [13], internalized plans were integrated with
Arkin’s motor schema architecture [2] using the Missionlab
[10] behavior specification software. An internalized plan is
created by running a uniform cost search algorithm to produce
a gradient field on a grid mesh. The resulting vector field
directs a robot from any location on a map to a goal location.
This hybrid approach alleviates some of the problems
associated with purely reactive systems (e.g., local minima, box
canyons, and mazes) while still providing timely response to
unplanned obstacle encounters. This earlier work also
developed an efficient method for using sets of multiple plans
in parallel, enabling a robot to focus attention on one plan over
another in a given situation or via a weighted combination of
plans. By stacking multiple vector fields on top of one another,
advice can be either arbitrated or weighted based on a rank
ordered attention mechanism (fig. 1).

Building from this initial research, new procedures and
techniques for plan selection, organization, and coordination
are developed that can potentially be extended to novel
environments and generalized across a wide variety of
domains. This approach shows promise as a method for
coordinating teams of robots while performing
communications-sensitive reconnaissance.

II. METHOD OVERVIEW
Our method operates on the premise that reconnaissance of

a large urban area can be reduced into a collection of smaller
reconnaissance tasks. Moreover, if each of these tasks is
sensitive to communication attenuation then, overall, the entire
operation will be sensitive to communication attenuation.
Naturally there may be many different tasks; circle a target
area, perform reconnaissance within a building, or exit a
location, to name a few. Each individual task may also need to
be repeated several times, differing only by some parameter,
such as location. When a task is repeated most, if not all, of the

This research is funded under DARPA/DOI contract #NBCH1020012 as
part of the MARS Vision 2020 program.

Figure 1. Plans used in parallel. The top plan represents a communications
plan. The bottom plan represents a coverage plan. Output advice is
determined via arbitration or weighted summation where α is the weight of
plan P1 and β is the weight of plan P2.

underlying structure that composes the task may be similarly
repeated. Hence by intelligently developing and combining
simple communication-sensitive reconnaissance tasks this
method can be made to perform reconnaissance on a much
larger scale. For example, reconnaissance of one particular
building may differ from reconnaissance of another building in
the details of the rooms or the intermediate locations to be
navigated, but not regarding the overall procedures performed.
In this research, a task is represented by a plan element, and
repetition of the same task is represented by different instances
of that same element.

The preceding argument has important consequences from
a planning perspective. Although the moment-to-moment
nuances of the environment may change radically, the
procedures, steps, and milestones for accomplishing a mission
will likely not change. Granted some plans may be made
untenable by changes in a dynamic environment. In this case it
is often acceptable for the team to recognize that its plan is
invalid and give up (and replan) rather than attempt to solve a
problem for which it has little or no resources. This line of
reasoning draws from work on cognizant failure [7]. In our
case since planning is used only as advice to a reactive
controller, the system should remain robust to dynamic and
unaccounted for obstacles and impediments. Moreover, even
the method by which the “advice” is realized may not be
important, as long as the underlying reactive controller has the
final determination of which heading and velocity to select.

Team coordination is another important aspect for multi-
robot reconnaissance. This approach provides mechanisms for
both between-task and within-task coordination. Between-task
coordination is accomplished by restricting the transition from
one task to another until all robots have completed the
preceding task. Within-task coordination is accomplished using
specifically designed progress points or stages for the task.
Movement from one progress point to another is similarly
restricted until the preconditions of a transition function are
satisfied. The larger components of this method are described
below and depicted graphically in figure 2.

One component is the plan controller. This component is
devoted to four tasks: 1) managing the plan elements which
compose the overall mission, 2) coordinating the progression
from one plan element to the next 3) determining the role each
robot will play when executing an element and 4)
communicating the plan controller’s advice to the robot

Figure 2. Interaction of the robot controller, plan controller, and feature
vectors. The robot controller maintains control of the robot but receives
directional advice from the plan controller. The plan controller, in turn,
receives information regarding the status of the current environment encoded
in a feature vector and presents directional advice to the robot controller.

controller. Pseudocode for this procedure is provided in figure
13.

