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This paper presents a method for multi-robot communication-
sensitive reconnaissance. This approach utilizes collections of 
precompiled vector fields in parallel to coordinate a team of 
robots in a manner that is responsive to communication failures. 
Collections of vector fields are organized at the task level for 
reusability and generality. Different team sizes, scenarios, and 
task management strategies are investigated. Results indicate an 
acceptable reduction in communication attenuation when 
compared to other related methods of navigation. Online 
management of tasks and potential scalability are discussed.  
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I.  INTRODUCTION 
This paper contributes a novel multi-robot method for 

performing communication-sensitive reconnaissance, which 
involves exploring an urban area in a manner that prevents a 
team member from becoming a lone disconnected network. 
This type of reconnaissance is one goal of DARPA’s MARS 
Vision 2020 program and has implications for much of the 
multi-robot community. Communication sensitivity is an 
important consideration for teams of robots operating in 
dynamic and potentially hazardous environments. In particular, 
communicating robots may be more capable of self-rescue, 
better equipped to relay information back to a human operator, 
and have advantages in terms of localization. [3]. These types 
of environments require agents capable of coordinated sensing, 
processing, and communication [6]. 

Multiple architectures have been created for the purpose of 
autonomous navigation. Implemented systems range from 
purely reactive [4] to sense-plan-act [9]. Hybrid 
deliberative/reactive architectures attempt to address the short- 
comings of these two extremes [1, 5]. Other approaches include 
continuous calculation of a local gradient field [8] or planning 
only when reactive behaviors fail [12].     

Payton also delineates a method for combining planning 
with reactive navigation [11]. In this method, a priori map 
knowledge becomes an enabling resource for decision-making. 
From his perspective, traditional plans are artificially abstracted 
from knowledge that often results in over- or under-
specification of a mission’s objectives. By minimizing 
symbolic abstraction, a plan for action is developed that can be 
used directly by a reactive agent. Payton brands this type of 
plan an internalized plan. These internalized plans differ from 

traditional plans by their lack of abstract symbol use and their 
tight representational coupling to the needs of a reactive robot. 
Moreover, the plans are used only as advice, where injecting 
world map or other types of knowledge is performed only at 
the discretion of the robot. 

Combining plans with reactive navigation is not new. 
Rather than simply implementing a planning algorithm on top 
of a reactive architecture, the method outlined in this paper 
both extends and generalizes an earlier hybrid approach. In 
previous research [13], internalized plans were integrated with 
Arkin’s motor schema architecture [2] using the Missionlab 
[10] behavior specification software. An internalized plan is 
created by running a uniform cost search algorithm to produce 
a gradient field on a grid mesh. The resulting vector field 
directs a robot from any location on a map to a goal location. 
This hybrid approach alleviates some of the problems 
associated with purely reactive systems (e.g., local minima, box 
canyons, and mazes) while still providing timely response to 
unplanned obstacle encounters. This earlier work also 
developed an efficient method for using sets of multiple plans 
in parallel,  enabling a robot to focus attention on one plan over 
another in a given situation or via a weighted combination of 
plans. By stacking multiple vector fields on top of one another, 
advice can be either arbitrated or weighted based on a rank 
ordered attention mechanism (fig. 1).    

Building from this initial research, new procedures and 
techniques for plan selection, organization, and coordination 
are developed that can potentially be extended to novel 
environments and generalized across a wide variety of 
domains. This approach shows promise as a method for 
coordinating teams of robots while performing 
communications-sensitive reconnaissance.   