As mentioned, this software represents tasks as individual
plan elements. These elements can be managed in several
ways. The overall mission could, for example, demand a strict
ordering of tasks. Or, on the other hand, a least commitment
ordering of tasks might be acceptable (see figure 13 for
pseudocode). The plan controller also coordinates the transition
from one plan element to the next. This guarantees the
completion of one task (either successfully or unsuccessfully)
prior to beginning another task. The plan controller may need
to assign robots to particular roles if the underlying task
demands it. Currently, the controller assumes the robot team to
be homogeneous, but we foresee no difficulty extending this
approach to heterogeneous teams and hope to address this task
in future work. Finally the planning system’s advice is
communicated to the robot controller via a unit vector.

The robot controller executes the underlying reactive
system, in this case Missionlab’s motor schemas. The robot
controller interfaces with the plan controller receiving its
advice in the form of an egocentric unit vector. The robot
controller maintains the option to ignore plan advice at any
time and provides the plan controller with positional
information and sensor-derived feature vectors.

Feature vectors provide a snapshot of the robot’s
environment to the planning apparatus. They contain the
information necessary to produce an advice vector. Feature
vectors are created by the robot controller based on incoming
sensory information.

III. PLAN ELEMENTS
Plan elements have already been described as the individual

tasks into which the overall mission is decomposed. Each plan
element represents a recommended solution to a problem. A
single element guides each robot of a team in a coordinated
manner to accomplish a specific task. Many unique
instantiations of a single element may exist. Figure 3 depicts
the components of a plan element and figure 13 provides
pseudocode.

All plan elements share a common interface format. This
serves several purposes. First, it allows uniform handling and
management of all elements. Second, it ensures that the

Communication Plan

Coverage Plan

Advice Vector: α P1+βP2

Feature
Vector

Direction Advice

Movement vector Robot
Controller

Plan
Controller

Sensory data

Figure 3. The internal structure of a plan element. The major components
that characterize a plan element are depicted.

implementation underlying an element is restricted to the
element itself. Finally, it defines and restricts the type of
information that an element can produce and receive. It is
expected that by using a common interface the development of
additional plan elements will be made easier and standardized.

Currently the interface limits each plan element’s input to a
feature vector, the role of the robot, and the number of robots in
the team. This allows the element to be generalized with
respect to team size, the robot’s role in the task, and the status
of the environment. This design decision has benefits and
drawbacks. On the one hand, an interface that limits input to all
elements vastly simplifies the management and operation of the
elements. On the other hand, because different elements may
require different input, this strategy will likely fail when the
number and type of elements becomes more complex. One
solution might be to maintain two separate input channels: one
common among all elements and one specific to each element.
In any case, as the quantity of planned tasks a robot can
perform increases so does the difficulty of managing and using
those tasks.

The common element interface similarly limits each
element’s output to a unit vector with directional advice. The
output is then passed from the plan controller to the robot
controller. Because this method utilizes several plans in parallel
additional channels for element output are not necessary. This
is an important and defining characteristic of our approach. The
planning system distills several rapidly changing and complex
input variables into a single piece of output advice that will not
require any additional processing for use by the robot
controller. Moreover this is performed in real-time in a manner
that is reusable from element instance to element instance.

Between each plan element’s input and output, two
components—a decision tree and a parallel plan—accomplish
the reduction in complexity. Each element maintains a decision
tree mapping the element’s input to an array of gain values.
Gain values are multipliers of the basic output vectors of each
behavior [2], or, in this case, the relative strength of the
internalized plans. When input is presented to an element by
the plan controller it flows down the element’s decision tree
eventually resulting in an array of gains. This array will
determine the influence (gain) of each individual internalized
plan in a parallel-internalized plan. While the decision tree for
each instance of an element is the same, the decision tree for
each type of element may be different. In other words each

Figure 4. The decision tree used for the ReconBuilding element. The
first node selects based on team size, the next node on role, the third nodes on
progress and the final node based on communications status. Example values
are displayed below and to right of each node. Gain A and B are meant to
represent arbitrary gain arrays.

decision tree is task-specific but not instance-specific. The
decision tree maintains the guidelines by which a task is
conducted. An element’s decision tree may be extremely
complex or as simple as a direct pointer to a single static gain.
For example, if the robot’s ability to communicate is
acceptable, then the decision tree may select an array of gains
that favor a coverage plan over a communications plan,
perhaps driving two robots in different directions. If, on the
other hand, the robot’s current ability to communicate is
unacceptable then the resulting gain values will prefer a
communication plan over a coverage plan, perhaps forcing the
robots toward one another.

Figure 4 outlines the decision tree for one plan element
used in this study—ReconBuilding. Due to space
considerations only a single path through the tree is shown. The
first node of the decision tree branches based on team size.
Later the tree branches according to role, progress, and
communication status. Arbitrary values have been included for
completeness: team size-3, role-2, and progress-0. These values
map to the gain arrays A and B.

The final stage in the operation of a plan element applies
the array of gains determined by the decision tree to a parallel
plan producing the element’s output. An internalized plan [11]
has already been described as a gradient field generated on a
grid mesh using a map. Multiple internalized plans can be
utilized in parallel by stacking individual plans on top of one
another. Output advice is then determined by multiplying the
advice for each individual plan at a location by a gain as
determined by the decision tree. The detailed use of parallel-
internalized plans appears in [13].

IV. IMPLEMENTATION
The system was developed with the intent of enabling

teams of autonomous robots to perform coordinated
communication-sensitive reconnaissance as part of DARPA’s
MARS Vision 2020 program. Prior to implementation it was

Internalized plans

Decision Tree

Plan Element Plan Element Interface

Feature Vector Output Advice

Gain A Gain B

Team Size

Comms.
Status

Progress

3

2

Role

0

Figure 5. The training village located at Fort Benning GA.

necessary to determine the types of tasks that are necessary for
successful completion of a communication-sensitive
reconnaissance mission. The fielded system will be tested in
an outdoor mockup of a European village (fig. 5) at Ft.
Benning, Georgia. A team of robots must explore this small
town of less than a 0.25 x 0.25km area. Our overall role in
Vision 2020 has guided the choice of tasks for the robot team.
It is not maintained that these are the best, most optimal, or
most characteristic tasks and associated elements for
performing reconnaissance. They simply represent the tasks
chosen to address this problem, and other design choices are
possible.

This section is organized into three parts. First, the two
major tasks are described in detail. The computational process
necessary for completing each task is then explained. Finally
the procedure for using a plan element is described.

A. Description of Elements
Two types of plan elements were defined, one for each task

deemed necessary. ReconBuilding is an element devoted
to surrounding and moving around buildings, in a
communication-sensitive manner. This allows the team to
explore the entire village, including alleys, streets, and
passageways, with minimal lose of communication; eventually
covering the entire area and succeeding in its reconnaissance
mission. MoveTo is an element that guides the team of robots
from one location to another, resorting to a contingency plan if
communication fails. This element guides robots between the
reconnaissance of individual buildings. Other methods, such as
reactive navigation, could have been used instead. A second
plan element was implemented in order to examine the generic
nature of the plan element interface.

The MoveTo plan element directs the robots to a goal
position from any location on the map. Network signal
strength, along with other unused information, is input to this
element by the plan controller. Its decision tree assigns a gain
of 1.0 to the internalized plan leading to the goal and 0.0 to the
contingency plan while the network signal strength to all
teammates is above a 10% signal strength threshold level. If the
network signal strength decreases below the threshold level, a
gain of 0.0 is assigned to the internalized plan leading to the
goal and a gain of 1.0 assigned to the contingency plan,

Figure 6. Progress stages for the ReconBuilding plan element. (A)
depicts the start position and the different directions for each robot’s role at
this stage. (B) shows the robots in position for the transition to stage 2. (C)
displays the robots in position for the tranistion to stage three. (D) depicts the
robots at the goal location.

effectively switching between the plans. Once the contingency
plan has been selected it continues to function within this
element regardless of network signal strength. This prevents
the robots from thrashing between plans at the border of a
communications failure.