II. METHOD OVERVIEW 
Our method operates on the premise that reconnaissance of 

a large urban area can be reduced into a collection of smaller 
reconnaissance tasks. Moreover, if each of these tasks is 
sensitive to communication attenuation then, overall, the entire 
operation will be sensitive to communication attenuation. 
Naturally there may be many different tasks; circle a target 
area, perform reconnaissance within a building, or exit a 
location, to name a few. Each individual task may also need to 
be repeated several times, differing only by some parameter, 
such as location. When a task is repeated most, if not all, of the 
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Figure 1.  Plans used in parallel. The top plan represents a communications 
plan. The bottom plan represents a coverage plan. Output advice is  
determined via arbitration or weighted summation where α is the weight of 
plan P1 and β is the weight of plan P2. 

underlying structure that composes the task may be similarly 
repeated. Hence by intelligently developing and combining 
simple communication-sensitive reconnaissance tasks this 
method can be made to perform reconnaissance on a much 
larger scale. For example, reconnaissance of one particular 
building may differ from reconnaissance of another building in 
the details of the rooms or the intermediate locations to be 
navigated, but not regarding the overall procedures performed. 
In this research, a task is represented by a plan element, and 
repetition of the same task is represented by different instances 
of that same element. 

The preceding argument has important consequences from 
a planning perspective. Although the moment-to-moment 
nuances of the environment may change radically, the 
procedures, steps, and milestones for accomplishing a mission 
will likely not change. Granted some plans may be made 
untenable by changes in a dynamic environment. In this case it 
is often acceptable for the team to recognize that its plan is 
invalid and give up (and replan) rather than attempt to solve a 
problem for which it has little or no resources. This line of 
reasoning draws from work on cognizant failure [7]. In our 
case since planning is used only as advice to a reactive 
controller, the system should remain robust to dynamic and 
unaccounted for obstacles and impediments. Moreover, even 
the method by which the “advice” is realized may not be 
important, as long as the underlying reactive controller has the 
final determination of which heading and velocity to select.    

Team coordination is another important aspect for multi-
robot reconnaissance. This approach provides mechanisms for 
both between-task and within-task coordination. Between-task 
coordination is accomplished by restricting the transition from 
one task to another until all robots have completed the 
preceding task. Within-task coordination is accomplished using 
specifically designed progress points or stages for the task. 
Movement from one progress point to another is similarly 
restricted until the preconditions of a transition function are 
satisfied. The larger components of this method are described 
below and depicted graphically in figure 2. 

One component is the plan controller. This component is 
devoted to four tasks: 1) managing the plan elements which 
compose the overall mission, 2) coordinating the progression 
from one plan element to the next 3) determining the role each 
robot will play when executing an element and 4)  
communicating the plan controller’s advice to the robot 

Figure 2.   Interaction of the robot controller, plan controller, and feature 
vectors. The robot controller maintains control of the robot but receives 
directional advice from the plan controller. The plan controller, in turn, 
receives information regarding the status of the current environment encoded 
in a feature vector and presents directional advice to the robot controller.    

controller. Pseudocode for this procedure is provided in figure 
13. 

As mentioned, this software represents tasks as individual 
plan elements. These elements can be managed in several 
ways. The overall mission could, for example, demand a strict 
ordering of tasks. Or, on the other hand, a least commitment 
ordering of tasks might be acceptable (see figure 13 for 
pseudocode). The plan controller also coordinates the transition 
from one plan element to the next. This guarantees the 
completion of one task (either successfully or unsuccessfully) 
prior to beginning another task. The plan controller may need 
to assign robots to particular roles if the underlying task 
demands it. Currently, the controller assumes the robot team to 
be homogeneous, but we foresee no difficulty extending this 
approach to heterogeneous teams and hope to address this task 
in future work. Finally the planning system’s advice is 
communicated to the robot controller via a unit vector.   

The robot controller executes the underlying reactive 
system, in this case Missionlab’s motor schemas. The robot 
controller interfaces with the plan controller receiving its 
advice in the form of an egocentric unit vector. The robot 
controller maintains the option to ignore plan advice at any 
time and provides the plan controller with positional 
information and sensor-derived feature vectors.    

Feature vectors provide a snapshot of the robot’s 
environment to the planning apparatus. They contain the 
information necessary to produce an advice vector. Feature 
vectors are created by the robot controller based on incoming 
sensory information.     