The ReconBuilding plan element is more complex.
This element employs all data input from the plan controller:
the robot’s current position, the locations of teammates, the
signal strength to each teammate, and the robot’s role. The
feature vector, transmitted to the element by the plan controller,
contains the pertinent sensory information. The robot’s role is
assigned to the element when the element is instantiated. Input
from the plan controller traverses the decision tree in figure 4.
The first branch of the tree segregates based on team size. The
team size attempting to surround the building is an important
factor in determining where and when a team member should
move. If the team consists of two robots the robots initially
attempt to pass the object from opposite sides. Intuitively
sending each robot around a different side of a building may
seem improper when communication maintenance is one of the
stated goals of the system. However, these tasks were designed
to prefer opportunistic plan advice. Thus an attempt is made to
first surround the building even if communication attenuation is
likely. Other choices are possible. Three robot teams attempt to
surround the building by leaving one robot behind to act as a
communication relay for the other two members. Thus, in a
team of three, one robot is assigned the role of communication
relay, one is tasked with exploring one side of the building, and
the third robot is task with exploring the opposite side. Teams
of four robots, depicted in figure 6, attempt to surround the
building by creating a rectangle of communicating robots
around the building. Again two robots are assigned (by the plan
controller) the role of exploring opposite sides of the building.
The remaining two robots act as communication relays by

moving to nearside positions. In this research, the number of
roles a team has is equal to its team size.

Surrounding a building with a robot team requires
coordination. For this reason the third node of the decision tree
branches based on the robot’s progress. A two robot team has
no progress stages. Teams of three and four have three progress
stages. The first stage begins with the robot’s initial locations
and ends when the robots assigned to explore opposite sides of
the building have reached their assigned locations and
reestablished contact with one another. The beginning of stage
one for a team of four robots is depicted in figure 6a. The
arrows indicate each robot’s initial trajectory. Figure 6b shows
the team at the end of stage one. Progress stage two guides the
two-team members acting as communication relays to their
final goal location. This stage ends when the communication
relay robots have reached the same location as the exploring
robots, depicted in box three of figure 6c. The final stage
guides all of the robots the goal location.

The last node of the decision tree selects based on
communication status. Acceptable versus unacceptable
communication is influenced by team size, role, and progress
stage. For example, in a team of four robots at the first progress
stage, the exploring robot only needs to maintain a link with a
particular communication relay robot. A communication relay
robot, on the other hand, must maintain a link with both an
exploring robot and the other communication relay robot.

The ReconBuilding element’s parallel plan consists of
four individual internalized plans: a contingency plan, two
communication relay plans, and a coverage plan. The
contingency plan guides each robot to the element’s goal
location and was the same for all robots in the team. The two
communication relay plans guide the robots to relay locations.
Finally, a coverage plan guides each robot to the element’s goal
location but in a manner that sends the robots down different
sides of the building—hence coming in two types. Thus, in
total this element requires production of five internalized plans.

Currently the arrays produced by the decision tree set the
gain for one plan to 1.0 and all others to zero. In future work
we intend to blend advice from plans at each time step.

B. Creating a Plan For Reconnaissance

The process of determining which tasks decompose into the
mission has already been discussed. Similarly, fleshing out a
task into the decision tree and the parallel plans is currently an
inexact and empirical process. The components of the MoveTo
and ReconBuilding have been described in the preceding
section. Next, the map locations that underlie each element’s
internalized plans are required. All positions are determined
prior to running the mission and were, in this case, determined
empirically.