III. PLAN ELEMENTS 
Plan elements have already been described as the individual 

tasks into which the overall mission is decomposed. Each plan 
element represents a recommended solution to a problem. A 
single element guides each robot of a team in a coordinated 
manner to accomplish a specific task. Many unique 
instantiations of a single element may exist. Figure 3 depicts 
the components of a plan element and figure 13 provides 
pseudocode.  

All plan elements share a common interface format. This 
serves several purposes. First, it allows uniform handling and 
management of all elements. Second, it ensures that the  
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Figure 3.  The internal structure of a plan element. The major components 
that characterize a plan element are depicted.  

implementation underlying an element is restricted to the 
element itself. Finally, it defines and restricts the type of 
information that an element can produce and receive. It is 
expected that by using a common interface the development of 
additional plan elements will be made easier and standardized. 

Currently the interface limits each plan element’s input to a 
feature vector, the role of the robot, and the number of robots in 
the team. This allows the element to be generalized with 
respect to team size, the robot’s role in the task, and the status 
of the environment. This design decision has benefits and 
drawbacks. On the one hand, an interface that limits input to all 
elements vastly simplifies the management and operation of the 
elements. On the other hand, because different elements may 
require different input, this strategy will likely fail when the 
number and type of elements becomes more complex. One 
solution might be to maintain two separate input channels: one 
common among all elements and one specific to each element. 
In any case, as the quantity of planned tasks a robot can 
perform increases so does the difficulty of managing and using 
those tasks.     

The common element interface similarly limits each 
element’s output to a unit vector with directional advice. The 
output is then passed from the plan controller to the robot 
controller. Because this method utilizes several plans in parallel 
additional channels for element output are not necessary. This 
is an important and defining characteristic of our approach. The 
planning system distills several rapidly changing and complex 
input variables into a single piece of output advice that will not 
require any additional processing for use by the robot 
controller. Moreover this is performed in real-time in a manner 
that is reusable from element instance to element instance.     

Between each plan element’s input and output, two 
components—a decision tree and a parallel plan—accomplish 
the reduction in complexity. Each element maintains a decision 
tree mapping the element’s input to an array of gain values.  
Gain values are multipliers of the basic output vectors of each 
behavior [2], or, in this case, the relative strength of the 
internalized plans. When input is presented to an element by 
the plan controller it flows down the element’s decision tree 
eventually resulting in an array of gains. This array will 
determine the influence (gain) of each individual internalized 
plan in a parallel-internalized plan. While the decision tree for 
each instance of an element is the same, the decision tree for 
each type of element may be different. In other words each  

Figure 4.  The decision tree used for the ReconBuilding element. The 
first node selects based on team size, the next node on role, the third nodes on 
progress and the final node  based on communications status. Example values 
are displayed below and to right of each node. Gain A and B are meant to 
represent arbitrary gain arrays.  

decision tree is task-specific but not instance-specific.  The 
decision tree maintains the guidelines by which a task is 
conducted. An element’s decision tree may be extremely 
complex or as simple as a direct pointer to a single static gain. 
For example, if the robot’s ability to communicate is 
acceptable, then the decision tree may select an array of gains 
that favor a coverage plan over a communications plan, 
perhaps driving two robots in different directions. If, on the 
other hand, the robot’s current ability to communicate is 
unacceptable then the resulting gain values will prefer a 
communication plan over a coverage plan, perhaps forcing the 
robots toward one another. 

Figure 4 outlines the decision tree for one plan element 
used in this study—ReconBuilding. Due to space 
considerations only a single path through the tree is shown. The 
first node of the decision tree branches based on team size. 
Later the tree branches according to role, progress, and 
communication status. Arbitrary values have been included for 
completeness: team size-3, role-2, and progress-0. These values 
map to the gain arrays A and B.  