The MoveTo element utilizes a parallel plan consisting of
two internalized plans. The goal location for this element’s
contingency plan directs it to an arbitrary position outside the
village. This is meant to regroup the team if communication
fails when moving from one building to another. This
element’s other plan simply directs it to the element’s goal
position.

The ReconBuilding element employs a parallel plan
consisting of four internalized plans. Because the contingency
plan and both types of the coverage plan guide the robot to the

Figure 7. An example of the vector field produced for the
ReconBuilding plan element. Temporary boundaries guide the
production of the vector gradient.

same goal, only one goal location needs to be determined for
these three plans. Additional positions are necessary for each of
the two communication relay points, for a total of three
positions.

The different types of coverage have been mentioned
briefly above. If one type leads the robot to the element’s goal
along a westerly (or northerly) path then the other type leads
the robot along an easterly (or southerly) path. Constructing
each type of coverage plan requires biasing the uniform cost
algorithm to favor paths in one direction over paths in another
direction. This is accomplished by adding cost to less favored
path areas or by hallucinating a temporary boundary preventing
access along one side of a building, which is the method we
chose for ease of implementation. Figure 7 depicts a
ReconBuilding element during construction. The gradient
field directs the robot around the building from below. The
temporary boundaries that are used to influence path direction
and to grow the obstacle are marked. A temporary boundary
that grows the building is employed to prevent communication
attenuation at the far left corner of the building since the vector
field slopes away from the communication relay robot. Both of
these alterations to the internalized plan generation were used
only for the two types of coverage plans in the
ReconBuilding plan element.

In order to reduce plan computation time and the resulting
resource file size, the internalized plans for the
ReconBuilding element were not computed over the entire
map. Rather a restricted rectangle was constructed around each
building using temporary obstacles visible only to the
internalized plan generation algorithm. These rectangles
required four additional positions. Figure 7 shows the
temporary boundary of the rectangle surrounding the building.
In all, the generation and alteration of a single
ReconBuilding element requires knowing fifteen positions:
four points for the rectangle constructed around the building,
four points marking the obstacle boundaries used to influence
the coverage plans’ path (two for each type/side), four points
used to grow the building (two for each type/side), and three
positions for the goals of the underlying plans.

After all the locations necessary for the reconnaissance
mission have been collected, the individual internalized plans
are compiled [13]. Upon completion, a resource file is
generated. Software tools have been created to enable a user to
alter specific internalized plans within a resource file.
Individual plans can be added, deleted, or replaced without
complete recompilation of all of the plans. Finally a mission is
constructed employing the followplan behavior in the
MissionLab behavior specification system.

C. Utilizing a Reconnaisance Plan
At startup, but prior to mission execution, the resource file

containing data for each internalized plan is parsed and loaded
into plan objects. At runtime, feature vectors are generated that
include data produced by either a network model when running
in simulation or a hardware network component developed by
BBN Technologies and sent to the plan controller. The plan
controller adds information pertaining to the size of the team
and the robot’s particular role in the plan. This information is
provided to the current plan element. The plan controller
selects which element to employ. This research explored using
both a strict ordering of plan elements and a least commitment
selection mechanism. Finally the element produces plan-based
advice to be utilized by the robot controller or ignored. A task
ends when all of the robots in the team have reached the
element’s goal location.

V. EXPERIMENTS
Several experiments were run in simulation to test the new

system. All experiments were run using the map and obstacle
representation of a training village (figure 8). Experiments
were conducted on the entire map and required thirteen
MoveTo and thirteen ReconBuilding elements. The actual
map contains 15 buildings. In two cases separate building were
treated as a single complex due to their close proximity. These
experiments consisted of thirty trials starting from a random
location outside the urban terrain of the map. The robot teams
were expected to navigate to and through the city. The map of
the Fort Benning village is accurate to approximately one-
meter resolution and covers a terrain of 220 square meters.
Previously conducted tests have verified the ability of real
robots to operate in and around the village with internalized
plans using this map. The network model used for these
experiments reduced network signal strength when the robots
were occluded by terrain. Evaluation was based on total
mission time, total distance traveled, urban terrain coverage,
and percent time with at least one lone network. These metrics
are felt to characterize performance in real world
reconnaissance operations.

Estimates of baseline performance were obtained by
comparing the plan element system to control experiments that
used a three-robot team wandering the site and another using
navigation based on Missionlab’s existing waypoint planner
[14]. Although the control experiments do not provide a perfect
comparison, they are meant to convey a general sense of the
performance of uncoordinated reactive team behavior. All
experiments used the same randomized start locations and
identical gains for obstacle avoidance. The effect of team size
was also investigated. As mentioned previously, this system
operates for teams of up to four robots. Performance and

Figure 8. A map of the training village located at Fort Benning GA. All
simulation trials were run on this test site. Early experiments with real robots
have examined the validity of utilizing internalized plans at this site.

scalability were examined for two, three, and four robot team
sizes.

 We also experimented with different strategies for selecting
plan elements. Even though plan elements are predefined in
terms of their underlying locations, the plan controller selects
elements dynamically at runtime for use by the robot. Using
teams of three robots, a least commitment element selection
mechanism was compared to selecting elements using a strict
ordering determined by the experimenter. The least
commitment mechanism consistently selected the plan element
from the set of elements which minimized the distance from
the current location to the element’s goal location, thus
continually selecting the nearest building for which
reconnaissance had not yet been performed.

Finally experiments were performed using a scenario in
which one robot of a three-robot team was constantly fixed
(tethered) at a single location. This experiment explores an
important real-world scenario where a human-operated vehicle
deploys the reconnaissance robots that must explore an urban
space while maintaining contact with the stationary base
vehicle.

VI. RESULTS
It was conjectured that by utilizing coordinated planning

elements the percentage of lone or isolated networks would
decrease significantly in comparison to the control systems. It
was further hypothesized that as team size increases, network
connectivity would improve. It was believed that as the total
number of robots increases, although the task of coordinating
becomes increasingly difficult, more opportunity for network
connectivity exists. Figures 9-12 display the results for all
experiments. Figure 9 examines communication attenuation.
Due to lack of team coordination, the waypoint planner
performed significantly worse then all other all other
experiments on this metric (p = 0 on two-tailed t-test). Teams
of three performed significantly worse then teams of other sizes
(p = 0 vs. team size of two and team size of three). Teams of
four maintained nearly perfect network connectivity with little
variance over randomized start locations. The wander behavior

Figure 9. Percent time with a lone network. The waypoint control performs
the worst. Teams using plan elements improves communication preformance.

Figure 10. Coverage. The wander control performs the worst. Teams using
plan elements cover large areas of urban terrain.

also performed well on this metric. This control’s excellent
communication results, however, reflect the behavior’s lack of
urban exploration rather then proper performance. More
interestingly, the tethered team maintained a great deal of
network connectivity resulting in a lone network only 4.6% of
the time (p =0). This seems to indicate that a tethered team of
robots could perform a probe-like reconnaissance mission in
which communication maintenance was vital. The tethered
robot team likely outperforms the untethered team because it
has less opportunity for failure—it is tethered. Overall the
communication results indicate the value of plan elements—
coordinated planning reduces the number of isolated robots.
We also see that additional teammates help maintain network
connectivity, although this relationship is not strictly linear.
Teams of three likely fare the worst because they tend to be
unable to completely surround buildings and have two network
connections to sever rather then one.

Figure 10 examines urban terrain coverage for each
experimental condition. Greater coverage denotes better
performance. Due to its lack of location coordinate the wander
control performs the worst. As would be expected, the tethered
team also performs poorly. Although the coverage performance
of the remaining experiments occasionally differs significantly
(p =0 3-Team vs. 4-Team), this is likely the result of our overly
strict standard for coverage. In all experiments, it was assumed
that each robot has only the ability to sense and hence cover a
three by three meter area in all directions from its current
location excluding obstacles. We suspect that relaxing this
standard would result in approximately equivalent coverage for
all experiments except the tethered experiment and the wander
differences resulted. The tethered team’s additional time is an

Figure 11. Time. Only the tethered team requires significantly greater time.