The final stage in the operation of a plan element applies 
the array of gains determined by the decision tree to a parallel 
plan producing the element’s output. An internalized plan [11] 
has already been described as a gradient field generated on a 
grid mesh using a map. Multiple internalized plans can be 
utilized in parallel by stacking individual plans on top of one 
another. Output advice is then determined by multiplying the 
advice for each individual plan at a location by a gain as 
determined by the decision tree. The detailed use of parallel-
internalized plans appears in [13].         

IV. IMPLEMENTATION 
The system was developed with the intent of enabling 

teams of autonomous robots to perform coordinated 
communication-sensitive reconnaissance as part of DARPA’s 
MARS Vision 2020 program. Prior to implementation it was  
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Figure 5.  The training village located at Fort Benning GA.  

necessary to determine the types of tasks that are necessary for 
successful completion of a communication-sensitive 
reconnaissance mission.  The fielded system will be tested in 
an outdoor mockup of a European village (fig. 5) at Ft. 
Benning, Georgia. A team of robots must explore this small 
town of less than a 0.25 x 0.25km area. Our overall role in 
Vision 2020 has guided the choice of tasks for the robot team. 
It is not maintained that these are the best, most optimal, or 
most characteristic tasks and associated elements for 
performing reconnaissance. They simply represent the tasks 
chosen to address this problem, and other design choices are 
possible. 

This section is organized into three parts. First, the two 
major tasks are described in detail. The computational process 
necessary for completing each task is then explained. Finally 
the procedure for using a plan element is described. 

A. Description of Elements 
Two types of plan elements were defined, one for each task 

deemed necessary. ReconBuilding is an element devoted 
to surrounding and moving around buildings, in a 
communication-sensitive manner. This allows the team to 
explore the entire village, including alleys, streets, and 
passageways, with minimal lose of communication; eventually 
covering the entire area and succeeding in its reconnaissance 
mission. MoveTo is an element that guides the team of robots 
from one location to another, resorting to a contingency plan if 
communication fails. This element guides robots between the 
reconnaissance of individual buildings. Other methods, such as 
reactive navigation, could have been used instead. A second 
plan element was implemented in order to examine the generic 
nature of the plan element interface.         

The MoveTo plan element directs the robots to a goal 
position from any location on the map. Network signal 
strength, along with other unused information, is input to this 
element by the plan controller. Its decision tree assigns a gain 
of 1.0 to the internalized plan leading to the goal and 0.0 to the 
contingency plan while the network signal strength to all 
teammates is above a 10% signal strength threshold level. If the 
network signal strength decreases below the threshold level, a 
gain of 0.0 is assigned to the internalized plan leading to the 
goal and a gain of 1.0 assigned to the contingency plan,  

Figure 6.  Progress stages for the ReconBuilding plan element. (A) 
depicts the start position and the different directions for each robot’s role at 
this stage. (B) shows the robots in position for the transition to stage 2. (C) 
displays the robots in position for the tranistion to stage three. (D) depicts the 
robots at the goal location. 

effectively switching between the plans. Once the contingency 
plan has been selected it continues to function within this 
element regardless of network signal strength. This prevents 
the robots from thrashing between plans at the border of a 
communications failure. 

The ReconBuilding plan element is more complex. 
This element employs all data input from the plan controller: 
the robot’s current position, the locations of teammates, the 
signal strength to each teammate, and the robot’s role. The 
feature vector, transmitted to the element by the plan controller, 
contains the pertinent sensory information. The robot’s role is 
assigned to the element when the element is instantiated. Input 
from the plan controller traverses the decision tree in figure 4. 
The first branch of the tree segregates based on team size. The 
team size attempting to surround the building is an important 
factor in determining where and when a team member should 
move. If the team consists of two robots the robots initially 
attempt to pass the object from opposite sides. Intuitively 
sending each robot around a different side of a building may 
seem improper when communication maintenance is one of the 
stated goals of the system. However, these tasks were designed 
to prefer opportunistic plan advice. Thus an attempt is made to 
first surround the building even if communication attenuation is 
likely. Other choices are possible. Three robot teams attempt to 
surround the building by leaving one robot behind to act as a 
communication relay for the other two members. Thus, in a 
team of three, one robot is assigned the role of communication 
relay, one is tasked with exploring one side of the building, and 
the third robot is task with exploring the opposite side. Teams 
of four robots, depicted in figure 6, attempt to surround the 
building by creating a rectangle of communicating robots 
around the building. Again two robots are assigned (by the plan 
controller) the role of exploring opposite sides of the building. 
The remaining two robots act as communication relays by 



moving to nearside positions.   In this research, the number of 
roles a team has is equal to its team size.    

Surrounding a building with a robot team requires 
coordination. For this reason the third node of the decision tree 
branches based on the robot’s progress. A two robot team has 
no progress stages. Teams of three and four have three progress 
stages. The first stage begins with the robot’s initial locations 
and ends when the robots assigned to explore opposite sides of 
the building have reached their assigned locations and 
reestablished contact with one another. The beginning of stage 
one for a team of four robots is depicted in figure 6a. The 
arrows indicate each robot’s initial trajectory. Figure 6b shows 
the team at the end of stage one. Progress stage two guides the 
two-team members acting as communication relays to their 
final goal location. This stage ends when the communication 
relay robots have reached the same location as the exploring 
robots, depicted in box three of figure 6c. The final stage 
guides all of the robots the goal location.  

The last node of the decision tree selects based on 
communication status. Acceptable versus unacceptable 
communication is influenced by team size, role, and progress 
stage. For example, in a team of four robots at the first progress 
stage, the exploring robot only needs to maintain a link with a 
particular communication relay robot. A communication relay 
robot, on the other hand, must maintain a link with both an 
exploring robot and the other communication relay robot. 

The ReconBuilding element’s parallel plan consists of 
four individual internalized plans: a contingency plan, two 
communication relay plans, and a coverage plan. The 
contingency plan guides each robot to the element’s goal 
location and was the same for all robots in the team. The two 
communication relay plans guide the robots to relay locations. 
Finally, a coverage plan guides each robot to the element’s goal 
location but in a manner that sends the robots down different 
sides of the building—hence coming in two types. Thus, in 
total this element requires production of five internalized plans. 

Currently the arrays produced by the decision tree set the 
gain for one plan to 1.0 and all others to zero. In future work 
we intend to blend advice from plans at each time step. 

B. Creating a Plan For Reconnaissance  

The process of determining which tasks decompose into the 
mission has already been discussed. Similarly, fleshing out a 
task into the decision tree and the parallel plans is currently an 
inexact and empirical process. The components of the MoveTo 
and ReconBuilding have been described in the preceding 
section. Next, the map locations that underlie each element’s 
internalized plans are required. All positions are determined 
prior to running the mission and were, in this case, determined 
empirically. 

The MoveTo element utilizes a parallel plan consisting of 
two internalized plans. The goal location for this element’s 
contingency plan directs it to an arbitrary position outside the 
village. This is meant to regroup the team if communication 
fails when moving from one building to another. This 
element’s other plan simply directs it to the element’s goal 
position. 

The ReconBuilding element employs a parallel plan 
consisting of four internalized plans. Because the contingency 
plan and both types of the coverage plan guide the robot to the  

Figure 7.  An example of the vector field produced for the 
ReconBuilding plan element. Temporary boundaries guide the 
production of the vector gradient.    

same goal, only one goal location needs to be determined for 
these three plans. Additional positions are necessary for each of 
the two communication relay points, for a total of three 
positions. 