Figure 12. Distance—A measure of energy expenditure. When the plan
controller utililizes a least commitment strategy the total distance traveled by a
team of four robots deceases.

experiment. Overall the coverage results indicate that large
portion of the urban territory is being explored by the robots.
Figure 11 displays the time required for each experiment. With
the exception of the tethered team no significant indirect result
of being tethered. These teams typically traverse most of the
map, break communication, and then retreat back to the
tethered robot. The back and forth nature of this scenario
increases the time required to perform this mission.

Figure 12 depicts the total distance traveled by all robots in
the team. This graph gives an idea of the energy requirements
for the different types of experiments. The use of a least
commitment strategy appears to have reduced the average
energy consumption of a team of four robots to the equivalent
of a team of three. As one would expect the variance of this
strategy is large, however. Sometimes a least commitment
approach to element selection works very well. Sometimes it
works very poorly. However, on average this strategy performs
well.

VII. CONCLUSIONS
This paper has presented a method for multi-robot

communication-sensitive reconnaissance. More generally, it
has outlined an approach by which larger tasks can be
decomposed into smaller tasks and planned for by using
internalized plans. Experiments using this method demonstrate
improved performance over other control system experiments,
and illustrate the effect of team size, plan selection, and
scenario. Three interesting characteristics of this approach are
worth noting:

1) Planning is offline in the sense that each plan element is
computed a priori. This limits the planner to the elements that

Percent Time with A Lone Network

0
10
20
30
40
50
60
70
80
90

WayPt Wander 2-Team 3-Team 3-Team Tet 4-Team LeastCom
Experiment

Pe
rc

en
t T

im
e

(ti
m

e
st

ep
s)

Coverage Performance Metric

0

1000

2000

3000

4000

5000

6000

7000

WayPt Wander 2-Team 3-Team 3-Team T 4-Team LeastCom
Experiment

Ur
ba

n
Co

ve
ra

ge
 (m

^2
)

Distance Performance Metric

0

1000
2000

3000

4000

5000
6000

7000

WayPt Wander 2-Team 3-Team 3-Team T 4-Team LeastCom

Experiment
Di

st
an

ce
 (m

)

Time Performance Metric

0

50
100

150

200

250
300

350

WayPt Wander 2-Team 3-Team 3-Team T 4-Team LeastCom

Experiment

Ti
m

e
(ti

m
e

st
ep

s)

have been created in advance but affords reactive utilization of
each element.

2) Planning is online in the sense that the plan controller
may select elements dynamically at runtime. This allows for
dynamic reconfiguration of the plan and greater adaptability.

3) Several plans are utilized in parallel allowing the type of
advice to be altered as environmental conditions change.

It could be claimed that simple iteration through the same
series of waypoints by a team of robots would likely maximize
our performance metrics. This is indeed the case. However, the
primary aim of this work is the development of a technique
suitable for battlefield scenarios. These situations demand the
ability to deal with uncertain, unpredictable conditions and also
utilize a priori information as much as possible. Equally
important is the ability to react opportunistically to uncertainty.
This approach is opportunistic in that plan elements can be
managed dynamically; precompiled vector fields limit the
tendency for unnecessary waypoints; and changes in the
environment are reflected in output advice. Simple iteration
through a series of waypoints is ill equipped to handle
dynamic, unpredictable environments and lacks the ability to
act opportunistically.

Currently, plan elements and their associated machinery are
designed by hand. This limits the scalability of this approach
with respect to the number of tasks. Scalability in terms of team
size, terrain size, and instantiations of a particular task are not
similarly limited. Hence this approach may be of value when
the deployment situation could include arbitrary team sizes,
terrain size, or repetitions of similar tasks.