The different types of coverage have been mentioned 
briefly above. If one type leads the robot to the element’s goal 
along a westerly (or northerly) path then the other type leads 
the robot along an easterly (or southerly) path. Constructing 
each type of coverage plan requires biasing the uniform cost 
algorithm to favor paths in one direction over paths in another 
direction. This is accomplished by adding cost to less favored 
path areas or by hallucinating a temporary boundary preventing 
access along one side of a building, which is the method we 
chose for ease of implementation. Figure 7 depicts a 
ReconBuilding element during construction. The gradient 
field directs the robot around the building from below. The 
temporary boundaries that are used to influence path direction 
and to grow the obstacle are marked. A temporary boundary 
that grows the building is employed to prevent communication 
attenuation at the far left corner of the building since the vector 
field slopes away from the communication relay robot. Both of 
these alterations to the internalized plan generation were used 
only for the two types of coverage plans in the 
ReconBuilding plan element.    

In order to reduce plan computation time and the resulting 
resource file size, the internalized plans for the 
ReconBuilding element were not computed over the entire 
map. Rather a restricted rectangle was constructed around each 
building using temporary obstacles visible only to the 
internalized plan generation algorithm. These rectangles 
required four additional positions. Figure 7 shows the 
temporary boundary of the rectangle surrounding the building. 
In all, the generation and alteration of a single 
ReconBuilding element requires knowing fifteen positions: 
four points for the rectangle constructed around the building, 
four points marking the obstacle boundaries used to influence 
the coverage plans’ path (two for each type/side), four points 
used to grow the building (two for each type/side), and three 
positions for the goals of the underlying plans.  



After all the locations necessary for the reconnaissance 
mission have been collected, the individual internalized plans 
are compiled [13]. Upon completion, a resource file is 
generated. Software tools have been created to enable a user to 
alter specific internalized plans within a resource file. 
Individual plans can be added, deleted, or replaced without 
complete recompilation of all of the plans. Finally a mission is 
constructed employing the followplan behavior in the 
MissionLab behavior specification system.    

C. Utilizing a Reconnaisance Plan 
At startup, but prior to mission execution, the resource file 

containing data for each internalized plan is parsed and loaded 
into plan objects. At runtime, feature vectors are generated that 
include data produced by either a network model when running 
in simulation or a hardware network component developed by 
BBN Technologies and sent to the plan controller. The plan 
controller adds information pertaining to the size of the team 
and the robot’s particular role in the plan. This information is 
provided to the current plan element. The plan controller 
selects which element to employ. This research explored using 
both a strict ordering of plan elements and a least commitment 
selection mechanism. Finally the element produces plan-based 
advice to be utilized by the robot controller or ignored. A task 
ends when all of the robots in the team have reached the 
element’s goal location.     

V. EXPERIMENTS 
Several experiments were run in simulation to test the new 

system. All experiments were run using the map and obstacle 
representation of a training village (figure 8). Experiments 
were conducted on the entire map and required thirteen 
MoveTo and thirteen ReconBuilding elements. The actual 
map contains 15 buildings. In two cases separate building were 
treated as a single complex due to their close proximity. These 
experiments consisted of thirty trials starting from a random 
location outside the urban terrain of the map. The robot teams 
were expected to navigate to and through the city. The map of 
the Fort Benning village is accurate to approximately one-
meter resolution and covers a terrain of 220 square meters. 
Previously conducted tests have verified the ability of real 
robots to operate in and around the village with internalized 
plans using this map. The network model used for these 
experiments reduced network signal strength when the robots 
were occluded by terrain. Evaluation was based on total 
mission time, total distance traveled, urban terrain coverage, 
and percent time with at least one lone network. These metrics 
are felt to characterize performance in real world 
reconnaissance operations.   

Estimates of baseline performance were obtained by 
comparing the plan element system to control experiments that 
used a three-robot team wandering the site and another using 
navigation based on Missionlab’s existing waypoint planner 
[14]. Although the control experiments do not provide a perfect 
comparison, they are meant to convey a general sense of the 
performance of uncoordinated reactive team behavior. All 
experiments used the same randomized start locations and 
identical gains for obstacle avoidance. The effect of team size 
was also investigated. As mentioned previously, this system 
operates for teams of up to four robots. Performance and  

Figure 8.  A map of the training village located at Fort Benning GA. All 
simulation trials were run on this test site. Early experiments with real robots 
have examined the validity of utilizing internalized plans at this site. 

scalability were examined for two, three, and four robot team 
sizes. 

 We also experimented with different strategies for selecting 
plan elements. Even though plan elements are predefined in 
terms of their underlying locations, the plan controller selects 
elements dynamically at runtime for use by the robot. Using 
teams of three robots, a least commitment element selection 
mechanism was compared to selecting elements using a strict 
ordering determined by the experimenter. The least 
commitment mechanism consistently selected the plan element 
from the set of elements which minimized the distance from 
the current location to the element’s goal location, thus 
continually selecting the nearest building for which 
reconnaissance had not yet been performed. 

Finally experiments were performed using a scenario in 
which one robot of a three-robot team was constantly fixed 
(tethered) at a single location. This experiment explores an 
important real-world scenario where a human-operated vehicle 
deploys the reconnaissance robots that must explore an urban 
space while maintaining contact with the stationary base 
vehicle. 

VI. RESULTS 
It was conjectured that by utilizing coordinated planning 

elements the percentage of lone or isolated networks would 
decrease significantly in comparison to the control systems. It 
was further hypothesized that as team size increases, network 
connectivity would improve. It was believed that as the total 
number of robots increases, although the task of coordinating 
becomes increasingly difficult, more opportunity for network 
connectivity exists. Figures 9-12 display the results for all 
experiments. Figure 9 examines communication attenuation. 
Due to lack of team coordination, the waypoint planner 
performed significantly worse then all other all other 
experiments on this metric (p = 0 on two-tailed t-test). Teams 
of three performed significantly worse then teams of other sizes 
(p = 0 vs. team size of two and team size of three). Teams of 
four maintained nearly perfect network connectivity with little 
variance over randomized start locations. The wander behavior  



Figure 9.  Percent time with a lone network. The waypoint control performs 
the worst. Teams using plan elements improves communication preformance.  

Figure 10.  Coverage. The wander control performs the worst. Teams using 
plan elements cover large areas of urban terrain.     

also performed well on this metric. This control’s excellent 
communication results, however, reflect the behavior’s lack of 
urban exploration rather then proper performance. More 
interestingly, the tethered team maintained a great deal of 
network connectivity resulting in a lone network only 4.6% of 
the time (p =0). This seems to indicate that a tethered team of 
robots could perform a probe-like reconnaissance mission in 
which communication maintenance was vital. The tethered 
robot team likely outperforms the untethered team because it 
has less opportunity for failure—it is tethered. Overall the 
communication results indicate the value of plan elements—
coordinated planning reduces the number of isolated robots. 
We also see that additional teammates help maintain network 
connectivity, although this relationship is not strictly linear. 
Teams of three likely fare the worst because they tend to be 
unable to completely surround buildings and have two network 
connections to sever rather then one.    

Figure 10 examines urban terrain coverage for each 
experimental condition. Greater coverage denotes better 
performance. Due to its lack of location coordinate the wander 
control performs the worst. As would be expected, the tethered 
team also performs poorly. Although the coverage performance 
of the remaining experiments occasionally differs significantly 
(p =0 3-Team vs. 4-Team), this is likely the result of our overly 
strict standard for coverage. In all experiments, it was assumed 
that each robot has only the ability to sense and hence cover a 
three by three meter area in all directions from its current 
location excluding obstacles. We suspect that relaxing this 
standard would result in approximately equivalent coverage for 
all experiments except the tethered experiment and the wander 
differences resulted. The tethered team’s additional time is an  

Figure 11.  Time. Only the tethered team requires significantly greater  time.      