In the future we hope to extend this approach to larger
teams of robots, investigate more generalized and varied types
of tasks, and examine the system’s performance on real robots.

ACKNOWLEDGMENT
This research is funded under DARPA/DOI contract

#NBCH1020012 as part of the MARS Vision 2020 program.
This program is a joint effort of Georgia Institute of
Technology, The University of Pennsylvania, University of
Southern California, and BBN Technologies. We would like to

thank the staff of the McKenna MOUT site at Fort Benning GA
for allowing us to test our research at their facilities.

REFERENCES
[1] R.C. Arkin and T. Balch, “AuRA: Principles and Practice in Review”,

Journal of Experimental and Theorretical Artificial Intelligence,
9(2):175-189, 1997.

[2] R.C. Arkin, Behavior-Based Robotics, MIT Press, Cambridge, MA.
1998.

[3] T. Balch and R.C. Arkin, “Communication in Reactive Multiagent
Robotic Systems,” Autonomous Robots, 1(1):27-52, 1995.

[4] R.A. Brooks, “Intelligence without Reason,” Artificial Intelligence,
47:139-159, 1991.

[5] J. Connell, “SSS: A Hybrid Architecture applied to Robot Navigation”,
Proc. IEEE Intern. Conf. on Robotics and Automation, pp 2719-2724,
1992.

[6] C.P. Diehl, M. Saptharishi, J.B. Hampshire II, and P. Khosla,
“Colaborative Surveillance Using Both Fixed and Mobile Unattended
Ground Sensor Platforms”, SPIE 13th International Conf. on
Aerospace/Defense Sensing, Simulation, and Controls, Vol. 3713, April,
pp.178-185. 1999.

[7] E. Gat, “Three-Layer Architectures”, in Artificial Intelligence and
Mobile Robots: Case Studies of Successful Robot Systems, pp 195-210,
MIT Press, Menlo Park CA, 1998.

[8] K. Konolige, “A Gradient Method for Realtime Robot Control”, Proc.
IEEE Inter. Conf. on Inteligent Robotics and Systems, pp 639-646, 2000.

[9] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers,
Boston, 1991.

[10] D.C. MacKenzie, “Design Methodology for the Configuration of
Behavior-Based Robots”, Ph.D. Diss., College of Computing, Georgia
Inst. Of Tech., 1997.

[11] D.Payton, J. Rosenblatt, D. Keirsey, “Plan Guided Reaction”, IEEE
Transactions on Systems, Man, and Cybernetics, 20(6):1370-1382, 1990.

[12] A. Ranganathan and S. Koenig, “A Reactive Robot Architecture with
Planning on Demand”, Proc. IEEE Inter. Conf. on Inteligent Robotics
and Systems, 1462-1468, 2003.

[13] A.R. Wagner and R.C. Arkin, “Internalized Plans for Communication-
Sensitive Robot Team Behaviors”, Proc. IEEE Inter. Conf. on Inteligent
Robotics and Systems, pp 2480-2487, 2003.

[14] Arkin, R.C., “Navigational Path Planning for a Vision-based Mobile
Robot, Robotica, Vol.7, pp.49-63, 1989.

Plan Controller Pseudocode

 while Plan not complete
 retrieve feature vector from robot controller
 if element complete
 select new element using method m
 return advice vector A = Element(Feature vector)

Element selection Pseudocode

 if method m = least commitment
 Set current cost ∞=
 for all remaining elements in plan
 if element cost < current cost
 current cost = element cost
 return Element(current cost)
 else if method = strict ordering
 return Element(i)

Element Pseudocode

 Given feature vector V
 Initialize weight vector W =0
 W = DecisionTree(V)

Advice vector A = xA + yA

where

xA =∑
N

i
ii x

Qw

 yA =∑
N

i
ii y

Qw and

 iQ = vector from internal plan(i) from parallel plan

 return A

Figure 13. Pseudocode for plan controller operation, element selection, and element advice production.