Figure 12.  Distance—A measure of energy expenditure. When the plan 
controller utililizes a least commitment strategy the total distance traveled by a 
team of four robots deceases.      

experiment. Overall the coverage results indicate that large 
portion of the urban territory is being explored by the robots. 
Figure 11 displays the time required for each experiment. With 
the exception of the tethered team no significant indirect result 
of being tethered. These teams typically traverse most of the 
map, break communication, and then retreat back to the 
tethered robot. The back and forth nature of this scenario 
increases the time required to perform this mission.  

Figure 12 depicts the total distance traveled by all robots in 
the team. This graph gives an idea of the energy requirements 
for the different types of experiments. The use of a least 
commitment strategy appears to have reduced the average 
energy consumption of a team of four robots to the equivalent 
of a team of three. As one would expect the variance of this 
strategy is large, however. Sometimes a least commitment 
approach to element selection works very well. Sometimes it 
works very poorly. However, on average this strategy performs 
well.  

VII. CONCLUSIONS 
This paper has presented a method for multi-robot 

communication-sensitive reconnaissance. More generally, it 
has outlined an approach by which larger tasks can be 
decomposed into smaller tasks and planned for by using 
internalized plans. Experiments using this method demonstrate 
improved performance over other control system experiments, 
and illustrate the effect of team size, plan selection, and 
scenario. Three interesting characteristics of this approach are 
worth noting:  

1) Planning is offline in the sense that each plan element is 
computed a priori. This limits the planner to the elements that 
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have been created in advance but affords reactive utilization of 
each element.  

2) Planning is online in the sense that the plan controller 
may select elements dynamically at runtime. This allows for 
dynamic reconfiguration of the plan and greater adaptability.   

3) Several plans are utilized in parallel allowing the type of 
advice to be altered as environmental conditions change. 

It could be claimed that simple iteration through the same 
series of waypoints by a team of robots would likely maximize 
our performance metrics. This is indeed the case. However, the 
primary aim of this work is the development of a technique 
suitable for battlefield scenarios. These situations demand the 
ability to deal with uncertain, unpredictable conditions and also 
utilize a priori information as much as possible. Equally 
important is the ability to react opportunistically to uncertainty. 
This approach is opportunistic in that plan elements can be 
managed dynamically; precompiled vector fields limit the 
tendency for unnecessary waypoints; and changes in the 
environment are reflected in output advice. Simple iteration 
through a series of waypoints is ill equipped to handle 
dynamic, unpredictable environments and lacks the ability to 
act opportunistically.     

Currently, plan elements and their associated machinery are 
designed by hand. This limits the scalability of this approach 
with respect to the number of tasks. Scalability in terms of team 
size, terrain size, and instantiations of a particular task are not 
similarly limited. Hence this approach may be of value when 
the deployment situation could include arbitrary team sizes, 
terrain size, or repetitions of similar tasks.  

In the future we hope to extend this approach to larger 
teams of robots, investigate more generalized and varied types 
of tasks, and examine the system’s performance on real robots.            
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Plan Controller Pseudocode 
  
 while Plan not complete 
  retrieve feature vector from robot controller 
  if element complete 
  select new element using method m 
 return advice vector A = Element(Feature vector) 

 
Element selection Pseudocode 
 
 if method m = least commitment 
  Set current cost ∞=  
  for all remaining elements in plan 
   if element cost < current cost 
    current cost = element cost 
  return Element(current cost) 
 else if method = strict ordering 
  return Element(i) 

 
Element Pseudocode 
  
 Given feature vector V 
 Initialize weight vector W =0 
 W = DecisionTree(V) 

Advice vector A = xA + yA  

where  

xA =∑
N

i
ii x

Qw  

 yA =∑
N

i
ii y

Qw and 

 iQ = vector from internal plan(i) from parallel plan 

 return A  

 

Figure 13. Pseudocode for plan controller operation, element selection, and element advice production. 


